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PREFACE

Calculus is one of the greatest achievements of the human intellect. Inspired by problems in astronomy,
Newton and Leibniz developed the ideas of calculus 300 years ago. Since then, each century has demonstrated
the power of calculus to illuminate questions in mathematics, the physical sciences, engineering, and the
social and biological sciences.

Calculus has been so successful both because its central theme—change—is pivotal to an analysis of the
natural world and because of its extraordinary power to reduce complicated problems to simple procedures.
Therein lies the danger in teaching calculus: it is possible to teach the subject as nothing but procedures—
thereby losing sight of both the mathematics and of its practical value. This edition of Calculus continues
our effort to promote courses in which understanding and computation reinforce each other.

Mathematical Thinking Supported by Theory and Modeling
The first stage in the development of mathematical thinking is the acquisition of a clear intuitive picture of the
central ideas. In the next stage, the student learns to reason with the intuitive ideas in plain English. After this
foundation has been laid, there is a choice of direction. All students benefit from both theory and modeling,
but the balance may differ for different groups. Some students, such as mathematics majors, may prefer more
theory, while others may prefer more modeling. For instructors wishing to emphasize the connection between
calculus and other fields, the text includes:
• A variety of problems from the physical sciences and engineering.

• Examples from the biological sciences and economics.

• Models from the health sciences and of population growth.

• New problems on sustainability.

• New case studies on medicine by David E. Sloane, MD.

Origin of the Text
From the beginning, this textbook grew out of a community of mathematics instructors eager to find effective
ways for students to learn calculus. This Sixth Edition of Calculus reflects the many voices of users at
research universities, four-year colleges, community colleges, and secondary schools. Their input and that of
our partner disciplines, engineering and the natural and social sciences, continue to shape our work.

Active Learning: Good Problems
As instructors ourselves, we know that interactive classrooms and well-crafted problems promote student
learning. Since its inception, the hallmark of our text has been its innovative and engaging problems. These
problems probe student understanding in ways often taken for granted. Praised for their creativity and variety,
the influence of these problems has extended far beyond the users of our textbook.

The Sixth Edition continues this tradition. Under our approach, which we called the “Rule of Four,”
ideas are presented graphically, numerically, symbolically, and verbally, thereby encouraging students with
a variety of learning styles to expand their knowledge. This edition expands the types of problems available:

• New Strengthen Your Understanding problems at the end of every section. These problems ask stu-
dents to reflect on what they have learned by deciding “What is wrong?” with a statement and to “Give
an example” of an idea.

• ConcepTests promote active learning in the classroom. These can be used with or without clickers
(personal response systems), and have been shown to dramatically improve student learning. Available
in a book or on the web at www.wiley.com/college/hughes-hallett.

v
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• Class Worksheets allow instructors to engage students in individual or group class-work. Samples are
available in the Instructor’s Manual, and all are on the web at www.wiley.com/college/hughes-hallett.

• Updated Data and Models. For example, Section 11.7 follows the current debate on Peak Oil Produc-
tion, underscoring the importance of mathematics in understanding the world’s economic and social
problems.

• Projects at the end of each chapter provide opportunities for a sustained investigation, often using skills
from different parts of the course.

• Drill Exercises build student skill and confidence.

• Online Problems available in WileyPLUS or WeBWorK, for example. Many problems are randomized,
providing students with expanded opportunities for practice with immediate feedback.

Symbolic Manipulation and Technology
To use calculus effectively, students need skill in both symbolic manipulation and the use of technology. The
balance between the two may vary, depending on the needs of the students and the wishes of the instructor.
The book is adaptable to many different combinations.

The book does not require any specific software or technology. It has been used with graphing calcula-
tors, graphing software, and computer algebra systems. Any technology with the ability to graph functions
and perform numerical integration will suffice. Students are expected to use their own judgment to determine
where technology is useful.

Content
This content represents our vision of how calculus can be taught. It is flexible enough to accommodate
individual course needs and requirements. Topics can easily be added or deleted, or the order changed.

Changes to the text in the Sixth Edition are in italics. In all chapters, many new problems were added
and others were updated.

Chapter 1: A Library of Functions

This chapter introduces all the elementary functions to be used in the book. Although the functions are
probably familiar, the graphical, numerical, verbal, and modeling approach to them may be new. We introduce
exponential functions at the earliest possible stage, since they are fundamental to the understanding of real-
world processes. The chapter concludes with a section on limits, allowing for a discussion of continuity at
a point and on an interval. The section on limits is flexible enough to allow for a brief introduction before
derivatives or for a more extensive treatment.

Chapter 2: Key Concept: The Derivative

The purpose of this chapter is to give the student a practical understanding of the definition of the deriva-
tive and its interpretation as an instantaneous rate of change. The power rule is introduced; other rules are
introduced in Chapter 3.

Chapter 3: Short-Cuts to Differentiation

The derivatives of all the functions in Chapter 1 are introduced, as well as the rules for differentiating prod-
ucts; quotients; and composite, inverse, hyperbolic, and implicitly defined functions.

Chapter 4: Using the Derivative

The aim of this chapter is to enable the student to use the derivative in solving problems, including opti-
mization, graphing, rates, parametric equations, and indeterminate forms. It is not necessary to cover all the
sections in this chapter.

To increase access to optimization, many sections of this chapter have been streamlined. Optimization
and Modeling are now in Section 4.3, followed by Families of Functions and Modeling in Section 4.4. Upper
and lower bounds have been moved to Section 4.2, and geometric optimization is now combined with Opti-
mization and Modeling. Section 4.8 on Parametric Equations is linked to Appendix D, allowing discussion
of velocity as a vector.
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Chapter 5: Key Concept: The Definite Integral

The purpose of this chapter is to give the student a practical understanding of the definite integral as a limit
of Riemann sums and to bring out the connection between the derivative and the definite integral in the
Fundamental Theorem of Calculus.

Section 5.3 now includes the application of the Fundamental Theorem of Calculus to the computation of
definite integrals. The use of integrals to find averages is now in Section 5.4.

Chapter 6: Constructing Antiderivatives

This chapter focuses on going backward from a derivative to the original function, first graphically and
numerically, then analytically. It introduces the Second Fundamental Theorem of Calculus and the concept
of a differential equation.

Section 6.3 on Differential Equations and Motion contains the material from the former Section 6.5.

Chapter 7: Integration

This chapter includes several techniques of integration, including substitution, parts, partial fractions, and
trigonometric substitutions; others are included in the table of integrals. There are discussions of numerical
methods and of improper integrals.

Section 7.4 now includes the use of triangles to help students visualize a trigonometric substitution. The
two former sections on numerical methods have been combined into Section 7.5.

Chapter 8: Using the Definite Integral

This chapter emphasizes the idea of subdividing a quantity to produce Riemann sums which, in the limit,
yield a definite integral. It shows how the integral is used in geometry, physics, economics, and probability;
polar coordinates are introduced. It is not necessary to cover all the sections in this chapter.

Chapter 9: Sequences and Series

This chapter focuses on sequences, series of constants, and convergence. It includes the integral, ratio, com-
parison, limit comparison, and alternating series tests. It also introduces geometric series and general power
series, including their intervals of convergence.

Chapter 10: Approximating Functions

This chapter introduces Taylor Series and Fourier Series using the idea of approximating functions by simpler
functions.

Chapter 11: Differential Equations

This chapter introduces differential equations. The emphasis is on qualitative solutions, modeling, and inter-
pretation.

Section 11.7 on Logistic Models (formerly on population models) has been rewritten around the thought-
provoking predictions of peak oil production. This section encourages students to use the skills learned
earlier in the course to analyze a problem of global importance. Sections 11.10 and 11.11 on Second Order
Differential Equations are now on the web at www.wiley.com/college/hughes-hallett.

Chapter 12: Functions of Several Variables

This chapter introduces functions of many variables from several points of view, using surface graphs, con-
tour diagrams, and tables. We assume throughout that functions of two or more variables are defined on
regions with piecewise smooth boundaries. We conclude with a section on continuity.

Chapter 13: A Fundamental Tool: Vectors

This chapter introduces vectors geometrically and algebraically and discusses the dot and cross product.
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Chapter 14: Differentiating Functions of Several Variables

Partial derivatives, directional derivatives, gradients, and local linearity are introduced. The chapter also
discusses higher order partial derivatives, quadratic Taylor approximations, and differentiability.

Chapter 15: Optimization

The ideas of the previous chapter are applied to optimization problems, both constrained and unconstrained.

Chapter 16: Integrating Functions of Several Variables

This chapter discusses double and triple integrals in Cartesian, polar, cylindrical, and spherical coordinates.
The former Section 16.7 has been moved to the new Chapter 21.

Chapter 17: Parameterization and Vector Fields

This chapter discusses parameterized curves and motion, vector fields and flowlines.
The former Section 17.5 has been moved to the new Chapter 21.

Chapter 18: Line Integrals

This chapter introduces line integrals and shows how to calculate them using parameterizations. Conservative
fields, gradient fields, the Fundamental Theorem of Calculus for Line Integrals, and Green’s Theorem are
discussed.

Chapter 19: Flux Integrals and Divergence

This chapter introduces flux integrals and shows how to calculate them over surface graphs, portions of
cylinders, and portions of spheres. The divergence is introduced and its relationship to flux integrals discussed
in the Divergence Theorem.

This new chapter combines Sections 19.1 and 19.2 with Sections 20.1 and 20.2 from the fifth edition

Chapter 20: The Curl and Stokes’ Theorem

The purpose of this chapter is to give students a practical understanding of the curl and of Stokes’ Theorem
and to lay out the relationship between the theorems of vector calculus.

This chapter consists of Sections 20.3–20.5 from the fifth edition.

Chapter 21: Parameters, Coordinates, and Integrals

This new chapter covers parameterized surfaces, the change of variable formula in a double or triple integral,
and flux though a parameterized surface.

Appendices

There are appendices on roots, accuracy, and bounds; complex numbers; Newton’s Method; and determi-
nants.

Projects

There are new projects in Chapter 12: “Heathrow”; Chapter 19: “Solid Angle”; and Chapter 20: “Magnetic
field generated by a current in a wire”.

Choice of Paths: Lean or Expanded
For those who prefer the lean topic list of earlier editions, we have kept clear the main conceptual paths. For
example,

• The Key Concept chapters on the derivative and the definite integral (Chapters 2 and 5) can be covered
at the outset of the course, right after Chapter 1.



Preface ix

• Limits and Continuity (Sections 1.7 and 1.8) can be covered in depth before the introduction of the
derivative (Sections 2.1 and 2.2), or after.

• Approximating Functions Using Series (Chapter 10) can be covered before, or without, Chapter 9.

• In Chapter 4 (Using the Derivative), instructors can select freely from Sections 4.3–4.8.

• Chapter 8 (Using the Definite Integral) contains a wide range of applications. Instructors can select one
or two to do in detail.

Supplementary Materials and Additional Resources
Supplements for the instructor can be obtained online at the book companion site or by contacting your Wiley
representative. The following supplementary materials are available for this edition:

• Instructor’s Manual containing teaching tips, calculator programs, overhead transparency masters,
sample worksheets, and sample syllabi.

• Computerized Test Bank, comprised of nearly 7,000 questions, mostly algorithmically-generated,which
allows for multiple versions of a single test or quiz.

• Instructor’s Solution Manual with complete solutions to all problems.

• Student Solution Manual with complete solutions to half the odd-numbered problems.

• Additional Material, elaborating specially marked points in the text and password-protected electronic
versions of the instructor ancillaries, can be found on the web at www.wiley.com/college/hughes-hallett.

ConcepTests

ConcepTests, modeled on the pioneering work of Harvard physicist Eric Mazur, are questions designed to
promote active learning during class, particularly (but not exclusively) in large lectures. Our evaluation data
show students taught with ConcepTests outperformed students taught by traditional lecture methods 73%

versus 17% on conceptual questions, and 63% versus 54% on computational problems.

Faculty Resource Network

A peer-to-peer network of academic faculty dedicated to the effective use of technology in the classroom,
this group can help you apply innovative classroom techniques and implement specific software packages.
Visit www.facultyresourcenetwork.com or speak to your Wiley representative.

WileyPLUS

WileyPLUS, Wiley’s digital learning environment, is loaded with all of the supplements above, and also
features:

• Online version of the text, featuring hyperlinks to referenced content, applets, and supplements.

• Homework management tools, which enable the instructor to assign questions easily and grade them
automatically, using a rich set of options and controls.

• QuickStart pre-designed reading and homework assignments. Use them as-is or customize them to fit
the needs of your classroom.

• Guided Online (GO) Exercises, which prompt students to build solutions step by step. Rather than simply
grading an exercise answer as wrong, GO problems show students precisely where they are making a
mistake.

• Animated applets, which can be used in class to present and explore key ideas graphically and dynamically—
especially useful for display of three-dimensional graphs in multivariable calculus.

• Algebra & Trigonometry Refresher material, which provide students with an opportunity to brush up on
material necessary to master Calculus, as well as to determine areas that require further review.

• Graphing Calculator Manual, to help students get the most out of their graphing calculators, and to show
how they can apply the numerical and graphing functions of their calculators to their study of calculus.
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AP Teacher’s Guide

The AP Guide, written by experienced AP teachers, provides day-by-day syllabi for AB and BC Calculus,
sample multiple choice questions, a listing of the past 25 years of AP free-response questions by chapter of
the text, teaching tips, and labs to encourage student exploration of concepts.
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To Students: How to Learn from this Book
• This book may be different from other math textbooks that you have used, so it may be helpful to know

about some of the differences in advance. This book emphasizes at every stage the meaning (in practical,
graphical or numerical terms) of the symbols you are using. There is much less emphasis on “plug-and-
chug” and using formulas, and much more emphasis on the interpretation of these formulas than you
may expect. You will often be asked to explain your ideas in words or to explain an answer using graphs.

• The book contains the main ideas of calculus in plain English. Your success in using this book will
depend on your reading, questioning, and thinking hard about the ideas presented. Although you may
not have done this with other books, you should plan on reading the text in detail, not just the worked
examples.

• There are very few examples in the text that are exactly like the homework problems. This means that
you can’t just look at a homework problem and search for a similar–looking “worked out” example.
Success with the homework will come by grappling with the ideas of calculus.

• Many of the problems that we have included in the book are open-ended. This means that there may be
more than one approach and more than one solution, depending on your analysis. Many times, solving a
problem relies on common sense ideas that are not stated in the problem but which you will know from
everyday life.

• Some problems in this book assume that you have access to a graphing calculator or computer. There
are many situations where you may not be able to find an exact solution to a problem, but you can use a
calculator or computer to get a reasonable approximation.

• This book attempts to give equal weight to four methods for describing functions: graphical (a picture),
numerical (a table of values) algebraic (a formula), and verbal. Sometimes you may find it easier to
translate a problem given in one form into another. The best idea is to be flexible about your approach:
if one way of looking at a problem doesn’t work, try another.

• Students using this book have found discussing these problems in small groups very helpful. There are a
great many problems which are not cut-and-dried; it can help to attack them with the other perspectives
your colleagues can provide. If group work is not feasible, see if your instructor can organize a discussion
session in which additional problems can be worked on.

• You are probably wondering what you’ll get from the book. The answer is, if you put in a solid effort,
you will get a real understanding of one of the most important accomplishments of the millennium—
calculus—as well as a real sense of the power of mathematics in the age of technology.
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1.1 FUNCTIONS AND CHANGE

In mathematics, a function is used to represent the dependence of one quantity upon another.
Let’s look at an example. Syracuse, New York has the highest annual snowfall of any US city

because of the “lake effect” snow coming from cold Northwest winds blowing over nearby Lake
Erie. Lake effect snowfall has been heavier over the last few decades; some have suggested this is
due to the warming of Lake Erie by climate change. In December 2010, Syracuse got 66.9 inches
of snow in one 12 day period, all of it from lake effect snow. See Table 1.1.

Table 1.1 Daily snowfall in Syracuse, December 5–16, 2010

Date (December 2010) 5 6 7 8 9 10 11 12 13 14 15 16

Snowfall in inches 6.8 12.2 9.3 14.9 1.9 0.1 0.0 0.0 1.4 5.0 11.9 3.4

You may not have thought of something so unpredictable as daily snowfall as being a function,
but it is a function of date, because each day gives rise to one snowfall total. There is no formula
for the daily snowfall (otherwise we would not need a weather bureau), but nevertheless the daily
snowfall in Syracuse does satisfy the definition of a function: Each date, t, has a unique snowfall,
S, associated with it.

We define a function as follows:

A function is a rule that takes certain numbers as inputs and assigns to each a definite output
number. The set of all input numbers is called the domain of the function and the set of
resulting output numbers is called the range of the function.

The input is called the independent variable and the output is called the dependent variable. In
the snowfall example, the domain is the set of December dates {5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
and the range is the set of daily snowfalls {0.0, 0.1, 1.4, 1.9, 3.4, 5.0, 6.8, 9.3, 11.9, 12.2, 14.9}. We
call the function f and write S = f(t). Notice that a function may have identical outputs for differ-
ent inputs (December 11 and 12, for example).

Some quantities, such as date, are discrete, meaning they take only certain isolated values (dates
must be integers). Other quantities, such as time, are continuous as they can be any number. For a
continuous variable, domains and ranges are often written using interval notation:

The set of numbers t such that a ≤ t ≤ b is called a closed interval and written [a, b].

The set of numbers t such that a < t < b is called an open interval and written (a, b).

The Rule of Four: Tables, Graphs, Formulas, and Words
Functions can be represented by tables, graphs, formulas, and descriptions in words. For example,
the function giving the daily snowfall in Syracuse can be represented by the graph in Figure 1.1, as
well as by Table 1.1.

6 8 10 12 14 16

3

6

9

12

15

t (date)

S (inches)

Figure 1.1: Syracuse snowfall, December, 2010

As another example of a function, consider the snow tree cricket. Surprisingly enough, all such
crickets chirp at essentially the same rate if they are at the same temperature. That means that the



1.1 FUNCTIONS AND CHANGE 3

chirp rate is a function of temperature. In other words, if we know the temperature, we can determine
the chirp rate. Even more surprisingly, the chirp rate, C, in chirps per minute, increases steadily with
the temperature, T , in degrees Fahrenheit, and can be computed by the formula

C = 4T − 160

to a fair degree of accuracy. We write C = f(T ) to express the fact that we think of C as a function
of T and that we have named this function f . The graph of this function is in Figure 1.2.

100 14040

100

200

300

400

T (◦F)

C (chirps per minute)

C = 4T − 160

Figure 1.2: Cricket chirp rate versus temperature

Examples of Domain and Range
If the domain of a function is not specified, we usually take it to be the largest possible set of
real numbers. For example, we usually think of the domain of the function f(x) = x2 as all real
numbers. However, the domain of the function g(x) = 1/x is all real numbers except zero, since
we cannot divide by zero.

Sometimes we restrict the domain to be smaller than the largest possible set of real numbers.
For example, if the function f(x) = x2 is used to represent the area of a square of side x, we restrict
the domain to nonnegative values of x.

Example 1 The function C = f(T ) gives chirp rate as a function of temperature. We restrict this function to
temperatures for which the predicted chirp rate is positive, and up to the highest temperature ever
recorded at a weather station, 136◦F. What is the domain of this function f?

Solution If we consider the equation
C = 4T − 160

simply as a mathematical relationship between two variables C and T , any T value is possible.
However, if we think of it as a relationship between cricket chirps and temperature, then C cannot
be less than 0. Since C = 0 leads to 0 = 4T − 160, and so T = 40◦F, we see that T cannot be less
than 40◦F. (See Figure 1.2.) In addition, we are told that the function is not defined for temperatures
above 136◦. Thus, for the function C = f(T ) we have

Domain = All T values between 40◦F and 136◦F

= All T values with 40 ≤ T ≤ 136

= [40, 136].

Example 2 Find the range of the function f , given the domain from Example 1. In other words, find all possible
values of the chirp rate, C, in the equation C = f(T ).

Solution Again, if we consider C = 4T − 160 simply as a mathematical relationship, its range is all real C
values. However, when thinking of the meaning of C = f(T ) for crickets, we see that the function
predicts cricket chirps per minute between 0 (at T = 40◦F) and 384 (at T = 136◦F). Hence,

Range = All C values from 0 to 384

= All C values with 0 ≤ C ≤ 384

= [0, 384].
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In using the temperature to predict the chirp rate, we thought of the temperature as the indepen-
dent variable and the chirp rate as the dependent variable. However, we could do this backward, and
calculate the temperature from the chirp rate. From this point of view, the temperature is dependent
on the chirp rate. Thus, which variable is dependent and which is independent may depend on your
viewpoint.

Linear Functions
The chirp-rate function, C = f(T ), is an example of a linear function. A function is linear if its
slope, or rate of change, is the same at every point. The rate of change of a function that is not linear
may vary from point to point.

Olympic and World Records

During the early years of the Olympics, the height of the men’s winning pole vault increased ap-
proximately 8 inches every four years. Table 1.2 shows that the height started at 130 inches in 1900,
and increased by the equivalent of 2 inches a year. So the height was a linear function of time from
1900 to 1912. If y is the winning height in inches and t is the number of years since 1900, we can
write

y = f(t) = 130 + 2t.

Since y = f(t) increases with t, we say that f is an increasing function. The coefficient 2 tells us
the rate, in inches per year, at which the height increases.

Table 1.2 Men’s Olympic pole vault winning height (approximate)

Year 1900 1904 1908 1912

Height (inches) 130 138 146 154

This rate of increase is the slope of the line in Figure 1.3. The slope is given by the ratio

Slope =
Rise
Run

=
146− 138

8− 4
=

8

4
= 2 inches/year.

Calculating the slope (rise/run) using any other two points on the line gives the same value.
What about the constant 130? This represents the initial height in 1900, when t = 0. Geomet-

rically, 130 is the intercept on the vertical axis.

4 8 12

130

140

150

y (height in inches)

t (years since 1900)

��
Run = 4

�
�

Rise = 8

y = 130 + 2t

Figure 1.3: Olympic pole vault records

You may wonder whether the linear trend continues beyond 1912. Not surprisingly, it doesn’t
exactly. The formula y = 130+2t predicts that the height in the 2008 Olympics would be 346 inches
or 28 feet 10 inches, which is considerably higher than the actual value of 19 feet 6.65 inches. There
is clearly a danger in extrapolating too far from the given data. You should also observe that the data
in Table 1.2 is discrete, because it is given only at specific points (every four years). However, we
have treated the variable t as though it were continuous, because the function y = 130 + 2t makes
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sense for all values of t. The graph in Figure 1.3 is of the continuous function because it is a solid
line, rather than four separate points representing the years in which the Olympics were held.

As the pole vault heights have increased over the years, the time to run the mile has decreased.
If y is the world record time to run the mile, in seconds, and t is the number of years since 1900,
then records show that, approximately,

y = g(t) = 260− 0.39t.

The 260 tells us that the world record was 260 seconds in 1900 (at t = 0). The slope, −0.39, tells
us that the world record decreased by about 0.39 seconds per year. We say that g is a decreasing
function.

Difference Quotients and Delta Notation
We use the symbol Δ (the Greek letter capital delta) to mean “change in,” so Δx means change in
x and Δy means change in y.

The slope of a linear function y = f(x) can be calculated from values of the function at two
points, given by x1 and x2, using the formula

m =
Rise
Run

=
Δy

Δx
=

f(x2)− f(x1)

x2 − x1
.

The quantity (f(x2)− f(x1))/(x2 − x1) is called a difference quotient because it is the quotient of
two differences. (See Figure 1.4.) Since m = Δy/Δx, the units of m are y-units over x-units.

x1 x2

y = f(x)

��
Run = x2 − x1

�

�

Rise = f(x2)− f(x1)

x

y

(x2, f(x2))

(x1, f(x1))

Figure 1.4: Difference quotient =
f(x2)− f(x1)

x2 − x1

Families of Linear Functions

A linear function has the form

y = f(x) = b+mx.

Its graph is a line such that
• m is the slope, or rate of change of y with respect to x.

• b is the vertical intercept, or value of y when x is zero.

Notice that if the slope, m, is zero, we have y = b, a horizontal line.

To recognize that a table of x and y values comes from a linear function, y = b+mx, look
for differences in y-values that are constant for equally spaced x-values.

Formulas such as f(x) = b+mx, in which the constants m and b can take on various values,
give a family of functions. All the functions in a family share certain properties—in this case, all the
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graphs are straight lines. The constants m and b are called parameters; their meaning is shown in
Figures 1.5 and 1.6. Notice that the greater the magnitude of m, the steeper the line.

y = x
y = 2x

y = 0.5x

x

y

y = −x
y = −2x

y = −0.5x

Figure 1.5: The family y = mx
(with b = 0)

x

y = −1 + x

y = x

y = 1 + x

y = 2 + x

y

Figure 1.6: The family y = b+ x
(with m = 1)

Increasing versus Decreasing Functions
The terms increasing and decreasing can be applied to other functions, not just linear ones. See
Figure 1.7. In general,

A function f is increasing if the values of f(x) increase as x increases.
A function f is decreasing if the values of f(x) decrease as x increases.

The graph of an increasing function climbs as we move from left to right.
The graph of a decreasing function falls as we move from left to right.

A function f(x) is monotonic if it increases for all x or decreases for all x.

Increasing Decreasing

Figure 1.7: Increasing and decreasing functions

Proportionality
A common functional relationship occurs when one quantity is proportional to another. For exam-
ple, the area, A, of a circle is proportional to the square of the radius, r, because

A = f(r) = πr2.

We say y is (directly) proportional to x if there is a nonzero constant k such
that

y = kx.
This k is called the constant of proportionality.

We also say that one quantity is inversely proportional to another if one is proportional to the
reciprocal of the other. For example, the speed, v, at which you make a 50-mile trip is inversely
proportional to the time, t, taken, because v is proportional to 1/t:

v = 50

(
1

t

)
=

50

t
.
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Exercises and Problems for Section 1.1
Exercises

1. The population of a city, P , in millions, is a function of
t, the number of years since 1970, so P = f(t). Explain
the meaning of the statement f(35) = 12 in terms of the
population of this city.

2. The pollutant PCB (polychlorinated biphenyl) affects the
thickness of pelican eggs. Thinking of the thickness, T ,
of the eggs, in mm, as a function of the concentration, P ,
of PCBs in ppm (parts per million), we have T = f(P ).
Explain the meaning of f(200) in terms of thickness of
pelican eggs and concentration of PCBs.

3. Describe what Figure 1.8 tells you about an assembly
line whose productivity is represented as a function of
the number of workers on the line.

productivity

number of workers

Figure 1.8

For Exercises 4–7, find an equation for the line that passes
through the given points.

4. (0, 0) and (1, 1) 5. (0, 2) and (2, 3)

6. (−2, 1) and (2, 3) 7. (−1, 0) and (2, 6)

For Exercises 8–11, determine the slope and the y-intercept of
the line whose equation is given.

8. 2y + 5x− 8 = 0 9. 7y + 12x − 2 = 0

10. −4y + 2x+ 8 = 0 11. 12x = 6y + 4

12. Match the graphs in Figure 1.9 with the following equa-
tions. (Note that the x and y scales may be unequal.)

(a) y = x− 5 (b) −3x+ 4 = y

(c) 5 = y (d) y = −4x− 5

(e) y = x+ 6 (f) y = x/2

x

y(I)

x

y(II)

x

y(III)

x

y(IV)

x

y(V)

x

y(VI)

Figure 1.9

13. Match the graphs in Figure 1.10 with the following equa-
tions. (Note that the x and y scales may be unequal.)

(a) y = −2.72x (b) y = 0.01 + 0.001x

(c) y = 27.9 − 0.1x (d) y = 0.1x− 27.9

(e) y = −5.7− 200x (f) y = x/3.14

x

y(I)

x

y(II)

x

y(III)

x

y(IV)

x

y(V)

x

y(VI)

Figure 1.10

14. Estimate the slope and the equation of the line in Fig-
ure 1.11.

5 10

2

4

x

y

Figure 1.11

15. Find an equation for the line with slope m through the
point (a, c).

16. Find a linear function that generates the values in Ta-
ble 1.3.

Table 1.3

x 5.2 5.3 5.4 5.5 5.6

y 27.8 29.2 30.6 32.0 33.4

For Exercises 17–19, use the facts that parallel lines have
equal slopes and that the slopes of perpendicular lines are neg-
ative reciprocals of one another.

17. Find an equation for the line through the point (2, 1)
which is perpendicular to the line y = 5x− 3.

18. Find equations for the lines through the point (1, 5) that
are parallel to and perpendicular to the line with equation
y + 4x = 7.

19. Find equations for the lines through the point (a, b) that
are parallel and perpendicular to the line y = mx + c,
assuming m �= 0.
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For Exercises 20–23, give the approximate domain and range
of each function. Assume the entire graph is shown.

20.

1 3 5

1

3

5

y = f(x)

x

y 21.

1 3 5

2

4

6

y = f(x)

x

y

22.

−2 2

−2

2

y = f(x)

x

y 23.

1 3 5

1

3

5
y = f(x)

x

y

Find domain and range in Exercises 24–25.

24. y = x2 + 2 25. y =
1

x2 + 2

26. If f(t) =
√
t2 − 16, find all values of t for which f(t)

is a real number. Solve f(t) = 3.

In Exercises 27–31, write a formula representing the function.

27. The volume of a sphere is proportional to the cube of its
radius, r.

28. The average velocity, v, for a trip over a fixed distance,
d, is inversely proportional to the time of travel, t.

29. The strength, S, of a beam is proportional to the square
of its thickness, h.

30. The energy, E, expended by a swimming dolphin is pro-
portional to the cube of the speed, v, of the dolphin.

31. The number of animal species, N , of a certain body
length, l, is inversely proportional to the square of l.

Problems

In Problems 32–35 the function S = f(t) gives the average
annual sea level, S, in meters, in Aberdeen, Scotland,1 as a
function of t, the number of years before 2008. Write a math-
ematical expression that represents the given statement.

32. In 1983 the average annual sea level in Aberdeen was
7.019 meters.

33. The average annual sea level in Aberdeen in 2008.

34. The average annual sea level in Aberdeen was the same
in 1865 and 1911.

35. The average annual sea level in Aberdeen increased by 1
millimeter from 2007 to 2008.

36. In December 2010, the snowfall in Minneapolis was un-
usually high,2 leading to the collapse of the roof of the
Metrodome. Figure 1.12 gives the snowfall, S, in Min-
neapolis for December 6–15, 2010.

(a) How do you know that the snowfall data represents
a function of date?

(b) Estimate the snowfall on December 12.
(c) On which day was the snowfall more than 10 inches?
(d) During which consecutive two-day interval was the

increase in snowfall largest?

6 7 8 9 10 11 12 13 14 15

5

10

15

t (date)

S (inches)

Figure 1.12

37. The value of a car, V = f(a), in thousands of dollars, is
a function of the age of the car, a, in years.

(a) Interpret the statement f(5) = 6
(b) Sketch a possible graph of V against a. Is f an in-

creasing or decreasing function? Explain.
(c) Explain the significance of the horizontal and verti-

cal intercepts in terms of the value of the car.

38. Which graph in Figure 1.13 best matches each of the fol-
lowing stories?3 Write a story for the remaining graph.

(a) I had just left home when I realized I had forgotten
my books, and so I went back to pick them up.

(b) Things went fine until I had a flat tire.
(c) I started out calmly but sped up when I realized I

was going to be late.

1www.decc.gov.uk, accessed June 2011
2http://www.crh.noaa.gov/mpx/Climate/DisplayRecords.php
3Adapted from Jan Terwel, “Real Math in Cooperative Groups in Secondary Education.” Cooperative Learning in Math-

ematics, ed. Neal Davidson, p. 234 (Reading: Addison Wesley, 1990).
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distance
from home

time

(I) distance
from home

time

(II)

distance
from home

time

(III) distance
from home

time

(IV)

Figure 1.13

39. An object is put outside on a cold day at time t = 0. Its
temperature, H = f(t), in ◦C, is graphed in Figure 1.14.

(a) What does the statement f(30) = 10 mean in terms
of temperature? Include units for 30 and for 10 in
your answer.

(b) Explain what the vertical intercept, a, and the hori-
zontal intercept, b, represent in terms of temperature
of the object and time outside.

b

a

t (min)

H (◦C)

Figure 1.14

40. A rock is dropped from a window and falls to the ground
below. The height, s (in meters), of the rock above
ground is a function of the time, t (in seconds), since the
rock was dropped, so s = f(t).

(a) Sketch a possible graph of s as a function of t.
(b) Explain what the statement f(7) = 12 tells us about

the rock’s fall.
(c) The graph drawn as the answer for part (a) should

have a horizontal and vertical intercept. Interpret
each intercept in terms of the rock’s fall.

41. In a California town, the monthly charge for waste col-
lection is $8 for 32 gallons of waste and $12.32 for 68
gallons of waste.

(a) Find a linear formula for the cost, C, of waste collec-
tion as a function of the number of gallons of waste,
w.

(b) What is the slope of the line found in part (a)? Give
units and interpret your answer in terms of the cost
of waste collection.

(c) What is the vertical intercept of the line found in
part (a)? Give units and interpret your answer in
terms of the cost of waste collection.

42. For tax purposes, you may have to report the value of
your assets, such as cars or refrigerators. The value you
report drops with time. “Straight-line depreciation” as-
sumes that the value is a linear function of time. If a $950
refrigerator depreciates completely in seven years, find a
formula for its value as a function of time.

43. A company rents cars at $40 a day and 15 cents a mile.
Its competitor’s cars are $50 a day and 10 cents a mile.

(a) For each company, give a formula for the cost of
renting a car for a day as a function of the distance
traveled.

(b) On the same axes, graph both functions.
(c) How should you decide which company is cheaper?

44. Residents of the town of Maple Grove who are connected
to the municipal water supply are billed a fixed amount
monthly plus a charge for each cubic foot of water used.
A household using 1000 cubic feet was billed $40, while
one using 1600 cubic feet was billed $55.

(a) What is the charge per cubic foot?
(b) Write an equation for the total cost of a resident’s

water as a function of cubic feet of water used.
(c) How many cubic feet of water used would lead to a

bill of $100?

Problems 45–48 ask you to plot graphs based on the follow-
ing story: “As I drove down the highway this morning, at first
traffic was fast and uncongested, then it crept nearly bumper-
to-bumper until we passed an accident, after which traffic flow
went back to normal until I exited.”

45. Driving speed against time on the highway

46. Distance driven against time on the highway

47. Distance from my exit vs time on the highway

48. Distance between cars vs distance driven on the highway

49. Let f(t) be the number of US billionaires in the US in
year t.

(a) Express the following statements4 in terms of f .

(i) In 1985 there were 13 US billionaires.

(ii) In 1990 there were 99 US billionaires.

(b) Find the average yearly increase in the number of US
billionaires between 1985 and 1990. Express this us-
ing f .

(c) Assuming the yearly increase remains constant, find
a formula predicting the number of US billionaires
in year t.

4//hypertextbook.com/facts/2005/MichelleLee.shtml
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50. An alternative to petroleum-based diesel fuel, biodiesel,
is derived from renewable resources such as food crops,
algae, and animal oils. The table shows the recent annual
percent growth in US biodiesel consumption.5

Year 2005 2006 2007 2008 2009

% growth over previous yr 237 186.6 37.2 −11.7 7.3

(a) Find the largest time interval over which the per-
centage growth in the US consumption of biodiesel
was an increasing function of time. Interpret what
increasing means, practically speaking, in this case.

(b) Find the largest time interval over which the ac-
tual US consumption of biodiesel was an increasing
function of time. Interpret what increasing means,
practically speaking, in this case.

51. Hydroelectric power is electric power generated by the
force of moving water. Figure 1.15 shows6 the annual
percent growth in hydroelectric power consumption by
the US industrial sector between 2004 and 2009.

(a) Find the largest time interval over which the percent-
age growth in the US consumption of hydroelectric
power was a decreasing function of time. Interpret
what decreasing means, practically speaking, in this
case.

(b) Find the largest time interval over which the actual
US consumption of hydroelectric power was a de-
creasing function of time. Interpret what decreasing
means, practically speaking, in this case.

2005

2007 2009

−50
−40
−30
−20
−10

10
year

percent growth
over previous year

Figure 1.15

52. Solar panels are arrays of photovoltaic cells that convert
solar radiation into electricity. The table shows the an-
nual percent change in the US price per watt of a solar
panel.7

Year 2004 2005 2006 2007 2008

% growth over previous yr −5.7 6.7 9.7 −3.7 3.6

(a) Find the largest time interval over which the percent-
age growth in the US price per watt of a solar panel
was an increasing function of time. Interpret what
increasing means, practically speaking, in this case.

(b) Find the largest time interval over which the actual
price per watt of a solar panel was an increasing
function of time. Interpret what increasing means,
practically speaking, in this case.

53. Table 1.4 shows the average annual sea level, S, in me-
ters, in Aberdeen, Scotland,8 as a function of time, t,
measured in years before 2008.

Table 1.4

t 0 25 50 75 100 125

S 7.094 7.019 6.992 6.965 6.938 6.957

(a) What was the average sea level in Aberdeen in
2008?

(b) In what year was the average sea level 7.019 meters?
6.957 meters?

(c) Table 1.5 gives the average sea level, S, in Aberdeen
as a function of the year, x. Complete the missing
values.

Table 1.5

x 1883 ? 1933 1958 1983 2008

S ? 6.938 ? 6.992 ? ?

54. A controversial 1992 Danish study9 reported that men’s
average sperm count has decreased from 113 million per
milliliter in 1940 to 66 million per milliliter in 1990.

(a) Express the average sperm count, S, as a linear func-
tion of the number of years, t, since 1940.

(b) A man’s fertility is affected if his sperm count drops
below about 20 million per milliliter. If the linear
model found in part (a) is accurate, in what year will
the average male sperm count fall below this level?

55. The table gives the average weight, w, in pounds, of
American men in their sixties for height, h, in inches.10

(a) How do you know that the data in this table could
represent a linear function?

(b) Find weight, w, as a linear function of height, h.
What is the slope of the line? What are the units for
the slope?

5http://www.eia.doe.gov/aer/renew.html. Accessed February 2011.
6Yearly values have been joined with segments to highlight trends in the data, however values in between years should

not be inferred from the segments. From http://www.eia.doe.gov/aer/renew.html. Accessed February 2011.
7We use the official price per peak watt, which uses the maximum number of watts a solar panel can produce under ideal

conditions. From http://www.eia.doe.gov/aer/renew.html. Accessed February 2011.
8www.decc.gov.uk, accessed June 2011.
9“Investigating the Next Silent Spring,” US News and World Report, pp. 50–52 (March 11, 1996).

10Adapted from “Average Weight of Americans by Height and Age,” The World Almanac (New Jersey: Funk and Wagnalls,
1992), p. 956.
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(c) Find height, h, as a linear function of weight, w.
What is the slope of the line? What are the units for
the slope?

h (inches) 68 69 70 71 72 73 74 75

w (pounds) 166 171 176 181 186 191 196 201

56. An airplane uses a fixed amount of fuel for takeoff, a (dif-
ferent) fixed amount for landing, and a third fixed amount
per mile when it is in the air. How does the total quantity
of fuel required depend on the length of the trip? Write
a formula for the function involved. Explain the meaning
of the constants in your formula.

57. The cost of planting seed is usually a function of the
number of acres sown. The cost of the equipment is a
fixed cost because it must be paid regardless of the num-
ber of acres planted. The costs of supplies and labor vary
with the number of acres planted and are called variable
costs. Suppose the fixed costs are $10,000 and the vari-
able costs are $200 per acre. Let C be the total cost, mea-
sured in thousands of dollars, and let x be the number of
acres planted.

(a) Find a formula for C as a function of x.
(b) Graph C against x.
(c) Which feature of the graph represents the fixed

costs? Which represents the variable costs?

58. You drive at a constant speed from Chicago to Detroit,
a distance of 275 miles. About 120 miles from Chicago
you pass through Kalamazoo, Michigan. Sketch a graph
of your distance from Kalamazoo as a function of time.

59. (a) Consider the functions graphed in Figure 1.16(a).
Find the coordinates of C.

(b) Consider the functions in Figure 1.16(b). Find the
coordinates of C in terms of b.

y = x2

(0, 2)

(1, 1)

C

(a) y

x

y = x2

(0, b)

(1, 1)

C

(b) y

x

Figure 1.16

60. When Galileo was formulating the laws of motion, he
considered the motion of a body starting from rest and
falling under gravity. He originally thought that the ve-
locity of such a falling body was proportional to the dis-
tance it had fallen. What do the experimental data in Ta-
ble 1.6 tell you about Galileo’s hypothesis? What alter-
native hypothesis is suggested by the two sets of data in
Table 1.6 and Table 1.7?

Table 1.6

Distance (ft) 0 1 2 3 4

Velocity (ft/sec) 0 8 11.3 13.9 16

Table 1.7

Time (sec) 0 1 2 3 4

Velocity (ft/sec) 0 32 64 96 128

Strengthen Your Understanding

In Problems 61–62, explain what is wrong with the statement.

61. Values of y on the graph of y = 0.5x − 3 increase more
slowly than values of y on the graph of y = 0.5− 3x.

62. The equation y = 2x+ 1 indicates that y is directly pro-
portional to x with a constant of proportionality 2.

In Problems 63–64, give an example of:

63. A linear function with a positive slope and a negative x-
intercept.

64. A formula representing the statement “q is inversely pro-
portional to the cube root of p and has a positive constant
of proportionality.”

Are the statements in Problems 65–68 true or false? Give an
explanation for your answer.

65. For any two points in the plane, there is a linear function
whose graph passes through them.

66. If y = f(x) is a linear function, then increasing x by 1
unit changes the corresponding y by m units, where m is
the slope.

67. If y is a linear function of x, then the ratio y/x is constant
for all points on the graph at which x �= 0.

68. If y = f(x) is a linear function, then increasing x by 2
units adds m + 2 units to the corresponding y, where m
is the slope.

69. Which of the following functions has its domain identical
with its range?

(a) f(x) = x2 (b) g(x) =
√
x

(c) h(x) = x3 (d) i(x) = |x|
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1.2 EXPONENTIAL FUNCTIONS

Population Growth
The population of Burkina Faso, a sub-Saharan African country,11 from 2003 to 2009 is given in
Table 1.8. To see how the population is growing, we look at the increase in population in the third
column. If the population had been growing linearly, all the numbers in the third column would be
the same.

Table 1.8 Population of Burkina Faso
(estimated), 2003–2009

Year Population Change in

(millions) population (millions)

2003 12.853

2004 13.290
0.437

2005 13.747
0.457

2006 14.225
0.478

2007 14.721
0.496

2008 15.234
0.513

2009 15.757
0.523

−10 10 20 30 40 50

20

40

60

t (years since 2003)

P (population in millions)

P = 12.853(1.034)t

Figure 1.17: Population of Burkina Faso (estimated):
Exponential growth

Suppose we divide each year’s population by the previous year’s population. For example,

Population in 2004
Population in 2003

=
13.290 million
12.853 million

= 1.034

Population in 2005
Population in 2004

=
13.747 million
13.290 million

= 1.034.

The fact that both calculations give 1.034 shows the population grew by about 3.4% between 2003
and 2004 and between 2004 and 2005. Similar calculations for other years show that the popula-
tion grew by a factor of about 1.034, or 3.4%, every year. Whenever we have a constant growth
factor (here 1.034), we have exponential growth. The population t years after 2003 is given by the
exponential function

P = 12.853(1.034)t.

If we assume that the formula holds for 50 years, the population graph has the shape shown in
Figure 1.17. Since the population is growing faster and faster as time goes on, the graph is bending
upward; we say it is concave up. Even exponential functions which climb slowly at first, such as
this one, eventually climb extremely quickly.

To recognize that a table of t and P values comes from an exponential function, look for
ratios of P values that are constant for equally spaced t values.

Concavity
We have used the term concave up12 to describe the graph in Figure 1.17. In words:

The graph of a function is concave up if it bends upward as we move left to right; it is
concave down if it bends downward. (See Figure 1.18 for four possible shapes.) A line is
neither concave up nor concave down.

11dataworldbank.org, accessed January 12, 2011.
12In Chapter 2 we consider concavity in more depth.
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Concave
up

Concave
down

Figure 1.18: Concavity of a graph

Elimination of a Drug from the Body
Now we look at a quantity which is decreasing exponentially instead of increasing. When a patient is
given medication, the drug enters the bloodstream. As the drug passes through the liver and kidneys,
it is metabolized and eliminated at a rate that depends on the particular drug. For the antibiotic
ampicillin, approximately 40% of the drug is eliminated every hour. A typical dose of ampicillin
is 250 mg. Suppose Q = f(t), where Q is the quantity of ampicillin, in mg, in the bloodstream at
time t hours since the drug was given. At t = 0, we have Q = 250. Since every hour the amount
remaining is 60% of the previous amount, we have

f(0) = 250

f(1) = 250(0.6)

f(2) = (250(0.6))(0.6) = 250(0.6)2,

and after t hours,
Q = f(t) = 250(0.6)t.

This is an exponential decay function. Some values of the function are in Table 1.9; its graph is in
Figure 1.19.

Notice the way in which the function in Figure 1.19 is decreasing. Each hour a smaller quantity
of the drug is removed than in the previous hour. This is because as time passes, there is less of the
drug in the body to be removed. Compare this to the exponential growth in Figure 1.17, where each
step upward is larger than the previous one. Notice, however, that both graphs are concave up.

Table 1.9 Drug
elimination

t (hours) Q (mg)

0 250

1 150

2 90

3 54

4 32.4

5 19.4

1 2 3 4 5

50

100

150

200

250

t (hours)

Q (mg)

Figure 1.19: Drug elimination: Exponential decay

The General Exponential Function

We say P is an exponential function of t with base a if

P = P0a
t,

where P0 is the initial quantity (when t = 0) and a is the factor by which P changes when t
increases by 1.
If a > 1, we have exponential growth; if 0 < a < 1, we have exponential decay.
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Provided a > 0, the largest possible domain for the exponential function is all real numbers. The
reason we do not want a ≤ 0 is that, for example, we cannot define a1/2 if a < 0. Also, we do not
usually have a = 1, since P = P01

t = P0 is then a constant function.
The value of a is closely related to the percent growth (or decay) rate. For example, if a = 1.03,

then P is growing at 3%; if a = 0.94, then P is decaying at 6%.

Example 1 Suppose that Q = f(t) is an exponential function of t. If f(20) = 88.2 and f(23) = 91.4:

(a) Find the base. (b) Find the growth rate. (c) Evaluate f(25).

Solution (a) Let
Q = Q0a

t.

Substituting t = 20, Q = 88.2 and t = 23, Q = 91.4 gives two equations for Q0 and a:

88.2 = Q0a
20

and 91.4 = Q0a
23.

Dividing the two equations enables us to eliminate Q0:

91.4

88.2
=

Q0a
23

Q0a20
= a3.

Solving for the base, a, gives

a =

(
91.4

88.2

)1/3

= 1.012.

(b) Since a = 1.012, the growth rate is 0.012 = 1.2%.
(c) We want to evaluate f(25) = Q0a

25 = Q0(1.012)
25. First we find Q0 from the equation

88.2 = Q0(1.012)
20.

Solving gives Q0 = 69.5. Thus,

f(25) = 69.5(1.012)25 = 93.6.

Half-Life and Doubling Time
Radioactive substances, such as uranium, decay exponentially. A certain percentage of the mass
disintegrates in a given unit of time; the time it takes for half the mass to decay is called the half-life
of the substance.

A well-known radioactive substance is carbon-14, which is used to date organic objects. When
a piece of wood or bone was part of a living organism, it accumulated small amounts of radioactive
carbon-14. Once the organism dies, it no longer picks up carbon-14. Using the half-life of carbon-14
(about 5730 years), we can estimate the age of the object. We use the following definitions:

The half-life of an exponentially decaying quantity is the time required for the quantity to be
reduced by a factor of one half.
The doubling time of an exponentially increasing quantity is the time required for the quan-
tity to double.
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The Family of Exponential Functions
The formula P = P0a

t gives a family of exponential functions with positive parameters P0 (the
initial quantity) and a (the base, or growth/decay factor). The base tells us whether the function is
increasing (a > 1) or decreasing (0 < a < 1). Since a is the factor by which P changes when
t is increased by 1, large values of a mean fast growth; values of a near 0 mean fast decay. (See
Figures 1.20 and 1.21.) All members of the family P = P0a

t are concave up.

1 2 3 4 5 6 7

10

20

30

40

t

P

10t
5t 3t 2t

(1.5)t

Figure 1.20: Exponential growth: P = at, for a > 1
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0

0.2
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0.6

0.8

1

t

P

(0.1)t
(0.5)t (0.8)t

(0.9)t

(0.95)t

Figure 1.21: Exponential decay: P = at, for 0 < a < 1

Example 2 Figure 1.22 is the graph of three exponential functions. What can you say about the values of the
six constants, a, b, c, d, p, q?

y = p · qx

y = c · dx

y = a · bx
x

y

Figure 1.22

Solution All the constants are positive. Since a, c, p represent y-intercepts, we see that a = c because these
graphs intersect on the y-axis. In addition, a = c < p, since y = p · qx crosses the y-axis above the
other two.

Since y = a · bx is decreasing, we have 0 < b < 1. The other functions are increasing, so 1 < d
and 1 < q.

Exponential Functions with Base e

The most frequently used base for an exponential function is the famous number e = 2.71828 . . . .
This base is used so often that you will find an ex button on most scientific calculators. At first
glance, this is all somewhat mysterious. Why is it convenient to use the base 2.71828 . . .? The full
answer to that question must wait until Chapter 3, where we show that many calculus formulas come
out neatly when e is used as the base. We often use the following result:
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Any exponential growth function can be written, for some a > 1 and k > 0, in the form

P = P0a
t or P = P0e

kt

and any exponential decay function can be written, for some 0 < a < 1 and −k < 0, as

Q = Q0a
t or Q = Q0e

−kt,

where P0 and Q0 are the initial quantities.

We say that P and Q are growing or decaying at a continuous13 rate of k. (For exam-
ple, k = 0.02 corresponds to a continuous rate of 2%.)

Example 3 Convert the functions P = e0.5t and Q = 5e−0.2t into the form y = y0a
t. Use the results to explain

the shape of the graphs in Figures 1.23 and 1.24.

1 2 3 4 5 6 7

10

20

30

t

P

1

P = e0.5t

Figure 1.23: An exponential growth function

2 4 6 8 10

1

2

3

4

5

t

Q

Q = 5e−0.2t

Figure 1.24: An exponential decay function

Solution We have
P = e0.5t = (e0.5)t = (1.65)t.

Thus, P is an exponential growth function with P0 = 1 and a = 1.65. The function is increasing
and its graph is concave up, similar to those in Figure 1.20. Also,

Q = 5e−0.2t
= 5(e−0.2

)
t
= 5(0.819)t,

so Q is an exponential decay function with Q0 = 5 and a = 0.819. The function is decreasing and
its graph is concave up, similar to those in Figure 1.21.

Example 4 The quantity, Q, of a drug in a patient’s body at time t is represented for positive constants S and
k by the function Q = S(1 − e−kt). For t ≥ 0, describe how Q changes with time. What does S
represent?

Solution The graph of Q is shown in Figure 1.25. Initially none of the drug is present, but the quantity
increases with time. Since the graph is concave down, the quantity increases at a decreasing rate.
This is realistic because as the quantity of the drug in the body increases, so does the rate at which
the body excretes the drug. Thus, we expect the quantity to level off. Figure 1.25 shows that S is the
saturation level. The line Q = S is called a horizontal asymptote.

13The reason that k is called the continuous rate is explored in detail in Chapter 11.
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1 2 3 4 5
t (time in hours)

S

Q (quantity of drug) Saturation level
�

Figure 1.25: Buildup of the quantity of a drug in body

Exercises and Problems for Section 1.2
Exercises

In Exercises 1–4, decide whether the graph is concave up, con-
cave down, or neither.

1.

x

2.

x

3.

x

4.
x

The functions in Exercises 5–8 represent exponential growth
or decay. What is the initial quantity? What is the growth rate?
State if the growth rate is continuous.

5. P = 5(1.07)t 6. P = 7.7(0.92)t

7. P = 3.2e0.03t 8. P = 15e−0.06t

Write the functions in Exercises 9–12 in the form P = P0a
t.

Which represent exponential growth and which represent ex-
ponential decay?

9. P = 15e0.25t 10. P = 2e−0.5t

11. P = P0e
0.2t 12. P = 7e−πt

In Exercises 13–14, let f(t) = Q0a
t = Q0(1 + r)t.

(a) Find the base, a.
(b) Find the percentage growth rate, r.

13. f(5) = 75.94 and f(7) = 170.86

14. f(0.02) = 25.02 and f(0.05) = 25.06

15. A town has a population of 1000 people at time t = 0.
In each of the following cases, write a formula for the
population, P , of the town as a function of year t.

(a) The population increases by 50 people a year.
(b) The population increases by 5% a year.

16. An air-freshener starts with 30 grams and evaporates. In
each of the following cases, write a formula for the quan-
tity, Q grams, of air-freshener remaining t days after the
start and sketch a graph of the function. The decrease is:

(a) 2 grams a day (b) 12% a day

17. For which pairs of consecutive points in Figure 1.26 is
the function graphed:

(a) Increasing and concave up?
(b) Increasing and concave down?
(c) Decreasing and concave up?
(d) Decreasing and concave down?

A

B

C

D

E

F
G

H

I

x

Figure 1.26

18. The table gives the average temperature in Wallingford,
Connecticut, for the first 10 days in March.

(a) Over which intervals was the average temperature
increasing? Decreasing?

(b) Find a pair of consecutive intervals over which the
average temperature was increasing at a decreasing
rate. Find another pair of consecutive intervals over
which the average temperature was increasing at an
increasing rate.

Day 1 2 3 4 5 6 7 8 9 10
◦F 42◦ 42◦ 34◦ 25◦ 22◦ 34◦ 38◦ 40◦ 49◦ 49◦
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Problems

19. (a) Which (if any) of the functions in the following table
could be linear? Find formulas for those functions.

(b) Which (if any) of these functions could be exponen-
tial? Find formulas for those functions.

x f(x) g(x) h(x)

−2 12 16 37

−1 17 24 34

0 20 36 31

1 21 54 28

2 18 81 25

In Problems 20–21, find all the tables that have the given char-
acteristic.

(A)
x 0 40 80 160

y 2.2 2.2 2.2 2.2

(B)
x −8 −4 0 8

y 51 62 73 95

(C)
x −4 −3 4 6

y 18 0 4.5 −2.25

(D)
x 3 4 5 6

y 18 9 4.5 2.25

20. y could be a linear function of x.

21. y could be an exponential function of x.

22. In 2010, the world’s population reached 6.91 billion and
was increasing at a rate of 1.1% per year. Assume that
this growth rate remains constant. (In fact, the growth rate
has decreased since 1987.)

(a) Write a formula for the world population (in bil-
lions) as a function of the number of years since
2010.

(b) Estimate the population of the world in the year
2020.

(c) Sketch world population as a function of years since
2010. Use the graph to estimate the doubling time of
the population of the world.

23. (a) A population, P , grows at a continuous rate of 2%
a year and starts at 1 million. Write P in the form
P = P0e

kt, with P0, k constants.
(b) Plot the population in part (a) against time.

24. A certain region has a population of 10,000,000 and an
annual growth rate of 2%. Estimate the doubling time by
guessing and checking.

25. A photocopy machine can reduce copies to 80% of their
original size. By copying an already reduced copy, fur-
ther reductions can be made.

(a) If a page is reduced to 80%, what percent enlarge-
ment is needed to return it to its original size?

(b) Estimate the number of times in succession that a
page must be copied to make the final copy less than
15% of the size of the original.

26. When a new product is advertised, more and more people
try it. However, the rate at which new people try it slows
as time goes on.

(a) Graph the total number of people who have tried
such a product against time.

(b) What do you know about the concavity of the graph?

27. Sketch reasonable graphs for the following. Pay particu-
lar attention to the concavity of the graphs.

(a) The total revenue generated by a car rental business,
plotted against the amount spent on advertising.

(b) The temperature of a cup of hot coffee standing in a
room, plotted as a function of time.

28. Each of the functions g, h, k in Table 1.10 is increasing,
but each increases in a different way. Which of the graphs
in Figure 1.27 best fits each function?

(a) (b)

(c)

Figure 1.27

Table 1.10

t g(t) h(t) k(t)

1 23 10 2.2

2 24 20 2.5

3 26 29 2.8

4 29 37 3.1

5 33 44 3.4

6 38 50 3.7

29. Each of the functions in Table 1.11 decreases, but each
decreases in a different way. Which of the graphs in Fig-
ure 1.28 best fits each function?

(a) (b)

(c)

Figure 1.28

Table 1.11

x f(x) g(x) h(x)

1 100 22.0 9.3

2 90 21.4 9.1

3 81 20.8 8.8

4 73 20.2 8.4

5 66 19.6 7.9

6 60 19.0 7.3
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30. One of the main contaminants of a nuclear accident, such
as that at Chernobyl, is strontium-90, which decays ex-
ponentially at a continuous rate of approximately 2.47%
per year. After the Chernobyl disaster, it was suggested
that it would be about 100 years before the region would
again be safe for human habitation. What percent of the
original strontium-90 would still remain then?

Give a possible formula for the functions in Problems 31–34.

31.

3

y

x

(2, 12)

32. y

x

(−1, 8) (1, 2)

33. y

x
(1, 6)

(2, 18)

34.
4

y

(1, 2)

x

35. Table 1.12 shows some values of a linear function f and
an exponential function g. Find exact values (not decimal
approximations) for each of the missing entries.

Table 1.12

x 0 1 2 3 4

f(x) 10 ? 20 ? ?

g(x) 10 ? 20 ? ?

36. Match the functions h(s), f(s), and g(s), whose values
are in Table 1.13, with the formulas

y = a(1.1)s , y = b(1.05)s , y = c(1.03)s,

assuming a, b, and c are constants. Note that the function
values have been rounded to two decimal places.

Table 1.13

s h(s) s f(s) s g(s)

2 1.06 1 2.20 3 3.47

3 1.09 2 2.42 4 3.65

4 1.13 3 2.66 5 3.83

5 1.16 4 2.93 6 4.02

6 1.19 5 3.22 7 4.22

37. (a) Estimate graphically the doubling time of the expo-
nentially growing population shown in Figure 1.29.
Check that the doubling time is independent of
where you start on the graph.

(b) Show algebraically that if P = P0a
t doubles be-

tween time t and time t+d, then d is the same num-
ber for any t.

1 2 3 4 5 6 7 8 9

20,000

40,000

60,000

80,000

time (years)

population

Figure 1.29

38. A deposit of P0 into a bank account has a doubling time
of 50 years. No other deposits or withdrawals are made.

(a) How much money is in the bank account after 50
years? 100 years? 150 years? (Your answer will in-
volve P0.)

(b) How many times does the amount of money double
in t years? Use this to write a formula for P , the
amount of money in the account after t years.

39. A 325 mg aspirin has a half-life of H hours in a patient’s
body.

(a) How long does it take for the quantity of aspirin
in the patient’s body to be reduced to 162.5 mg?
To 81.25 mg? To 40.625 mg? (Note that 162.5 =
325/2, etc. Your answers will involve H .)

(b) How many times does the quantity of aspirin, A mg,
in the body halve in t hours? Use this to give a for-
mula for A after t hours.

40. (a) The half-life of radium-226 is 1620 years. If the ini-
tial quantity of radium is Q0, explain why the quan-
tity, Q, of radium left after t years, is given by

Q = Q0

(
1

2

)t/1620
.

(b) What percentage of the original amount of radium is
left after 500 years?

41. In the early 1960s, radioactive strontium-90 was re-
leased during atmospheric testing of nuclear weapons
and got into the bones of people alive at the time. If
the half-life of strontium-90 is 29 years, what fraction
of the strontium-90 absorbed in 1960 remained in peo-
ple’s bones in 2010? [Hint: Write the function in the form
Q = Q0(1/2)

t/29.]

42. Aircraft require longer takeoff distances, called takeoff
rolls, at high altitude airports because of diminished air
density. The table shows how the takeoff roll for a certain
light airplane depends on the airport elevation. (Takeoff
rolls are also strongly influenced by air temperature; the
data shown assume a temperature of 0◦ C.) Determine a
formula for this particular aircraft that gives the takeoff
roll as an exponential function of airport elevation.

Elevation (ft) Sea level 1000 2000 3000 4000

Takeoff roll (ft) 670 734 805 882 967
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Problems 43–44 concern biodiesel, a fuel derived from renew-
able resources such as food crops, algae, and animal oils. The
table shows the percent growth over the previous year in US
biodiesel consumption.14

Year 2003 2004 2005 2006 2007 2008 2009

% growth −12.5 92.9 237 186.6 37.2 −11.7 7.3

43. (a) According to the US Department of Energy, the US
consumed 91 million gallons of biodiesel in 2005.
Approximately how much biodiesel (in millions of
gallons) did the US consume in 2006? In 2007?

(b) Graph the points showing the annual US consump-
tion of biodiesel, in millions of gallons of biodiesel,
for the years 2005 to 2009. Label the scales on the
horizontal and vertical axes.

44. (a) True or false: The annual US consumption of
biodiesel grew exponentially from 2003 to 2005.
Justify your answer without doing any calculations.

(b) According to this data, during what single year(s),
if any, did the US consumption of biodiesel at least
double?

(c) According to this data, during what single year(s),
if any, did the US consumption of biodiesel at least
triple?

45. Hydroelectric power is electric power generated by the
force of moving water. The table shows the annual per-
cent change in hydroelectric power consumption by the
US industrial sector.15

Year 2005 2006 2007 2008 2009

% growth over previous yr −1.9 −10 −45.4 5.1 11

(a) According to the US Department of Energy, the US
industrial sector consumed about 29 trillion BTUs
of hydroelectric power in 2006. Approximately how
much hydroelectric power (in trillion BTUs) did the
US consume in 2007? In 2005?

(b) Graph the points showing the annual US consump-
tion of hydroelectric power, in trillion BTUs, for the
years 2004 to 2009. Label the scales on the horizon-
tal and vertical axes.

(c) According to this data, when did the largest yearly
decrease, in trillion BTUs, in the US consumption of
hydroelectric power occur? What was this decrease?

Problems 46–47 concern wind power, which has been used for
centuries to propel ships and mill grain. Modern wind power
is obtained from windmills which convert wind energy into
electricity. Figure 1.30 shows the annual percent growth in
US wind power consumption16 between 2005 and 2009.

2007 2009

20

40

60

year

percent growth
over previous year

Figure 1.30

46. (a) According to the US Department of Energy, the US
consumption of wind power was 341 trillion BTUs
in 2007. How much wind power did the US consume
in 2006? In 2008?

(b) Graph the points showing the annual US consump-
tion of wind power, in trillion BTUs, for the years
2005 to 2009. Label the scales on the horizontal and
vertical axes.

(c) Based on this data, in what year did the largest yearly
increase, in trillion BTUs, in the US consumption of
wind power occur? What was this increase?

47. (a) According to Figure 1.30, during what single
year(s), if any, did the US consumption of wind
power energy increase by at least 40%? Decrease by
at least 40%?

(b) Did the US consumption of wind power energy dou-
ble from 2006 to 2008?

Strengthen Your Understanding

In Problems 48–49, explain what is wrong with the statement.

48. The function y = e−0.25x is decreasing and its graph is
concave down.

49. The function y = 2x is increasing, and its graph is con-
cave up.

In Problems 50–52, give an example of:

50. A formula representing the statement “q decreases at a
constant percent rate, and q = 2.2 when t = 0. ”

51. A function that is increasing at a constant percent rate and
that has the same vertical intercept as f(x) = 0.3x+ 2.

52. A function with a horizontal asymptote at y = −5 and
range y > −5.

14http://www.eia.doe.gov/aer/renew.html. Accessed February 2011.
15From http://www.eia.doe.gov/aer/renew.html. Accessed February 2011.
16Yearly values have been joined with segments to highlight trends in the data. Actual values in between years should not

be inferred from the segments. From http://www.eia.doe.gov/aer/renew.html. Accessed February 2011.
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Are the statements in Problems 53–59 true or false? Give an
explanation for your answer.

53. The function y = 2 + 3e−t has a y-intercept of y = 3.

54. The function y = 5− 3e−4t has a horizontal asymptote
of y = 5.

55. If y = f(x) is an exponential function and if increasing
x by 1 increases y by a factor of 5, then increasing x by
2 increases y by a factor of 10.

56. If y = Abx and increasing x by 1 increases y by a factor
of 3, then increasing x by 2 increases y by a factor of 9.

57. An exponential function can be decreasing.

58. If a and b are positive constants, b �= 1, then y = a+abx

has a horizontal asymptote.

59. The function y = 20/(1 + 2e−kt) with k > 0, has a
horizontal asymptote at y = 20.

1.3 NEW FUNCTIONS FROM OLD

Shifts and Stretches
The graph of a constant multiple of a given function is easy to visualize: each y-value is stretched
or shrunk by that multiple. For example, consider the function f(x) and its multiples y = 3f(x)
and y = −2f(x). Their graphs are shown in Figure 1.31. The factor 3 in the function y = 3f(x)
stretches each f(x) value by multiplying it by 3; the factor −2 in the function y = −2f(x) stretches
f(x) by multiplying by 2 and reflects it about the x-axis. You can think of the multiples of a given
function as a family of functions.

3

−3

y

x

y = 3f(x)

y = −2f(x)

y = f(x)

Figure 1.31: Multiples of the function f(x)

4

y

x

y = x2 + 4

y = x2

2
x

y

y = (x− 2)2

y = x2

Figure 1.32: Graphs of y = x2 with y = x2 + 4 and
y = (x− 2)2

It is also easy to create families of functions by shifting graphs. For example, y− 4 = x2 is the
same as y = x2 + 4, which is the graph of y = x2 shifted up by 4. Similarly, y = (x − 2)2 is the
graph of y = x2 shifted right by 2. (See Figure 1.32.)

• Multiplying a function by a constant, c, stretches the graph vertically (if c > 1) or shrinks
the graph vertically (if 0 < c < 1). A negative sign (if c < 0) reflects the graph about the
x-axis, in addition to shrinking or stretching.

• Replacing y by (y − k) moves a graph up by k (down if k is negative).

• Replacing x by (x− h) moves a graph to the right by h (to the left if h is negative).

Composite Functions
If oil is spilled from a tanker, the area of the oil slick grows with time. Suppose that the oil slick is
always a perfect circle. Then the area, A, of the oil slick is a function of its radius, r:

A = f(r) = πr2.

The radius is also a function of time, because the radius increases as more oil spills. Thus, the area,
being a function of the radius, is also a function of time. If, for example, the radius is given by

r = g(t) = 1 + t,
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then the area is given as a function of time by substitution:

A = πr2 = π(1 + t)2.

We are thinking of A as a composite function or a “function of a function,” which is written

A = f(g(t))︸ ︷︷ ︸
Composite function;
f is outside function,
g is inside function

= π(g(t))2 = π(1 + t)2.

To calculate A using the formula π(1 + t)2, the first step is to find 1 + t, and the second step is to
square and multiply by π. The first step corresponds to the inside function g(t) = 1 + t, and the
second step corresponds to the outside function f(r) = πr2.

Example 1 If f(x) = x2 and g(x) = x− 2, find each of the following:
(a) f(g(3)) (b) g(f(3)) (c) f(g(x)) (d) g(f(x))

Solution (a) Since g(3) = 1, we have f(g(3)) = f(1) = 1.
(b) Since f(3) = 9, we have g(f(3)) = g(9) = 7. Notice that f(g(3)) �= g(f(3)).
(c) f(g(x)) = f(x− 2) = (x− 2)2.
(d) g(f(x)) = g(x2) = x2 − 2. Again, notice that f(g(x)) �= g(f(x)).
Notice that the horizontal shift in Figure 1.32 can be thought of as a composition f(g(x)) = (x−2)2.

Example 2 Express each of the following functions as a composition:

(a) h(t) = (1 + t3)27 (b) k(y) = e−y2

(c) l(y) = −(ey)2

Solution In each case think about how you would calculate a value of the function. The first stage of the
calculation gives you the inside function, and the second stage gives you the outside function.

(a) For (1+ t3)27, the first stage is cubing and adding 1, so an inside function is g(t) = 1+ t3. The
second stage is taking the 27th power, so an outside function is f(y) = y27. Then

f(g(t)) = f(1 + t3) = (1 + t3)27.

In fact, there are lots of different answers: g(t) = t3 and f(y) = (1+y)27 is another possibility.
(b) To calculate e−y2

we square y, take its negative, and then take e to that power. So if g(y) = −y2

and f(z) = ez, then we have

f(g(y)) = e−y2

.

(c) To calculate −(ey)2, we find ey, square it, and take the negative. Using the same definitions of
f and g as in part (b), the composition is

g(f(y)) = −(ey)2.

Since parts (b) and (c) give different answers, we see the order in which functions are composed
is important.

Odd and Even Functions: Symmetry
There is a certain symmetry apparent in the graphs of f(x) = x2 and g(x) = x3 in Figure 1.33. For
each point (x, x2) on the graph of f , the point (−x, x2) is also on the graph; for each point (x, x3)

on the graph of g, the point (−x,−x3) is also on the graph. The graph of f(x) = x2 is symmetric
about the y-axis, whereas the graph of g(x) = x3 is symmetric about the origin. The graph of any
polynomial involving only even powers of x has symmetry about the y-axis, while polynomials
with only odd powers of x are symmetric about the origin. Consequently, any functions with these
symmetry properties are called even and odd, respectively.
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−x x

f(x) = x2

x

Even
function

(−x, x2) (x, x2)
−x

x

g(x) = x3

x

Odd
function

(−x,−x3)

(x, x3)

Figure 1.33: Symmetry of even and odd functions

For any function f ,
f is an even function if f(−x) = f(x) for all x.
f is an odd function if f(−x) = −f(x) for all x.

For example, g(x) = ex
2

is even and h(x) = x1/3 is odd. However, many functions do not
have any symmetry and are neither even nor odd.

Inverse Functions
On August 26, 2005, the runner Kenenisa Bekele17 of Ethiopia set a world record for the 10,000-
meter race. His times, in seconds, at 2000-meter intervals are recorded in Table 1.14, where t = f(d)
is the number of seconds Bekele took to complete the first d meters of the race. For example, Bekele
ran the first 4000 meters in 629.98 seconds, so f(4000) = 629.98. The function f was useful to
athletes planning to compete with Bekele.

Let us now change our point of view and ask for distances rather than times. If we ask how
far Bekele ran during the first 629.98 seconds of his race, the answer is clearly 4000 meters. Going
backward in this way from numbers of seconds to numbers of meters gives f−1, the inverse func-
tion18 of f . We write f−1(629.98) = 4000. Thus, f−1(t) is the number of meters that Bekele ran
during the first t seconds of his race. See Table 1.15, which contains values of f−1.

The independent variable for f is the dependent variable for f−1, and vice versa. The domains
and ranges of f and f−1 are also interchanged. The domain of f is all distances d such that 0 ≤

d ≤ 10000, which is the range of f−1. The range of f is all times t, such that 0 ≤ t ≤ 1577.53,
which is the domain of f−1.

Table 1.14 Bekele’s running time

d (meters) t = f(d) (seconds)

0 0.00

2000 315.63

4000 629.98

6000 944.66

8000 1264.63

10000 1577.53

Table 1.15 Distance run by Bekele

t (seconds) d = f−1(t) (meters)

0.00 0

315.63 2000

629.98 4000

944.66 6000

1264.63 8000

1577.53 10000

Which Functions Have Inverses?

If a function has an inverse, we say it is invertible. Let’s look at a function which is not invertible.
Consider the flight of the Mercury spacecraft Freedom 7, which carried Alan Shepard, Jr. into space

17kenenisabekelle.com/, accessed January 11, 2011.
18The notation f−1 represents the inverse function, which is not the same as the reciprocal, 1/f .
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in May 1961. Shepard was the first American to journey into space. After launch, his spacecraft rose
to an altitude of 116 miles, and then came down into the sea. The function f(t) giving the altitude
in miles t minutes after lift-off does not have an inverse. To see why not, try to decide on a value for
f−1(100), which should be the time when the altitude of the spacecraft was 100 miles. However,
there are two such times, one when the spacecraft was ascending and one when it was descending.
(See Figure 1.34.)

The reason the altitude function does not have an inverse is that the altitude has the same value
for two different times. The reason the Bekele time function did have an inverse is that each running
time, t, corresponds to a unique distance, d.

t1 t2

100

116

t (min)

d (miles)

f(t)

Figure 1.34: Two times, t1 and t2, at
which altitude of spacecraft is 100 miles

y

f(x)

f−1(y)x

Original
function

Inverse function
y = f(x)

�

�

�
�

Figure 1.35: A function which has an
inverse

Figure 1.35 suggests when an inverse exists. The original function, f , takes us from an x-value
to a y-value, as shown in Figure 1.35. Since having an inverse means there is a function going from
a y-value to an x-value, the crucial question is whether we can get back. In other words, does each
y-value correspond to a unique x-value? If so, there’s an inverse; if not, there is not. This principle
may be stated geometrically, as follows:

A function has an inverse if (and only if) its graph intersects any horizontal line at most once.

For example, the function f(x) = x2 does not have an inverse because many horizontal lines
intersect the parabola twice.

Definition of an Inverse Function

If the function f is invertible, its inverse is defined as follows:

f−1
(y) = x means y = f(x).

Formulas for Inverse Functions

If a function is defined by a formula, it is sometimes possible to find a formula for the inverse
function. In Section 1.1, we looked at the snow tree cricket, whose chirp rate, C, in chirps per
minute, is approximated at the temperature, T , in degrees Fahrenheit, by the formula

C = f(T ) = 4T − 160.

So far we have used this formula to predict the chirp rate from the temperature. But it is also possible
to use this formula backward to calculate the temperature from the chirp rate.
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Example 3 Find the formula for the function giving temperature in terms of the number of cricket chirps per
minute; that is, find the inverse function f−1 such that

T = f−1
(C).

Solution Since C is an increasing function, f is invertible. We know C = 4T − 160. We solve for T , giving

T =
C

4
+ 40,

so

f−1
(C) =

C

4
+ 40.

Graphs of Inverse Functions

The function f(x) = x3 is increasing everywhere and so has an inverse. To find the inverse, we
solve

y = x3

for x, giving
x = y1/3.

The inverse function is
f−1

(y) = y1/3

or, if we want to call the independent variable x,

f−1
(x) = x1/3.

The graphs of y = x3 and y = x1/3 are shown in Figure 1.36. Notice that these graphs are the
reflections of one another about the line y = x. For example, (8, 2) is on the graph of y = x1/3

because 2 = 81/3, and (2, 8) is on the graph of y = x3 because 8 = 23. The points (8, 2) and (2, 8)
are reflections of one another about the line y = x.

In general, we have the following result.

If the x- and y-axes have the same scales, the graph of f−1 is the reflec-
tion of the graph of f about the line y = x.

−2

2 4 6 8
−2

2

4

6

8

x

y
y = x3 y = x

y = x1/3

x3

x1/3

Figure 1.36: Graphs of inverse functions, y = x3 and y = x1/3, are reflections about the line y = x
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Exercises and Problems for Section 1.3
Exercises

For the functions f in Exercises 1–3, graph:

(a) f(x+ 2) (b) f(x− 1) (c) f(x)− 4
(d) f(x+ 1) + 3 (e) 3f(x) (f) −f(x) + 1

1.

−2 −1 0 1 2

1

2

3

4 f(x)

x

2.

−2 −1 0 1 2

1

2

3

4

f(x)

x

3.

−2 2
−2

2

4
f(x)

x

In Exercises 4–7, use Figure 1.37 to graph the functions.

−3

5
−1

2
m(t)

t

Figure 1.37
4. n(t) = m(t) + 2 5. p(t) = m(t− 1)

6. k(t) = m(t+ 1.5)

7. w(t) = m(t− 0.5) − 2.5

For the functions f and g in Exercises 8–11, find

(a) f(g(1)) (b) g(f(1)) (c) f(g(x))
(d) g(f(x)) (e) f(t)g(t)

8. f(x) = x2, g(x) = x+ 1

9. f(x) =
√
x+ 4, g(x) = x2

10. f(x) = ex, g(x) = x2

11. f(x) = 1/x, g(x) = 3x+ 4

12. For g(x) = x2 + 2x+ 3, find and simplify:

(a) g(2 + h) (b) g(2)

(c) g(2 + h)− g(2)

13. If f(x) = x2 + 1, find and simplify:

(a) f(t+ 1) (b) f(t2 + 1) (c) f(2)

(d) 2f(t) (e) (f(t))2 + 1

Simplify the quantities in Exercises 14–17 using m(z) = z2.

14. m(z + 1)−m(z) 15. m(z + h)−m(z)

16. m(z)−m(z − h) 17. m(z+h)−m(z−h)

18. Let p be the price of an item and q be the number of items
sold at that price, where q = f(p). What do the following
quantities mean in terms of prices and quantities sold?

(a) f(25) (b) f−1(30)

19. Let C = f(A) be the cost, in dollars, of building a store
of area A square feet. In terms of cost and square feet,
what do the following quantities represent?

(a) f(10,000) (b) f−1(20,000)

20. Let f(x) be the temperature (◦F) when the column of
mercury in a particular thermometer is x inches long.
What is the meaning of f−1(75) in practical terms?

21. (a) Write an equation for a graph obtained by vertically
stretching the graph of y = x2 by a factor of 2, fol-
lowed by a vertical upward shift of 1 unit. Sketch it.

(b) What is the equation if the order of the transfor-
mations (stretching and shifting) in part (a) is inter-
changed?

(c) Are the two graphs the same? Explain the effect of
reversing the order of transformations.

22. Use Figure 1.38 to graph each of the following. Label
any intercepts or asymptotes that can be determined.

(a) y = f(x) + 3 (b) y = 2f(x)

(c) y = f(x+ 4) (d) y = 4− f(x)

−5 −3 −1 2 5

−1

1

2

x

y

Figure 1.38

For Exercises 23–24, decide if the function y = f(x) is in-
vertible.

23.

f

y

x

24.

x

y

f



1.3 NEW FUNCTIONS FROM OLD 27

For Exercises 25–27, use a graph of the function to decide
whether or not it is invertible.

25. f(x) = x2 + 3x+ 2 26. f(x) = x3− 5x+10

27. f(x) = x3+5x+10

Are the functions in Exercises 28–35 even, odd, or neither?

28. f(x) = x6 + x3 + 1 29. f(x) = x3 + x2 + x

30. f(x) = x4 − x2 + 3 31. f(x) = x3 + 1

32. f(x) = 2x 33. f(x) = ex
2
−1

34. f(x) = x(x2 − 1) 35. f(x) = ex − x

Problems

For Problems 36–39, determine functions f and g such that
h(x) = f(g(x)). [Note: There is more than one correct an-
swer. Do not choose f(x) = x or g(x) = x.]

36. h(x) = (x+ 1)3 37. h(x) = x3 + 1

38. h(x) =
√
x2 + 4 39. h(x) = e2x

Find possible formulas for the graphs in Problems 40–41 us-
ing shifts of x2 or x3.

40.

x

y

(−1, 3)

41.

x

y

(2,−1)

42. (a) Use Figure 1.39 to estimate f−1(2).
(b) Sketch a graph of f−1 on the same axes.

−4 4

−4

4

f(x)

x

y

Figure 1.39

43. Write a table of values for f−1, where f is as given be-
low. The domain of f is the integers from 1 to 7. State
the domain of f−1.

x 1 2 3 4 5 6 7

f(x) 3 −7 19 4 178 2 1

For Problems 44–47, decide if the function f is invertible.

44. f(d) is the total number of gallons of fuel an airplane has
used by the end of d minutes of a particular flight.

45. f(t) is the number of customers in Macy’s department
store at t minutes past noon on December 18, 2008.

46. f(n) is the number of students in your calculus class
whose birthday is on the nth day of the year.

47. f(w) is the cost of mailing a letter weighing w grams.

In Problems 48–51 the functions r = f(t) and V = g(r) give
the radius and the volume of a commercial hot air balloon be-
ing inflated for testing. The variable t is in minutes, r is in
feet, and V is in cubic feet. The inflation begins at t = 0. In
each case, give a mathematical expression that represents the
given statement.

48. The volume of the balloon t minutes after inflation be-
gan.

49. The volume of the balloon if its radius were twice as
big.

50. The time that has elapsed when the radius of the balloon
is 30 feet.

51. The time that has elapsed when the volume of the balloon
is 10,000 cubic feet.

In Problems 52–55, use Figure 1.40 to estimate the function
value or explain why it cannot be done.

50

100
u(x)

x
50

100

v(x)

x

Figure 1.40

52. u(v(10)) 53. u(v(40))

54. v(u(10)) 55. v(u(40))
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56. Figure 1.41 shows f(t), the number (in millions) of mo-
tor vehicles registered19 in the world in the year t.

(a) Is f invertible? Explain.
(b) What is the meaning of f−1(400) in practical terms?

Evaluate f−1(400).
(c) Sketch the graph of f−1.
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Figure 1.41

For Problems 57–62, use the graphs in Figure 1.42.
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Figure 1.42

57. Estimate f(g(1)). 58. Estimate g(f(2)).

59. Estimate f(f(1)). 60. Graph f(g(x)).

61. Graph g(f(x)). 62. Graph f(f(x)).

63. Figure 1.43 is a graph of the function f(t). Here f(t) is
the depth in meters below the Atlantic Ocean floor where
t million-year-old rock can be found.20

(a) Evaluate f(15), and say what it means in practical
terms.

(b) Is f invertible? Explain.
(c) Evaluate f−1(120), and say what it means in prac-

tical terms.
(d) Sketch a graph of f−1.

403530252015105
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Figure 1.43

64. A tree of height y meters has, on average, B branches,
where B = y−1. Each branch has, on average, n leaves,
where n = 2B2 −B. Find the average number of leaves
of a tree as a function of height.

65. A spherical balloon is growing with radius r = 3t + 1,
in centimeters, for time t in seconds. Find the volume of
the balloon at 3 seconds.

66. The cost of producing q articles is given by the function
C = f(q) = 100 + 2q.

(a) Find a formula for the inverse function.
(b) Explain in practical terms what the inverse function

tells you.

67. How does the graph of Q = S(1 − e−kt) in Example 4
on page 16 relate to the graph of the exponential decay
function, y = Se−kt?

68. Complete the following table with values for the func-
tions f , g, and h, given that:

(a) f is an even function.
(b) g is an odd function.
(c) h is the composition h(x) = g(f(x)).

x f(x) g(x) h(x)

−3 0 0

−2 2 2

−1 2 2

0 0 0

1

2

3

19www.earth-policy.org, accessed June 5, 2011. In 2000, about 30% of the registered vehicles were in the US.
20Data of Dr. Murlene Clark based on core samples drilled by the research ship Glomar Challenger, taken from Initial

Reports of the Deep Sea Drilling Project.
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Strengthen Your Understanding

In Problems 69–71, explain what is wrong with the statement.

69. The graph of f(x) = −(x+ 1)3 is the graph of g(x) =
−x3 shifted right by 1 unit.

70. f(x) = 3x+5 and g(x) = −3x−5 are inverse functions
of each other.

71. The inverse of f(x) = x is f−1(x) = 1/x.

In Problems 72–75, give an example of:

72. An invertible function whose graph contains the point
(0, 3).

73. An even function whose graph does not contain the point
(0, 0).

74. An increasing function f(x) whose values are greater
than those of its inverse function f−1(x) for x > 0.

75. Two functions f(x) and g(x) such that moving the graph
of f to the left 2 units gives the graph of g and moving
the graph of f up 3 also gives the graph of g.

Are the statements in Problems 76–83 true or false? Give an
explanation for your answer.

76. The graph of f(x) = 100(10x) is a horizontal shift of
the graph of g(x) = 10x.

77. If f is an increasing function, then f−1 is an increasing
function.

78. If a function is even, then it does not have an inverse.

79. If a function is odd, then it does not have an inverse.

80. The function f(x) = e−x2

is decreasing for all x.

81. If g(x) is an even function then f(g(x)) is even for every
function f(x).

82. If f(x) is an even function then f(g(x)) is even for every
function g(x).

83. There is a function which is both even and odd.

Suppose f is an increasing function and g is a decreasing
function. In Problems 84–87, give an example for f and g
for which the statement is true, or say why such an example is
impossible.

84. f(x) + g(x) is decreasing for all x.

85. f(x)− g(x) is decreasing for all x.

86. f(x)g(x) is decreasing for all x.

87. f(g(x)) is increasing for all x.

1.4 LOGARITHMIC FUNCTIONS

In Section 1.2, we approximated the population of Burkina Faso (in millions) by the function

P = f(t) = 12.853(1.034)t,

where t is the number of years since 2003. Now suppose that instead of calculating the population
at time t, we ask when the population will reach 20 million. We want to find the value of t for which

20 = f(t) = 12.853(1.034)t.

We use logarithms to solve for a variable in an exponent.

Logarithms to Base 10 and to Base e

We define the logarithm function, log10 x, to be the inverse of the exponential function, 10x, as
follows:

The logarithm to base 10 of x, written log10 x, is the power of 10 we need to get x. In other
words,

log10 x = c means 10
c
= x.

We often write log x in place of log10 x.

The other frequently used base is e. The logarithm to base e is called the natural logarithm of
x, written lnx and defined to be the inverse function of ex, as follows:

The natural logarithm of x, written lnx, is the power of e needed to get x. In other words,

lnx = c means ec = x.
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Values of log x are in Table 1.16. Because no power of 10 gives 0, log 0 is undefined. The graph
of y = log x is shown in Figure 1.44. The domain of y = log x is positive real numbers; the range is
all real numbers. In contrast, the inverse function y = 10x has domain all real numbers and range all
positive real numbers. The graph of y = log x has a vertical asymptote at x = 0, whereas y = 10x

has a horizontal asymptote at y = 0.
One big difference between y = 10x and y = log x is that the exponential function grows

extremely quickly whereas the log function grows extremely slowly. However, log x does go to
infinity, albeit slowly, as x increases. Since y = log x and y = 10x are inverse functions, the graphs
of the two functions are reflections of one another about the line y = x, provided the scales along
the x- and y-axes are equal.

Table 1.16 Values for log x and 10x

x log x

0 undefined

1 0

2 0.3

3 0.5

4 0.6
...

...

10 1

x 10x

0 1

1 10

2 100

3 103

4 104

...
...

10 1010

2 4 6 8 10

2

4

6

8

10

x

y
y = 10x

y = log x

(1, 10)

(1, 0)

(10, 1)
(0, 1) �

Exponential: grows quickly

Log: grows slowly

�

�

�

Figure 1.44: Graphs of log x and 10x

The graph of y = lnx in Figure 1.45 has roughly the same shape as the graph of y = log x. The
x-intercept is x = 1, since ln 1 = 0.The graph of y = lnx also climbs very slowly as x increases.
Both graphs, y = log x and y = lnx, have vertical asymptotes at x = 0.

1 10

1

x

y

y = ln x

Figure 1.45: Graph of the natural logarithm

The following properties of logarithms may be deduced from the properties of exponents:

Properties of Logarithms

Note that log x and lnx are not defined when x is negative or 0.

1. log(AB) = logA+ logB

2. log

(
A

B

)
= logA− logB

3. log (Ap) = p logA

4. log (10x) = x

5. 10log x = x

1. ln (AB) = lnA+ lnB

2. ln

(
A

B

)
= lnA− lnB

3. ln (Ap) = p lnA

4. ln ex = x

5. elnx = x

In addition, log 1 = 0 because 100 = 1, and ln 1 = 0 because e0 = 1.
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Solving Equations Using Logarithms
Logs are frequently useful when we have to solve for unknown exponents, as in the next examples.

Example 1 Find t such that 2t = 7.

Solution First, notice that we expect t to be between 2 and 3 (because 22 = 4 and 23 = 8). To calculate t, we
take logs to base 10 of both sides. (Natural logs could also be used.)

log(2
t
) = log 7.

Then use the third property of logs, which says log(2t) = t log 2, and get:

t log 2 = log 7.

Using a calculator to find the logs gives

t =
log 7

log 2
≈ 2.81.

Example 2 Find when the population of Burkina Faso reaches 20 million by solving 20 = 12.853(1.034)t.

Solution Dividing both sides of the equation by 12.853, we get

20

12.853
= (1.034)t.

Now take logs of both sides:

log

(
20

12.853

)
= log(1.034t).

Using the fact that log(At) = t logA, we get

log

(
20

12.853

)
= t log(1.034).

Solving this equation using a calculator to find the logs, we get

t =
log(20/12.853)

log(1.034)
= 13.22 years

which is between t = 13 and t = 14. This value of t corresponds to the year 2016.

Example 3 Traffic pollution is harmful to school-age children. The concentration of carbon monoxide, CO, in
the air near a busy road is a function of distance from the road. The concentration decays exponen-
tially at a continuous rate of 3.3% per meter.21 At what distance from the road is the concentration
of CO half what it is on the road?

Solution If C0 is the concentration of CO on the road, then the concentration x meters from the road is

C = C0e
−0.033x.

We want to find the value of x making C = C0/2, that is,

C0e
−0.033x

=
C0

2
.

Dividing by C0 and then taking natural logs yields

ln
(
e−0.033x

)
= −0.033x = ln

(
1

2

)
= −0.6931,

so
x = 21 meters.

At 21 meters from the road the concentration of CO in the air is half the concentration on the road.

21Rickwood, P. and Knight, D. (2009). “The health impacts of local traffic pollution on primary school age children.” State
of Australian Cities 2009 Conference Proceedings.
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In Example 3 the decay rate was given. However, in many situations where we expect to find
exponential growth or decay, the rate is not given. To find it, we must know the quantity at two
different times and then solve for the growth or decay rate, as in the next example.

Example 4 The population of Mexico was 99.9 million in 2000 and 113.4 million in 2010.22 Assuming it
increases exponentially, find a formula for the population of Mexico as a function of time.

Solution If we measure the population, P , in millions and time, t, in years since 2000, we can say

P = P0e
kt

= 99.9ekt,

where P0 = 99.9 is the initial value of P . We find k by using the fact that P = 113.4 when t = 10,
so

113.4 = 99.9ek·10.

To find k, we divide both sides by 99.9, giving

113.4

99.9
= 1.135 = e10k.

Now take natural logs of both sides:

ln(1.135) = ln(e10k).

Using a calculator and the fact that ln(e10k) = 10k, this becomes

0.127 = 10k.

So
k = 0.0127,

and therefore
P = 99.9e0.0127t.

Since k = 0.0127 = 1.27%, the population of Mexico was growing at a continuous rate of 1.27%
per year.

In Example 4 we chose to use e for the base of the exponential function representing Mexico’s
population, making clear that the continuous growth rate was 1.27%. If we had wanted to emphasize
the annual growth rate, we could have expressed the exponential function in the form P = P0a

t.

Example 5 Give a formula for the inverse of the following function (that is, solve for t in terms of P ):

P = f(t) = 12.853(1.034)t.

Solution We want a formula expressing t as a function of P . Take logs:

logP = log(12.853(1.034)t).

Since log(AB) = logA+ logB, we have

logP = log 12.853 + log((1.034)t).

Now use log(At) = t logA:

logP = log 12.853 + t log 1.034.

Solve for t in two steps, using a calculator at the final stage:

t log 1.034 = logP − log 12.853

t =
logP

log 1.034
−

log 12.853

log 1.034
= 68.868 logP − 76.375.

22http://data.worldbank.org/country/mexico. Accessed January 14, 2012.
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Thus,
f−1

(P ) = 68.868 logP − 76.375.

Note that
f−1

(20) = 68.868(log 20)− 76.375 = 13.22,

which agrees with the result of Example 2.

Exercises and Problems for Section 1.4
Exercises

Simplify the expressions in Exercises 1–6 completely.

1. eln(1/2) 2. 10log(AB)

3. 5eln(A
2) 4. ln(e2AB)

5. ln (1/e) + ln(AB) 6. 2 ln
(
eA
)
+ 3 lnBe

For Exercises 7–18, solve for x using logs.

7. 3x = 11 8. 17x = 2

9. 20 = 50(1.04)x 10. 4 · 3x = 7 · 5x

11. 7 = 5e0.2x 12. 2x = ex+1

13. 50 = 600e−0.4x 14. 2e3x = 4e5x

15. 7x+2 = e17x 16. 10x+3 = 5e7−x

17. 2x− 1 = elnx2

18. 4e2x−3 − 5 = e

For Exercises 19–24, solve for t. Assume a and b are positive
constants and k is nonzero.

19. a = bt 20. P = P0 a
t

21. Q = Q0 a
nt 22. P0 a

t = Q0 b
t

23. a = bet 24. P = P0 e
kt

In Exercises 25–28, put the functions in the form P = P0e
kt.

25. P = 15(1.5)t 26. P = 10(1.7)t

27. P = 174(0.9)t 28. P = 4(0.55)t

Find the inverse function in Exercises 29–31.

29. p(t) = (1.04)t 30. f(t) = 50e0.1t

31. f(t) = 1 + ln t

Problems

32. The population of a region is growing exponentially.
There were 40,000,000 people in 2000 (t = 0) and
48,000,000 in 2010. Find an expression for the popula-
tion at any time t, in years. What population would you
predict for the year 2020? What is the doubling time?

33. One hundred kilograms of a radioactive substance decay
to 40 kg in 10 years. How much remains after 20 years?

34. A culture of bacteria originally numbers 500. After 2
hours there are 1500 bacteria in the culture. Assuming
exponential growth, how many are there after 6 hours?

35. The population of the US was 281.4 million in 2000 and
308.7 million in 2010.23 Assuming exponential growth,

(a) In what year is the population expected to go over
350 million?

(b) What population is predicted for the 2020 census?

36. The concentration of the car exhaust fume nitrous oxide,
NO2, in the air near a busy road is a function of distance
from the road. The concentration decays exponentially at
a continuous rate of 2.54% per meter.24 At what distance
from the road is the concentration of NO2 half what it is
on the road?

37. For children and adults with diseases such as asthma, the
number of respiratory deaths per year increases by 0.33%
when pollution particles increase by a microgram per cu-
bic meter of air.25

(a) Write a formula for the number of respiratory deaths
per year as a function of quantity of pollution in the
air. (Let Q0 be the number of deaths per year with
no pollution.)

(b) What quantity of air pollution results in twice as
many respiratory deaths per year as there would be
without pollution?

23http://2010.census.gov/2010census/. Accessed April 17, 2011.
24Rickwood, P. and Knight, D. (2009). “The health impacts of local traffic pollution on primary school age children.” State

of Australian Cities 2009 Conference Proceedings.
25Brook, R. D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., Luepker, R., Mittleman, M., Samet, J., and

Smith, S. C. (2004). “Air pollution and cardiovascular disease.” Circulation, 109(21):2655267.
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38. The number of alternative fuel vehicles26 running on
E85, fuel that is up to 85% plant-derived ethanol, in-
creased exponentially in the US between 2003 and 2008.

(a) Use this information to complete the missing table
values.

(b) How many E85-powered vehicles were there in the
US in 2003?

(c) By what percent did the number of E85-powered ve-
hicles grow from 2004 to 2008?

Year 2004 2005 2006 2007 2008

Number of E85 vehicles 211,800 ? ? ? 450,327

39. At time t hours after taking the cough suppressant hy-
drocodone bitartrate, the amount, A, in mg, remaining in
the body is given by A = 10(0.82)t.

(a) What was the initial amount taken?
(b) What percent of the drug leaves the body each hour?
(c) How much of the drug is left in the body 6 hours

after the dose is administered?
(d) How long is it until only 1 mg of the drug remains

in the body?

40. A cup of coffee contains 100 mg of caffeine, which
leaves the body at a continuous rate of 17% per hour.

(a) Write a formula for the amount, A mg, of caffeine in
the body t hours after drinking a cup of coffee.

(b) Graph the function from part (a). Use the graph to
estimate the half-life of caffeine.

(c) Use logarithms to find the half-life of caffeine.

41. The exponential function y(x) = Ceαx satisfies the con-
ditions y(0) = 2 and y(1) = 1. Find the constants C and
α. What is y(2)?

42. Without a calculator or computer, match the functions ex,
ln x, x2, and x1/2 to their graphs in Figure 1.46.

x

AB

C
D

Figure 1.46

43. With time, t, in years since the start of 1980, textbook
prices have increased at 6.7% per year while inflation has
been 3.3% per year.27 Assume both rates are continuous
growth rates.

(a) Find a formula for B(t), the price of a textbook in
year t if it cost $B0 in 1980.

(b) Find a formula for P (t), the price of an item in year
t if it cost $P0 in 1980 and its price rose according
to inflation.

(c) A textbook cost $50 in 1980. When is its price pre-
dicted to be double the price that would have re-
sulted from inflation alone?

44. In November 2010, a “tiger summit” was held in St.
Petersburg, Russia.28 In 1900, there were 100,000 wild
tigers worldwide; in 2010 the number was 3200.

(a) Assuming the tiger population has decreased expo-
nentially, find a formula for f(t), the number of wild
tigers t years since 1900.

(b) Between 2000 and 2010, the number of wild tigers
decreased by 40%. Is this percentage larger or
smaller than the decrease in the tiger population pre-
dicted by your answer to part (a)?

45. In 2011, the populations of China and India were ap-
proximately 1.34 and 1.19 billion people29, respectively.
However, due to central control the annual population
growth rate of China was 0.4% while the population of
India was growing by 1.37% each year. If these growth
rates remain constant, when will the population of India
exceed that of China?

46. The third-quarter revenue of Apple R© went from $3.68
billion30 in 2005 to $15.68 billion31 in 2010. Find an ex-
ponential function to model the revenue as a function of
years since 2005. What is the continuous percent growth
rate, per year, of sales?

47. The world population was 6.9 billion at the end of 2010
and is predicted to reach 9 billion by the end of 2050.32

(a) Assuming the population is growing exponentially,
what is the continuous growth rate per year?

(b) The United Nations celebrated the “Day of 5 Bil-
lion” on July 11, 1987, and the “Day of 6 Billion”
on October 12, 1999. Using the growth rate in part
(a), when is the “Day of 7 Billion” predicted to be?

26http://www.eia.doe.gov/aer/renew.html
27Data from “Textbooks headed for ash heap of history”, http://educationtechnews.com, Vol 5, 2010.
28“Tigers would be extinct in Russia if unprotected,” Yahoo! News, Nov. 21, 2010.
29http://www.indexmundi.com/. Accessed April 17, 2011.
30http://www.apple.com/pr/library/2005/oct/11results.html. Accessed April 27, 2011.
31http://www.apple.com/pr/library/2010/01/25results.html. Accessed April 27, 2011.
32“Reviewing the Bidding on the Climate Files”, in About Dot Earth, New York Times, Nov. 19, 2010.
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48. In the early 1920s, Germany had tremendously high in-
flation, called hyperinflation. Photographs of the time
show people going to the store with wheelbarrows full
of money. If a loaf of bread cost 1/4 marks in 1919 and
2,400,000 marks in 1922, what was the average yearly
inflation rate between 1919 and 1922?

49. Different isotopes (versions) of the same element can
have very different half-lives. With t in years, the decay
of plutonium-240 is described by the formula

Q = Q0e
−0.00011t,

whereas the decay of plutonium-242 is described by

Q = Q0e
−0.0000018t .

Find the half-lives of plutonium-240 and plutonium-242.

50. The size of an exponentially growing bacteria colony
doubles in 5 hours. How long will it take for the num-
ber of bacteria to triple?

51. Air pressure, P , decreases exponentially with height, h,
above sea level. If P0 is the air pressure at sea level and
h is in meters, then

P = P0e
−0.00012h .

(a) At the top of Mount McKinley, height 6194 meters
(about 20,320 feet), what is the air pressure, as a per-
cent of the pressure at sea level?

(b) The maximum cruising altitude of an ordinary com-
mercial jet is around 12,000 meters (about 39,000
feet). At that height, what is the air pressure, as a
percent of the sea level value?

52. Find the equation of the line l in Figure 1.47.

log 2
x

l
f(x) = 10x

Figure 1.47

53. In 2010, there were about 246 million vehicles (cars
and trucks) and about 308.7 million people in the US.33

The number of vehicles grew 15.5% over the previous
decade, while the population has been growing at 9.7%
per decade. If the growth rates remain constant, when
will there be, on average, one vehicle per person?

54. A picture supposedly painted by Vermeer (1632–1675)
contains 99.5% of its carbon-14 (half-life 5730 years).
From this information decide whether the picture is a
fake. Explain your reasoning.

55. Is there a difference between ln[ln(x)] and ln2(x)?
[Note: ln2(x) is another way of writing (lnx)2.]

56. If h(x) = ln(x + a), where a > 0, what is the effect of
increasing a on

(a) The y-intercept? (b) The x-intercept?

57. If h(x) = ln(x + a), where a > 0, what is the effect of
increasing a on the vertical asymptote?

58. If g(x) = ln(ax+2), where a �= 0, what is the effect of
increasing a on

(a) The y-intercept? (b) The x-intercept?

59. If f(x) = a ln(x+ 2), what is the effect of increasing a
on the vertical asymptote?

60. If g(x) = ln(ax+2), where a �= 0, what is the effect of
increasing a on the vertical asymptote?

Strengthen Your Understanding

In Problems 61–62, explain what is wrong with the statement.

61. The function − log |x| is odd.

62. For all x > 0, the value of ln(100x) is 100 times larger
than ln x.

In Problems 63–64, give an example of:

63. A function f(x) such that ln(f(x)) is only defined for
x < 0.

64. A function with a vertical asymptote at x = 3 and de-
fined only for x > 3.

Are the statements in Problems 65–68 true or false? Give an
explanation for your answer.

65. The graph of f(x) = ln x is concave down.

66. The graph of g(x) = log(x − 1) crosses the x-axis at
x = 1.

67. The inverse function of y = log x is y = 1/ log x.

68. If a and b are positive constants, then y = ln(ax+b) has
no vertical asymptote.

33http://www.autoblog.com/2010/01/04/report-number-of-cars-in-the-u-s-dropped-by-four-million-in-20/ and
http://2010.census.gov/news/releases/operations/cb10-cn93.html. Accessed February 2012.
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1.5 TRIGONOMETRIC FUNCTIONS

Trigonometry originated as part of the study of triangles. The name tri-gon-o-metry means the
measurement of three-cornered figures, and the first definitions of the trigonometric functions were
in terms of triangles. However, the trigonometric functions can also be defined using the unit circle,
a definition that makes them periodic, or repeating. Many naturally occurring processes are also
periodic. The water level in a tidal basin, the blood pressure in a heart, an alternating current, and
the position of the air molecules transmitting a musical note all fluctuate regularly. Such phenomena
can be represented by trigonometric functions.

Radians
There are two commonly used ways to represent the input of the trigonometric functions: radians
and degrees. The formulas of calculus, as you will see, are neater in radians than in degrees.

An angle of 1 radian is defined to be the angle at the center of a unit circle which cuts off an
arc of length 1, measured counterclockwise. (See Figure 1.48(a).) A unit circle has radius 1.

An angle of 2 radians cuts off an arc of length 2 on a unit circle. A negative angle, such as −1/2
radians, cuts off an arc of length 1/2, but measured clockwise. (See Figure 1.48(b).)

(a)

1 radian

Arc length = 1
1

�
(b) Arc length = 2

− 1
2

rad
Arc length = 1

2

1
2 radians

�

	

Figure 1.48: Radians defined using unit circle

It is useful to think of angles as rotations, since then we can make sense of angles larger than
360◦; for example, an angle of 720◦ represents two complete rotations counterclockwise. Since one
full rotation of 360◦ cuts off an arc of length 2π, the circumference of the unit circle, it follows that

360
◦
= 2π radians, so 180

◦
= π radians.

In other words, 1 radian = 180◦/π, so one radian is about 60◦. The word radians is often dropped,
so if an angle or rotation is referred to without units, it is understood to be in radians.

Radians are useful for computing the length of an arc in any circle. If the circle has radius r and
the arc cuts off an angle θ, as in Figure 1.49, then we have the following relation:

Arc length = s = rθ.
s

r

θ

Figure 1.49: Arc length of a sector of a circle



1.5 TRIGONOMETRIC FUNCTIONS 37

The Sine and Cosine Functions
The two basic trigonometric functions—the sine and cosine—are defined using a unit circle. In
Figure 1.50, an angle of t radians is measured counterclockwise around the circle from the point
(1, 0). If P has coordinates (x, y), we define

cos t = x and sin t = y.

We assume that the angles are always in radians unless specified otherwise.
Since the equation of the unit circle is x2 + y2 = 1, writing cos2 t for (cos t)2, we have the

identity

cos2 t+ sin
2 t = 1.

As t increases and P moves around the circle, the values of sin t and cos t oscillate between 1 and
−1, and eventually repeat as P moves through points where it has been before. If t is negative, the
angle is measured clockwise around the circle.

Amplitude, Period, and Phase

The graphs of sine and cosine are shown in Figure 1.51. Notice that sine is an odd function, and
cosine is even. The maximum and minimum values of sine and cosine are +1 and −1, because those
are the maximum and minimum values of y and x on the unit circle. After the point P has moved
around the complete circle once, the values of cos t and sin t start to repeat; we say the functions
are periodic.

For any periodic function of time, the
• Amplitude is half the distance between the maximum and minimum values (if it exists).

• Period is the smallest time needed for the function to execute one complete cycle.

The amplitude of cos t and sin t is 1, and the period is 2π. Why 2π? Because that’s the value of
t when the point P has gone exactly once around the circle. (Remember that 360◦ = 2π radians.)

�

�

y

��x (1, 0)

(0, 1)
P x = cos t

y = sin t

t

Figure 1.50: The definitions of sin t and
cos t

−3π −2π −π π 2π 3π

−1

1
sin t �

�

Amplitude = 1

�� Period = 2π

cos t

t

Figure 1.51: Graphs of cos t and sin t

In Figure 1.51, we see that the sine and cosine graphs are exactly the same shape, only shifted
horizontally. Since the cosine graph is the sine graph shifted π/2 to the left,

cos t = sin(t+ π/2).

Equivalently, the sine graph is the cosine graph shifted π/2 to the right, so

sin t = cos(t− π/2).
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We say that the phase difference or phase shift between sin t and cos t is π/2.
Functions whose graphs are the shape of a sine or cosine curve are called sinusoidal functions.

To describe arbitrary amplitudes and periods of sinusoidal functions, we use functions of the
form

f(t) = A sin(Bt) and g(t) = A cos(Bt),

where |A| is the amplitude and 2π/|B| is the period.
The graph of a sinusoidal function is shifted horizontally by a distance |h| when t is replaced
by t− h or t+ h.
Functions of the form f(t) = A sin(Bt) + C and g(t) = A cos(Bt) + C have graphs which
are shifted vertically by C and oscillate about this value.

Example 1 Find and show on a graph the amplitude and period of the functions

(a) y = 5 sin(2t) (b) y = −5 sin

(
t

2

)
(c) y = 1 + 2 sin t

Solution (a) From Figure 1.52, you can see that the amplitude of y = 5 sin(2t) is 5 because the factor of 5
stretches the oscillations up to 5 and down to −5. The period of y = sin(2t) is π, because when
t changes from 0 to π, the quantity 2t changes from 0 to 2π, so the sine function goes through
one complete oscillation.

(b) Figure 1.53 shows that the amplitude of y = −5 sin (t/2) is again 5, because the negative sign
reflects the oscillations in the t-axis, but does not change how far up or down they go. The period
of y = −5 sin (t/2) is 4π because when t changes from 0 to 4π, the quantity t/2 changes from
0 to 2π, so the sine function goes through one complete oscillation.

(c) The 1 shifts the graph y = 2 sin t up by 1. Since y = 2 sin t has an amplitude of 2 and a period
of 2π, the graph of y = 1 + 2 sin t goes up to 3 and down to −1, and has a period of 2π. (See
Figure 1.54.) Thus, y = 1 + 2 sin t also has amplitude 2.

−π π

2π

5

t

y
y = 5 sin 2t

�

�

Amplitude

��Period
Figure 1.52: Amplitude = 5,

period = π

−π 2π 4π

5
y = −5 sin(t/2)

t

y

�

�

Amplitude

�� Period
Figure 1.53: Amplitude = 5,

period = 4π

π 2π
−1

1

3

t

y
y = 1 + 2 sin t

�

�

Amplitude

�� Period

Figure 1.54: Amplitude = 2, period = 2π

Example 2 Find possible formulas for the following sinusoidal functions.

−6π 12π6π

g(t)

−3

3

t

(a)

−1 1 2 3 4

−2

f(t)2

t

(b)

−5π π 7π 13π

−3

3

t

h(t)(c)
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Solution (a) This function looks like a sine function with amplitude 3, so g(t) = 3 sin(Bt). Since the func-
tion executes one full oscillation between t = 0 and t = 12π, when t changes by 12π, the quan-
tity Bt changes by 2π. This means B · 12π = 2π, so B = 1/6. Therefore, g(t) = 3 sin(t/6)
has the graph shown.

(b) This function looks like an upside-down cosine function with amplitude 2, so f(t) = −2 cos(Bt).
The function completes one oscillation between t = 0 and t = 4. Thus, when t changes by 4,
the quantity Bt changes by 2π, so B · 4 = 2π, or B = π/2. Therefore, f(t) = −2 cos(πt/2)
has the graph shown.

(c) This function looks like the function g(t) in part (a), but shifted a distance of π to the right.
Since g(t) = 3 sin(t/6), we replace t by (t− π) to obtain h(t) = 3 sin[(t− π)/6].

Example 3 On July 1, 2007, high tide in Boston was at midnight. The water level at high tide was 9.9 feet; later,
at low tide, it was 0.1 feet. Assuming the next high tide is at exactly 12 noon and that the height of
the water is given by a sine or cosine curve, find a formula for the water level in Boston as a function
of time.

Solution Let y be the water level in feet, and let t be the time measured in hours from midnight. The os-
cillations have amplitude 4.9 feet (= (9.9 − 0.1)/2) and period 12, so 12B = 2π and B = π/6.
Since the water is highest at midnight, when t = 0, the oscillations are best represented by a cosine
function. (See Figure 1.55.) We can say

Height above average = 4.9 cos
(π
6
t
)
.

Since the average water level was 5 feet (= (9.9 + 0.1)/2), we shift the cosine up by adding 5:

y = 5 + 4.9 cos
(π
6
t
)
.

12 mid. 6 am 12 noon

12

6 pm 12 mid.

24

5

9.9

t

y

y = 5 + 4.9 cos(π
6
t)

Figure 1.55: Function approximating the tide in Boston on July 1, 2007

Example 4 Of course, there’s something wrong with the assumption in Example 3 that the next high tide is
at noon. If so, the high tide would always be at noon or midnight, instead of progressing slowly
through the day, as in fact it does. The interval between successive high tides actually averages
about 12 hours 24 minutes. Using this, give a more accurate formula for the height of the water as a
function of time.

Solution The period is 12 hours 24 minutes = 12.4 hours, so B = 2π/12.4, giving

y = 5 + 4.9 cos

(
2π

12.4
t

)
= 5 + 4.9 cos(0.507t).

Example 5 Use the information from Example 4 to write a formula for the water level in Boston on a day when
the high tide is at 2 pm.
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Solution When the high tide is at midnight,

y = 5 + 4.9 cos(0.507t).

Since 2 pm is 14 hours after midnight, we replace t by (t− 14). Therefore, on a day when the high
tide is at 2 pm,

y = 5 + 4.9 cos(0.507(t− 14)).

The Tangent Function
If t is any number with cos t �= 0, we define the tangent function as follows

tan t =
sin t

cos t
.

Figure 1.50 on page 37 shows the geometrical meaning of the tangent function: tan t is the
slope of the line through the origin (0, 0) and the point P = (cos t, sin t) on the unit circle.

The tangent function is undefined wherever cos t = 0, namely, at t = ±π/2, ±3π/2, . . . , and it
has a vertical asymptote at each of these points. The function tan t is positive where sin t and cos t
have the same sign. The graph of the tangent is shown in Figure 1.56.

−π π

−10

10

t

tan t

�� Period

Figure 1.56: The tangent function

−π π

−10

10

t

3 tan t

tan t

�

�

�� Period

Figure 1.57: Multiple of tangent

The tangent function has period π, because it repeats every π units. Does it make sense to talk
about the amplitude of the tangent function? Not if we’re thinking of the amplitude as a measure of
the size of the oscillation, because the tangent becomes infinitely large near each vertical asymptote.
We can still multiply the tangent by a constant, but that constant no longer represents an amplitude.
(See Figure 1.57.)

The Inverse Trigonometric Functions
On occasion, you may need to find a number with a given sine. For example, you might want to find
x such that

sinx = 0

or such that
sinx = 0.3.

The first of these equations has solutions x = 0, ±π, ±2π, . . . . The second equation also has
infinitely many solutions. Using a calculator and a graph, we get

x ≈ 0.305, 2.84, 0.305± 2π, 2.84± 2π, . . . .
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For each equation, we pick out the solution between −π/2 and π/2 as the preferred solution.
For example, the preferred solution to sinx = 0 is x = 0, and the preferred solution to sinx = 0.3
is x = 0.305. We define the inverse sine, written “arcsin” or “sin−1,” as the function which gives
the preferred solution.

For −1 ≤ y ≤ 1,
arcsin y = x

means sinx = y with −
π

2
≤ x ≤

π

2
.

Thus the arcsine is the inverse function to the piece of the sine function having domain [−π/2, π/2].
(See Table 1.17 and Figure 1.58.) On a calculator, the arcsine function34 is usually denoted by
sin

−1 .

Table 1.17 Values of sinx and sin
−1 x

x sin x

−π
2

−1.000

−1.0 −0.841

−0.5 −0.479

0.0 0.000

0.5 0.479

1.0 0.841
π
2

1.000

x sin−1 x

−1.000 −π
2

−0.841 −1.0

−0.479 −0.5

0.000 0.0

0.479 0.5

0.841 1.0

1.000 π
2

−π
2

−1 1 π
2

−π
2

−1

1

π
2 y = sin−1 x

y = sin x

x

Figure 1.58: The arcsine function

The inverse tangent, written “arctan” or “tan−1,” is the inverse function for the piece of the
tangent function having the domain −π/2 < x < π/2. On a calculator, the inverse tangent is
usually denoted by tan−1 . The graph of the arctangent is shown in Figure 1.60.

For any y,
arctany = x

means tanx = y with −
π

2
< x <

π

2
.

The inverse cosine function, written “arccos” or “cos−1,” is discussed in Problem 55. The range
of the arccosine function is 0 ≤ x ≤ π.

−π
2

π
2

−1

1

y = tan x

x

Figure 1.59: The tangent function

−1 1

−π
2

π
2

y = tan−1 x

x

Figure 1.60: The arctangent function

34Note that sin−1 x = arcsinx is not the same as (sinx)−1 = 1/ sinx.
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Exercises and Problems for Section 1.5
Exercises

For Exercises 1–9, draw the angle using a ray through the ori-
gin, and determine whether the sine, cosine, and tangent of
that angle are positive, negative, zero, or undefined.

1. 3π
2

2. 2π 3. π
4

4. 3π 5. π
6

6. 4π
3

7. −4π
3

8. 4 9. −1

Find the period and amplitude in Exercises 10–13.

10. y = 7 sin(3t) 11. z = 3 cos(u/4) + 5

12. w = 8− 4 sin(2x+ π) 13. r = 0.1 sin(πt) + 2

For Exercises 14–23, find a possible formula for each graph.

14.

8π

2

x

y 15.

6π

5

x

y

16.

π

4

x

y 17.

20π

8

x

y

18.

3

6

−5

5

x

y 19.

− 4π
5

4π
5

−2

2

x

y

20.

−2π 2π

1

3

x

y 21.

−9

9

18

−3

3

x

y

22.

8π

2

4

x

y 23.

4 8

3

6

x

y

In Exercises 24–26, calculate the quantity without using the
the trigonometric functions on your calculator. You are given
that sin (π/12) = 0.259 and cos (π/5) = 0.809. You may
want to draw a picture showing the angles involved and check
your answer on a calculator.

24. cos (−π
5
) 25. sin π

5
26. cos π

12

In Exercises 27–31, find a solution to the equation if possible.
Give the answer in exact form and in decimal form.

27. 2 = 5 sin(3x) 28. 1 = 8 cos(2x+ 1)− 3

29. 8 = 4 tan(5x) 30. 1 = 8 tan(2x+ 1)− 3

31. 8 = 4 sin(5x)

Problems

32. Without a calculator or computer, match the formulas
with the graphs in Figure 1.61.

(a) y = 2 cos (t− π/2) (b) y = 2 cos t

(c) y = 2 cos (t+ π/2)

2π

2

−2

t

y

� f(t)

� g(t)

� h(t)

Figure 1.61

33. What is the difference between sin x2, sin2 x, and
sin(sin x)? Express each of the three as a composition.
(Note: sin2 x is another way of writing (sin x)2.)

34. On the graph of y = sin x, points P and Q are at con-
secutive lowest and highest points. Find the slope of the
line through P and Q.

35. A population of animals oscillates sinusoidally between
a low of 700 on January 1 and a high of 900 on July 1.

(a) Graph the population against time.
(b) Find a formula for the population as a function of

time, t, in months since the start of the year.

36. The desert temperature, H , oscillates daily between 40◦F
at 5 am and 80◦F at 5 pm. Write a possible formula for
H in terms of t, measured in hours from 5 am.
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37. (a) Match the functions ω = f(t), ω = g(t), ω = h(t),
ω = k(t), whose values are in the table, with the
functions with formulas:

(i) ω = 1.5 + sin t (ii) ω = 0.5 + sin t
(iii) ω = −0.5 + sin t (iv) ω = −1.5 + sin t

(b) Based on the table, what is the relationship between
the values of g(t) and k(t)? Explain this relationship
using the formulas you chose for g and k.

(c) Using the formulas you chose for g and h, explain
why all the values of g are positive, whereas all the
values of h are negative.

t f(t) t g(t) t h(t) t k(t)

6.0 −0.78 3.0 1.64 5.0 −2.46 3.0 0.64

6.5 −0.28 3.5 1.15 5.1 −2.43 3.5 0.15

7.0 0.16 4.0 0.74 5.2 −2.38 4.0 −0.26

7.5 0.44 4.5 0.52 5.3 −2.33 4.5 −0.48

8.0 0.49 5.0 0.54 5.4 −2.27 5.0 −0.46

38. The depth of water in a tank oscillates sinusoidally once
every 6 hours. If the smallest depth is 5.5 feet and the
largest depth is 8.5 feet, find a possible formula for the
depth in terms of time in hours.

39. The voltage, V , of an electrical outlet in a home as a func-
tion of time, t (in seconds), is V = V0 cos (120πt).

(a) What is the period of the oscillation?
(b) What does V0 represent?
(c) Sketch the graph of V against t. Label the axes.

40. The power output, P , of a solar panel varies with the po-
sition of the sun. Let P = 10 sin θ watts, where θ is the
angle between the sun’s rays and the panel, 0 ≤ θ ≤ π.
On a typical summer day in Ann Arbor, Michigan, the
sun rises at 6 am and sets at 8 pm and the angle is
θ = πt/14, where t is time in hours since 6 am and
0 ≤ t ≤ 14.

(a) Write a formula for a function, f(t), giving the
power output of the solar panel (in watts) t hours
after 6 am on a typical summer day in Ann Arbor.

(b) Graph the function f(t) in part (a) for 0 ≤ t ≤ 14.
(c) At what time is the power output greatest? What is

the power output at this time?
(d) On a typical winter day in Ann Arbor, the sun rises

at 8 am and sets at 5 pm. Write a formula for a func-
tion, g(t), giving the power output of the solar panel
(in watts) t hours after 8 am on a typical winter day.

41. A baseball hit at an angle of θ to the horizontal with ini-
tial velocity v0 has horizontal range, R, given by

R =
v20
g

sin(2θ).

Here g is the acceleration due to gravity. Sketch R as a
function of θ for 0 ≤ θ ≤ π/2. What angle gives the
maximum range? What is the maximum range?

42. The visitors’ guide to St. Petersburg, Florida, contains
the chart shown in Figure 1.62 to advertise their good
weather. Fit a trigonometric function approximately to
the data, where H is temperature in degrees Fahrenheit,
and the independent variable is time in months. In order
to do this, you will need to estimate the amplitude and pe-
riod of the data, and when the maximum occurs. (There
are many possible answers to this problem, depending on
how you read the graph.)

Jan Feb Mar Apr May June July Aug Sept Oct Nov DecH (◦F)

50◦

60◦

70◦

80◦

90◦

100◦

Figure 1.62: “St. Petersburg...where we’re famous for our
wonderful weather and year-round sunshine.” (Reprinted

with permission)

43. The Bay of Fundy in Canada has the largest tides in the
world. The difference between low and high water lev-
els is 15 meters (nearly 50 feet). At a particular point the
depth of the water, y meters, is given as a function of
time, t, in hours since midnight by

y = D + A cos (B(t−C)) .

(a) What is the physical meaning of D?
(b) What is the value of A?
(c) What is the value of B? Assume the time between

successive high tides is 12.4 hours.
(d) What is the physical meaning of C?

44. A compact disc spins at a rate of 200 to 500 revolutions
per minute. What are the equivalent rates measured in ra-
dians per second?

45. When a car’s engine makes less than about 200 revolu-
tions per minute, it stalls. What is the period of the rota-
tion of the engine when it is about to stall?

46. What is the period of the earth’s revolution around the
sun?

47. What is the approximate period of the moon’s revolution
around the earth?

48. For a boat to float in a tidal bay, the water must be at
least 2.5 meters deep. The depth of water around the boat,
d(t), in meters, where t is measured in hours since mid-
night, is

d(t) = 5 + 4.6 sin(0.5t).

(a) What is the period of the tides in hours?
(b) If the boat leaves the bay at midday, what is the lat-

est time it can return before the water becomes too
shallow?
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49. Match graphs A-D in Figure 1.63 with the functions be-
low. Assume a, b, c and d are positive constants.

f(t) = sin t+ b h(t) = sin t+ ect + d

g(t) = sin t+ at+ b r(t) = sin t− ect + b

C

B
A

D
t

Figure 1.63

50. In Figure 1.64, the blue curve shows monthly mean car-
bon dioxide (CO2) concentration, in parts per million
(ppm) at Mauna Loa Observatory, Hawaii, as a function
of t, in months, since December 2005. The black curve
shows the monthly mean concentration adjusted for sea-
sonal CO2 variation.35

(a) Approximately how much did the monthly mean
CO2 increase between December 2005 and Decem-
ber 2010?

(b) Find the average monthly rate of increase of the
monthly mean CO2 between December 2005 and
December 2010. Use this information to find a linear
function that approximates the black curve.

(c) The seasonal CO2 variation between December
2005 and December 2010 can be approximated by
a sinusoidal function. What is the approximate pe-
riod of the function? What is its amplitude? Give a
formula for the function.

(d) The blue curve may be approximated by a function
of the form h(t) = f(t) + g(t), where f(t) is sinu-
soidal and g(t) is linear. Using your work in parts (b)
and (c), find a possible formula for h(t). Graph h(t)
using the scale in Figure 1.64.

12 24 36 48 60

375

380
385

390

395

t (months
since Dec 2005)

ppm

Figure 1.64

51. (a) Use a graphing calculator or computer to estimate
the period of 2 sin θ + 3 cos(2θ).

(b) Explain your answer, given that the period of sin θ
is 2π and the period of cos(2θ) is π.

52. Find the area of the trapezoidal cross-section of the irri-
gation canal shown in Figure 1.65.

θθ

�

�

h

�� w

Figure 1.65

53. Graph y = sin x, y = 0.4, and y = −0.4.

(a) From the graph, estimate to one decimal place all the
solutions of sin x = 0.4 with −π ≤ x ≤ π.

(b) Use a calculator to find arcsin(0.4). What is the re-
lation between arcsin(0.4) and each of the solutions
you found in part (a)?

(c) Estimate all the solutions to sin x = −0.4 with
−π ≤ x ≤ π (again, to one decimal place).

(d) What is the relation between arcsin(0.4) and each
of the solutions you found in part (c)?

54. Find the angle, in degrees, that a wheelchair ramp makes
with the ground if the ramp rises 1 foot over a horizontal
distance of

(a) 12 ft, the normal requirement36

(b) 8 ft, the steepest ramp legally permitted
(c) 20 ft, the recommendation if snow can be expected

on the ramp

55. This problem introduces the arccosine function, or in-

verse cosine, denoted by cos−1 on most calculators.

(a) Using a calculator set in radians, make a table of val-
ues, to two decimal places, of g(x) = arccos x, for
x = −1,−0.8,−0.6, . . . , 0, . . . , 0.6, 0.8, 1.

(b) Sketch the graph of g(x) = arccos x.
(c) Why is the domain of the arccosine the same as the

domain of the arcsine?
(d) What is the range of the arccosine?
(e) Why is the range of the arccosine not the same as the

range of the arcsine?

35http://www.esrl.noaa.gov/gmd/ccgg/trends/. Accessed March 2011. Monthly means joined by segments to highlight
trends.

36http://www.access-board.gov/adaag/html/adaag.htm#4.1.6(3)a, accessed June 6, 2011.
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Strengthen Your Understanding

In Problems 56–57, explain what is wrong with the statement.

56. For the function f(x) = sin(Bx) with B > 0, increas-
ing the value of B increases the period.

57. For positive A, B, C, the maximum value of the function
y = A sin(Bx) +C is y = A.

In Problems 58–59, give an example of:

58. A sine function with period 23.

59. A cosine function which oscillates between values of
1200 and 2000.

Are the statements in Problems 60–72 true or false? Give an
explanation for your answer.

60. The function f(θ) = cos θ − sin θ is increasing on
0 ≤ θ ≤ π/2.

61. The function f(t) = sin(0.05πt) has period 0.05.

62. If t is in seconds, g(t) = cos(200πt) executes 100 cycles
in one second.

63. The function f(θ) = tan(θ − π/2) is not defined at
θ = π/2, 3π/2, 5π/2 . . ..

64. sin |x| = sin x for −2π < x < 2π

65. sin |x| = | sin x| for −2π < x < 2π

66. cos |x| = | cosx| for −2π < x < 2π

67. cos |x| = cosx for −2π < x < 2π

68. The function f(x) = sin(x2) is periodic, with period
2π.

69. The function g(θ) = esin θ is periodic.

70. If f(x) is a periodic function with period k, then f(g(x))
is periodic with period k for every function g(x).

71. If g(x) is a periodic function, then f(g(x)) is periodic
for every function f(x).

72. The function f(x) = | sin x| is even.

1.6 POWERS, POLYNOMIALS, AND RATIONAL FUNCTIONS

Power Functions
A power function is a function in which the dependent variable is proportional to a power of the
independent variable:

A power function has the form

f(x) = kxp, where k and p are constant.

For example, the volume, V , of a sphere of radius r is given by

V = g(r) =
4

3
πr3.

As another example, the gravitational force, F , on a unit mass at a distance r from the center of the
earth is given by Newton’s Law of Gravitation, which says that, for some positive constant k,

F =
k

r2
or F = kr−2.

We consider the graphs of the power functions xn, with n a positive integer. Figures 1.66
and 1.67 show that the graphs fall into two groups: odd and even powers. For n greater than 1, the
odd powers have a “seat” at the origin and are increasing everywhere else. The even powers are
first decreasing and then increasing. For large x, the higher the power of x, the faster the function
climbs.
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Figure 1.66: Odd powers of x: “Seat”
shaped for n > 1
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Figure 1.67: Even powers of x:
⋃

-shaped

Exponentials and Power Functions: Which Dominate?
In everyday language, the word exponential is often used to imply very fast growth. But do expo-
nential functions always grow faster than power functions? To determine what happens “in the long
run,” we often want to know which functions dominate as x gets arbitrarily large.

Let’s consider y = 2x and y = x3. The close-up view in Figure 1.68(a) shows that between
x = 2 and x = 4, the graph of y = 2x lies below the graph of y = x3. The far-away view in Fig-
ure 1.68(b) shows that the exponential function y = 2x eventually overtakes y = x3. Figure 1.68(c),
which gives a very far-away view, shows that, for large x, the value of x3 is insignificant compared
to 2x. Indeed, 2x is growing so much faster than x3 that the graph of 2x appears almost vertical in
comparison to the more leisurely climb of x3.

We say that Figure 1.68(a) gives a local view of the functions’ behavior, whereas Figure 1.68(c)
gives a global view.

(a)

1 2 3 4

10

20

x

y

x3 2x

Close up
(Local)

(b)

5 10

1,000

2,000

x

y

2x x3

(c)

5 10 15

5,000

104

x

y

2x

x3

Far away
(Global)

Figure 1.68: Comparison of y = 2x and y = x3: Notice that y = 2x eventually dominates y = x3

In fact, every exponential growth function eventually dominates every power function. Al-
though an exponential function may be below a power function for some values of x, if we look
at large enough x-values, ax (with a > 1) will eventually dominate xn, no matter what n is.

Polynomials
Polynomials are the sums of power functions with nonnegative integer exponents:

y = p(x) = anx
n
+ an−1x

n−1
+ · · ·+ a1x+ a0.
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Quadratic
(n = 2)

Cubic
(n = 3)

Quartic
(n = 4)

Quintic
(n = 5)

Figure 1.69: Graphs of typical polynomials of degree n

Here n is a nonnegative integer called the degree of the polynomial, and an, an−1, . . . , a1, a0 are
constants, with leading coefficient an �= 0. An example of a polynomial of degree n = 3 is

y = p(x) = 2x3 − x2 − 5x− 7.

In this case a3 = 2, a2 = −1, a1 = −5, and a0 = −7. The shape of the graph of a polynomial
depends on its degree; typical graphs are shown in Figure 1.69. These graphs correspond to a pos-
itive coefficient for xn; a negative leading coefficient turns the graph upside down. Notice that the
quadratic “turns around” once, the cubic “turns around” twice, and the quartic (fourth degree) “turns
around” three times. An nth degree polynomial “turns around” at most n − 1 times (where n is a
positive integer), but there may be fewer turns.

Example 1 Find possible formulas for the polynomials whose graphs are in Figure 1.70.

−2 2

4

x

f(x)(a)

−3 1 2

−12

x

g(x)(b)

−3 2
x

h(x)

(c)

Figure 1.70: Graphs of polynomials

Solution (a) This graph appears to be a parabola, turned upside down, and moved up by 4, so

f(x) = −x2
+ 4.

The negative sign turns the parabola upside down and the +4 moves it up by 4. Notice that this
formula does give the correct x-intercepts since 0 = −x2 + 4 has solutions x = ±2. These
values of x are called zeros of f .

We can also solve this problem by looking at the x-intercepts first, which tell us that f(x)
has factors of (x + 2) and (x− 2). So

f(x) = k(x+ 2)(x− 2).

To find k, use the fact that the graph has a y-intercept of 4, so f(0) = 4, giving

4 = k(0 + 2)(0− 2),

or k = −1. Therefore, f(x) = −(x+ 2)(x− 2), which multiplies out to −x2 + 4.
Note that f(x) = 4 − x4/4 also has the same basic shape, but is flatter near x = 0. There

are many possible answers to these questions.
(b) This looks like a cubic with factors (x+ 3), (x− 1), and (x− 2), one for each intercept:

g(x) = k(x+ 3)(x− 1)(x− 2).

Since the y-intercept is −12, we have

−12 = k(0 + 3)(0− 1)(0− 2).
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So k = −2, and we get the cubic polynomial

g(x) = −2(x+ 3)(x− 1)(x− 2).

(c) This also looks like a cubic with zeros at x = 2 and x = −3. Notice that at x = 2 the graph of
h(x) touches the x-axis but does not cross it, whereas at x = −3 the graph crosses the x-axis.
We say that x = 2 is a double zero, but that x = −3 is a single zero.

To find a formula for h(x), imagine the graph of h(x) to be slightly lower down, so that the
graph has one x-intercept near x = −3 and two near x = 2, say at x = 1.9 and x = 2.1. Then
a formula would be

h(x) ≈ k(x+ 3)(x− 1.9)(x− 2.1).

Now move the graph back to its original position. The zeros at x = 1.9 and x = 2.1 move
toward x = 2, giving

h(x) = k(x+ 3)(x− 2)(x− 2) = k(x+ 3)(x− 2)
2.

The double zero leads to a repeated factor, (x−2)2. Notice that when x > 2, the factor (x−2)2

is positive, and when x < 2, the factor (x − 2)2 is still positive. This reflects the fact that
h(x) does not change sign near x = 2. Compare this with the behavior near the single zero at
x = −3, where h does change sign.

We cannot find k, as no coordinates are given for points off of the x-axis. Any positive
value of k stretches the graph vertically but does not change the zeros, so any positive k works.

Example 2 Using a calculator or computer, graph y = x4 and y = x4 − 15x2 − 15x for −4 ≤ x ≤ 4 and for
−20 ≤ x ≤ 20. Set the y range to −100 ≤ y ≤ 100 for the first domain, and to −100 ≤ y ≤

200,000 for the second. What do you observe?

Solution From the graphs in Figure 1.71 we see that close up (−4 ≤ x ≤ 4) the graphs look different; from
far away, however, they are almost indistinguishable. The reason is that the leading terms (those
with the highest power of x) are the same, namely x4, and for large values of x, the leading term
dominates the other terms.

−4 4

−100

100

x

y

y = x4

Close-up
or

Local
−4

4

−100

100

x

y

y = x4 − 15x2 − 15x

Far away
or

Global

−20 20

2 · 105

x

y

y = x4

−20 20

2 · 105

x

y

y = x4 − 15x2 − 15x

Figure 1.71: Local and global views of y = x4 and y = x4 − 15x2 − 15x
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Rational Functions
Rational functions are ratios of polynomials, p and q:

f(x) =
p(x)

q(x)
.

Example 3 Look at a graph and explain the behavior of y =
1

x2 + 4
.

Solution The function is even, so the graph is symmetric about the y-axis. As x gets larger, the denominator
gets larger, making the value of the function closer to 0. Thus the graph gets arbitrarily close to the
x-axis as x increases without bound. See Figure 1.72.

x

y

Figure 1.72: Graph of y = 1
x2+4

In the previous example, we say that y = 0 (i.e. the x-axis) is a horizontal asymptote. Writing
“→” to mean “tends to,” we have y → 0 as x → ∞ and y → 0 as x → −∞.

If the graph of y = f(x) approaches a horizontal line y = L as x → ∞ or x → −∞, then
the line y = L is called a horizontal asymptote.37 This occurs when

f(x) → L as x → ∞ or f(x) → L as x → −∞.

If the graph of y = f(x) approaches the vertical line x = K as x → K from one side or the
other, that is, if

y → ∞ or y → −∞ when x → K,

then the line x = K is called a vertical asymptote.

The graphs of rational functions may have vertical asymptotes where the denominator is zero.
For example, the function in Example 3 has no vertical asymptotes as the denominator is never
zero. The function in Example 4 has two vertical asymptotes corresponding to the two zeros in the
denominator.

Rational functions have horizontal asymptotes if f(x) approaches a finite number as x → ∞

or x → −∞. We call the behavior of a function as x → ±∞ its end behavior.

Example 4 Look at a graph and explain the behavior of y =
3x2 − 12

x2 − 1
, including end behavior.

Solution Factoring gives

y =
3x2 − 12

x2 − 1
=

3(x+ 2)(x− 2)

(x+ 1)(x− 1)

so x = ±1 are vertical asymptotes. If y = 0, then 3(x + 2)(x − 2) = 0 or x = ±2; these are the
x-intercepts. Note that zeros of the denominator give rise to the vertical asymptotes, whereas zeros
of the numerator give rise to x-intercepts. Substituting x = 0 gives y = 12; this is the y-intercept.
The function is even, so the graph is symmetric about the y-axis.

37We are assuming that f(x) gets arbitrarily close to L as x → ∞.
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Table 1.18 Values of
y = 3x2−12

x2−1

x y =
3x2

−12

x2
−1

±10 2.909091

±100 2.999100

±1000 2.999991

−4 4
−10

20

x

y

Horizontal asymptote
y = 3

Vertical asymptote
x = 1

Vertical asymptote
x = −1

Figure 1.73: Graph of the function y = 3x2
−12

x2
−1

To see what happens as x → ±∞, look at the y-values in Table 1.18. Clearly y is getting closer
to 3 as x gets large positively or negatively. Alternatively, realize that as x → ±∞, only the highest
powers of x matter. For large x, the 12 and the 1 are insignificant compared to x2, so

y =
3x2 − 12

x2 − 1
≈

3x2

x2
= 3 for large x.

So y → 3 as x → ±∞, and therefore the horizontal asymptote is y = 3. See Figure 1.73. Since, for
x > 1, the value of (3x2 − 12)/(x2 − 1) is less than 3, the graph lies below its asymptote. (Why
doesn’t the graph lie below y = 3 when −1 < x < 1?)

Exercises and Problems for Section 1.6
Exercises

For Exercises 1–2, what happens to the value of the function
as x → ∞ and as x → −∞?

1. y = 0.25x3 + 3 2. y = 2 · 104x

In Exercises 3–10, determine the end behavior of each func-
tion as x → +∞ and as x → −∞.

3. f(x) = −10x4

4. f(x) = 3x5

5. f(x) = 5x4 − 25x3 − 62x2 + 5x+ 300

6. f(x) = 1000− 38x + 50x2 − 5x3

7. f(x) =
3x2 + 5x+ 6

x2 − 4

8. f(x) =
10 + 5x2 − 3x3

2x3 − 4x+ 12

9. f(x) = 3x−4

10. f(x) = ex

In Exercises 11–16, which function dominates as x → ∞?

11. 1000x4 or 0.2x5

12. 10e0.1x or 5000x2

13. 100x5 or 1.05x

14. 2x4 or 10x3 + 25x2 + 50x+ 100

15. 20x4 + 100x2 + 5x or 25− 40x2 + x3 + 3x5

16.
√
x or ln x

17. Each of the graphs in Figure 1.74 is of a polynomial. The
windows are large enough to show end behavior.

(a) What is the minimum possible degree of the polyno-
mial?

(b) Is the leading coefficient of the polynomial positive
or negative?

(I) (II) (III)

(IV) (V)

Figure 1.74

Find cubic polynomials for the graphs in Exercises 18–19.

18.

−2 1 5

2

x

19.

−2 2

4

x
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Find possible formulas for the graphs in Exercises 20–23.

20.

−3 1 4
x

21.

−3 4
x

22.

−2 1 3 5
x

23.

−2 2 5
x

In Exercises 24–26, choose the functions that are in the given
family, assuming a, b, and c are constants.

f(x) =
√
x4 + 16 g(x) = ax23

h(x) = − 1

5x−2
p(x) =

a3bx

c

q(x) =
ab2

c
r(x) = −x+ b−

√
cx4

24. Exponential 25. Quadratic 26. Linear

Problems

27. How many distinct roots can a polynomial of degree 5
have? (List all possibilities.) Sketch a possible graph for
each case.

28. A rational function y = f(x) is graphed in Figure 1.75.
If f(x) = g(x)/h(x) with g(x) and h(x) both quadratic
functions, give possible formulas for g(x) and h(x).

1

y = 2
y

y = f(x)

x

Figure 1.75

29. Find a calculator window in which the graphs of f(x) =
x3 + 1000x2 + 1000 and g(x) = x3 − 1000x2 − 1000
appear indistinguishable.

30. For each function, fill in the blanks in the statements:
f(x) → as x → −∞,
f(x) → as x → +∞.

(a) f(x) = 17 + 5x2 − 12x3 − 5x4

(b) f(x) =
3x2 − 5x+ 2

2x2 − 8
(c) f(x) = ex

31. The DuBois formula relates a person’s surface area s,
in m2, to weight w, in kg, and height h, in cm, by

s = 0.01w0.25h0.75.

(a) What is the surface area of a person who weighs
65 kg and is 160 cm tall?

(b) What is the weight of a person whose height is
180 cm and who has a surface area of 1.5 m2?

(c) For people of fixed weight 70 kg, solve for h as a
function of s. Simplify your answer.

32. According to Car and Driver, an Alfa Romeo going at 70
mph requires 177 feet to stop. Assuming that the stopping
distance is proportional to the square of velocity, find the
stopping distances required by an Alfa Romeo going at
35 mph and at 140 mph (its top speed).

33. Poiseuille’s Law gives the rate of flow, R, of a gas
through a cylindrical pipe in terms of the radius of the
pipe, r, for a fixed drop in pressure between the two ends
of the pipe.

(a) Find a formula for Poiseuille’s Law, given that the
rate of flow is proportional to the fourth power of
the radius.

(b) If R = 400 cm3/sec in a pipe of radius 3 cm for a
certain gas, find a formula for the rate of flow of that
gas through a pipe of radius r cm.

(c) What is the rate of flow of the same gas through a
pipe with a 5 cm radius?

34. A box of fixed volume V has a square base with side
length x. Write a formula for the height, h, of the box in
terms of x and V . Sketch a graph of h versus x.

35. A closed cylindrical can of fixed volume V has radius r.

(a) Find the surface area, S, as a function of r.
(b) What happens to the value of S as r → ∞?
(c) Sketch a graph of S against r, if V = 10 cm3.

In Problems 36–38, find all horizontal and vertical asymptotes
for each rational function.

36. f(x) =
5x− 2

2x+ 3
37. f(x) =

x2 + 5x+ 4

x2 − 4

38. f(x) =
5x3 + 7x− 1

x3 − 27
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39. The height of an object above the ground at time t is
given by

s = v0t− g

2
t2,

where v0 is the initial velocity and g is the acceleration
due to gravity.

(a) At what height is the object initially?
(b) How long is the object in the air before it hits the

ground?
(c) When will the object reach its maximum height?
(d) What is that maximum height?

40. A pomegranate is thrown from ground level straight up
into the air at time t = 0 with velocity 64 feet per sec-
ond. Its height at time t seconds is f(t) = −16t2 + 64t.
Find the time it hits the ground and the time it reaches its
highest point. What is the maximum height?

41. (a) If f(x) = ax2+ bx+ c, what can you say about the
values of a, b, and c if:

(i) (1, 1) is on the graph of f(x)?

(ii) (1, 1) is the vertex of the graph of f(x)? [Hint:
The axis of symmetry is x = −b/(2a).]

(iii) The y-intercept of the graph is (0, 6)?

(b) Find a quadratic function satisfying all three condi-
tions.

42. A cubic polynomial with positive leading coefficient is
shown in Figure 1.76 for −10 ≤ x ≤ 10 and −10 ≤
y ≤ 10. What can be concluded about the total number
of zeros of this function? What can you say about the
location of each of the zeros? Explain.

−10 −5 5 10

−10

−5

5

10

x

y

Figure 1.76

43. After running 3 miles at a speed of x mph, a man walked
the next 6 miles at a speed that was 2 mph slower. Ex-
press the total time spent on the trip as a function of x.
What horizontal and vertical asymptotes does the graph
of this function have?

44. Which of the functions I–III meet each of the following
descriptions? There may be more than one function for
each description, or none at all.

(a) Horizontal asymptote of y = 1.
(b) The x-axis is a horizontal asymptote.

(c) Symmetric about the y-axis.
(d) An odd function.
(e) Vertical asymptotes at x = ±1.

I. y =
x− 1

x2 + 1
II. y =

x2 − 1

x2 + 1
III. y =

x2 + 1

x2 − 1

45. Values of three functions are given in Table 1.19, rounded
to two decimal places. One function is of the form y =
abt, one is of the form y = ct2, and one is of the form
y = kt3. Which function is which?

Table 1.19

t f(t) t g(t) t h(t)

2.0 4.40 1.0 3.00 0.0 2.04

2.2 5.32 1.2 5.18 1.0 3.06

2.4 6.34 1.4 8.23 2.0 4.59

2.6 7.44 1.6 12.29 3.0 6.89

2.8 8.62 1.8 17.50 4.0 10.33

3.0 9.90 2.0 24.00 5.0 15.49

46. Use a graphing calculator or a computer to graph y = x4

and y = 3x. Determine approximate domains and ranges
that give each of the graphs in Figure 1.77.

x

y

x4 3x
(a)

x

y

x4

3x

(b)

x

y

x4

3x
(c)

Figure 1.77

47. The rate, R, at which a population in a confined space in-
creases is proportional to the product of the current popu-
lation, P , and the difference between the carrying capac-
ity, L, and the current population. (The carrying capacity
is the maximum population the environment can sustain.)

(a) Write R as a function of P .
(b) Sketch R as a function of P .
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48. Consider the point P at the intersection of the circle
x2 + y2 = 2a2 and the parabola y = x2/a in Fig-
ure 1.78. If a is increased, the point P traces out a curve.
For a > 0, find the equation of this curve.

x

y

P

y = x2/a

x2 + y2 = 2a2

Figure 1.78

49. When an object of mass m moves with a velocity v that
is small compared to the velocity of light, c, its energy is

given approximately by

E ≈ 1

2
mv2.

If v is comparable in size to c, then the energy must be
computed by the exact formula

E = mc2

(
1√

1− v2/c2
− 1

)
.

(a) Plot a graph of both functions for E against v for
0 ≤ v ≤ 5 · 108 and 0 ≤ E ≤ 5 · 1017. Take
m = 1 kg and c = 3 · 108 m/sec. Explain how you
can predict from the exact formula the position of
the vertical asymptote.

(b) What do the graphs tell you about the approxima-
tion? For what values of v does the first formula give
a good approximation to E?

Strengthen Your Understanding

In Problems 50–51, explain what is wrong with the statement.

50. The graph of a polynomial of degree 5 cuts the horizontal
axis five times.

51. Every rational function has a horizontal asymptote.

In Problems 52–57, give an example of:

52. A polynomial of degree 3 whose graph cuts the horizon-
tal axis three times to the right of the origin.

53. A rational function with horizontal asymptote y = 3.

54. A rational function that is not a polynomial and that has
no vertical asymptote.

55. A function that has a vertical asymptote at x = −7π.

56. A function that has exactly 17 vertical asymptotes.

57. A function that has a vertical asymptote which is crossed
by a horizontal asymptote.

Are the statements in Problems 58–59 true or false? Give an
explanation for your answer.

58. Every polynomial of even degree has a least one real
zero.

59. Every polynomial of odd degree has a least one real zero.

60. List the following functions in order from smallest to
largest as x → ∞ (that is, as x increases without bound).

(a) f(x) = −5x (b) g(x) = 10x

(c) h(x) = 0.9x (d) k(x) = x5

(e) l(x) = πx

1.7 INTRODUCTION TO CONTINUITY

This section gives an intuitive introduction to the idea of continuity. This leads to the concept of
limit and a definition of continuity in Section 1.8.

Continuity of a Function on an Interval: Graphical Viewpoint
Roughly speaking, a function is said to be continuous on an interval if its graph has no breaks,
jumps, or holes in that interval. Continuity is important because, as we shall see, continuous func-
tions have many desirable properties.

For example, to locate the zeros of a function, we often look for intervals where the function
changes sign. In the case of the function f(x) = 3x3 − x2 + 2x − 1, for instance, we expect38

to find a zero between 0 and 1 because f(0) = −1 and f(1) = 3. (See Figure 1.79.) To be sure
that f(x) has a zero there, we need to know that the graph of the function has no breaks or jumps
in it. Otherwise the graph could jump across the x-axis, changing sign but not creating a zero. For
example, f(x) = 1/x has opposite signs at x = −1 and x = 1, but no zeros for −1 ≤ x ≤ 1

38This is due to the Intermediate Value Theorem, which is discussed on page 55.
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because of the break at x = 0. (See Figure 1.80.) To be certain that a function has a zero in an
interval on which it changes sign, we need to know that the function is defined and continuous in
that interval.

−2 −1 1 2

−5

5 f(x)

x

Figure 1.79: The graph of
f(x) = 3x3 − x2 + 2x− 1

−1

f(x) =
1

x

1
x

Figure 1.80: No zero although
f(−1) and f(1) have opposite signs

1 2 3

45

65

85
p(x)

x (ounces)

y (cents)

Figure 1.81: Cost of mailing a letter

A continuous function has a graph which can be drawn without lifting the pencil from the paper.
Example: The function f(x) = 3x3 − x2 + 2x − 1 is continuous on any interval. (See Fig-

ure 1.79.)
Example: The function f(x) = 1/x is not defined at x = 0. It is continuous on any interval not

containing the origin. (See Figure 1.80.)
Example: Suppose p(x) is the price of mailing a first-class letter weighing x ounces. It costs

45c/ for one ounce or less, 65c/ between one and two ounces, and so on. So the graph (in Figure 1.81)
is a series of steps. This function is not continuous on any open interval containing a positive integer
because the graph jumps at these points.

Which Functions Are Continuous?

Requiring a function to be continuous on an interval is not asking very much, as any function whose
graph is an unbroken curve over the interval is continuous. For example, exponential functions, poly-
nomials, and the sine and cosine are continuous on every interval. Rational functions are continuous
on any interval in which their denominators are not zero. Functions created by adding, multiplying,
or composing continuous functions are also continuous.

The Intermediate Value Theorem
Continuity tells us about the values taken by a function. In particular, a continuous function cannot
skip values. For example, the function in the next example must have a zero because its graph cannot
skip over the x-axis.

Example 1 What do the values in Table 1.20 tell you about the zeros of f(x) = cosx− 2x2?

Table 1.20

x f(x)

0 1.00

0.2 0.90

0.4 0.60

0.6 0.11

0.8 −0.58

1.0 −1.46

0.2 0.4 0.6 0.8 1

−1

1

x

f(x) = cos x− 2x2

Figure 1.82: Zeros occur where the graph of a
continuous function crosses the horizontal axis

Solution Since f(x) is the difference of two continuous functions, it is continuous. We conclude that f(x)
has at least one zero in the interval 0.6 < x < 0.8, since f(x) changes from positive to negative on
that interval. The graph of f(x) in Figure 1.82 suggests that there is only one zero in the interval
0 ≤ x ≤ 1, but we cannot be sure of this from the graph or the table of values.
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In the previous example, we concluded that f(x) = cosx − 2x2 has a zero between x = 0

and x = 1 because f(x) is positive at x = 0 and negative at x = 1. More generally, an intuitive
notion of continuity tells us that, as we follow the graph of a continuous function f from some point
(a, f(a)) to another point (b, f(b)), then f takes on all intermediate values between f(a) and f(b).
(See Figure 1.83.) This is:

Theorem 1.1: Intermediate Value Theorem

Suppose f is continuous on a closed interval [a, b]. If k is any number between f(a) and f(b),
then there is at least one number c in [a, b] such that f(c) = k.

The Intermediate Value Theorem depends on the formal definition of continuity given in Sec-
tion 1.8. See also www.wiley.com/college/hughes-hallett.The key idea is to find successively smaller
subintervals of [a, b] on which f changes from less than k to more than k. These subintervals con-
verge on the number c.

a c b

k

(a, f(a))

(b, f(b))

x

Figure 1.83: The Intermediate Value Theorem

Continuity of a Function at a Point: Numerical Viewpoint
A function is continuous if nearby values of the independent variable give nearby values of the func-
tion. In practical work, continuity is important because it means that small errors in the independent
variable lead to small errors in the value of the function.

Example: Suppose that f(x) = x2 and that we want to compute f(π). Knowing f is continuous
tells us that taking x = 3.14 should give a good approximation to f(π), and that we can get as
accurate an approximation to f(π) as we want by using enough decimals of π.

Example: If p(x) is the cost of mailing a letter weighing x ounces, then p(0.99) = p(1) = 45c/,
whereas p(1.01) = 65c/, because as soon as we get over 1 ounce, the price jumps up to 65c/. So
a small difference in the weight of a letter can lead to a significant difference in its mailing cost.
Hence p is not continuous at x = 1.

In other words, if f(x) is continuous at x = c, the values of f(x) approach f(c) as x ap-
proaches c. Using the concept of a limit introduced in Section 1.8, we can define more precisely
what it means for the values of f(x) to approach f(c) as x approaches c.

Example 2 Investigate the continuity of f(x) = x2 at x = 2.

Solution From Table 1.21, it appears that the values of f(x) = x2 approach f(2) = 4 as x approaches 2.
Thus f appears to be continuous at x = 2. Continuity at a point describes behavior of a function
near a point, as well as at the point.

Table 1.21 Values of x2 near x = 2

x 1.9 1.99 1.999 2.001 2.01 2.1

x2 3.61 3.96 3.996 4.004 4.04 4.41
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Exercises and Problems for Section 1.7
Exercises

In Exercises 1–10, is the function continuous on the interval?

1.
1

x− 2
on [−1, 1] 2.

1

x− 2
on [0, 3]

3.
1√

2x− 5
on [3, 4] 4.

x

x2 + 2
on [−2, 2]

5. 2x+ x2/3 on [−1, 1] 6. 2x+ x−1 on [−1, 1]

7.
1

cosx
on [0, π] 8.

1

sin x
on [−π

2
, π
2
]

9.
ex

ex − 1
on [−1, 1] 10.

esin θ

cos θ
on [−π

4
, π
4
]

In Exercises 11–14, show that there is a number c, with
0 ≤ c ≤ 1, such that f(c) = 0.

11. f(x) = x3 + x2 − 1 12. f(x) = ex − 3x

13. f(x) = x− cos x 14. f(x) = 2x − 1/x

15. Are the following functions continuous? Explain.

(a) f(x) =
{
x x ≤ 1
x2 1 < x

(b) g(x) =
{
x x ≤ 3
x2 3 < x

Problems

16. Which of the following are continuous functions of time?

(a) The quantity of gas in the tank of a car on a journey
between New York and Boston.

(b) The number of students enrolled in a class during a
semester.

(c) The age of the oldest person alive.

17. A car is coasting down a hill at a constant speed. A truck
collides with the rear of the car, causing it to lurch ahead.
Graph the car’s speed from a time shortly before impact
to a time shortly after impact. Graph the distance from
the top of the hill for this time period. What can you say
about the continuity of each of these functions?

18. An electrical circuit switches instantaneously from a 6
volt battery to a 12 volt battery 7 seconds after being
turned on. Graph the battery voltage against time. Give
formulas for the function represented by your graph.
What can you say about the continuity of this function?

In Problems 19–22 find k so that the function is continuous
on any interval.

19. f(x) =
{
kx x ≤ 3
5 3 < x

20. f(x) =

{
kx 0 ≤ x < 2

3x2 2 ≤ x

21. g(t) =
{
t+ k t ≤ 5
kt 5 < t

22. h(x) =
{
k cosx 0 ≤ x ≤ π
12− x π < x

23. (a) For k = 1, sketch

f(x) =
{
kx 0 ≤ x ≤ 2
(x− 2)2 + 3 2 < x ≤ 4.

(b) Find the value of k so that f(x) is continuous at
x = 2.

(c) Sketch f(x) using the value of k you found in
part (a).

In Problems 24–29, find a value of k making h(x) continuous
on [0, 5].

24. h(x) =
{
kx 0 ≤ x < 1
x+ 3 1 ≤ x ≤ 5.

25. h(x) =
{
kx 0 ≤ x ≤ 1
2kx+ 3 1 < x ≤ 5.

26. h(x) =
{
k sin x 0 ≤ x ≤ π
x+ 4 π < x ≤ 5.

27. h(x) =

{
ekx 0 ≤ x < 2
x+ 1 2 ≤ x ≤ 5.

28. h(x) =
{
0.5x 0 ≤ x < 1
sin(kx) 1 ≤ x ≤ 5.

29. h(x) =
{
ln(kx+ 1) 0 ≤ x ≤ 2
x+ 4 2 < x ≤ 5.

30. For t in months, a population, in thousands, is approxi-
mated by a continuous function

P (t) =
{
ekt 0 ≤ t ≤ 12
100 t > 12.

(a) What is the initial value of the population?
(b) What must be the value of k?
(c) Describe in words how the population is changing.

31. Is the following function continuous on [−1, 1]?

f(x) =

{ x

|x| x �= 0

0 x = 0
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32. Discuss the continuity of the function g graphed in Fig-
ure 1.84 and defined as follows:

g(θ) =

⎧⎨
⎩

sin θ

θ
for θ �= 0

1/2 for θ = 0.

−2π −π π 2π

1

θ

g(θ)

1
2

Figure 1.84

33. A 0.6 ml dose of a drug is injected into a patient steadily
for half a second. At the end of this time, the quantity,
Q, of the drug in the body starts to decay exponentially
at a continuous rate of 0.2% per second. Using formulas,
express Q as a continuous function of time, t in seconds.

34. Sketch the graphs of three different functions that are
continuous on 0 ≤ x ≤ 1 and that have the values given
in the table. The first function is to have exactly one zero
in [0, 1], the second is to have at least two zeros in the in-
terval [0.6, 0.8], and the third is to have at least two zeros
in the interval [0, 0.6].

x 0 0.2 0.4 0.6 0.8 1.0

f(x) 1.00 0.90 0.60 0.11 −0.58 −1.46

35. Let p(x) be a cubic polynomial with p(5) < 0, p(10) >
0, and p(12) < 0. What can you say about the number
and location of zeros of p(x)?

36. (a) What does a graph of y = ex and y = 4 − x2 tell
you about the solutions to the equation ex = 4−x2?

(b) Evaluate f(x) = ex + x2 − 4 at x =
−4,−3,−2,−1, 0, 1, 2, 3, 4. In which intervals do
the solutions to ex = 4− x2 lie?

37. (a) Sketch the graph of a continuous function f with all
of the following properties:

(i) f(0) = 2

(ii) f(x) is decreasing for 0 ≤ x ≤ 3

(iii) f(x) is increasing for 3 < x ≤ 5

(iv) f(x) is decreasing for x > 5

(v) f(x) → 9 as x → ∞
(b) Is it possible that the graph of f is concave down for

all x > 6? Explain.

38. (a) Does f(x) satisfy the conditions for the Intermedi-
ate Value Theorem on 0 ≤ x ≤ 2 if

f(x) =
{
ex 0 ≤ x ≤ 1
4 + (x− 1)2 1 < x ≤ 2?

(b) What are f(0) and f(2)? Can you find a value of
k between f(0) and f(2) such that the equation
f(x) = k has no solution? If so, what is it?

Strengthen Your Understanding

In Problems 39–40, explain what is wrong with the statement.

39. For any function f(x), if f(a) = 2 and f(b) = 4, the In-
termediate Value Theorem says that f takes on the value
3 for some x between a and b.

40. If f(x) is continuous on 0 ≤ x ≤ 2 and if f(0) = 0 and
f(2) = 10, the Intermediate Value Theorem says that
f(1) = 5.

In Problems 41–44, give an example of:

41. A function which is defined for all x and continuous ev-
erywhere except at x = 15.

42. A function to which the Intermediate Value Theorem
does not apply on the interval −1 ≤ x ≤ 1.

43. A function that is continuous on [0, 1] but not continuous
on [1, 3].

44. A function that is increasing but not continuous on
[0, 10].

Are the statements in Problems 45–47 true or false? Give an
explanation for your answer.

45. If a function is not continuous at a point, then it is not
defined at that point.

46. If f is continuous on the interval [0, 10] and f(0) = 0
and f(10) = 100, then f(c) cannot be negative for c in
[0, 10].

47. If f(x) is not continuous on the interval [a, b], then f(x)
must omit at least one value between f(a) and f(b).

1.8 LIMITS

The concept of limit is the underpinning of calculus. In Section 1.7, we said that a function f is
continuous at x = c if the values of f(x) approach f(c) as x approaches c. In this section, we define
a limit, which makes precise what we mean by approaching.
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The Idea of a Limit
We first introduce some notation:

We write lim
x→c

f(x) = L if the values of f(x) approach L as x approaches c.

How should we find L, or even know whether such a number exists? We will look for trends in the
values of f(x) as x gets closer to c, but x �= c. A graph from a calculator or computer often helps.

Example 1 Use a graph to estimate lim
θ→0

(
sin θ

θ

)
. (Use radians.)

θ−2π −π π 2π

1

f(θ) =
sin θ

θ

Figure 1.85: Find the limit as θ → 0

Solution Figure 1.85 shows that as θ approaches 0 from either side, the value of sin θ/θ appears to approach
1, suggesting that lim

θ→0
(sin θ/θ) = 1. Zooming in on the graph near θ = 0 provides further support

for this conclusion. Notice that sin θ/θ is undefined at θ = 0.

Figure 1.85 strongly suggests that lim
θ→0

(sin θ/θ) = 1, but to be sure we need to be more precise

about words like “approach” and “close.”

Definition of Limit
By the beginning of the 19th century, calculus had proved its worth, and there was no doubt about
the correctness of its answers. However, it was not until the work of the French mathematician
Augustin Cauchy (1789–1857) that calculus was put on a rigorous footing. Cauchy gave a formal
definition of the limit, similar to the following:

A function f is defined on an interval around c, except perhaps at the point x = c. We define
the limit of the function f(x) as x approaches c, written limx→c f(x), to be a number L (if
one exists) such that f(x) is as close to L as we want whenever x is sufficiently close to c
(but x �= c). If L exists, we write

lim
x→c

f(x) = L.

Shortly, we see how “as close as we want” and “sufficiently close” are expressed using inequalities.
First, we look at lim

θ→0
(sin θ/θ) more closely (see Example 1).
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Example 2 By graphing y = (sin θ)/θ in an appropriate window, find how close θ should be to 0 in order to
make (sin θ)/θ within 0.01 of 1.

Solution Since we want (sin θ)/θ to be within 0.01 of 1, we set the y-range on the graphing window to go
from 0.99 to 1.01. Our first attempt with −0.5 ≤ θ ≤ 0.5 yields the graph in Figure 1.86. Since
we want the y-values to stay within the range 0.99 < y < 1.01, we do not want the graph to
leave the window through the top or bottom. By trial and error, we find that changing the θ-range
to −0.2 ≤ θ ≤ 0.2 gives the graph in Figure 1.87. Thus, the graph suggests that (sin θ)/θ is within
0.01 of 1 whenever θ is within 0.2 of 0. Proving this requires an analytical argument, not just graphs
from a calculator.

1.01

0.99
−0.5 0.5

y

Figure 1.86: (sin θ)/θ with
−0.5 ≤ θ ≤ 0.5

1.01

0.99
−0.2 0.2

y

Figure 1.87: (sin θ)/θ with
−0.2 ≤ θ ≤ 0.2

When we say “f(x) is close to L,” we measure closeness by the distance between f(x) and L,
expressed using absolute values:

|f(x)− L| = Distance between f(x) and L.

When we say “as close to L as we want,” we use ε (the Greek letter epsilon) to specify how close.
We write

|f(x)− L| < ε

to indicate that we want the distance between f(x) and L to be less than ε. In Example 2 we used
ε = 0.01. Similarly, we interpret “x is sufficiently close to c” as specifying a distance between x
and c:

|x− c| < δ,

where δ (the Greek letter delta) tells us how close x should be to c. In Example 2 we found δ = 0.2.
If lim

x→c
f(x) = L, we know that no matter how narrow the horizontal band determined by ε in

Figure 1.88, there is always a δ which makes the graph stay within that band, for c− δ < x < c+ δ.
Thus we restate the definition of a limit, using symbols:

Definition of Limit

We define lim
x→c

f(x) to be the number L (if one exists) such that for every ε > 0 (as small

as we want), there is a δ > 0 (sufficiently small) such that if |x − c| < δ and x �= c, then
|f(x)− L| < ε.

We have arrived at a formal definition of limit. Let’s see if it agrees with our intuition.
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c− δ c c+ δ

L− ε

L

L+ ε

��
ε

��ε

f(x)

x

Figure 1.88: What the definition of the limit means graphically

Example 3 Use the definition of limit to show that lim
x→3

2x = 6.

Solution We must show how, given any ε > 0, we can find a δ > 0 such that

If |x− 3| < δ and x �= 3, then |2x− 6| < ε.

Since |2x− 6| = 2|x− 3|, to get |2x− 6| < ε we require that |x− 3| < ε/2. Thus we take δ = ε/2.

It is important to understand that the ε, δ definition does not make it easier to calculate limits;
rather, the ε, δ definition makes it possible to put calculus on a rigorous foundation. From this
foundation, we can prove the following properties. See Problems 78–80.

Theorem 1.2: Properties of Limits

Assuming all the limits on the right-hand side exist:

1. If b is a constant, then lim
x→c

(bf(x)) = b
(
lim
x→c

f(x)
)

.

2. lim
x→c

(f(x) + g(x)) = lim
x→c

f(x) + lim
x→c

g(x).

3. lim
x→c

(f(x)g(x)) =
(
lim
x→c

f(x)
)(

lim
x→c

g(x)
)

.

4. lim
x→c

f(x)

g(x)
=

limx→c f(x)

limx→c g(x)
, provided lim

x→c
g(x) �= 0.

5. For any constant k, lim
x→c

k = k.

6. lim
x→c

x = c.

These properties underlie many limit calculations, though we may not acknowledge them explicitly.

Example 4 Explain how the limit properties are used in the following calculation:

lim
x→3

x2 + 5x

x+ 9
=

32 + 5 · 3

3 + 9
= 2.
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Solution We calculate this limit in stages, using the limit properties to justify each step:

lim
x→3

x2 + 5x

x+ 9
=

lim
x→3

(x2
+ 5x)

lim
x→3

(x+ 9)
(Property 4, since limx→3(x + 9) �= 0)

=

lim
x→3

(x2
) + lim

x→3
(5x)

lim
x→3

x+ lim
x→3

9
(Property 2)

=

(
lim
x→3

x
)2

+ 5

(
lim
x→3

x
)

lim
x→3

x+ lim
x→3

9
(Properties 1 and 3)

=
32 + 5 · 3

3 + 9
= 2. (Properties 5 and 6)

One- and Two-Sided Limits

When we write
lim
x→2

f(x),

we mean the number that f(x) approaches as x approaches 2 from both sides. We examine values
of f(x) as x approaches 2 through values greater than 2 (such as 2.1, 2.01, 2.003) and values less
than 2 (such as 1.9, 1.99, 1.994). If we want x to approach 2 only through values greater than 2, we
write

lim
x→2+

f(x)

for the number that f(x) approaches (assuming such a number exists). Similarly,

lim
x→2−

f(x)

denotes the number (if it exists) obtained by letting x approach 2 through values less than 2. We call
lim

x→2+
f(x) a right-hand limit and lim

x→2−
f(x) a left-hand limit. Problems 43 and 44 ask for formal

definitions of left- and right-hand limits.

2

L1

L2

f(x)

x

Figure 1.89: Left- and right-hand limits
at x = 2

For the function graphed in Figure 1.89, we have

lim
x→2−

f(x) = L1 lim
x→2+

f(x) = L2.

If the left- and right-hand limits were equal, that is, if L1 = L2, then it can be proved that lim
x→2

f(x)

exists and lim
x→2

f(x) = L1 = L2. Since L1 �= L2 in Figure 1.89, we see that lim
x→2

f(x) does not

exist in this case.

When Limits Do Not Exist

Whenever there is no number L such that lim
x→c

f(x) = L, we say lim
x→c

f(x) does not exist. Here are

three examples in which limits fail to exist.
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Example 5 Explain why lim
x→2

|x− 2|

x− 2
does not exist.

Solution Figure 1.90 shows the problem: The right-hand limit and the left-hand limit are different. For x > 2,
we have |x− 2| = x− 2, so as x approaches 2 from the right,

lim
x→2+

|x− 2|

x− 2
= lim

x→2+

x− 2

x− 2
= lim

x→2+
1 = 1.

Similarly, if x < 2, then |x− 2| = 2− x so

lim
x→2−

|x− 2|

x− 2
= lim

x→2−

2− x

x− 2
= lim

x→2−
(−1) = −1.

So if lim
x→2

|x− 2|

x− 2
= L then L would have to be both 1 and −1. Since L cannot have two different

values, the limit does not exist.

2

−1

1

x

Figure 1.90: Graph of
|x− 2|/(x− 2)

x

Figure 1.91: Graph of 1/x2

− 1
2π

1
2π

x

Figure 1.92: Graph of sin (1/x)

Example 6 Explain why lim
x→0

1

x2
does not exist.

Solution As x approaches zero, 1/x2 becomes arbitrarily large, so it cannot approach any finite number L.
See Figure 1.91. Therefore we say 1/x2 has no limit as x → 0.

If lim
x→a

f(x) does not exist because f(x) gets arbitrarily large on both sides of a, we also say

lim
x→a

f(x) = ∞. So in Example 6 we could say lim
x→0

1/x2
= ∞. This behavior may also be described

as “diverging to infinity.”

Example 7 Explain why lim
x→0

sin

(
1

x

)
does not exist.

Solution The sine function has values between −1 and 1. The graph in Figure 1.92 oscillates more and more
rapidly as x → 0. There are x-values approaching 0 where sin(1/x) = −1. There are also x-values
approaching 0 where sin(1/x) = 1. So if the limit existed, it would have to be both −1 and 1. Thus,
the limit does not exist.
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Limits at Infinity

Sometimes we want to know what happens to f(x) as x gets large, that is, the end behavior of f .

If f(x) gets as close to a number L as we please when x gets sufficiently large, then we write

lim
x→∞

f(x) = L.

Similarly, if f(x) approaches L when x is negative and has a sufficiently large absolute value,
then we write

lim
x→−∞

f(x) = L.

The symbol ∞ does not represent a number. Writing x → ∞ means that we consider arbitrarily
large values of x. If the limit of f(x) as x → ∞ or x → −∞ is L, we say that the graph of f has
y = L as a horizontal asymptote. Problem 45 asks for a formal definition of limx→∞ f(x).

Example 8 Investigate lim
x→∞

1

x
and lim

x→−∞

1

x
.

Solution A graph of f(x) = 1/x in a large window shows 1/x approaching zero as x increases in either the
positive or the negative direction (see Figure 1.93). This is as we would expect, since dividing 1 by
larger and larger numbers yields answers which are closer and closer to zero. This suggests that

lim
x→∞

1

x
= lim

x→−∞

1

x
= 0,

and that f(x) = 1/x has y = 0 as a horizontal asymptote as x → ±∞.

x

y

f(x) = 1
x

Figure 1.93: The end behavior of f(x) = 1/x

Definition of Continuity
We can now give a precise definition of continuity using limits.

The function f is continuous at x = c if f is defined at x = c and if

lim
x→c

f(x) = f(c).

In other words, f(x) is as close as we want to f(c) provided x is close enough to c. The
function is continuous on an interval [a, b] if it is continuous at every point in the interval.39

Constant functions and f(x) = x are continuous for all x. Using the continuity of sums and
products, we can show that any polynomial is continuous. Proving that sinx, cosx, and ex are

39If c is an endpoint of the interval, we define continuity at x = c using one-sided limits at c.
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continuous is more difficult. The following theorem, based on the properties of limits on page 60,
makes it easier to decide whether certain combinations of functions are continuous.

Theorem 1.3: Continuity of Sums, Products, and Quotients of Functions

Suppose that f and g are continuous on an interval and that b is a constant. Then, on that
same interval,

1. bf(x) is continuous.

2. f(x) + g(x) is continuous.

3. f(x)g(x) is continuous.

4. f(x)/g(x) is continuous, provided g(x) �= 0 on the interval.

We prove the third of these properties.

Proof Let c be any point in the interval. We must show that lim
x→c

(f(x)g(x)) = f(c)g(c). Since f(x) and

g(x) are continuous, we know that lim
x→c

f(x) = f(c) and lim
x→c

g(x) = g(c). So, by the third property

of limits in Theorem 1.2,

lim
x→c

(f(x)g(x)) =
(
lim
x→c

f(x)
) (

lim
x→c

g(x)
)
= f(c)g(c).

Since c was chosen arbitrarily, we have shown that f(x)g(x) is continuous at every point in the
interval.

Theorem 1.4: Continuity of Composite Functions

If f and g are continuous, and if the composite function f(g(x)) is defined on an interval,
then f(g(x)) is continuous on that interval.

Assuming the continuity of sinx and ex, Theorem 1.4 shows us, for example, that sin(ex) and esin x

are both continuous.
Although we now have a formal definition of continuity, some properties of continuous func-

tions, such as the Intermediate Value Theorem, can be difficult to prove. For a further treatment of
limits and continuity, see www.wiley.com/college/hughes-hallett.

Exercises and Problems for Section 1.8
Exercises

1. Use Figure 1.94 to give approximate values for the fol-
lowing limits (if they exist).

(a) lim
x→−2

f(x) (b) lim
x→0

f(x)

(c) lim
x→2

f(x) (d) lim
x→4

f(x)

−2 2 4

5

x

f(x)

Figure 1.94

2. Use Figure 1.95 to estimate the following limits, if they
exist.

(a) lim
x→1−

f(x) (b) lim
x→1+

f(x) (c) lim
x→1

f(x)

(d) lim
x→2−

f(x) (e) lim
x→2+

f(x) (f) lim
x→2

f(x)

1 2 3

−1

1

2

f(x)

x

Figure 1.95
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3. Using Figures 1.96 and 1.97, estimate

(a) lim
x→1−

(f(x) + g(x)) (b) lim
x→1+

(f(x) + 2g(x))

(c) lim
x→1−

f(x)g(x) (d) lim
x→1+

f(x)

g(x)

(1, 3)

(1, 4)

1 2

f(x)

0

2

4

x

Figure 1.96

(1, 1)

(1, 5)

1 2

g(x)

0

2

4

6

x

Figure 1.97

In Exercises 4–9, draw a possible graph of f(x). Assume f(x)
is defined and continuous for all real x.

4. lim
x→∞

f(x) = −∞ and lim
x→−∞

f(x) = −∞
5. lim

x→∞

f(x) = −∞ and lim
x→−∞

f(x) = +∞
6. lim

x→∞

f(x) = 1 and lim
x→−∞

f(x) = +∞
7. lim

x→∞

f(x) = −∞ and lim
x→−∞

f(x) = 3

8. lim
x→∞

f(x) = +∞ and lim
x→−1

f(x) = 2

9. lim
x→3

f(x) = 5 and lim
x→−∞

f(x) = +∞

In Exercises 10–15, give lim
x→−∞

f(x) and lim
x→+∞

f(x).

10. f(x) = −x4

11. f(x) = 5 + 21x− 2x3

12. f(x) = x5 + 25x4 − 37x3 − 200x2 + 48x+ 10

13. f(x) =
3x3 + 6x2 + 45

5x3 + 25x + 12

14. f(x) = 8x−3

15. f(x) = 25e0.08x

Estimate the limits in Exercises 16–17 graphically.

16. lim
x→0

|x|
x

17. lim
x→0

x ln |x|

18. Does f(x) =
|x|
x

have right or left limits at 0? Is f(x)

continuous?

Use a graph to estimate each of the limits in Exercises 19–28.
Use radians unless degrees are indicated by θ◦.

19. lim
θ→0

sin (2θ)

θ
20. lim

θ→0

cos θ − 1

θ

21. lim
θ→0

sin θ◦

θ◦
22. lim

θ→0

θ

tan(3θ)

23. lim
h→0

eh − 1

h
24. lim

h→0

e5h − 1

h

25. lim
h→0

2h − 1

h
26. lim

h→0

3h − 1

h

27. lim
h→0

cos(3h)− 1

h
28. lim

h→0

sin(3h)

h

For the functions in Exercises 29–31, use algebra to evaluate
the limits lim

x→a+
f(x), lim

x→a−
f(x), and lim

x→a
f(x) if they ex-

ist. Sketch a graph to confirm your answers.

29. a = 4, f(x) =
|x− 4|
x− 4

30. a = 2, f(x) =
|x− 2|

x

31. a = 3, f(x) =

⎧⎪⎨
⎪⎩

x2 − 2, 0 < x < 3

2, x = 3

2x+ 1, 3 < x

32. Estimate how close θ should be to 0 to make (sin θ)/θ
stay within 0.001 of 1.

33. Write the definition of the following statement both in
words and in symbols:

lim
h→a

g(h) = K.

Problems

In Problems 34–37, is the function continuous for all x? If
not, say where it is not continuous and explain in what way
the definition of continuity is not satisfied.

34. f(x) = 1/x

35. f(x) =
{ |x|/x x �= 0
0 x = 0

36. f(x) =
{
x/x x �= 0
1 x = 0

37. f(x) =
{
2x/x x �= 0
3 x = 0

38. By graphing y = (1 + x)1/x, estimate lim
x→0

(1 + x)1/x.

You should recognize the answer you get. What does the
limit appear to be?

39. Investigate lim
h→0

(1 + h)1/h numerically.

40. What does a calculator suggest about lim
x→0+

xe1/x? Does

the limit appear to exist? Explain.
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41. If p(x) is the function on page 54 giving the price of mail-
ing a first-class letter, explain why limx→1 p(x) does not
exist.

42. The notation limx→0+ means that we only consider val-
ues of x greater than 0. Estimate the limit

lim
x→0+

xx,

either by evaluating xx for smaller and smaller positive
values of x (say x = 0.1, 0.01, 0.001, . . .) or by zooming
in on the graph of y = xx near x = 0.

In Problems 43–45, modify the definition of limit on page 59
to give a definition of each of the following.

43. A right-hand limit 44. A left-hand limit

45. lim
x→∞

f(x) = L

For the functions in Problems 46–53, do the following:
(a) Make a table of values of f(x) for x = 0.1, 0.01, 0.001,

0.0001, −0.1, −0.01, −0.001, and −0.0001.
(b) Make a conjecture about the value of lim

x→0
f(x).

(c) Graph the function to see if it is consistent with your an-
swers to parts (a) and (b).

(d) Find an interval for x near 0 such that the difference be-
tween your conjectured limit and the value of the func-
tion is less than 0.01. (In other words, find a window
of height 0.02 such that the graph exits the sides of the
window and not the top or bottom of the window.)

46. f(x) = 3x+ 1 47. f(x) = x2 − 1

48. f(x) = sin 2x 49. f(x) = sin 3x

50. f(x) =
sin 2x

x
51. f(x) =

sin 3x

x

52. f(x) =
ex − 1

x
53. f(x) =

e2x − 1

x

Assuming that limits as x → ∞ have the properties listed for
limits as x → c on page 60, use algebraic manipulations to
evaluate lim

x→∞

for the functions in Problems 54–63.

54. f(x) =
x+ 3

2− x
55. f(x) =

π + 3x

πx− 3

56. f(x) =
x− 5

5 + 2x2
57. f(x) =

x2 + 2x− 1

3 + 3x2

58. f(x) =
x2 + 4

x+ 3
59. f(x) =

2x3 − 16x2

4x2 + 3x3

60. f(x) =
x4 + 3x

x4 + 2x5
61. f(x) =

3ex + 2

2ex + 3

62. f(x) =
2−x + 5

3−x + 7
63. f(x) =

2e−x + 3

3e−x + 2

In Problems 64–71, find a value of the constant k such that the
limit exists.

64. lim
x→4

x2 − k2

x− 4
65. lim

x→1

x2 − kx+ 4

x− 1

66. lim
x→−2

x2 + 4x+ k

x+ 2
67. lim

x→∞

x2 + 3x+ 5

4x+ 1 + xk

68. lim
x→−∞

e2x − 5

ekx + 3
69. lim

x→∞

x3 − 6

xk + 3

70. lim
x→∞

3kx + 6

32x + 4
71. lim

x→−∞

3kx + 6

32x + 4

For each value of ε in Problems 72–73, find a positive value
of δ such that the graph of the function leaves the window
a − δ < x < a + δ, b − ε < y < b + ε by the sides and not
through the top or bottom.

72. f(x) = −2x + 3; a = 0; b = 3; ε = 0.2, 0.1, 0.02,
0.01, 0.002, 0.001.

73. g(x) = −x3 + 2; a = 0; b = 2; ε = 0.1, 0.01, 0.001.

74. Show that lim
x→0

(−2x+ 3) = 3. [Hint: Use Problem 72.]

75. Consider the function f(x) = sin(1/x).

(a) Find a sequence of x-values that approach 0 such
that sin(1/x) = 0.
[Hint: Use the fact that sin(π) = sin(2π) =
sin(3π) = . . . = sin(nπ) = 0.]

(b) Find a sequence of x-values that approach 0 such
that sin(1/x) = 1.
[Hint: Use the fact that sin(nπ/2) = 1 if n =
1, 5, 9, . . . .]

(c) Find a sequence of x-values that approach 0 such
that sin(1/x) = −1.

(d) Explain why your answers to any two of parts (a)–
(c) show that lim

x→0
sin(1/x) does not exist.

For the functions in Problems 76–77, do the following:

(a) Make a table of values of f(x) for x = a+0.1, a+0.01,
a + 0.001, a + 0.0001, a − 0.1, a − 0.01, a − 0.001,
and a− 0.0001.

(b) Make a conjecture about the value of lim
x→a

f(x).

(c) Graph the function to see if it is consistent with your an-
swers to parts (a) and (b).

(d) Find an interval for x containing a such that the differ-
ence between your conjectured limit and the value of
the function is less than 0.01 on that interval. (In other
words, find a window of height 0.02 such that the graph
exits the sides of the window and not the top or bottom
of the window.)
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76. f(x) =
cos 2x− 1 + 2x2

x3
, a = 0

77. f(x) =
cos 3x− 1 + 4.5x2

x3
, a = 0

78. This problem suggests a proof of the first property of lim-
its on page 60: lim

x→c
bf(x) = b lim

x→c
f(x).

(a) First, prove the property in the case b = 0.
(b) Now suppose that b �= 0. Let ε > 0. Show that if

|f(x)− L| < ε/|b|, then |bf(x)− bL| < ε.
(c) Finally, prove that if lim

x→c
f(x) = L then

lim
x→c

bf(x) = bL. [Hint: Choose δ so that if |x−c| <
δ, then |f(x)− L| < ε/|b|.]

79. Prove the second property of limits: lim
x→c

(f(x) + g(x)) =

lim
x→c

f(x)+ lim
x→c

g(x). Assume that the limits on the right

exist.

80. This problem suggests a proof of the third property of
limits (assuming the limits on the right exist):

lim
x→c

(f(x)g(x)) =
(
lim
x→c

f(x)
)(

lim
x→c

g(x)
)

Let L1 = limx→c f(x) and L2 = limx→c g(x).

(a) First, show that if lim
x→c

f(x) = lim
x→c

g(x) = 0, then

lim
x→c

(f(x)g(x)) = 0.

(b) Show algebraically that
f(x)g(x) = (f(x)− L1) (g(x)− L2)+L1g(x)+
L2f(x)− L1L2.

(c) Use the second limit property (see Problem 79) to
explain why
lim
x→c

(f(x)− L1) = lim
x→c

(g(x)− L2) = 0.

(d) Use parts (a) and (c) to explain why
lim
x→c

(f(x)− L1) (g(x)− L2) = 0.

(e) Finally, use parts (b) and (d) and the first and second
limit properties to show that

lim
x→c

(f(x)g(x)) =
(
lim
x→c

f(x)
)(

lim
x→c

g(x)
)

.

81. Show f(x) = x is continuous everywhere.

82. Use Problem 81 to show that for any positive integer n,
the function xn is continuous everywhere.

83. Use Theorem 1.2 on page 60 to explain why if f and g
are continuous on an interval, then so are f + g, fg, and
f/g (assuming g(x) �= 0 on the interval).

Strengthen Your Understanding

In Problems 84–86, explain what is wrong with the statement.

84. If P (x) and Q(x) are polynomials, P (x)/Q(x) must be
continuous for all x.

85. lim
x→1

x− 1

|x− 1| = 1

86. If limx→c f(x) exists, then f(x) is continuous at x = c.

In Problems 87–88, give an example of:

87. A rational function that has a limit at x = 1 but is not
continuous at x = 1.

88. A function f(x) where limx→∞ f(x) = 2 and
limx→−∞ f(x) = −2.

Suppose that limx→3 f(x) = 7. Are the statements in Prob-
lems 89–95 true or false? If a statement is true, explain how
you know. If a statement is false, give a counterexample.

89. limx→3(xf(x)) = 21.

90. If g(3) = 4, then limx→3(f(x)g(x)) = 28.

91. If limx→3 g(x) = 5, then limx→3(f(x) + g(x)) = 12.

92. If limx→3(f(x) + g(x)) = 12, then limx→3 g(x) = 5.

93. f(2.99) is closer to 7 than f(2.9) is.

94. If f(3.1) > 0, then f(3.01) > 0.

95. If limx→3 g(x) does not exist, then limx→3(f(x)g(x))
does not exist.

Which of the statements in Problems 96–100 are true about
every function f(x) such that lim

x→c
f(x) = L? Give a reason

for your answer.

96. If f(x) is within 10−3 of L, then x is within 10−3 of c.

97. There is a positive ε such that, provided x is within 10−3

of c, and x �= c, we can be sure f(x) is within ε of L.

98. For any positive ε, we can find a positive δ such that, pro-
vided x is within δ of c, and x �= c, we can be sure that
f(x) is within ε of L.

99. For each ε > 0, there is a δ > 0 such that if x is not
within δ of c, then f(x) is not within ε of L.

100. For each ε > 0, there is some δ > 0 such that if f(x) is
within ε of L, then we can be sure that x is within δ of c.

101. Which of the following statements is a direct conse-
quence of the statement: “If f and g are continuous at
x = a and g(a) �= 0 then f/g is continuous at x = a?”

(a) If f and g are continuous at x = a and f(a) �= 0
then g/f is continuous at x = a.

(b) If f and g are continuous at x = a and g(a) = 0,
then f/g is not continuous at x = a.

(c) If f , g, are continuous at x = a, but f/g is not con-
tinuous at x = a, then g(a) = 0.

(d) If f and f/g are continuous at x = a and g(a) �= 0,
then g is continuous at x = a.
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CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• Function terminology
Domain/range, increasing/decreasing, concavity, zeros
(roots), even/odd, end behavior, asymptotes.

• Linear functions
Slope, vertical intercept. Grow by equal amounts in equal
times.

• Exponential functions
Exponential growth and decay, with base e, growth rate,
continuous growth rate, doubling time, half life. Grow by
equal percentages in equal times.

• Logarithmic functions
Log base 10, natural logarithm.

• Trigonometric functions
Sine and cosine, tangent, amplitude, period, arcsine, arc-
tangent.

• Power functions

• Polynomials and rational functions

• New functions from old
Inverse functions, composition of functions, shifting,
stretching, shrinking.

• Working with functions
Find a formula for a linear, exponential, power, logarith-
mic, or trigonometric function, given graph, table of val-
ues, or verbal description. Find vertical and horizontal
asymptotes. End behavior. Proportional relationships.

• Comparisons between functions
Exponential functions dominate power and linear func-
tions.

• Continuity
Interpret graphically and numerically. Intermediate Value
Theorem.

• Limits
Graphical interpretation, ε-δ definition, properties, one-
sided limits, limits to infinity.

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER ONE

Exercises

Find formulas for the functions described in Exercises 1–8.

1. A line with slope 2 and x-intercept 5.

2. A parabola opening downward with its vertex at (2, 5).

3. A parabola with x-intercepts ±1 and y-intercept 3.

4. The bottom half of a circle centered at the origin and with
radius

√
2.

5. The top half of a circle with center (−1, 2) and radius 3.

6. A cubic polynomial having x-intercepts at 1, 5, 7.

7. A rational function of the form y = ax/(x + b) with a
vertical asymptote at x = 2 and a horizontal asymptote
of y = −5.

8. A cosine curve with a maximum at (0, 5), a minimum at
(π,−5), and no maxima or minima in between.

9. When a patient with a rapid heart rate takes a drug,
the heart rate plunges dramatically and then slowly rises
again as the drug wears off. Sketch the heart rate against
time from the moment the drug is administered.

10. If g(x) = (4 − x2)/(x2 + x), find the domain of g(x).
Solve g(x) = 0.

11. The entire graph of f(x) is shown in Figure 1.98.

(a) What is the domain of f(x)?
(b) What is the range of f(x)?
(c) List all zeros of f(x).
(d) List all intervals on which f(x) is decreasing.

(e) Is f(x) concave up or concave down at x = 6?
(f) What is f(4)?
(g) Is this function invertible? Explain.

f(x)

1 2 3 4 5 6 7

−2

−1

0

1

2

3

4

5

x

Figure 1.98

12. For f(n) = 3n2−2 and g(n) = n+1, find and simplify:

(a) f(n) + g(n)
(b) f(n)g(n)
(c) The domain of f(n)/g(n)
(d) f(g(n))
(e) g(f(n))

13. Let m = f(A) be the minimum annual gross income,
in thousands of dollars, needed to obtain a 30-year home
mortgage loan of A thousand dollars at an interest rate of
6%. What do the following quantities represent in terms
of the income needed for a loan?

(a) f(100) (b) f−1(75)
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For Exercises 14–17, solve for t using logs.

14. 5t = 7 15. 2 = (1.02)t 16. 7 · 3t = 5 · 2t

17. 5.02(1.04)t = 12.01(1.03)t

In Exercises 18–19, put the functions in the form P = P0e
kt.

18. P = P02
t 19. P = 5.23(0.2)t

For Exercises 20–21, find functions f and g such that h(x) =
f(g(x)). [Note: Do not choose f(x) = x or g(x) = x.]

20. h(x) = ln(x3) 21. h(x) = (ln x)3

Find the amplitudes and periods in Exercises 22–23.

22. y = 5 sin (x/3) 23. y = 4− 2 cos(5x)

24. Consider the function y = 5 + cos(3x).

(a) What is its amplitude?
(b) What is its period?
(c) Sketch its graph.

25. Determine the end behavior of each function as x →
+∞ and as x → −∞.

(a) f(x) = x7 (b) f(x) = 3x+7x3−12x4

(c) f(x) = x−4 (d) f(x) =
6x3 − 5x2 + 2

x3 − 8

In Exercises 26–27, which function dominates as x → ∞?

26. 10 · 2x or 72,000x12 27. 0.25
√
x or 25,000x−3

Find possible formulas for the graphs in Exercises 28–41.

28.

7

3

x

y 29.

x

y

(0, 1)

(3, 4)

30.

3

y

t

(5, 9)

31.

−5
x

y

32.

x

y

(0, 2)

(2, 1)

33.

π 3π2π 4π

2

θ

z

34.

−2

−1 1
x

y 35.

4

y

x

36.

20

−5

5

t

y 37.

−5 −1 3
x

y

38.

−2 2

3
x

y 39.

x

y
y = 1

40.

−2π 2π

1

3

x

y 41.

5−1

1
x

y

Are the functions in Exercises 42–43 continuous on [−1, 1]?

42. g(x) =
1

x2 + 1
43. h(x) =

1

1− x2

44. Use Figure 1.99 to estimate the limits if they exist:

(a) lim
x→0

f(x) (b) lim
x→1

f(x)

(c) lim
x→2

f(x) (d) lim
x→3−

f(x)
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−1 1 2 3

1

2

3 f(x)

x

Figure 1.99

For the functions in Exercises 45–46, use algebra to evaluate
the limits lim

x→a+
f(x), lim

x→a−
f(x), and lim

x→a
f(x) if they ex-

ist. Sketch a graph to confirm your answers.

45. a = 3, f(x) =
x3|2x− 6|

x− 3

46. a = 0, f(x) =

⎧⎪⎨
⎪⎩

ex −1 < x < 0

1 x = 0

cos x 0 < x < 1

Problems

47. The yield, Y , of an apple orchard (in bushels) as a func-
tion of the amount, a, of fertilizer (in pounds) used on the
orchard is shown in Figure 1.100.

(a) Describe the effect of the amount of fertilizer on the
yield of the orchard.

(b) What is the vertical intercept? Explain what it means
in terms of apples and fertilizer.

(c) What is the horizontal intercept? Explain what it
means in terms of apples and fertilizer.

(d) What is the range of this function for 0 ≤ a ≤ 80?
(e) Is the function increasing or decreasing at a = 60?
(f) Is the graph concave up or down near a = 40?

10 20 30 40 50 60 70 80 90

100

200

300

400

500

600

a (lbs)

Y (bushels)

Figure 1.100

48. The graph of Fahrenheit temperature, ◦F, as a function of
Celsius temperature, ◦C, is a line. You know that 212◦F
and 100◦C both represent the temperature at which wa-
ter boils. Similarly, 32◦F and 0◦C both represent water’s
freezing point.

(a) What is the slope of the graph?
(b) What is the equation of the line?
(c) Use the equation to find what Fahrenheit tempera-

ture corresponds to 20◦C.
(d) What temperature is the same number of degrees in

both Celsius and Fahrenheit?

49. The demand function for a certain product, q = D(p), is
linear, where p is the price per item in dollars and q is the
quantity demanded. If p increases by $5, market research

shows that q drops by two items. In addition, 100 items
are purchased if the price is $550.

(a) Find a formula for
(i) q as a linear function of p

(ii) p as a linear function of q
(b) Draw a graph with q on the horizontal axis.

50. A flight from Dulles Airport in Washington, DC, to La-
Guardia Airport in New York City has to circle La-
Guardia several times before being allowed to land. Plot a
graph of the distance of the plane from Washington, DC,
against time, from the moment of takeoff until landing.

51. The force, F , between two atoms depends on the dis-
tance r separating them. See Figure 1.101. A positive F
represents a repulsive force; a negative F represents an
attractive force.

(a) What happens to the force if the atoms start with
r = a and are

(i) Pulled slightly further apart?
(ii) Pushed slightly closer together?

(b) The atoms are said to be in stable equilibrium if the
force between them is zero and the atoms tend to
return to the equilibrium after a minor disturbance.
Does r = a represent a stable equilibrium? Explain.

a
r

F

Figure 1.101

52. When the Olympic Games were held outside Mexico
City in 1968, there was much discussion about the effect
the high altitude (7340 feet) would have on the athletes.
Assuming air pressure decays exponentially by 0.4% ev-
ery 100 feet, by what percentage is air pressure reduced
by moving from sea level to Mexico City?

40http://www.indexmundi.com/ukraine/population.html. Accessed April 17, 2011.
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53. The population of the Ukraine fell from 45.7 million in
2009 to 45.42 million in 2010.40 Assuming exponential
decline, in what year is the population predicted to be 45
million?

54. During April 2006, Zimbabwe’s inflation rate averaged
0.67% a day. This means that, on average, prices went up
by 0.67% from one day to the next.

(a) By what percentage did prices in Zimbabwe increase
in April of 2006?

(b) Assuming the same rate all year, what was Zim-
babwe’s annual inflation rate during 2006?

55. Hydroelectric power is electric power generated by the
force of moving water. The table shows the annual per-
cent change in hydroelectric power consumption by the
US industrial sector.41

(a) According to the table, during what single year(s), if
any, did the US consumption of hydroelectric power
energy increase by at least 10%? Decrease by 10%
or more?

(b) True or False: The hydroelectric power consumption
nearly doubled from 2008 to 2009.

(c) True or False: The hydroelectric power consumption
decreased by about 36% from 2006 to 2009.

Year 2005 2006 2007 2008 2009

% growth over previous yr −1.9 −10 −45.4 5.1 11

56. A kilogram weighs about 2.2 pounds.

(a) Write a formula for the function, f , which gives an
object’s mass in kilograms, k, as a function of its
weight in pounds, p.

(b) Find a formula for the inverse function of f . What
does this inverse function tell you, in practical
terms?

57. The graph of f(x) is a parabola that opens upward and
the graph of g(x) is a line with negative slope. Describe
the graph of g(f(x)) in words.

58. Each of the functions in the table is increasing over its
domain, but each increases in a different way. Match the
functions f , g, h to the graphs in Figure 1.102.

x f(x)

1 1

2 2

4 3

7 4

11 5

16 6

22 7

29 8

37 9

47 10

x g(x)

3.0 1

3.2 2

3.4 3

3.6 4

3.8 5

4.0 6

4.2 7

4.4 8

4.6 9

4.8 10

x h(x)

10 1

20 2

28 3

34 4

39 5

43 6

46.5 7

49 8

51 9

52 10

(a) (b) (c)

Figure 1.102

59. A culture of 100 bacteria doubles after 2 hours. How long
will it take for the number of bacteria to reach 3,200?

60. If f(x) = a ln(x+ 2), how does increasing a affect

(a) The y-intercept? (b) The x-intercept?

61. What is the doubling time of prices which are increasing
by 5% a year?

62. Find the half-life of a radioactive substance that is re-
duced by 30% in 20 hours.

63. The air in a factory is being filtered so that the quantity
of a pollutant, P (in mg/liter), is decreasing according to
the function P = P0e

−kt, where t is time in hours. If
10% of the pollution is removed in the first five hours:

(a) What percentage of the pollution is left after 10
hours?

(b) How long is it before the pollution is reduced by
50%?

(c) Plot a graph of pollution against time. Show the re-
sults of your calculations on the graph.

(d) Explain why the quantity of pollutant might de-
crease in this way.

64. The half-life of radioactive strontium-90 is 29 years. In
1960, radioactive strontium-90 was released into the at-
mosphere during testing of nuclear weapons, and was ab-
sorbed into people’s bones. How many years does it take
until only 10% of the original amount absorbed remains?

65. What is the period of the motion of the minute hand of a
clock?

66. In an electrical outlet, the voltage, V , in volts, is given as
a function of time, t, in seconds, by the formula

V = V0 sin(120πt).

(a) What does V0 represent in terms of voltage?
(b) What is the period of this function?
(c) How many oscillations are completed in 1 second?

41http://www.eia.doe.gov/aer/renew.html. Accessed February 2011.
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67. In a US household, the voltage in volts in an electric out-
let is given by

V = 156 sin(120πt),

where t is in seconds. However, in a European house, the
voltage is given (in the same units) by

V = 339 sin(100πt).

Compare the voltages in the two regions, considering the
maximum voltage and number of cycles (oscillations) per
second.

68. (a) How does the parameter A affect the graph of y =
A sin(Bx)? (Plot for A = 1, 2, 3 with B = 1.)

(b) How does the parameter B affect the graph of y =
A sin(Bx)? (Plot for B = 1, 2, 3 with A = 1.)

69. Water is flowing down a cylindrical pipe of radius r.

(a) Write a formula for the volume, V , of water that
emerges from the end of the pipe in one second if
the water is flowing at a rate of

(i) 3 cm/sec (ii) k cm/sec

(b) Graph your answer to part (a)(ii) as a function of

(i) r, assuming k is constant

(ii) k, assuming r is constant

70. Values of three functions are given in Table 1.22, rounded
to two decimal places. Two are power functions and
one is an exponential. One of the power functions is a
quadratic and one a cubic. Which one is exponential?
Which one is quadratic? Which one is cubic?

Table 1.22

x f(x) x g(x) x k(x)

8.4 5.93 5.0 3.12 0.6 3.24

9.0 7.29 5.5 3.74 1.0 9.01

9.6 8.85 6.0 4.49 1.4 17.66

10.2 10.61 6.5 5.39 1.8 29.19

10.8 12.60 7.0 6.47 2.2 43.61

11.4 14.82 7.5 7.76 2.6 60.91

71. Figure 1.103 shows the hat function

hN (x) =

⎧⎪⎨
⎪⎩

0 if x < N − 1
1 + x−N if N − 1 ≤ x < N
1 +N − x if N ≤ x < N + 1
0 if N + 1 ≤ x

.

(a) Graph the function f(x) = 3h1(x) + 2h2(x) +
4h3(x).

(b) Describe the graph of g(x) = ah1(x) + bh2(x) +
ch3(x).

N − 2N − 1 N N + 1N + 2

1

x

y

Figure 1.103: Graph of hN (x)

72. The point P moves around the circle of radius 5 shown
in Figure 1.104. The angle θ, in radians, is given as a
function of time, t, by the graph in Figure 1.105.

(a) Estimate the coordinates of P when t = 1.5.
(b) Describe in words the motion of the point P on the

circle.

P

5

θ x

y

Figure 1.104

1 2 3 4 5

1

2

3

4

5

6

7

t

θ

Figure 1.105

73. Match the following functions with the graphs in Fig-
ure 1.106. Assume 0 < b < a.

(a) y =
a

x
− x (b) y =

(x− a)(x+ a)

x

(c) y =
(x− a)(x2 + a)

x2
(d) y =

(x− a)(x+ a)

(x− b)(x+ b)

x

y
(I)

x

y
(II)

x

y
(III)

x

y
(IV)

Figure 1.106
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74. Use a computer or calculator to sketch the functions

y(x) = sin x and zk(x) = ke−x

for k = 1, 2, 4, 6, 8, 10. In each case find the smallest
positive solution of the equation y(x) = zk(x). Now de-
fine a new function f by

f(k) = {Smallest positive solution of y(x) = zk(x)}.
Explain why the function f(k) is not continuous on the
interval 0 ≤ k ≤ 10.

For each value of ε in Problems 75–76, find a positive value
of δ such that the graph of the function leaves the window
a − δ < x < a + δ, b − ε < y < b + ε by the sides and not
through the top or bottom.

75. h(x) = sin x, a = b = 0, ε = 0.1, 0.05, 0.0007.

76. k(x) = cos x, a = 0, b = 1, ε = 0.1, 0.001, 0.00001.

77. If possible, choose k so that the following function is
continuous on any interval:

f(x) =

⎧⎨
⎩

5x3 − 10x2

x− 2
x �= 2

k x = 2

78. Find k so that the following function is continuous on
any interval:

j(x) =
{
k cos x x ≤ 0
ex − k x > 0

CAS Challenge Problems

79. (a) Factor f(x) = x4 + bx3 − cx3 − a2x2 − bcx2 −
a2bx + a2cx + a2bc using a computer algebra sys-
tem.

(b) Assuming a, b, c are constants with 0 < a < b < c,
use your answer to part (a) to make a hand sketch of
the graph of f . Explain how you know its shape.

80. (a) Using a computer algebra system, factor f(x) =
−x5 + 11x4 − 46x3 + 90x2 − 81x+ 27.

(b) Use your answer to part (a) to make a hand sketch of
the graph of f . Explain how you know its shape.

81. Let f(x) = e6x+e5x−2e4x−10e3x−8e2x+16ex+16.

(a) What happens to the value of f(x) as x → ∞? As
x → −∞? Explain your answer.

(b) Using a computer algebra system, factor f(x) and
predict the number of zeros of the function f(x).

(c) What are the exact values of the zeros? What is the
relationship between successive zeros?

82. Let f(x) = x2 − x.

(a) Find the polynomials f(f(x)) and f(f(f(x))) in
expanded form.

(b) What do you expect to be the degree of the polyno-
mial f(f(f(f(f(f(x))))))? Explain.

83. (a) Use a computer algebra system to rewrite the ratio-
nal function

f(x) =
x3 − 30

x− 3

in the form

f(x) = p(x) +
r(x)

q(x)
,

where p(x), q(x), r(x) are polynomials and the de-
gree of r(x) is less than the degree of q(x).

(b) What is the vertical asymptote of f? Use your an-
swer to part (a) to write the formula for a function
whose graph looks like the graph of f for x near the
vertical asymptote.

(c) Use your answer to part (a) to write the formula for
a function whose graph looks like the graph of f for
x → ∞ and x → −∞.

(d) Using graphs, confirm the asymptote you found in
part (b) and the formula you found in part (c).

For Problems 84–85, we note that a function can be writ-
ten as a polynomial in sin x (or cosx) if it is of the form
p(sin x) (or p(cosx)) for some polynomial p(x). For exam-
ple, cos 2x can be written as a polynomial in sin x because
cos(2x) = 1− 2 sin2 x = p(sin x), where p(x) = 1− 2x2.

84. Use the trigonometric capabilities of your computer alge-
bra system to express sin(5x) as a polynomial in sin x.

85. Use the trigonometric capabilities of your computer al-
gebra system to express cos(4x) as a polynomial in

(a) sin x
(b) cos x.

PROJECTS FOR CHAPTER ONE

1. Matching Functions to Data
From the data in Table 1.23, determine a possible formula for each function.42 Write an

explanation of your reasoning.

42Based on a problem by Lee Zia.
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Table 1.23

x f(x) g(x) h(x) F (x) G(x) H(x)

−5 −10 20 25 0.958924 0.544021 2.958924

−4.5 − 9 19 20.25 0.97753 −0.412118 2.97753

−4 − 8 18 16 0.756802 −0.989358 2.756802

−3.5 − 7 17 12.25 0.350783 −0.656987 2.350783

−3 − 6 16 9 −0.14112 0.279415 1.85888

−2.5 − 5 15 6.25 −0.598472 0.958924 1.401528

−2 − 4 14 4 −0.909297 0.756802 1.090703

−1.5 − 3 13 2.25 −0.997495 −0.14112 1.002505

−1 − 2 12 1 −0.841471 −0.909297 1.158529

−0.5 − 1 11 0.25 −0.479426 −0.841471 1.520574

0 0 10 0 0 0 2

0.5 1 9 0.25 0.479426 0.841471 2.479426

1 2 8 1 0.841471 0.909297 2.841471

1.5 3 7 2.25 0.997495 0.14112 2.997495

2 4 6 4 0.909297 −0.756802 2.909297

2.5 5 5 6.25 0.598472 −0.958924 2.598472

3 6 4 9 0.14112 −0.279415 2.14112

3.5 7 3 12.25 −0.350783 0.656987 1.649217

4 8 2 16 −0.756802 0.989358 1.243198

4.5 9 1 20.25 −0.97753 0.412118 1.02247

5 10 0 25 −0.958924 −0.544021 1.041076

2. Which Way is the Wind Blowing?
Mathematicians name a wind by giving the angle toward which it is blowing measured

counterclockwise from east. Meteorologists give the angle from which it is blowing measured
clockwise from north. Both use values from 0◦ to 360◦. Figure 1.107 shows the two angles for
a wind blowing from the northeast.

(a) Graph the mathematicians’ angle θmath as a function of the meteorologists’ angle θmet.
(b) Find a piecewise formula that gives θmath in terms of θmet.

θmet = 45◦
θmath = 225◦

Wind E

N

Figure 1.107
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2.1 HOW DO WE MEASURE SPEED?

The speed of an object at an instant in time is surprisingly difficult to define precisely. Consider
the statement: “At the instant it crossed the finish line, the horse was traveling at 42 mph.” How can
such a claim be substantiated? A photograph taken at that instant will show the horse motionless—it
is no help at all. There is some paradox in trying to study the horse’s motion at a particular instant
in time, since by focusing on a single instant we stop the motion!

Problems of motion were of central concern to Zeno and other philosophers as early as the fifth
century B.C. The modern approach, made famous by Newton’s calculus, is to stop looking for a
simple notion of speed at an instant, and instead to look at speed over small time intervals containing
the instant. This method sidesteps the philosophical problems mentioned earlier but introduces new
ones of its own.

We illustrate the ideas discussed above by an idealized example, called a thought experiment.
It is idealized in the sense that we assume that we can make measurements of distance and time as
accurately as we wish.

A Thought Experiment: Average and Instantaneous Velocity
We look at the speed of a small object (say, a grapefruit) that is thrown straight upward into the
air at t = 0 seconds. The grapefruit leaves the thrower’s hand at high speed, slows down until it
reaches its maximum height, and then speeds up in the downward direction and finally, “Splat!”
(See Figure 2.1.)

Suppose that we want to determine the speed, say, at t = 1 second. Table 2.1 gives the height,
y, of the grapefruit above the ground as a function of time. During the first second the grapefruit
travels 90 − 6 = 84 feet, and during the second second it travels only 142 − 90 = 52 feet. Hence
the grapefruit traveled faster over the first interval, 0 ≤ t ≤ 1, than the second interval, 1 ≤ t ≤ 2.

Start Ground

‘‘Splat!’’

�

Velocity
positive �

Velocity
negative

Figure 2.1: The grapefruit’s path is
straight up and down

Table 2.1 Height of the grapefruit above the ground

t (sec) 0 1 2 3 4 5 6

y (feet) 6 90 142 162 150 106 30

Velocity versus Speed

From now on, we will distinguish between velocity and speed. Suppose an object moves along a
line. We pick one direction to be positive and say that the velocity is positive if it is in the same
direction, and negative if it is in the opposite direction. For the grapefruit, upward is positive and
downward is negative. (See Figure 2.1.) Speed is the magnitude of the velocity and so is always
positive or zero.

If s(t) is the position of an object at time t, then the average velocity of the object over the
interval a ≤ t ≤ b is

Average velocity =
Change in position

Change in time
=

s(b)− s(a)

b− a
.

In words, the average velocity of an object over an interval is the net change in position
during the interval divided by the change in time.
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Example 1 Compute the average velocity of the grapefruit over the interval 4 ≤ t ≤ 5. What is the significance
of the sign of your answer?

Solution During this one-second interval, the grapefruit moves (106 − 150) = −44 feet. Therefore the
average velocity is −44/(5 − 4) = −44 ft/sec. The negative sign means the height is decreasing
and the grapefruit is moving downward.

Example 2 Compute the average velocity of the grapefruit over the interval 1 ≤ t ≤ 3.

Solution Average velocity = (162− 90)/(3− 1) = 72/2 = 36 ft/sec.

The average velocity is a useful concept since it gives a rough idea of the behavior of the
grapefruit: If two grapefruits are hurled into the air, and one has an average velocity of 10 ft/sec
over the interval 0 ≤ t ≤ 1 while the second has an average velocity of 100 ft/sec over the same
interval, the second one is moving faster.

But average velocity over an interval does not solve the problem of measuring the velocity of
the grapefruit at exactly t = 1 second. To get closer to an answer to that question, we have to look
at what happens near t = 1 in more detail. The data1 in Figure 2.2 shows the average velocity over
small intervals on either side of t = 1.

Notice that the average velocity before t = 1 is slightly more than the average velocity after
t = 1. We expect to define the velocity at t = 1 to be between these two average velocities. As the
size of the interval shrinks, the values of the velocity before t = 1 and the velocity after t = 1 get
closer together. In the smallest interval in Figure 2.2, both velocities are 68.0 ft/sec (to one decimal
place), so we define the velocity at t = 1 to be 68.0 ft/sec (to one decimal place).




�

�



t = 1.001
y = 90.068

t = 0.999
y = 89.932

t = 1.01
y = 90.678

t = 0.99
y = 89.318

t = 0.9
y = 83.04

t = 1.1
y = 96.64

1 11

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Average
velocity

67.8 ft/sec⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Average
velocity

68.2 ft/sec

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Average
velocity

68.0 ft/sec ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Average
velocity

68.0 ft/sec

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Average
velocity

66.4 ft/sec ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Average
velocity

69.6 ft/sec

Figure 2.2: Average velocities over intervals on either side of t = 1: showing successively smaller intervals

Of course, if we calculate to more decimal places, the average velocities before and after t = 1

would no longer agree. To calculate the velocity at t = 1 to more decimal places of accuracy,
we take smaller and smaller intervals on either side of t = 1 until the average velocities agree to
the number of decimal places we want. In this way, we can estimate the velocity at t = 1 to any
accuracy.

1The data is in fact calculated from the formula y = 6 + 100t − 16t2 .
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Defining Instantaneous Velocity Using Limit Notation
When we take smaller and smaller intervals, it turns out that the average velocities get closer and
closer to 68 ft/sec. It seems natural, then, to define instantaneous velocity at the instant t = 1 to
be 68 ft/sec. Its definition depends on our being convinced that smaller and smaller intervals give
averages that come arbitrarily close to 68; that is, the average speed approaches 68 ft/sec as a limit.

Notice how we have replaced the original difficulty of computing velocity at a point by a search
for an argument to convince ourselves that the average velocities approach a limit as the time inter-
vals shrink in size. Showing that the limit is exactly 68 requires the precise definition of limit given
in Section 1.8.

To define instantaneous velocity at an arbitrary point t = a, we use the same method as for
t = 1. On small intervals of size h around t = a, we calculate

Average velocity =
s(a+ h)− s(a)

h
.

The instantaneous velocity is the number that the average velocities approach as the intervals de-
crease in size, that is, as h becomes smaller. So we make the following definition:

Let s(t) be the position at time t. Then the instantaneous velocity at t = a is defined as

Instantaneous velocity

at t = a
= lim

h→0

s(a+ h)− s(a)

h
.

In words, the instantaneous velocity of an object at time t = a is given by the limit of the
average velocity over an interval, as the interval shrinks around a.

This limit refers to the number that the average velocities approach as the intervals shrink. To
estimate the limit, we look at intervals of smaller and smaller, but never zero, length.

Visualizing Velocity: Slope of Curve
Now we visualize velocity using a graph of height. The cornerstone of the idea is the fact that, on
a very small scale, most functions look almost like straight lines. Imagine taking the graph of a
function near a point and “zooming in” to get a close-up view. (See Figure 2.3.) The more we zoom
in, the more the curve appears to be a straight line. We call the slope of this line the slope of the
curve at the point.

Curve More linear Almost completely
linear

�

�

�

�

Slope of line
= Slope of

curve at P
P P P �

Figure 2.3: Estimating the slope of the curve at the point by “zooming in”

To visualize the instantaneous velocity, we think about how we calculated it. We took average
velocities over small intervals containing t = 1. Two such velocities are represented by the slopes
of the lines in Figure 2.4. As the length of the interval shrinks, the slope of the line gets closer to the
slope of the curve at t = 1.
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1 2 3.5
t

y y = s(t)

Slope = Average velocity
over 1 ≤ t ≤ 3.5

�

Slope = Average velocity
over 1 ≤ t ≤ 2

�
Slope of curve =
Instantaneous
velocity at t = 1

�

Figure 2.4: Average velocities over small intervals

The instantaneous velocity is the slope of the curve at a point.

Let’s go back to the grapefruit. Figure 2.5 shows the height of the grapefruit plotted against
time. (Note that this is not a picture of the grapefruit’s path, which is straight up and down.)

How can we visualize the average velocity on this graph? Suppose y = s(t). We consider the
interval 1 ≤ t ≤ 2 and the expression

Average velocity =
Change in position

Change in time
=

s(2)− s(1)

2− 1
=

142− 90

1
= 52 ft/sec.

Now s(2)−s(1) is the change in position over the interval, and it is marked vertically in Figure 2.5.
The 1 in the denominator is the time elapsed and is marked horizontally in Figure 2.5. Therefore,

Average velocity =
Change in position

Change in time
= Slope of line joining B and C.

(See Figure 2.5.) A similar argument shows the following:

The average velocity over any time interval a ≤ t ≤ b is the slope of the line joining the
points on the graph of s(t) corresponding to t = a and t = b.

Figure 2.5 shows how the grapefruit’s velocity varies during its journey. At points A and B
the curve has a large positive slope, indicating that the grapefruit is traveling up rapidly. Point D
is almost at the top: the grapefruit is slowing down. At the peak, the slope of the curve is zero:
the fruit has slowed to zero velocity for an instant in preparation for its return to earth. At point E
the curve has a small negative slope, indicating a slow velocity of descent. Finally, the slope of the
curve at point G is large and negative, indicating a large downward velocity that is responsible for
the “Splat.”

1 2 3 4 5 6

90

142

t (time)

y (height)

y = s(t)

A

B

C
D

E

F

G

Velocity zero

Grapefruit
moving

fast
(upward)

Grapefruit
moving
fast
(downward)

�


�

�� 1

�

�
s(2)− s(1)

Figure 2.5: The height, y, of the grapefruit at time t
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Using Limits to Compute the Instantaneous Velocity
Suppose we want to calculate the instantaneous velocity for s(t) = t2 at t = 3. We must find:

lim
h→0

s(3 + h)− s(3)

h
= lim

h→0

(3 + h)2 − 9

h
.

We show two possible approaches.

Example 3 Estimate lim
h→0

(3 + h)2 − 9

h
numerically.

Solution The limit is the value approached by this expression as h approaches 0. The values in Table 2.2
seem to be converging to 6 as h → 0. So it is a reasonable guess that

lim
h→0

(3 + h)2 − 9

h
= 6.

However, we cannot be sure that the limit is exactly 6 by looking at the table. To calculate the limit
exactly requires algebra.

Table 2.2 Values of
(
(3 + h)2 − 9

)
/h near h = 0

h −0.1 −0.01 −0.001 0.001 0.01 0.1(
(3 + h)2 − 9

)
/h 5.9 5.99 5.999 6.001 6.01 6.1

Example 4 Use algebra to find lim
h→0

(3 + h)2 − 9

h
.

Solution Expanding the numerator gives

(3 + h)2 − 9

h
=

9 + 6h+ h2 − 9

h
=

6h+ h2

h
.

Since taking the limit as h → 0 means looking at values of h near, but not equal, to 0, we can cancel
h, giving

lim
h→0

(3 + h)2 − 9

h
= lim

h→0
(6 + h).

As h approaches 0, the values of (6 + h) approach 6, so

lim
h→0

(3 + h)2 − 9

h
= lim

h→0
(6 + h) = 6.

Exercises and Problems for Section 2.1
Exercises

1. The distance, s, a car has traveled on a trip is shown in
the table as a function of the time, t, since the trip started.
Find the average velocity between t = 2 and t = 5.

t (hours) 0 1 2 3 4 5

s (km) 0 45 135 220 300 400

2. The table gives the position of a particle moving along
the x-axis as a function of time in seconds, where x is in

meters. What is the average velocity of the particle from
t = 0 to t = 4?

t 0 2 4 6 8

x(t) −2 4 −6 −18 −14

3. The table gives the position of a particle moving along
the x-axis as a function of time in seconds, where x is
in angstroms. What is the average velocity of the particle
from t = 2 to t = 8?

t 0 2 4 6 8

x(t) 0 14 −6 −18 −4
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4. Figure 2.6 shows a particle’s distance from a point. What
is the particle’s average velocity from t = 0 to t = 3?

2 4

1

3

5
s(t)

t (sec)

distance (meters)

Figure 2.6

2 4

1

3

5

7
s(t)

t (sec)

distance (meters)

Figure 2.7

5. Figure 2.7 shows a particle’s distance from a point. What
is the particle’s average velocity from t = 1 to t = 3?

6. At time t in seconds, a particle’s distance s(t), in mi-
crometers (μm), from a point is given by s(t) = et − 1.
What is the average velocity of the particle from t = 2 to
t = 4?

7. At time t in seconds, a particle’s distance s(t), in cen-
timeters, from a point is given by s(t) = 4 + 3 sin t.
What is the average velocity of the particle from t = π/3
to t = 7π/3?

8. In a time of t seconds, a particle moves a distance of s
meters from its starting point, where s = 3t2.

(a) Find the average velocity between t = 1 and t =
1 + h if:

(i) h = 0.1, (ii) h = 0.01, (iii) h = 0.001.

(b) Use your answers to part (a) to estimate the instan-
taneous velocity of the particle at time t = 1.

9. In a time of t seconds, a particle moves a distance of s
meters from its starting point, where s = 4t3.

(a) Find the average velocity between t = 0 and t = h
if:

(i) h = 0.1, (ii) h = 0.01, (iii) h = 0.001.

(b) Use your answers to part (a) to estimate the instan-
taneous velocity of the particle at time t = 0.

10. In a time of t seconds, a particle moves a distance of s
meters from its starting point, where s = sin(2t).

(a) Find the average velocity between t = 1 and t =
1 + h if:

(i) h = 0.1, (ii) h = 0.01, (iii) h = 0.001.

(b) Use your answers to part (a) to estimate the instan-
taneous velocity of the particle at time t = 1.

11. A car is driven at a constant speed. Sketch a graph of the
distance the car has traveled as a function of time.

12. A car is driven at an increasing speed. Sketch a graph of
the distance the car has traveled as a function of time.

13. A car starts at a high speed, and its speed then decreases
slowly. Sketch a graph of the distance the car has traveled
as a function of time.

Problems

Estimate the limits in Problems 14–17 by substituting smaller
and smaller values of h. For trigonometric functions, use ra-
dians. Give answers to one decimal place.

14. lim
h→0

(3 + h)3 − 27

h
15. lim

h→0

cosh− 1

h

16. lim
h→0

7h − 1

h
17. lim

h→0

e1+h − e

h

18. Match the points labeled on the curve in Figure 2.8 with
the given slopes.

Slope Point

−3

−1

0

1/2

1

2

A
B

C
D

E
F

Figure 2.8

19. For the function shown in Figure 2.9, at what labeled
points is the slope of the graph positive? Negative? At
which labeled point does the graph have the greatest (i.e.,
most positive) slope? The least slope (i.e., negative and
with the largest magnitude)?

A

B
CD

E

F

Figure 2.9

20. For the graph y = f(x) in Figure 2.10, arrange the fol-
lowing numbers from smallest to largest:

• The slope of the graph at A.
• The slope of the graph at B.
• The slope of the graph at C.
• The slope of the line AB.
• The number 0.
• The number 1.

x

y = x

B
C

y = f(x)

A

y

Figure 2.10
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21. The graph of f(t) in Figure 2.11 gives the position of a
particle at time t. List the following quantities in order,
smallest to largest.

• A, average velocity between t = 1 and t = 3,
• B, average velocity between t = 5 and t = 6,
• C, instantaneous velocity at t = 1,
• D, instantaneous velocity at t = 3,
• E, instantaneous velocity at t = 5,
• F , instantaneous velocity at t = 6.

1 2 3 4 5 6

1

2

3

4

t

f(t)

Figure 2.11

22. Find the average velocity over the interval 0 ≤ t ≤ 0.2,
and estimate the velocity at t = 0.2 of a car whose posi-
tion, s, is given by the following table.

t (sec) 0 0.2 0.4 0.6 0.8 1.0

s (ft) 0 0.5 1.8 3.8 6.5 9.6

23. A particle moves at varying velocity along a line and
s = f(t) represents the particle’s distance from a point
as a function of time, t. Sketch a possible graph for f if
the average velocity of the particle between t = 2 and
t = 6 is the same as the instantaneous velocity at t = 5.

24. A ball is tossed into the air from a bridge, and its height,
y (in feet), above the ground t seconds after it is thrown
is given by

y = f(t) = −16t2 + 50t+ 36.

(a) How high above the ground is the bridge?
(b) What is the average velocity of the ball for the first

second?
(c) Approximate the velocity of the ball at t = 1 sec-

ond.
(d) Graph f , and determine the maximum height the

ball reaches. What is the velocity at the time the ball
is at the peak?

(e) Use the graph to decide at what time, t, the ball
reaches its maximum height.

Use algebra to evaluate the limits in Problems 25–28.

25. lim
h→0

(2 + h)2 − 4

h
26. lim

h→0

(1 + h)3 − 1

h

27. lim
h→0

3(2 + h)2 − 12

h

28. lim
h→0

(3 + h)2 − (3− h)2

2h

Strengthen Your Understanding

In Problems 29–31, explain what is wrong with the statement.

29. Velocity and speed are the same.

30. Since limh→0(2 + h)2 = 4, we have

lim
h→0

(2 + h)2 − 22

h
= 0.

31. The particle whose position is shown in Figure 2.11 has
velocity at time t = 4 greater than the velocity at t = 2.

In Problems 32–33, give an example of:

32. A function which has a negative instantaneous velocity
for t < 0 and a positive instantaneous velocity for t > 0.

33. A function giving the position of a particle that has the
same speed at t = −1 and t = 1 but different velocities.

Are the statements in Problems 34–39 true or false? Give an
explanation for your answer.

34. If a car is going 50 miles per hour at 2 pm and 60 miles
per hour at 3 pm then it travels between 50 and 60 miles
during the hour between 2 pm and 3 pm.

35. If a car travels 80 miles between 2 and 4 pm, then its
velocity is close to 40 mph at 2 pm.

36. If the time interval is short enough, then the average ve-
locity of a car over the time interval and the instantaneous
velocity at a time in the interval can be expected to be
close.

37. If an object moves with the same average velocity over
every time interval, then its average velocity equals its
instantaneous velocity at any time.

38. The formula Distance traveled = Average velocity ×
Time is valid for every moving object for every time in-
terval.

39. By definition, the instantaneous velocity of an object
equals a difference quotient.
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2.2 THE DERIVATIVE AT A POINT

Average Rate of Change
In Section 2.1, we looked at the change in height divided by the change in time; this ratio is called
the difference quotient. Now we define the rate of change of a function f that depends on a variable
other than time. We say:

Average rate of change of f

over the interval from a to a+ h
=

f(a+ h)− f(a)

h
.

The numerator, f(a+ h)− f(a), measures the change in the value of f over the interval from a to
a+ h. The difference quotient is the change in f divided by the change in the independent variable,
which we call x. Although the interval is no longer necessarily a time interval, we still talk about
the average rate of change of f over the interval. If we want to emphasize the independent variable,
we talk about the average rate of change of f with respect to x.

Instantaneous Rate of Change: The Derivative
We define the instantaneous rate of change of a function at a point in the same way that we defined
instantaneous velocity: we look at the average rate of change over smaller and smaller intervals.
This instantaneous rate of change is called the derivative of f at a, denoted by f ′(a).

The derivative of f at a, written f ′(a), is defined as

Rate of change

of f at a
= f ′

(a) = lim
h→0

f(a+ h)− f(a)

h
.

If the limit exists, then f is said to be differentiable at a.

To emphasize that f ′(a) is the rate of change of f(x) as the variable x changes, we call f ′(a) the
derivative of f with respect to x at x = a. When the function y = s(t) represents the position of an
object, the derivative s′(t) is the velocity.

Example 1 Eucalyptus trees, common in California and the Pacific Northwest, grow better with more water.
Scientists in North Africa, analyzing where to plant trees, found that the volume of wood that grows
on a square kilometer, in meters3, is approximated by2

V (r) = 0.2r2 − 20r + 600,

where r is rainfall in cm per year, and 60 ≤ r ≤ 120.

(a) Calculate the average rate of change of V with respect to r over the intervals 90 ≤ r ≤ 100 and
100 ≤ r ≤ 110.

(b) By choosing small values for h, estimate the instantaneous rate of change of V with respect to r
at r = 100 cm.

Solution (a) Using the formula for the average rate of change gives

Average rate of change of volume

for 90 ≤ r ≤ 100
=

V (100)− V (90)

10
=

600− 420

10
= 18 meter3/cm.

2“Is urban forestry a solution to the energy crises of Sahelian cities?” by Cornelia Sepp, www.nzdl.org, accessed Feb 11,
2012.
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Average rate of change of volume

for 100 ≤ r ≤ 110
=

V (110)− V (100)

10
=

820− 600

10
= 22 meter3/cm.

So we see that the average rate of change of the volume of wood grown on a square kilometer
increases as the rainfall increases.

(b) With h = 0.1 and h = −0.1, we have the difference quotients

V (100.1)− V (100)

0.1
= 20.02 m3/cm and

V (99.9)− V (100)

−0.1
= 19.98 m3/cm.

With h = 0.01 and h = −0.01,

V (100.01)− V (100)

0.01
= 20.002 m3/cm and

V (99.99)− V (100)

−0.01
= 19.998 m3/cm.

These difference quotients suggest that when the yearly rainfall is 100 cm, the instantaneous
rate of change of the volume of wood grown on a square kilometer is about 20 meter3 per cm
of rainfall. To confirm that the instantaneous rate of change of the function is exactly 20, that is,
V ′(100) = 20, we would need to take the limit as h → 0.

Visualizing the Derivative: Slope of Curve and Slope of Tangent
As with velocity, we can visualize the derivative f ′(a) as the slope of the graph of f at x = a.
In addition, there is another way to think of f ′(a). Consider the difference quotient (f(a + h) −
f(a))/h. The numerator, f(a + h) − f(a), is the vertical distance marked in Figure 2.12 and h is
the horizontal distance, so

Average rate of change of f =
f(a+ h)− f(a)

h
= Slope of line AB.

As h becomes smaller, the line AB approaches the tangent line to the curve at A. (See Figure 2.13.)
We say

Instantaneous rate of change

of f at a
= lim

h→0

f(a+ h)− f(a)

h
= Slope of tangent at A.

a a+ h
x

A

B

f(x)

Slope = Average rate
of change

= f(a+h)−f(a)
h

�

�

�

f(a+ h)− f(a)

�� h

Figure 2.12: Visualizing the average rate of
change of f

a
x

A
B

B

B

B

f(x)

Slope = Derivative = f ′(a)

�

Figure 2.13: Visualizing the instantaneous
rate of change of f

The derivative at point A can be interpreted as:
• The slope of the curve at A.

• The slope of the tangent line to the curve at A.
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The slope interpretation is often useful in gaining rough information about the derivative, as the
following examples show.

Example 2 Is the derivative of sinx at x = π positive or negative?

Solution Looking at a graph of sinx in Figure 2.14 (remember, x is in radians), we see that a tangent line
drawn at x = π has negative slope. So the derivative at this point is negative.

3π 4π
x

π 2π

−1

1 f(x) = sin xNegative slope�

Figure 2.14: Tangent line to sin x at x = π

Recall that if we zoom in on the graph of a function y = f(x) at the point x = a, we usually
find that the graph looks like a straight line with slope f ′(a).

Example 3 By zooming in on the point (0, 0) on the graph of the sine function, estimate the value of the
derivative of sinx at x = 0, with x in radians.

Solution Figure 2.15 shows graphs of sinx with smaller and smaller scales. On the interval −0.1 ≤ x ≤ 0.1,
the graph looks like a straight line of slope 1. Thus, the derivative of sinx at x = 0 is about 1.

−3 3

−3

3

x

f(x) = sin x

−1 1

−1

1

x

f(x) = sin x

−0.1 0.1

−0.1

0.1

x

f(x) = sin x

Figure 2.15: Zooming in on the graph of sin x near x = 0 shows the derivative is about 1 at x = 0

Later we will show that the derivative of sinx at x = 0 is exactly 1. (See page 152 in Sec-
tion 3.5.) From now on we will assume that this is so. This simple result is one of the reasons we
choose to use radians when doing calculus with trigonometric functions. If we had done Exam-
ple 3 in degrees, the derivative of sinx would have turned out to be a much messier number. (See
Problem 24, page 89.)

Estimating the Derivative

Example 4 Estimate the value of the derivative of f(x) = 2x at x = 0 graphically and numerically.

Solution Graphically: Figure 2.16 indicates that the graph is concave up. Assuming this, the slope at A is
between the slope of BA and the slope of AC. Since

Slope of line BA =
(20 − 2−1)

(0 − (−1))
=

1

2
and Slope of line AC =

(21 − 20)

(1− 0)
= 1,

we know that at x = 0 the derivative of 2x is between 1/2 and 1.
Numerically: To estimate the derivative at x = 0, we look at values of the difference quotient

f(0 + h)− f(0)

h
=

2h − 20

h
=

2h − 1

h
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for small h. Table 2.3 shows some values of 2h together with values of the difference quotients. (See
Problem 33 on page 89 for what happens for very small values of h.)

−1 1

1

2

x

A

B

C

f(x) = 2x

�

Slope = 1
2

�

Slope = 1

Tangent line
Slope = f ′(0)

�

Figure 2.16: Graph of y = 2x showing the
derivative at x = 0

Table 2.3 Numerical values for difference quotient of 2x

at x = 0

h 2h Difference quotient: 2
h

−1

h

−0.0003 0.999792078 0.693075

−0.0002 0.999861380 0.693099

−0.0001 0.999930688 0.693123

0 1

0.0001 1.00006932 0.693171

0.0002 1.00013864 0.693195

0.0003 1.00020797 0.693219

The concavity of the curve tells us that difference quotients calculated with negative h’s are
smaller than the derivative, and those calculated with positive h’s are larger. From Table 2.3 we see
that the derivative is between 0.693123 and 0.693171. To three decimal places, f ′(0) = 0.693.

Example 5 Find an approximate equation for the tangent line to f(x) = 2x at x = 0.

Solution From the previous example, we know the slope of the tangent line is about 0.693. Since the tangent
line has y-intercept 1, its equation is

y = 0.693x+ 1.

Computing the Derivative Algebraically
The graph of f(x) = 1/x in Figure 2.17 leads us to expect that f ′(2) is negative. To compute f ′(2)

exactly, we use algebra.

1 2 3

1

f(x) = 1/x

�

Slope = f ′(2)

x

Figure 2.17: Tangent line to f(x) = 1/x at x = 2

Example 6 Find the derivative of f(x) = 1/x at the point x = 2.

Solution The derivative is the limit of the difference quotient, so we look at

f ′
(2) = lim

h→0

f(2 + h)− f(2)

h
.

Using the formula for f and simplifying gives

f ′
(2) = lim

h→0

1

h

(
1

2 + h
−

1

2

)
= lim

h→0

(
2− (2 + h)

2h(2 + h)

)
= lim

h→0

−h

2h(2 + h)
.
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Since the limit only examines values of h close to, but not equal to, zero, we can cancel h. We get

f ′
(2) = lim

h→0

−1

2(2 + h)
= −

1

4
.

Thus, f ′(2) = −1/4. The slope of the tangent line in Figure 2.17 is −1/4.

Exercises and Problems for Section 2.2
Exercises

1. The table shows values of f(x) = x3 near x = 2 (to
three decimal places). Use it to estimate f ′(2).

x 1.998 1.999 2.000 2.001 2.002

x3 7.976 7.988 8.000 8.012 8.024

2. By choosing small values for h, estimate the instanta-
neous rate of change of the function f(x) = x3 with
respect to x at x = 1.

3. The income that a company receives from selling an item
is called the revenue. Production decisions are based,
in part, on how revenue changes if the quantity sold
changes; that is, on the rate of change of revenue with
respect to quantity sold. Suppose a company’s revenue,
in dollars, is given by R(q) = 100q − 10q2, where q is
the quantity sold in kilograms.

(a) Calculate the average rate of change of R with re-
spect to q over the intervals 1 ≤ q ≤ 2 and
2 ≤ q ≤ 3.

(b) By choosing small values for h, estimate the instan-
taneous rate of change of revenue with respect to
change in quantity at q = 2 kilograms.

4. (a) Make a table of values rounded to two decimal
places for the function f(x) = ex for
x = 1, 1.5, 2, 2.5, and 3. Then use the table to an-
swer parts (b) and (c).

(b) Find the average rate of change of f(x) between
x = 1 and x = 3.

(c) Use average rates of change to approximate the in-
stantaneous rate of change of f(x) at x = 2.

5. (a) Make a table of values, rounded to two decimal
places, for f(x) = log x (that is, log base 10) with
x = 1, 1.5, 2, 2.5, 3. Then use this table to answer
parts (b) and (c).

(b) Find the average rate of change of f(x) between
x = 1 and x = 3.

(c) Use average rates of change to approximate the in-
stantaneous rate of change of f(x) at x = 2.

6. If f(x) = x3 + 4x, estimate f ′(3) using a table with
values of x near 3, spaced by 0.001.

7. Graph f(x) = sin x, and use the graph to decide whether
the derivative of f(x) at x = 3π is positive or negative.

8. For the function f(x) = log x, estimate f ′(1). From
the graph of f(x), would you expect your estimate to
be greater than or less than f ′(1)?

9. Estimate f ′(2) for f(x) = 3x. Explain your reasoning.

10. The graph of y = f(x) is shown in Figure 2.18. Which
is larger in each of the following pairs?

(a) Average rate of change: Between x = 1 and x = 3?
Or between x = 3 and x = 5?

(b) f(2) or f(5)?
(c) f ′(1) or f ′(4)?

1 2 3 4 5

1

2

3

4

5

x

y
y = f(x)

Figure 2.18

11. Figure 2.19 shows the graph of f . Match the derivatives
in the table with the points a, b, c, d, e.

ba c d e

f

x

Figure 2.19

x f ′(x)

0

0.5

2

−0.5

−2
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12. Label points A,B,C,D,E, and F on the graph of y =
f(x) in Figure 2.20.

(a) Point A is a point on the curve where the derivative
is negative.

(b) Point B is a point on the curve where the value of
the function is negative.

(c) Point C is a point on the curve where the derivative
is largest.

(d) Point D is a point on the curve where the derivative
is zero.

(e) Points E and F are different points on the curve
where the derivative is about the same.

x

y

y = f(x)

Figure 2.20

Problems

13. Suppose that f(x) is a function with f(100) = 35 and
f ′(100) = 3. Estimate f(102).

14. Show how to represent the following on Figure 2.21.

(a) f(4) (b) f(4) − f(2)

(c)
f(5) − f(2)

5− 2
(d) f ′(3)

1 2 3 4 5
x

f(x)

Figure 2.21

15. For each of the following pairs of numbers, use Fig-
ure 2.21 to decide which is larger. Explain your answer.

(a) f(3) or f(4)?
(b) f(3)− f(2) or f(2) − f(1)?

(c)
f(2)− f(1)

2− 1
or

f(3) − f(1)

3− 1
?

(d) f ′(1) or f ′(4)?

16. With the function f given by Figure 2.21, arrange the
following quantities in ascending order:

0, f ′(2), f ′(3), f(3) − f(2)

17. The function in Figure 2.22 has f(4) = 25 and f ′(4) =
1.5. Find the coordinates of the points A, B, C.

A

B

C

x
3.9 4 4.2

f(x)

Tangent line

Figure 2.22

18. Use Figure 2.23 to fill in the blanks in the following state-
ments about the function g at point B.

(a) g( ) = (b) g′( ) =

(1.95, 5.02)

(2, 5)

B
g(x)

Tangent line

Figure 2.23

19. On a copy of Figure 2.24, mark lengths that represent the
quantities in parts (a)–(d). (Pick any positive x and h.)

(a) f(x) (b) f(x+ h)

(c) f(x+ h)− f(x) (d) h

(e) Using your answers to parts (a)–(d), show how the

quantity
f(x+ h)− f(x)

h
can be represented as the

slope of a line in Figure 2.24.
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x

y

y = f(x)

Figure 2.24

x

y

y = f(x)

Figure 2.25

20. On a copy of Figure 2.25, mark lengths that represent the
quantities in parts (a)–(d). (Pick any convenient x, and
assume h > 0.)
(a) f(x) (b) f(x+h) (c) f(x+h)−
f(x) (d) h

(e) Using your answers to parts (a)–(d), show how the

quantity
f(x+ h)− f(x)

h
can be represented as the

slope of a line on the graph.

21. Consider the function shown in Figure 2.26.

(a) Write an expression involving f for the slope of the
line joining A and B.

(b) Draw the tangent line at C. Compare its slope to the
slope of the line in part (a).

(c) Are there any other points on the curve at which the
slope of the tangent line is the same as the slope of
the tangent line at C? If so, mark them on the graph.
If not, why not?

a c b

f

A

C

B

Figure 2.26

22. (a) If f is even and f ′(10) = 6, what is f ′(−10)?
(b) If f is any even function and f ′(0) exists, what is

f ′(0)?

23. If g is an odd function and g′(4) = 5, what is g′(−4)?

24. (a) Estimate f ′(0) if f(x) = sin x, with x in degrees.
(b) In Example 3 on page 85, we found that the deriva-

tive of sin x at x = 0 was 1. Why do we get a dif-
ferent result here? (This problem shows why radians
are almost always used in calculus.)

25. Find the equation of the tangent line to f(x) = x2 + x
at x = 3. Sketch the function and this tangent line.

26. Estimate the instantaneous rate of change of the function
f(x) = x ln x at x = 1 and at x = 2. What do these
values suggest about the concavity of the graph between
1 and 2?

27. Estimate the derivative of f(x) = xx at x = 2.

28. For y = f(x) = 3x3/2 − x, use your calculator to con-
struct a graph of y = f(x), for 0 ≤ x ≤ 2. From your
graph, estimate f ′(0) and f ′(1).

29. Let f(x) = ln(cosx). Use your calculator to approxi-
mate the instantaneous rate of change of f at the point
x = 1. Do the same thing for x = π/4. (Note: Be sure
that your calculator is set in radians.)

30. On October 17, 2006, in an article called “US Popula-
tion Reaches 300 Million,” the BBC reported that the US
gains 1 person every 11 seconds. If f(t) is the US pop-
ulation in millions t years after October 17, 2006, find
f(0) and f ′(0).

31. The population, P (t), of China,3 in billions, can be ap-
proximated by

P (t) = 1.267(1.007)t ,

where t is the number of years since the start of 2000. Ac-
cording to this model, how fast was the population grow-
ing at the start of 2000 and at the start of 2007? Give your
answers in millions of people per year.

32. (a) Graph f(x) = 1
2
x2 and g(x) = f(x) + 3 on the

same set of axes. What can you say about the slopes
of the tangent lines to the two graphs at the point
x = 0? x = 2? Any point x = x0?

(b) Explain why adding a constant value, C, to any func-
tion does not change the value of the slope of its
graph at any point. [Hint: Let g(x) = f(x) + C,
and calculate the difference quotients for f and g.]

33. Suppose Table 2.3 on page 86 is continued with smaller
values of h. A particular calculator gives the results in
Table 2.4. (Your calculator may give slightly different
results.) Comment on the values of the difference
quotient in Table 2.4. In particular, why is the last value
of (2h − 1)/h zero? What do you expect the calculated
value of (2h − 1)/h to be when h = 10−20?

Table 2.4 Questionable values of
difference quotients of 2x near x = 0

h Difference quotient: (2h − 1)/h

10−4 0.6931712

10−6 0.693147

10−8 0.6931

10−10 0.69

10−12 0

3www.unescap.org/stat/data/apif/index.asp, accessed May 1, 2007.
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34. (a) Let f(x) = x2. Explain what Table 2.5 tells us about
f ′(1).

(b) Find f ′(1) exactly.
(c) If x changes by 0.1 near x = 1, what does f ′(1) tell

us about how f(x) changes? Illustrate your answer
with a sketch.

Table 2.5

Difference in

x x2 successive x2 values

0.998 0.996004

0.999 0.998001
0.001997

1.000 1.000000
0.001999

1.001 1.002001
0.002001

1.002 1.004004
0.002003

Use algebra to evaluate the limits in Problems 35–40.

35. lim
h→0

(−3 + h)2 − 9

h
36. lim

h→0

(2− h)3 − 8

h

37. lim
h→0

1/(1 + h)− 1

h
38. lim

h→0

1/(1 + h)2 − 1

h

39. lim
h→0

√
4 + h− 2

h
[Hint: Multiply by

√
4 + h+ 2 in nu-

merator and denominator.]

40. lim
h→0

1/
√
4 + h− 1/2

h

Find the derivatives in Problems 41–46 algebraically.

41. f(x) = 5x2 at x = 10 42. f(x) = x3 at x = −2

43. g(t) = t2 + t at t = −1 44. f(x) = x3 +5 at x = 1

45. g(x) = 1/x at x = 2 46. g(z) = z−2, find g′(2)

For Problems 47–50, find the equation of the line tangent to
the function at the given point.

47. f(x) = 5x2 at x = 10 48. f(x) = x3 at x = −2

49. f(x) = x at x = 20 50. f(x) = 1/x2 at (1, 1)

Strengthen Your Understanding

In Problems 51–52, explain what is wrong with the statement.

51. For the function f(x) = log x we have f ′(0.5) < 0.

52. The derivative of a function f(x) at x = a is the tangent
line to the graph of f(x) at x = a.

In Problems 53–54, give an example of:

53. A continuous function which is always increasing and
positive.

54. A linear function with derivative 2 at x = 0.

Are the statements in Problems 55–57 true or false? Give an
explanation for your answer.

55. You cannot be sure of the exact value of a derivative of a
function at a point using only the information in a table

of values of the function. The best you can do is find an
approximation.

56. If you zoom in (with your calculator) on the graph of
y = f(x) in a small interval around x = 10 and see a
straight line, then the slope of that line equals the deriva-
tive f ′(10).

57. If f(x) is concave up, then
f ′(a) < (f(b)− f(a))/(b− a) for a < b.

58. Assume that f is an odd function and that f ′(2) = 3,
then f ′(−2) =

(a) 3 (b) −3

(c) 1/3 (d) −1/3

2.3 THE DERIVATIVE FUNCTION

In the previous section we looked at the derivative of a function at a fixed point. Now we consider
what happens at a variety of points. The derivative generally takes on different values at different
points and is itself a function.

First, remember that the derivative of a function at a point tells us the rate at which the value of
the function is changing at that point. Geometrically, we can think of the derivative as the slope of
the curve or of the tangent line at the point.
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Example 1 Estimate the derivative of the function f(x) graphed in Figure 2.27 at x = −2,−1, 0, 1, 2, 3, 4, 5.

−2 −1 1 2 3 4 5

−3

−2

−1

1

2

3

4

5

x

Figure 2.27: Estimating the derivative graphically as the slope of the tangent line

Solution From the graph we estimate the derivative at any point by placing a straightedge so that it forms the
tangent line at that point, and then using the grid squares to estimate the slope of the straightedge. For
example, the tangent at x = −1 is drawn in Figure 2.27, and has a slope of about 2, so f ′(−1) ≈ 2.
Notice that the slope at x = −2 is positive and fairly large; the slope at x = −1 is positive
but smaller. At x = 0, the slope is negative, by x = 1 it has become more negative, and so on.
Some estimates of the derivative are listed in Table 2.6. You should check these values. Are they
reasonable? Is the derivative positive where you expect? Negative?

Table 2.6 Estimated values of derivative of function in Figure 2.27

x −2 −1 0 1 2 3 4 5

f ′(x) 6 2 −1 −2 −2 −1 1 4

Notice that for every x-value, there’s a corresponding value of the derivative. Therefore, the
derivative is itself a function of x.

For any function f , we define the derivative function, f ′, by

f ′
(x) = Rate of change of f at x = lim

h→0

f(x+ h)− f(x)

h
.

For every x-value for which this limit exists, we say f is differentiable at that x-value. If the
limit exists for all x in the domain of f , we say f is differentiable everywhere. Most functions we
meet are differentiable at every point in their domain, except perhaps for a few isolated points.

The Derivative Function: Graphically

Example 2 Sketch the graph of the derivative of the function shown in Figure 2.27.

Solution We plot the values of the derivative in Table 2.6 and connect them with a smooth curve to obtain
the estimate of the derivative function in Figure 2.28. Values of the derivative function give slopes
of the original graph.
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−2 −1 1 2 3 4 5

−3

−2

−1

1

2

3

4

5

x

f ′(x)

f(x)

Figure 2.28: Function (colored) and derivative (black) from Example 1

Check that this graph of f ′ makes sense: Where the values of f ′ are positive, f is increasing
(x < −0.3 or x > 3.8) and where f ′ is negative, f is decreasing. Notice that at the points where
f has large positive slope, such as x = −2, the graph of the derivative is far above the x-axis, as it
should be, since the value of the derivative is large there. At points where the slope is gentler, such
as x = −1, the graph of f ′ is closer to the x-axis, since the derivative is smaller.

What Does the Derivative Tell Us Graphically?
Where f ′ is positive, the tangent line to f is sloping up; where f ′ is negative, the tangent line to f
is sloping down. If f ′ = 0 everywhere, then the tangent line to f is horizontal everywhere, and f is
constant. We see that the sign of f ′ tells us whether f is increasing or decreasing.

If f ′ > 0 on an interval, then f is increasing over that interval.
If f ′ < 0 on an interval, then f is decreasing over that interval.

Moreover, the magnitude of the derivative gives us the magnitude of the rate of change; so if f ′ is
large (positive or negative), then the graph of f is steep (up or down), whereas if f ′ is small the
graph of f slopes gently. With this in mind, we can learn about the behavior of a function from the
behavior of its derivative.

The Derivative Function: Numerically
If we are given values of a function instead of its graph, we can estimate values of the derivative.

Example 3 Table 2.7 gives values of c(t), the concentration (μg/cm3) of a drug in the bloodstream at time t
(min). Construct a table of estimated values for c′(t), the rate of change of c(t) with respect to time.

Table 2.7 Concentration as a function of time

t (min) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

c(t) (μg/cm3) 0.84 0.89 0.94 0.98 1.00 1.00 0.97 0.90 0.79 0.63 0.41
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Solution We estimate values of c′ using the values in the table. To do this, we have to assume that the data
points are close enough together that the concentration does not change wildly between them. From
the table, we see that the concentration is increasing between t = 0 and t = 0.4, so we expect a
positive derivative there. However, the increase is quite slow, so we expect the derivative to be small.
The concentration does not change between 0.4 and 0.5, so we expect the derivative to be roughly
0 there. From t = 0.5 to t = 1.0, the concentration starts to decrease, and the rate of decrease gets
larger and larger, so we expect the derivative to be negative and of greater and greater magnitude.

Using the data in the table, we estimate the derivative using the difference quotient:

c′(t) ≈
c(t+ h)− c(t)

h
.

Since the data points are 0.1 apart, we use h = 0.1, giving, for example,

c′(0) ≈
c(0.1)− c(0)

0.1
=

0.89− 0.84

0.1
= 0.5 μg/cm3/min

c′(0.1) ≈
c(0.2)− c(0.1)

0.1
=

0.94− 0.89

0.1
= 0.5 μg/cm3/min.

See Table 2.8. Notice that the derivative has small positive values until t = 0.4, where it is roughly
0, and then it gets more and more negative, as we expected. The slopes are graphed in Figure 2.29.

Table 2.8 Estimated
derivative of concentration

t c′(t)

0 0.5

0.1 0.5

0.2 0.4

0.3 0.2

0.4 0.0

0.5 −0.3

0.6 −0.7

0.7 −1.1

0.8 −1.6

0.9 −2.2

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

c(t)

Slope = 0.5
� �

Slope = 0

�

Slope = −2.2 �

Figure 2.29: Graph of concentration as a function of time

Improving Numerical Estimates for the Derivative

In the previous example, the estimate for the derivative at 0.2 used the interval to the right; we found
the average rate of change between t = 0.2 and t = 0.3. However, we could equally well have gone
to the left and used the rate of change between t = 0.1 and t = 0.2 to approximate the derivative at
0.2. For a more accurate result, we could average these slopes and say

c′(0.2) ≈
1

2

(
Slope to left

of 0.2
+

Slope to right
of 0.2

)
=

0.5 + 0.4

2
= 0.45.

In general, averaging the slopes leads to a more accurate answer.

Derivative Function: From a Formula
If we are given a formula for f , can we come up with a formula for f ′? We often can, as shown in
the next example. Indeed, much of the power of calculus depends on our ability to find formulas for
the derivatives of all the functions we described earlier. This is done systematically in Chapter 3.
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Derivative of a Constant Function

The graph of a constant function f(x) = k is a horizontal line, with a slope of 0 everywhere.
Therefore, its derivative is 0 everywhere. (See Figure 2.30.)

If f(x) = k, then f ′(x) = 0.

x

f(x) = k

Slope = 0
�

Figure 2.30: A constant function

Derivative of a Linear Function

We already know that the slope of a straight line is constant. This tells us that the derivative of a
linear function is constant.

If f(x) = b+mx, then f ′(x) = Slope = m.

Derivative of a Power Function

Example 4 Find a formula for the derivative of f(x) = x2.

Solution Before computing the formula for f ′(x) algebraically, let’s try to guess the formula by looking for a
pattern in the values of f ′(x). Table 2.9 contains values of f(x) = x2 (rounded to three decimals),
which we can use to estimate the values of f ′(1), f ′(2), and f ′(3).

Table 2.9 Values of f(x) = x2 near x = 1, x = 2, x = 3 (rounded to three decimals)

x x2

0.999 0.998

1.000 1.000

1.001 1.002

1.002 1.004

x x2

1.999 3.996

2.000 4.000

2.001 4.004

2.002 4.008

x x2

2.999 8.994

3.000 9.000

3.001 9.006

3.002 9.012

Near x = 1, the value of x2 increases by about 0.002 each time x increases by 0.001, so

f ′
(1) ≈

0.002

0.001
= 2.

Similarly, near x = 2 and x = 3, the value of x2 increases by about 0.004 and 0.006, respectively,
when x increases by 0.001. So

f ′
(2) ≈

0.004

0.001
= 4 and f ′

(3) ≈
0.006

0.001
= 6.

Knowing the value of f ′ at specific points can never tell us the formula for f ′, but it certainly can
be suggestive: Knowing f ′(1) ≈ 2, f ′(2) ≈ 4, f ′(3) ≈ 6 suggests that f ′(x) = 2x.

The derivative is calculated by forming the difference quotient and taking the limit as h goes to
zero. The difference quotient is

f(x+ h)− f(x)

h
=

(x + h)2 − x2

h
=

x2 + 2xh+ h2 − x2

h
=

2xh+ h2

h
.



2.3 THE DERIVATIVE FUNCTION 95

Since h never actually reaches zero, we can cancel it in the last expression to get 2x+ h. The limit
of this as h goes to zero is 2x, so

f ′
(x) = lim

h→0
(2x+ h) = 2x.

Example 5 Calculate f ′(x) if f(x) = x3.

Solution We look at the difference quotient

f(x+ h)− f(x)

h
=

(x + h)3 − x3

h
.

Multiplying out gives (x+ h)3 = x3 + 3x2h+ 3xh2 + h3, so

f ′
(x) = lim

h→0

x3 + 3x2h+ 3xh2 + h3 − x3

h
= lim

h→0

3x2h+ 3xh2 + h3

h
.

Since in taking the limit as h → 0, we consider values of h near, but not equal to, zero, we can
cancel h, giving

f ′
(x) = lim

h→0

3x2h+ 3xh2 + h3

h
= lim

h→0
(3x2

+ 3xh+ h2
).

As h → 0, the value of (3xh+ h2) → 0, so

f ′
(x) = lim

h→0
(3x2

+ 3xh+ h2
) = 3x2.

The previous two examples show how to compute the derivatives of power functions of the form
f(x) = xn, when n is 2 or 3. We can use the Binomial Theorem to show the power rule for a
positive integer n:

If f(x) = xn then f ′
(x) = nxn−1.

This result is in fact valid for any real value of n.

Exercises and Problems for Section 2.3
Exercises

1. (a) Estimate f ′(2) using the values of f in the table.
(b) For what values of x does f ′(x) appear to be posi-

tive? Negative?

x 0 2 4 6 8 10 12

f(x) 10 18 24 21 20 18 15

2. Find approximate values for f ′(x) at each of the x-values
given in the following table.

x 0 5 10 15 20

f(x) 100 70 55 46 40

For Exercises 3–12, graph the derivative of the given func-
tions.

3.

−4 4

−4

4

x

y 4.

−4 4

−4

4

x

y
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5.

−4 4

−4

4

x

y 6.

−4

4

−4

4

x

y

7.

−4 4

−4

4

x

y 8.

−4 4

−4

4

y

x

9.

−4 4

−4

4

x

y 10.

−4 4

−4

4

x

y

11.

−4 4

−4

4

x

y 12.

−4 4

−4

4

x

y

For Exercises 13–18, sketch the graph of f(x), and use this
graph to sketch the graph of f ′(x).

13. f(x) = 5x 14. f(x) = x2

15. f(x) = x(x− 1) 16. f(x) = ex

17. f(x) = cosx 18. f(x) = ln x

In Exercises 19–20, find a formula for the derivative using the
power rule. Confirm it using difference quotients.

19. k(x) = 1/x 20. l(x) = 1/x2

Find a formula for the derivatives of the functions in Exer-
cises 21–22 using difference quotients.

21. g(x) = 2x2 − 3 22. m(x) = 1/(x+ 1)

Problems

23. In each case, graph a smooth curve whose slope meets
the condition.

(a) Everywhere positive and increasing gradually.
(b) Everywhere positive and decreasing gradually.
(c) Everywhere negative and increasing gradually (be-

coming less negative).
(d) Everywhere negative and decreasing gradually (be-

coming more negative).

24. Draw a possible graph of y = f(x) given the following
information about its derivative.

• f ′(x) > 0 for x < −1
• f ′(x) < 0 for x > −1
• f ′(x) = 0 at x = −1

25. For f(x) = ln x, construct tables, rounded to four deci-
mals, near x = 1, x = 2, x = 5, and x = 10. Use the
tables to estimate f ′(1), f ′(2), f ′(5), and f ′(10). Then
guess a general formula for f ′(x).

26. Given the numerical values shown, find approximate val-
ues for the derivative of f(x) at each of the x-values
given. Where is the rate of change of f(x) positive?
Where is it negative? Where does the rate of change of
f(x) seem to be greatest?

x 0 1 2 3 4 5 6 7 8

f(x) 18 13 10 9 9 11 15 21 30

27. Values of x and g(x) are given in the table. For what
value of x does g′(x) appear to be closest to 3?

x 2.7 3.2 3.7 4.2 4.7 5.2 5.7 6.2

g(x) 3.4 4.4 5.0 5.4 6.0 7.4 9.0 11.0

28. In the graph of f in Figure 2.31, at which of the labeled
x-values is

(a) f(x) greatest? (b) f(x) least?

(c) f ′(x) greatest? (d) f ′(x) least?

x1

x2 x3

x4 x5

x6

x

f(x)

Figure 2.31
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For Problems 29–38, sketch the graph of f ′(x).

29.

−3 3

−3

3 f(x)

x

30.

1 2

−2

−1

1

2

x

f(x)

31.

2 4

f(x)

x

32.

1 2
x

f(x)

33.

4
x

f(x) 34.

x

f(x)

35.

−3 3

−4

4 f(x)

x

36.

−1 1 2 3
x

f(x)

37.

−1 1 2 3 4 5 6
x

f(x)
38.

x

f(x)

39. Roughly sketch the shape of the graph of a quadratic
polynomial, f , if it is known that:

• (1, 3) is on the graph of f .
• f ′(0) = 3, f ′(2) = 1, f ′(3) = 0.

40. A vehicle moving along a straight road has distance f(t)
from its starting point at time t. Which of the graphs in
Figure 2.32 could be f ′(t) for the following scenarios?
(Assume the scales on the vertical axes are all the same.)

(a) A bus on a popular route, with no traffic
(b) A car with no traffic and all green lights
(c) A car in heavy traffic conditions

t

(I)

t

(II)

t

(III)

Figure 2.32

41. A child inflates a balloon, admires it for a while and then
lets the air out at a constant rate. If V (t) gives the volume
of the balloon at time t, then Figure 2.33 shows V ′(t) as
a function of t. At what time does the child:

(a) Begin to inflate the balloon?
(b) Finish inflating the balloon?
(c) Begin to let the air out?
(d) What would the graph of V ′(t) look like if the child

had alternated between pinching and releasing the
open end of the balloon, instead of letting the air out
at a constant rate?

3 6 9 12 15 18

1

−2

t

V ′(t)

Figure 2.33

42. Figure 2.34 shows a graph of voltage across an electri-
cal capacitor as a function of time. The current is pro-
portional to the derivative of the voltage; the constant of
proportionality is positive. Sketch a graph of the current
as a function of time.

time

voltage

Figure 2.34

43. Figure 2.35 is the graph of f ′, the derivative of a function
f . On what interval(s) is the function f

(a) Increasing? (b) Decreasing?

x1

x2

x3
x4 x5

f ′

x

Figure 2.35: Graph of f ′, not f
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44. The derivative of f is the spike function in Figure 2.36.
What can you say about the graph of f?

t

f ′(t)

Figure 2.36

45. The population of a herd of deer is modeled by

P (t) = 4000 + 500 sin
(
2πt− π

2

)
where t is measured in years from January 1.

(a) How does this population vary with time? Sketch a
graph of P (t) for one year.

(b) Use the graph to decide when in the year the popula-
tion is a maximum. What is that maximum? Is there
a minimum? If so, when?

(c) Use the graph to decide when the population is
growing fastest. When is it decreasing fastest?

(d) Estimate roughly how fast the population is chang-
ing on the first of July.

46. The graph in Figure 2.37 shows the accumulated federal
debt since 1970. Sketch the derivative of this function.
What does it represent?

1975 1985 1995 2005

2

4

6

8

10

year

debt (trillions of dollars)

Figure 2.37

47. Draw the graph of a continuous function y = f(x) that
satisfies the following three conditions:

• f ′(x) > 0 for x < −2,
• f ′(x) < 0 for −2 < x < 2,
• f ′(x) = 0 for x > 2.

48. Draw the graph of a continuous function y = f(x) that
satisfies the following three conditions:

• f ′(x) > 0 for 1 < x < 3
• f ′(x) < 0 for x < 1 and x > 3
• f ′(x) = 0 at x = 1 and x = 3

49. If lim
x→∞

f(x) = 50 and f ′(x) is positive for all x, what

is lim
x→∞

f ′(x)? (Assume this limit exists.) Explain your

answer with a picture.

50. Using a graph, explain why if f(x) is an even function,
then f ′(x) is odd.

51. Using a graph, explain why if g(x) is an odd function,
then g′(x) is even.

Strengthen Your Understanding

In Problems 52–54, explain what is wrong with the statement.

52. The graph of the derivative of the function f(x) = cos x
is always above the x-axis.

53. A function, f, whose graph is above the x-axis for all x
has a positive derivative for all x.

54. If f ′(x) = g′(x) then f(x) = g(x).

In Problems 55–56, give an example of:

55. A function representing the position of a particle which
has positive velocity for 0 < t < 0.5 and negative veloc-
ity for 0.5 < t < 1.

56. A family of linear functions all with the same derivative.

Are the statements in Problems 57–60 true or false? Give an
explanation for your answer.

57. The derivative of a linear function is constant.

58. If g(x) is a vertical shift of f(x), then f ′(x) = g′(x).

59. If f ′(x) is increasing, then f(x) is also increasing.

60. If f(a) �= g(a), then f ′(a) �= g′(a).

2.4 INTERPRETATIONS OF THE DERIVATIVE

We have seen the derivative interpreted as a slope and as a rate of change. In this section, we see
other interpretations. The purpose of these examples is not to make a catalog of interpretations but
to illustrate the process of obtaining them.
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An Alternative Notation for the Derivative
So far we have used the notation f ′ to stand for the derivative of the function f . An alternative
notation for derivatives was introduced by the German mathematician Wilhelm Gottfried Leibniz
(1646–1716). If the variable y depends on the variable x, that is, if

y = f(x),

then he wrote dy/dx for the derivative, so

dy

dx
= f ′

(x).

Leibniz’s notation is quite suggestive if we think of the letter d in dy/dx as standing for “small
difference in . . . .” The notation dy/dx reminds us that the derivative is a limit of ratios of the form

Difference in y-values
Difference in x-values

.

The notation dy/dx suggests the units for the derivative: the units for y divided by the units for
x. The separate entities dy and dx officially have no independent meaning: they are all part of one
notation. In fact, a good way to view the notation dy/dx is to think of d/dx as a single symbol
meaning “the derivative with respect to x of . . ..” So dy/dx can be viewed as

d

dx
(y), meaning “the derivative with respect to x of y.”

On the other hand, many scientists and mathematicians think of dy and dx as separate entities
representing ”infinitesimally” small differences in y and x, even though it is difficult to say exactly
how small “infinitesimal” is. Although not formally correct, it can be helpful to think of dy/dx as a
small change in y divided by a small change in x.

For example, recall that if s = f(t) is the position of a moving object at time t, then v = f ′(t)
is the velocity of the object at time t. Writing

v =
ds

dt

reminds us that v is a velocity, since the notation suggests a distance, ds, over a time, dt, and we
know that distance over time is velocity. Similarly, we recognize

dy

dx
= f ′

(x)

as the slope of the graph of y = f(x) since slope is vertical rise, dy, over horizontal run, dx.
The disadvantage of Leibniz’s notation is that it is awkward to specify the x-value at which we

are evaluating the derivative. To specify f ′(2), for example, we have to write

dy

dx

∣∣∣∣
x=2

.

Using Units to Interpret the Derivative
The following examples illustrate how useful units can be in suggesting interpretations of the deriva-
tive. We use the fact that the units of the instantaneous and the average rate of change are the same.

For example, suppose s = f(t) gives the distance, in meters, of a body from a fixed point as a
function of time, t, in seconds. Then knowing that

ds

dt

∣∣∣∣
t=2

= f ′
(2) = 10 meters/sec

tells us that when t = 2 seconds, the body is moving at an instantaneous velocity of 10 meters/sec.
This means that if the body continued to move at this speed for a whole second, it would move 10
meters. In practice, however, the velocity of the body may not remain 10 meters/sec for long. Notice
that the units of instantaneous velocity and of average velocity are the same.
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Example 1 The cost C (in dollars) of building a house A square feet in area is given by the function C = f(A).
What is the practical interpretation of the function f ′(A)?

Solution In the alternative notation,

f ′
(A) =

dC

dA
.

This is a cost divided by an area, so it is measured in dollars per square foot. You can think of dC
as the extra cost of building an extra dA square feet of house. Then you can think of dC/dA as the
additional cost per square foot. So if you are planning to build a house roughlyA square feet in area,
f ′(A) is the cost per square foot of the extra area involved in building a slightly larger house, and
is called the marginal cost. The marginal cost is probably smaller than the average cost per square
foot for the entire house, since once you are already set up to build a large house, the cost of adding
a few square feet is likely to be small.

Example 2 The cost of extracting T tons of ore from a copper mine is C = f(T ) dollars. What does it mean to
say that f ′(2000) = 100?

Solution In the alternative notation,

f ′
(2000) =

dC

dT

∣∣∣∣
T=2000

= 100.

Since C is measured in dollars and T is measured in tons, dC/dT must be measured in dollars per
ton. So the statement f ′(2000) = 100 says that when 2000 tons of ore have already been extracted
from the mine, the cost of extracting the next ton is approximately $100.

Example 3 If q = f(p) gives the number of pounds of sugar produced when the price per pound is p dollars,
then what are the units and the meaning of the statement f ′(3) = 50?

Solution Since f ′(3) is the limit as h → 0 of the difference quotient

f(3 + h)− f(3)

h
,

the units of f ′(3) and the difference quotient are the same. Since f(3 + h)− f(3) is in pounds and
h is in dollars, the units of the difference quotient and f ′(3) are pounds/dollar. The statement

f ′
(3) = 50 pounds/dollar

tells us that the instantaneous rate of change of q with respect to p is 50 when p = 3. In other
words, when the price is $3, the quantity produced is increasing at 50 pounds/dollar. Thus, if the
price increased by a dollar, the quantity produced would increase by approximately 50 pounds.

Example 4 Water is flowing through a pipe at a constant rate of 10 cubic feet per second. Interpret this rate as
the derivative of some function.

Solution You might think at first that the statement has something to do with the velocity of the water, but in
fact a flow rate of 10 cubic feet per second could be achieved either with very slowly moving water
through a large pipe, or with very rapidly moving water through a narrow pipe. If we look at the
units—cubic feet per second—we realize that we are being given the rate of change of a quantity
measured in cubic feet. But a cubic foot is a measure of volume, so we are being told the rate of
change of a volume. One way to visualize this is to imagine all the water that is flowing through the
pipe ending up in a tank somewhere. Let V (t) be the volume of water in the tank at time t. Then we
are being told that the rate of change of V (t) is 10, or

V ′
(t) =

dV

dt
= 10.
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Example 5 Let N = g(t) be the estimated number of alternative-fueled vehicles4 in use in the US, in thousands,
where t is the number of years since 1995. Explain the meaning of the statements:

(a) g′(6) = 38 (b) g−1(696) = 12 (c) (g−1)′(696) = 0.0145

Solution (a) The units of N are thousands of vehicles, the units of t are years, so the units of g′(t) are
thousand vehicles per year. Thus, the statement g′(6) = 38 tells us that in the year 2001, the
use of alternative-fueled vehicles was increasing at 38,000 per year. Thus, in the year between
2001 and 2002, we would have expected the number of alternative-fueled vehicles in use in the
US to increase by about 38,000 vehicles.

(b) The statement g−1(696) = 12, which is equivalent to g(12) = 696, tells us that the year in
which the number of alternative-fueled vehicles was 696,000 was 2007.

(c) The units of (g−1)′(V ) are years per thousand vehicles. The statement (g−1)′(696) = 0.0145
tells us that when the number of alternative-fueled vehicles was 696,000, it took about 0.0145
years, or between 5 and 6 days, for the number of alternative-fueled vehicles to grow by a
thousand vehicles.

Exercises and Problems for Section 2.4
Exercises

1. The cost, C (in dollars), to produce g gallons of a chem-
ical can be expressed as C = f(g). Using units, explain
the meaning of the following statements in terms of the
chemical:

(a) f(200) = 1300 (b) f ′(200) = 6

2. The time for a chemical reaction, T (in minutes), is
a function of the amount of catalyst present, a (in
milliliters), so T = f(a).

(a) If f(5) = 18, what are the units of 5? What are the
units of 18? What does this statement tell us about
the reaction?

(b) If f ′(5) = −3, what are the units of 5? What are the
units of −3? What does this statement tell us?

3. The temperature, T , in degrees Fahrenheit, of a cold yam
placed in a hot oven is given by T = f(t), where t is the
time in minutes since the yam was put in the oven.

(a) What is the sign of f ′(t)? Why?
(b) What are the units of f ′(20)? What is the practical

meaning of the statement f ′(20) = 2?

4. The temperature, H , in degrees Celsius, of a cup of cof-
fee placed on the kitchen counter is given by H = f(t),
where t is in minutes since the coffee was put on the
counter.

(a) Is f ′(t) positive or negative? Give a reason for your
answer.

(b) What are the units of f ′(20)? What is its practical
meaning in terms of the temperature of the coffee?

5. The cost, C (in dollars), to produce q quarts of ice cream
is C = f(q). In each of the following statements, what
are the units of the two numbers? In words, what does
each statement tell us?

(a) f(200) = 600 (b) f ′(200) = 2

6. An economist is interested in how the price of a certain
item affects its sales. At a price of $p, a quantity, q, of the
item is sold. If q = f(p), explain the meaning of each of
the following statements:

(a) f(150) = 2000 (b) f ′(150) = −25

7. Suppose C(r) is the total cost of paying off a car loan
borrowed at an annual interest rate of r%. What are the
units of C′(r)? What is the practical meaning of C′(r)?
What is its sign?

8. Let f(x) be the elevation in feet of the Mississippi River
x miles from its source. What are the units of f ′(x)?
What can you say about the sign of f ′(x)?

9. Suppose P (t) is the monthly payment, in dollars, on a
mortgage which will take t years to pay off. What are the
units of P ′(t)? What is the practical meaning of P ′(t)?
What is its sign?

10. After investing $1000 at an annual interest rate of 7%
compounded continuously for t years, your balance is
$B, where B = f(t). What are the units of dB/dt?
What is the financial interpretation of dB/dt?

4http://www.eia.doe.gov/aer/renew.html, accessed January 12, 2011.
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11. Investing $1000 at an annual interest rate of r%, com-
pounded continuously, for 10 years gives you a balance
of $B, where B = g(r). Give a financial interpretation
of the statements:

(a) g(5) ≈ 1649.
(b) g′(5) ≈ 165. What are the units of g′(5)?

12. Meteorologists define the temperature lapse rate to be
−dT/dz where T is the air temperature in Celsius at al-
titude z kilometers above the ground.

(a) What are the units of the lapse rate?
(b) What is the practical meaning of a lapse rate of 6.5?

Problems

13. A laboratory study investigating the relationship between
diet and weight in adult humans found that the weight of
a subject, W , in pounds, was a function, W = f(c), of
the average number of Calories per day, c, consumed by
the subject.

(a) In terms of diet and weight, interpret the statements
f(1800) = 155, f ′(2000) = 0, and f−1(162) =
2200.

(b) What are the units of f ′(c) = dW/dc?

14. In 2011, the Greenland Ice Sheet was melting at a rate
between 82 and 224 cubic km per year.5

(a) What derivative does this tell us about? Define the
function and give units for each variable.

(b) What numerical statement can you make about the
derivative? Give units.

15. A city grew in population throughout the 1980s and into
the early 1990s. The population was at its largest in 1995,
and then shrank until 2010. Let P = f(t) represent the
population of the city t years since 1980. Sketch graphs
of f(t) and f ′(t), labeling the units on the axes.

16. If t is the number of years since 2011, the population, P ,
of China, in billions, can be approximated by the function

P = f(t) = 1.34(1.004)t .

Estimate f(9) and f ′(9), giving units. What do these two
numbers tell you about the population of China?

17. An economist is interested in how the price of a certain
commodity affects its sales. Suppose that at a price of $p,
a quantity q of the commodity is sold. If q = f(p), ex-
plain in economic terms the meaning of the statements
f(10) = 240,000 and f ′(10) = −29,000.

18. On May 9, 2007, CBS Evening News had a 4.3 point
rating. (Ratings measure the number of viewers.) News
executives estimated that a 0.1 drop in the ratings for the
CBS Evening News corresponds to a $5.5 million drop in
revenue.6 Express this information as a derivative. Spec-
ify the function, the variables, the units, and the point at
which the derivative is evaluated.

19. The population of Mexico in millions is P = f(t), where
t is the number of years since 1980. Explain the meaning
of the statements:

(a) f ′(6) = 2 (b) f−1(95.5) = 16

(c) (f−1)′(95.5) = 0.46

20. Let f(t) be the number of centimeters of rainfall that has
fallen since midnight, where t is the time in hours. Inter-
pret the following in practical terms, giving units.

(a) f(10) = 3.1 (b) f−1(5) = 16

(c) f ′(10) = 0.4 (d) (f−1)′(5) = 2

21. Water is flowing into a tank; the depth, in feet, of the wa-
ter at time t in hours is h(t). Interpret, with units, the
following statements.

(a) h(5) = 3 (b) h′(5) = 0.7

(c) h−1(5) = 7 (d) (h−1)′(5) = 1.2

22. Let p(h) be the pressure in dynes per cm2 on a diver at a
depth of h meters below the surface of the ocean. What
do each of the following quantities mean to the diver?
Give units for the quantities.
(a) p(100) (b) h such that p(h) = 1.2 · 106
(c) p(h) + 20 (d) p(h+ 20)
(e) p′(100) (f) h such that p′(h) = 100,000

23. Let g(t) be the height, in inches, of Amelia Earhart (one
of the first woman airplane pilots) t years after her birth.
What are the units of g′(t)? What can you say about the
signs of g′(10) and g′(30)? (Assume that 0 ≤ t < 39,
the age at which Amelia Earhart’s plane disappeared.)

24. If g(v) is the fuel efficiency, in miles per gallon, of a
car going at v miles per hour, what are the units of
g′(90)? What is the practical meaning of the statement
g′(55) = −0.54?

25. Let P be the total petroleum reservoir on Earth in the
year t. (In other words, P represents the total quantity of
petroleum, including what’s not yet discovered, on Earth
at time t.) Assume that no new petroleum is being made
and that P is measured in barrels. What are the units of
dP/dt? What is the meaning of dP/dt? What is its sign?
How would you set about estimating this derivative in
practice? What would you need to know to make such an
estimate?

26. (a) If you jump out of an airplane without a parachute,
you fall faster and faster until air resistance causes
you to approach a steady velocity, called the termi-
nal velocity. Sketch a graph of your velocity against
time.

(b) Explain the concavity of your graph.
(c) Assuming air resistance to be negligible at t =

0, what natural phenomenon is represented by the
slope of the graph at t = 0?

5www.climate.org/topics/sea-level, accessed June 5, 2011.
6OC Register, May 9, 2007; The New York Times, May 14, 2007.
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27. Let W be the amount of water, in gallons, in a bathtub at
time t, in minutes.

(a) What are the meaning and units of dW/dt?
(b) Suppose the bathtub is full of water at time t0, so

that W (t0) > 0. Subsequently, at time tp > t0, the
plug is pulled. Is dW/dt positive, negative, or zero:

(i) For t0 < t < tp?

(ii) After the plug is pulled, but before the tub is
empty?

(iii) When all the water has drained from the tub?

28. A company’s revenue from car sales, C (in thousands of
dollars), is a function of advertising expenditure, a, in
thousands of dollars, so C = f(a).

(a) What does the company hope is true about the sign
of f ′?

(b) What does the statement f ′(100) = 2 mean in prac-
tical terms? How about f ′(100) = 0.5?

(c) Suppose the company plans to spend about
$100,000 on advertising. If f ′(100) = 2, should
the company spend more or less than $100,000 on
advertising? What if f ′(100) = 0.5?

29. In May 2007 in the US, there was one birth every 8 sec-
onds, one death every 13 seconds, and one new interna-
tional migrant every 27 seconds.7

(a) Let f(t) be the population of the US, where t is time
in seconds measured from the start of May 2007.
Find f ′(0). Give units.

(b) To the nearest second, how long did it take for the
US population to add one person in May 2007?

30. During the 1970s and 1980s, the build up of chlorofluo-
rocarbons (CFCs) created a hole in the ozone layer over
Antarctica. After the 1987 Montreal Protocol, an agree-
ment to phase out CFC production, the ozone hole has
shrunk. The ODGI (ozone depleting gas index) shows the
level of CFCs present.8 Let O(t) be the ODGI for Antarc-
tica in year t; then O(2000) = 95 and O′(2000) =
−1.25. Assuming that the ODGI decreases at a constant
rate, estimate when the ozone hole will have recovered,
which occurs when ODGI = 0.

31. Let P (x) be the number of people of height ≤ x inches
in the US. What is the meaning of P ′(66)? What are
its units? Estimate P ′(66) (using common sense). Is
P ′(x) ever negative? [Hint: You may want to approxi-
mate P ′(66) by a difference quotient, using h = 1. Also,
you may assume the US population is about 300 million,
and note that 66 inches = 5 feet 6 inches.]

32. When you breathe, a muscle (called the diaphragm) re-
duces the pressure around your lungs and they expand
to fill with air. The table shows the volume of a lung as a
function of the reduction in pressure from the diaphragm.

Pulmonologists (lung doctors) define the compliance of
the lung as the derivative of this function.9

(a) What are the units of compliance?
(b) Estimate the maximum compliance of the lung.
(c) Explain why the compliance gets small when the

lung is nearly full (around 1 liter).

Pressure reduction Volume

(cm of water) (liters)

0 0.20

5 0.29

10 0.49

15 0.70

20 0.86

25 0.95

30 1.00

33. The compressibility index, γ, of cold matter (in a neutron
star or black hole) is given by

γ =
δ + (p/c2)

p

dp

dδ
,

where p is the pressure (in dynes/cm2), δ is the density
(in g/cm3), and c ≈ 3 · 1010 is the speed of light (in
cm/sec). Figure 2.38 shows the relationship between δ,
γ, and p. Values of log p are marked along the graph.10

(a) Estimate dp/dδ for cold iron, which has a density of
about 10 g/cm3. What does the magnitude of your
answer tell you about cold iron?

(b) Estimate dp/dδ for the matter inside a white dwarf
star, which has a density of about 106 g/cm3. What
does your answer tell you about matter inside a
white dwarf?
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Figure 2.38

7www.census.gov, accessed May 14, 2007.
8www.esrl.noaa.gov/gmd/odgi
9Adapted from John B. West, Respiratory Physiology, 4th Ed. (New York: Williams and Wilkins, 1990).

10From C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (San Francisco: W. H. Freeman and Company, 1973).
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Strengthen Your Understanding

In Problems 34–36, explain what is wrong with the statement.

34. If the position of a car at time t is given by s(t) then the
velocity of the car is s′(t) and the units of s′ are meters
per second.

35. A spherical balloon originally contains 3 liters of air and
it is leaking 1% of its volume per hour. If r(t) is the ra-
dius of the balloon at time t then r′(t) > 0.

36. A laser printer takes T (P ) minutes to produce P pages,

so the derivative
dT

dP
is measured in pages per minute.

In Problems 37–38, give an example of:

37. A function whose derivative is measured in years/dollar.

38. A function whose derivative is measured in miles/day.

Are the statements in Problems 39–41 true or false? Give an
explanation for your answer.

39. If y = f(x), then
dy

dx

∣∣∣
x=a

= f ′(a).

40. If f(t) is the quantity in grams of a chemical produced af-
ter t minutes and g(t) is the same quantity in kilograms,
then f ′(t) = 1000g′(t).

41. If f(t) is the quantity in kilograms of a chemical pro-
duced after t minutes and g(t) is the quantity in kilo-
grams produced after t seconds, then f ′(t) = 60g′(t).

For Problems 42–43, assume g(v) is the fuel efficiency, in
miles per gallon, of a car going at a speed of v miles per hour.

42. What are the units of g′(v) =
dg

dv
? There may be more

than one option.

(a) (miles)2/(gal)(hour)
(b) hour/gal
(c) gal/hour
(d) (gal)(hour)/(miles)2

(e) (miles/gallon)/(miles/hour)

43. What is the practical meaning of g′(55) = −0.54? There
may be more than one option.

(a) When the car is going 55 mph, the rate of change of
the fuel efficiency decreases to approximately 0.54
miles/gal.

(b) When the car is going 55 mph, the rate of change of
the fuel efficiency decreases by approximately 0.54
miles/gal.

(c) If the car speeds up from 55 mph to 56 mph, then
the fuel efficiency is approximately −0.54 miles per
gallon.

(d) If the car speeds up from 55 mph to 56 mph, then
the car becomes less fuel efficient by approximately
0.54 miles per gallon.

2.5 THE SECOND DERIVATIVE

Since the derivative is itself a function, we can consider its derivative. For a function f , the derivative
of its derivative is called the second derivative, and written f ′′ (read “f double-prime”). If y = f(x),

the second derivative can also be written as
d2y

dx2
, which means

d

dx

(
dy

dx

)
, the derivative of

dy

dx
.

What Do Derivatives Tell Us?
Recall that the derivative of a function tells you whether a function is increasing or decreasing:
• If f ′ > 0 on an interval, then f is increasing over that interval.

• If f ′ < 0 on an interval, then f is decreasing over that interval.
If f ′ is always positive on an interval or always negative on an interval, then f is monotonic over
that interval.
Since f ′′ is the derivative of f ′,
• If f ′′ > 0 on an interval, then f ′ is increasing over that interval.

• If f ′′ < 0 on an interval, then f ′ is decreasing over that interval.
What does it mean for f ′ to be increasing or decreasing? An example in which f ′ is increasing

is shown in Figure 2.39, where the curve is bending upward, or is concave up. In the example shown
in Figure 2.40, in which f ′ is decreasing, the graph is bending downward, or is concave down. These
figures suggest the following result:

If f ′′ > 0 on an interval, then f ′ is increasing, so the graph of f is concave up there.
If f ′′ < 0 on an interval, then f ′ is decreasing, so the graph of f is concave down there.
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f ′ < 0 f ′ > 0

f ′′ > 0
Concave up

Figure 2.39: Meaning of f ′′: The slope of f increases from left to right, f ′′ is positive, and f is concave up

f ′ > 0 f ′ < 0

f ′′ < 0
Concave down

Figure 2.40: Meaning of f ′′: The slope of f decreases from left to right, f ′′ is negative, and f is concave down

Warning! The graph of a function f can be concave up everywhere and yet have f ′′ = 0 at
some point. For instance, the graph of f(x) = x4 in Figure 2.41 is concave up, but it can be shown
that f ′′(0) = 0. If we are told that the graph of a function f is concave up, we can be sure that f ′′

is not negative, that is f ′′ ≥ 0, but not that f ′′ is positive, f ′′ > 0.

f ′′ = 0

	 x

Figure 2.41: Graph of f(x) = x4

If the graph of f is concave up and f ′′ exists on an interval, then f ′′ ≥ 0 there.
If the graph of f is concave down and f ′′ exists on an interval, then f ′′ ≤ 0 there.

Example 1 For the functions graphed in Figure 2.42, what can be said about the sign of the second derivative?

t t t

f

g

h(a) (b) (c)

Figure 2.42: What signs do the second derivatives have?

Solution (a) The graph of f is concave up everywhere, so f ′′ ≥ 0 everywhere.
(b) The graph of g is concave down everywhere, so g′′ ≤ 0 everywhere.
(c) For t < 0, the graph of h is concave down, so h′′ ≤ 0 there. For t > 0, the graph of h is concave

up, so h′′ ≥ 0 there.
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Example 2 Sketch the second derivative f ′′ for the function f of Example 1 on page 91, graphed with its
derivative, f ′, in Figure 2.43. Relate the resulting graph of f ′′ to the graphs of f and f ′.
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x

f ′(x)

f(x)

Figure 2.43: Function, f in color; derivative, f ′, in black
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Figure 2.44: Graph of f ′′

Solution We want to sketch the derivative of f ′. We do this by estimating the slopes of f ′ and plotting them,
obtaining Figure 2.44.

We observe that where f ′′ > 0, the graph of f is concave up and f ′ is increasing, and that
where f ′′ < 0, the graph of f is concave down and f ′ is decreasing. Where f ′′(x) = 0, the graph
of f changes from concave up to concave down, and f ′ changes from decreasing to increasing.

Interpretation of the Second Derivative as a Rate of Change
If we think of the derivative as a rate of change, then the second derivative is a rate of change of a
rate of change. If the second derivative is positive, the rate of change of f is increasing; if the second
derivative is negative, the rate of change of f is decreasing.

The second derivative can be a matter of practical concern. A 2009 article11 reported that al-
though the US economy was shrinking, the rate of decrease had slowed. (The derivative of the size of
the economy was negative and the second derivative was positive). The article continued “although
the economy is spiralling down, it is doing so more slowly.”

Example 3 A population, P , growing in a confined environment often follows a logistic growth curve, like that
shown in Figure 2.45. Relate the sign of d2P/dt2 to how the rate of growth, dP/dt, changes over
time. What are practical interpretations of t0 and L?

t0

L

t

P

Figure 2.45: Logistic growth curve

Solution For t < t0, the rate of growth, dP/dt, is increasing and d2P/dt2 ≥ 0. At t0, the rate dP/dt is a
maximum. In other words, at time t0 the population is growing fastest. For t > t0, the rate of growth,
dP/dt, is decreasing and dP 2/dt2 ≤ 0. At t0, the curve changes from concave up to concave down,
and d2P/dt2 = 0 there.

11The Economist, February 19, 2009, Washington, DC, “The second derivative may be turning positive,”
www.economist.com/node/13145616
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The quantity L represents the limiting value of the population as t → ∞. Biologists call L the
carrying capacity of the environment.

Example 4 Tests on the 2011 Chevy Corvette ZR1 sports car gave the results12 in Table 2.10.

(a) Estimate dv/dt for the time intervals shown.
(b) What can you say about the sign of d2v/dt2 over the period shown?

Table 2.10 Velocity of 2011 Chevy Corvette ZR1

Time, t (sec) 0 3 6 9 12

Velocity, v (meters/sec) 0 23 42 59 72

Solution (a) For each time interval we can calculate the average rate of change of velocity. For example,
from t = 0 to t = 3 we have

dv

dt
≈ Average rate of change of velocity =

23− 0

3− 0
= 7.67

m/sec
sec

.

Estimated values of dv/dt are in Table 2.11.
(b) Since the values of dv/dt are decreasing between the points shown, we expect d2v/dt2 ≤ 0.

The graph of v against t in Figure 2.46 supports this; it is concave down. The fact that dv/dt > 0

tells us that the car is speeding up; the fact that d2v/dt2 ≤ 0 tells us that the rate of increase
decreased (actually, did not increase) over this time period.

Table 2.11 Estimates for dv/dt (meters/sec/sec)

Time interval (sec) 0− 3 3− 6 6− 9 9− 12

Average rate of change (dv/dt) 7.67 6.33 5.67 4.33 3 6 9 12

20

40

60

80

t (sec)

v (meters/sec)

Figure 2.46: Velocity of 2011 Chevy Corvette
ZR1

Velocity and Acceleration
When a car is speeding up, we say that it is accelerating. We define acceleration as the rate of
change of velocity with respect to time. If v(t) is the velocity of an object at time t, we have

Average acceleration

from t to t+ h
=

v(t+ h)− v(t)

h
,

Instantaneous acceleration = v′(t) = lim
h→0

v(t+ h)− v(t)

h
.

If the term velocity or acceleration is used alone, it is assumed to be instantaneous. Since velocity
is the derivative of position, acceleration is the second derivative of position. Summarizing:

12Adapted from data in http://www.corvette-web-central.com/Corvettetopspeed.html
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If y = s(t) is the position of an object at time t, then

• Velocity: v(t) =
dy

dt
= s′(t).

• Acceleration: a(t) =
d2y

dt2
= s′′(t) = v′(t).

Example 5 A particle is moving along a straight line; its acceleration is zero only once. Its distance, s, to the
right of a fixed point is given by Figure 2.47. Estimate:

(a) When the particle is moving to the right and when it is moving to the left.
(b) When the acceleration of the particle is zero, when it is negative, and when it is positive.

1 2
t (time)

s (distance)

s increasing

�

Particle stops moving to right

�

Concave up �

s increasing�

Acceleration changes from
negative to positive

�

Figure 2.47: Distance of particle to right of a fixed point

Solution (a) The particle is moving to the right whenever s is increasing. From the graph, this appears to be
for 0 < t < 2

3 and for t > 2. For 2
3 < t < 2, the value of s is decreasing, so the particle is

moving to the left.
(b) Since the acceleration is zero only once, this must be when the curve changes concavity, at

about t = 4
3 . Then the acceleration is negative for t < 4

3 , since the graph is concave down there,
and the acceleration is positive for t > 4

3 , since the graph is concave up there.

Exercises and Problems for Section 2.5
Exercises

1. Fill in the blanks:

(a) If f ′′ is positive on an interval, then f ′ is
on that interval, and f is

on that interval.
(b) If f ′′ is negative on an interval, then f ′

is on that interval, and f is
on that interval.

2. For the function graphed in Figure 2.48, are the following
nonzero quantities positive or negative?

(a) f(2) (b) f ′(2) (c) f ′′(2)

2

4

−1

1

x

f(x)

Figure 2.48

3. At one of the labeled points on the graph in Figure 2.49
both dy/dx and d2y/dx2 are positive. Which is it?
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A B

C D E

y

x

Figure 2.49

4. At exactly two of the labeled points in Figure 2.50, the
derivative f ′ is 0; the second derivative f ′′ is not zero at
any of the labeled points. On a copy of the table, give the
signs of f , f ′, f ′′ at each marked point.

B
C

A D

Figure 2.50

Point f f ′ f ′′

A

B

C

D

5. Graph the functions described in parts (a)–(d).

(a) First and second derivatives everywhere positive.
(b) Second derivative everywhere negative; first deriva-

tive everywhere positive.
(c) Second derivative everywhere positive; first deriva-

tive everywhere negative.
(d) First and second derivatives everywhere negative.

6. Sketch the graph of a function whose first derivative is
everywhere negative and whose second derivative is pos-
itive for some x-values and negative for other x-values.

7. Sketch the graph of the height of a particle against time
if velocity is positive and acceleration is negative.

For Exercises 8–13, give the signs of the first and second
derivatives for the following functions. Each derivative is ei-
ther positive everywhere, zero everywhere, or negative every-
where.

8.

1

1

x

f(x)

9.

1

1

f(x)

x

10.

1

1

x

f(x)

11.

x

f(x)

12.

1−1
f(x)

x
13.

1

1
x

f(x)

14. The position of a particle moving along the x-axis is
given by s(t) = 5t2 + 3. Use difference quotients to
find the velocity v(t) and acceleration a(t).

Problems

15. The table gives the number of passenger cars, C = f(t),
in millions,13 in the US in the year t.

(a) Do f ′(t) and f ′′(t) appear to be positive or negative
during the period 1975–1990?

(b) Do f ′(t) and f ′′(t) appear to be positive or negative
during the period 1990-2000?

(c) Estimate f ′(2005). Using units, interpret your an-
swer in terms of passenger cars.

t 1975 1980 1985 1990 1995 2000 2005

C 106.7 121.6 127.9 133.7 128.4 133.6 136.6

16. An accelerating sports car goes from 0 mph to 60 mph
in five seconds. Its velocity is given in the following ta-
ble, converted from miles per hour to feet per second, so
that all time measurements are in seconds. (Note: 1 mph

is 22/15 ft/sec.) Find the average acceleration of the car
over each of the first two seconds.

Time, t (sec) 0 1 2 3 4 5

Velocity, v(t) (ft/sec) 0 30 52 68 80 88

17. Sketch the curves described in (a)–(c):

(a) Slope is positive and increasing at first but then is
positive and decreasing.

(b) The first derivative of the function whose graph is in
part (a).

(c) The second derivative of the function whose graph
is in part (a).

13www.bts.gov/publications/national transportation statistics/html/table 01 11.html. Accessed April 27, 2011.
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In Problems 18–23, graph the second derivative of the func-
tion.

18.

−4 4

−4

4

x

y 19.

−4 4

−4

4

x

y

20.

−4 4

−4

4

x

y 21.

−4 4

−4

4

x

y

22.

−4 4

−4

4

x

y 23.

−4 4

−4

4

x

y

24. Let P (t) represent the price of a share of stock of a
corporation at time t. What does each of the following
statements tell us about the signs of the first and second
derivatives of P (t)?

(a) “The price of the stock is rising faster and faster.”
(b) “The price of the stock is close to bottoming out.”

25. In economics, total utility refers to the total satisfac-
tion from consuming some commodity. According to the
economist Samuelson:14

As you consume more of the same good, the
total (psychological) utility increases. However,
. . . with successive new units of the good, your
total utility will grow at a slower and slower
rate because of a fundamental tendency for your
psychological ability to appreciate more of the
good to become less keen.

(a) Sketch the total utility as a function of the number
of units consumed.

(b) In terms of derivatives, what is Samuelson saying?

26. “Winning the war on poverty” has been described cyn-
ically as slowing the rate at which people are slipping
below the poverty line. Assuming that this is happening:

(a) Graph the total number of people in poverty against
time.

(b) If N is the number of people below the poverty line
at time t, what are the signs of dN/dt and d2N/dt2?
Explain.

27. An industry is being charged by the Environmental Pro-
tection Agency (EPA) with dumping unacceptable lev-
els of toxic pollutants in a lake. Over a period of several
months, an engineering firm makes daily measurements
of the rate at which pollutants are being discharged into
the lake. The engineers produce a graph similar to ei-
ther Figure 2.51(a) or Figure 2.51(b). For each case, give
an idea of what argument the EPA might make in court
against the industry and of the industry’s defense.

nowa year ago
time

rate of discharge(a)

nowa year ago
time

rate of discharge(b)

Figure 2.51

28. At which of the marked x-values in Figure 2.52 can the
following statements be true?

(a) f(x) < 0
(b) f ′(x) < 0
(c) f(x) is decreasing
(d) f ′(x) is decreasing
(e) Slope of f(x) is positive
(f) Slope of f(x) is increasing

x1 x2 x3

x4 x5

f(x)

x

Figure 2.52

29. Figure 2.53 gives the position, f(t), of a particle at time
t. At which of the marked values of t can the following
statements be true?

(a) The position is positive
(b) The velocity is positive
(c) The acceleration is positive
(d) The position is decreasing
(e) The velocity is decreasing

14From Paul A. Samuelson, Economics, 11th edition (New York: McGraw-Hill, 1981).
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t1 t2

t3 t4 t5

f(t)

t

Figure 2.53

30. The graph of f ′ (not f ) is given in Figure 2.54. At which
of the marked values of x is

(a) f(x) greatest? (b) f(x) least?
(c) f ′(x) greatest? (d) f ′(x) least?
(e) f ′′(x) greatest? (f) f ′′(x) least?

x1 x2 x3 x4 x5 x6

x

f ′(x)

Figure 2.54: Graph of f ′, not f

31. A function f has f(5) = 20, f ′(5) = 2, and f ′′(x) < 0,
for x ≥ 5. Which of the following are possible values for
f(7) and which are impossible?

(a) 26 (b) 24 (c) 22

32. Chlorofluorocarbons (CFCs) were used as propellants in
spray cans until their build up in the atmosphere started
destroying the ozone, which protects us from ultraviolet
rays. Since the 1987 Montreal Protocol (an agreement to
curb CFCs), the CFCs in the atmosphere above the US
have been reduced from a high of 3200 parts per trillion
(ppt) in 1994 to 2750 ppt in 2010.15 The reduction has
been approximately linear. Let C(t) be the concentration
of CFCs in ppt in year t.

(a) Find C(1994) and C(2010).
(b) Estimate C′(1994) and C′(2010).
(c) Assuming C(t) is linear, find a formula for C(t).
(d) When is C(t) expected to reach 1850 ppt, the level

before CFCs were introduced?
(e) If you were told that in the future, C(t) would not

be exactly linear, and that C′′(t) > 0, would your
answer to part (d) be too early or too late?

Strengthen Your Understanding

In Problems 33–34, explain what is wrong with the statement.

33. A function that is not concave up is concave down.

34. When the acceleration of a car is zero, the car is not mov-
ing.

In Problems 35–36, give an example of:

35. A function that has a non-zero first derivative but zero
second derivative.

36. A function for which f ′(0) = 0 but f ′′(0) �= 0.

Are the statements in Problems 37–41 true or false? Give an
explanation for your answer.

37. If f ′′(x) > 0 then f ′(x) is increasing.

38. The instantaneous acceleration of a moving particle at
time t is the limit of difference quotients.

39. A function which is monotonic on an interval is either
increasing or decreasing on the interval.

40. The function f(x) = x3 is monotonic on any interval.

41. The function f(x) = x2 is monotonic on any interval.

2.6 DIFFERENTIABILITY

What Does It Mean for a Function to Be Differentiable?
A function is differentiable at a point if it has a derivative there. In other words:

The function f is differentiable at x if

lim
h→0

f(x+ h)− f(x)

h
exists.

Thus, the graph of f has a nonvertical tangent line at x. The value of the limit and the slope
of the tangent line are the derivative of f at x.

15www.esrl.noaa.gov/gmd/odgi
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Occasionally we meet a function which fails to have a derivative at a few points. A function
fails to be differentiable at a point if:
• The function is not continuous at the point.

• The graph has a sharp corner at that point.

• The graph has a vertical tangent line.
Figure 2.55 shows a function which appears to be differentiable at all points except x = a and

x = b. There is no tangent at A because the graph has a corner there. As x approaches a from the
left, the slope of the line joining P to A converges to some positive number. As x approaches a from
the right, the slope of the line joining P to A converges to some negative number. Thus the slopes
approach different numbers as we approach x = a from different sides. Therefore the function is
not differentiable at x = a. At B, the graph has a vertical tangent. As x approaches b, the slope of
the line joining B to Q does not approach a limit; it just keeps growing larger and larger. Again, the
limit defining the derivative does not exist and the function is not differentiable at x = b.

a b
x

f

P

A

Q

B

Figure 2.55: A function which is not differentiable at A or B

f(x) = |x|

x

Figure 2.56: Graph of absolute value function,
showing point of non-differentiability at x = 0

Examples of Nondifferentiable Functions

An example of a function whose graph has a corner is the absolute value function defined as follows:

f(x) = |x| =
{
x if x ≥ 0,
−x if x < 0.

This function is called piecewise linear because each part of it is linear. Its graph is in Figure 2.56.
Near x = 0, even close-up views of the graph of f(x) look the same, so this is a corner which can’t
be straightened out by zooming in.

Example 1 Try to compute the derivative of the function f(x) = |x| at x = 0. Is f differentiable there?

Solution To find the derivative at x = 0, we want to look at

lim
h→0

f(h)− f(0)

h
= lim

h→0

|h| − 0

h
= lim

h→0

|h|

h
.

As h approaches 0 from the right, h is positive, so |h| = h, and the ratio is always 1. As h approaches
0 from the left, h is negative, so |h| = −h, and the ratio is −1. Since the limits are different from
each side, the limit of the difference quotient does not exist. Thus, the absolute value function is not
differentiable at x = 0. The limits of 1 and −1 correspond to the fact that the slope of the right-hand
part of the graph is 1, and the slope of the left-hand part is −1.

Example 2 Investigate the differentiability of f(x) = x1/3 at x = 0.

Solution This function is smooth at x = 0 (no sharp corners) but appears to have a vertical tangent there.
(See Figure 2.57.) Looking at the difference quotient at x = 0, we see

lim
h→0

(0 + h)1/3 − 01/3

h
= lim

h→0

h1/3

h
= lim

h→0

1

h2/3
.
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−8 −4 4 8

−2

2

x

f(x) = x1/3

Figure 2.57: Continuous function not
differentiable at x = 0: Vertical tangent

1 2 3

2

4

6

x

g(x)

Figure 2.58: Continuous
function not differentiable at

x = 1

As h → 0 the denominator becomes small, so the fraction grows without bound. Hence, the function
fails to have a derivative at x = 0.

Example 3 Consider the function given by the formulas

g(x) =
{
x+ 1 if x ≤ 1

3x− 1 if x > 1.
Draw the graph of g. Is g continuous? Is g differentiable at x = 1?

Solution The graph in Figure 2.58 has no breaks in it, so the function is continuous. However, the graph has
a corner at x = 1 which no amount of magnification will remove. To the left of x = 1, the slope is
1; to the right of x = 1, the slope is 3. Thus, the difference quotient at x = 1 has no limit, so the
function g is not differentiable at x = 1.

The Relationship Between Differentiability and Continuity
The fact that a function which is differentiable at a point has a tangent line suggests that the function
is continuous there, as the next theorem shows.

Theorem 2.1: A Differentiable Function Is Continuous

If f(x) is differentiable at a point x = a, then f(x) is continuous at x = a.

Proof We assume f is differentiable at x = a. Then we know that f ′(a) exists where

f ′
(a) = lim

x→a

f(x)− f(a)

x− a
.

To show that f is continuous at x = a, we want to show that limx→a f(x) = f(a). We calculate
limx→a(f(x)− f(a)), hoping to get 0. By algebra, we know that for x �= a,

f(x)− f(a) = (x− a) ·
f(x)− f(a)

x− a
.

Taking the limits, we have

lim
x→a

(f(x)− f(a)) = lim
x→a

(
(x− a)

f(x) − f(a)

x− a

)

=

(
lim
x→a

(x− a)
)
·

(
lim
x→a

f(x) − f(a)

x− a

)
(By Theorem 1.2, Property 3)

= 0 · f ′
(a) = 0. (Since f ′(a) exists)

Thus we know that lim
x→a

f(x) = f(a), which means f(x) is continuous at x = a.
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Exercises and Problems for Section 2.6
Exercises

For the graphs in Exercises 1–2, list the x-values for which
the function appears to be

(a) Not continuous. (b) Not differentiable.

1.

1 2 3 4 5

f(x)

x

2.

1 2 3 4 5 6

g(x)

x

In Exercises 3–4, does the function appear to be differentiable
on the interval of x-values shown?

3.

x

f(x) 4.

x

f(x)

Problems

Decide if the functions in Problems 5–7 are differentiable at
x = 0. Try zooming in on a graphing calculator, or calculating
the derivative f ′(0) from the definition.

5. f(x) = (x+ |x|)2 + 1

6. f(x) =

{
x sin(1/x) + x for x �= 0

0 for x = 0

7. f(x) =

{
x2 sin(1/x) for x �= 0

0 for x = 0

8. In each of the following cases, sketch the graph of a con-
tinuous function f(x) with the given properties.

(a) f ′′(x) > 0 for x < 2 and for x > 2 and f ′(2) is
undefined.

(b) f ′′(x) > 0 for x < 2 and f ′′(x) < 0 for x > 2 and
f ′(2) is undefined.

9. Look at the graph of f(x) = (x2 +0.0001)1/2 shown in
Figure 2.59. The graph of f appears to have a sharp cor-
ner at x = 0. Do you think f has a derivative at x = 0?

−20 −10 0 10 20

10

20

x

f(x)

Figure 2.59

10. The acceleration due to gravity, g, varies with height
above the surface of the earth, in a certain way. If you

go down below the surface of the earth, g varies in a dif-
ferent way. It can be shown that g is given by

g =

⎧⎪⎪⎨
⎪⎪⎩

GMr

R3
for r < R

GM

r2
for r ≥ R

where R is the radius of the earth, M is the mass of the
earth, G is the gravitational constant, and r is the distance
to the center of the earth.

(a) Sketch a graph of g against r.
(b) Is g a continuous function of r? Explain your an-

swer.
(c) Is g a differentiable function of r? Explain your an-

swer.

11. An electric charge, Q, in a circuit is given as a function
of time, t, by

Q =
{
C for t ≤ 0
Ce−t/RC for t > 0,

where C and R are positive constants. The electric cur-
rent, I , is the rate of change of charge, so

I =
dQ

dt
.

(a) Is the charge, Q, a continuous function of time?
(b) Do you think the current, I , is defined for all times,

t? [Hint: To graph this function, take, for example,
C = 1 and R = 1.]
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12. A magnetic field, B, is given as a function of the distance,
r, from the center of a wire as follows:

B =

⎧⎪⎪⎨
⎪⎪⎩

r

r0
B0 for r ≤ r0

r0
r
B0 for r > r0.

(a) Sketch a graph of B against r. What is the meaning
of the constant B0?

(b) Is B continuous at r = r0? Give reasons.
(c) Is B differentiable at r = r0? Give reasons.

13. A cable is made of an insulating material in the shape of
a long, thin cylinder of radius r0. It has electric charge
distributed evenly throughout it. The electric field, E, at
a distance r from the center of the cable is given by

E =

{
kr for r ≤ r0

k
r20
r

for r > r0.

(a) Is E continuous at r = r0?
(b) Is E differentiable at r = r0?
(c) Sketch a graph of E as a function of r.

14. Graph the function defined by

g(r) =
{
1 + cos (πr/2) for −2 ≤ r ≤ 2
0 for r < −2 or r > 2.

(a) Is g continuous at r = 2? Explain your answer.
(b) Do you think g is differentiable at r = 2? Explain

your answer.

15. The potential, φ, of a charge distribution at a point on the
y-axis is given by

φ =

⎧⎨
⎩ 2πσ

(√
y2 + a2 − y

)
for y ≥ 0

2πσ
(√

y2 + a2 + y
)

for y < 0

where σ and a are positive constants. [Hint: To graph this
function, take, for example, 2πσ = 1 and a = 1.]

(a) Is φ continuous at y = 0?
(b) Do you think φ is differentiable at y = 0?

16. Sometimes, odd behavior can be hidden beneath the sur-
face of a rather normal-looking function. Consider the
following function:

f(x) =

{
0 if x < 0

x2 if x ≥ 0.

(a) Sketch a graph of this function. Does it have any ver-
tical segments or corners? Is it differentiable every-
where? If so, sketch the derivative f ′ of this func-
tion. [Hint: You may want to use the result of Exam-
ple 4 on page 94.]

(b) Is the derivative function, f ′(x), differentiable ev-
erywhere? If not, at what point(s) is it not differen-
tiable? Draw the second derivative of f(x) wherever
it exists. Is the second derivative function, f ′′(x),
differentiable? Continuous?

Strengthen Your Understanding

In Problems 17–18, explain what is wrong with the statement.

17. A function f that is not differentiable at x = 0 has a
graph with a sharp corner at x = 0.

18. If f is not differentiable at a point then it is not continu-
ous at that point.

In Problems 19–21, give an example of:

19. A continuous function that is not differentiable at x = 2.

20. An invertible function that is not differentiable at x = 0.

21. A rational function that has zeros at x = ±1 and is not
differentiable at x = ±2.

Are the statements in Problems 22–26 true or false? If a state-
ment is true, give an example illustrating it. If a statement is
false, give a counterexample.

22. There is a function which is continuous on [1, 5] but not
differentiable at x = 3.

23. If a function is differentiable, then it is continuous.

24. If a function is continuous, then it is differentiable.

25. If a function is not continuous, then it is not differen-
tiable.

26. If a function is not differentiable, then it is not continu-
ous.

27. Which of the following would be a counterexample to
the statement: “If f is differentiable at x = a then f is
continuous at x = a”?

(a) A function which is not differentiable at x = a but
is continuous at x = a.

(b) A function which is not continuous at x = a but is
differentiable at x = a.

(c) A function which is both continuous and differen-
tiable at x = a.

(d) A function which is neither continuous nor differen-
tiable at x = a.
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CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• Rate of change
Average, instantaneous.

• Definition of derivative
Difference quotient, limit.

• Estimating and computing derivatives
Estimate derivatives from a graph, table of values, or for-
mula. Use definition to find derivatives of simple func-
tions algebraically. Know derivatives of constant, linear,
and power functions.

• Interpretation of derivatives
Rate of change, instantaneous velocity, slope, using units.

• Second derivative
Concavity, acceleration.

• Working with derivatives
Understand relation between sign of f ′ and whether f is
increasing or decreasing. Sketch graph of f ′ from graph
of f .

• Differentiability

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER TWO

Exercises

1. At time t in seconds, a particle’s distance s(t), in cm,
from a point is given in the table. What is the average
velocity of the particle from t = 3 to t = 10?

t 0 3 6 10 13

s(t) 0 72 92 144 180

In Exercises 2–7, find the average velocity for the position
function s(t), in mm, over the interval 1 ≤ t ≤ 3, where t is
in seconds.

2. s(t) = 12t − t2 3. s(t) = ln(t)

4.
t 0 1 2 3

s(t) 7 3 7 11

5.
t 0 1 2 3

s(t) 8 4 2 4

6.

1 2 3 4

1

2

3

4 s(t)

t

7.

1 2 3 4

1

2 s(t)

t

8. In a time of t seconds, a particle moves a distance of s
meters from its starting point, where s = 4t2 + 3.

(a) Find the average velocity between t = 1 and t =
1 + h if:

(i) h = 0.1, (ii) h = 0.01, (iii) h = 0.001.

(b) Use your answers to part (a) to estimate the instan-
taneous velocity of the particle at time t = 1.

9. A bicyclist pedals at a fairly constant rate, with evenly
spaced intervals of coasting. Sketch a graph of the dis-
tance she has traveled as a function of time.

10. As you drive away from home, your speed is fast, then
slow, then fast again. Draw a graph of your distance from
home as a function of time.

11. (a) Graph f(x) = x sin x for −10 ≤ x ≤ 10.
(b) How many zeros does f(x) have on this interval?
(c) Is f increasing or decreasing at x = 1? At x = 4?
(d) On which interval is the average rate of change

greater: 0 ≤ x ≤ 2 or 6 ≤ x ≤ 8?
(e) Is the instantaneous rate of change greater at x =

−9 or x = 1?

12. (a) Using the data in the table, estimate an equation for
the tangent line to the graph of f(x) at x = 0.6.

(b) Using this equation, estimate f(0.7), f(1.2), and
f(1.4). Which of these estimates is most likely to
be reliable? Why?

x 0 0.2 0.4 0.6 0.8 1.0

f(x) 3.7 3.5 3.5 3.9 4.0 3.9

Sketch the graphs of the derivatives of the functions shown
in Exercises 13–18. Be sure your sketches are consistent with
the important features of the graphs of the original functions.

13.

5

x

f(x)

14.

2

3

x

f(x)

15.

−1 1 2 3 4
x

f(x) 16.

x

f(x)

17.

x

f(x)

18.

x

f(x)
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19. Roughly sketch the shape of the graph of a cubic polyno-
mial, f , if it is known that:

• (0, 3) is on the graph of f .
• f ′(0) = 4, f ′(1) = 0, f ′(2) = − 4

3
, f ′(4) = 4.

In Exercises 20–21, graph the second derivative of the func-
tion.

20.

−4 4

−4

4

x

y 21.

−4 4

−4

4

x

y

In Exercises 22–23, find a formula for the derivative of the
function algebraically.

22. f(x) = 5x2 + x 23. n(x) = (1/x) + 1

24. Find the derivative of f(x) = x2 + 1 at x = 3 alge-
braically. Find the equation of the tangent line to f at
x = 3.

25. (a) Between which pair of consecutive points in Fig-
ure 2.60 is the average rate of change of k

(a) Greatest? (b) Closest to zero?

(b) Between which two pairs of consecutive points are
the average rates of change of k closest?

x

k(x)

A

B

C

D

E

Figure 2.60

In Exercises 26–30, use the difference quotient definition of
the derivative to find a formula for the derivative of the func-
tion.

26. f(x) = 3x− 1 27. f(x) = 5x2

28. f(x) = x2 + 4 29. f(x) = 3x2 − 7

30. f(x) = x3

In Exercises 31–35, evaluate the limit algebraically for a > 0.

31. lim
h→0

(a+ h)2 − a2

h
32. lim

h→0

1/(a + h)− 1/a

h

33. lim
h→0

1/(a+ h)2 − 1/a2

h

34. lim
h→0

√
a+ h−√

a

h
[Hint: Multiply by

√
a+ h+

√
a in

numerator and denominator.]

35. lim
h→0

1/
√
a+ h− 1/

√
a

h

Problems

36. Sketch the graph of a function whose first and second
derivatives are everywhere positive.

37. Figure 2.61 gives the position, y = s(t), of a particle at
time t. Arrange the following numbers from smallest to
largest:

• The instantaneous velocity at A.
• The instantaneous velocity at B.
• The instantaneous velocity at C.
• The average velocity between A and B.
• The number 0.
• The number 1.

t

y = t

B
C

y = s(t)

A

y

Figure 2.61

38. Match each property (a)–(d) with one or more of graphs
(I)–(IV) of functions.

(a) f ′(x) = 1 for all 0 ≤ x ≤ 4.
(b) f ′(x) > 0 for all 0 ≤ x ≤ 4
(c) f ′(2) = 1
(d) f ′(1) = 2
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4

4

x

(I)

4

4

x

(II)

4

4

x

(III)

4

4

x

(IV)

39. (a) In Figure 2.62, if f(t) gives the position of a particle
at time t, list the labeled points at which the particle
has zero velocity.

(b) If we now suppose instead that f(t) is the velocity
of a particle at time t, what is the significance of the
points listed in your answer to part (a)?

A B C D E F G H I
t

f(t)

Figure 2.62

40. The table16 gives the number of passenger cars, C =
f(t), in millions, in the US in the year t.

(a) During the period 2003–2007, when is f ′(t) posi-
tive? Negative?

(b) Estimate f ′(2006). Using units, interpret your an-
swer in terms of passenger cars.

t (year) 2003 2004 2005 2006 2007

C (cars, in millions) 135.7 136.4 136.6 135.4 135.9

41. Let f(t) be the depth, in centimeters, of water in a tank
at time t, in minutes.

(a) What does the sign of f ′(t) tell us?
(b) Explain the meaning of f ′(30) = 20. Include units.
(c) Using the information in part (b), at time t = 30

minutes, find the rate of change of depth, in meters,
with respect to time in hours. Give units.

42. If t is the number of years since 2009, the population,
P , of Ukraine,17 in millions, can be approximated by the
function

P = f(t) = 45.7e−0.0061t

Estimate f(6) and f ′(6), giving units. What do these two
numbers tell you about the population of Ukraine?

43. The revenue, in thousands of dollars, earned by a gas sta-
tion when the price of gas is $p per gallon is R(p).

(a) What are the units of R′(3)? Interpret this quantity.
(b) What are the units of (R−1)′(5)? Interpret this

quantity.

44. (a) Give an example of a function with lim
x→2

f(x) = ∞.

(b) Give an example of a function with lim
x→2

f(x) =

−∞.

45. Draw a possible graph of y = f(x) given the following
information about its derivative:

• For x < −2, f ′(x) > 0 and the derivative is in-
creasing.

• For −2 < x < 1, f ′(x) > 0 and the derivative is
decreasing.

• At x = 1, f ′(x) = 0.
• For x > 1, f ′(x) < 0 and the derivative is decreas-

ing (getting more and more negative).

46. Suppose f(2) = 3 and f ′(2) = 1. Find f(−2) and
f ′(−2), assuming that f(x) is

(a) Even (b) Odd.

47. Do the values for the function y = k(x) in the table
suggest that the graph of k(x) is concave up or concave
down for 1 ≤ x ≤ 3.3? Write a sentence in support of
your conclusion.

x 1.0 1.2 1.5 1.9 2.5 3.3

k(x) 4.0 3.8 3.6 3.4 3.2 3.0

48. Suppose that f(x) is a function with f(20) = 345 and
f ′(20) = 6. Estimate f(22).

49. Students were asked to evaluate f ′(4) from the following
table which shows values of the function f :

x 1 2 3 4 5 6

f(x) 4.2 4.1 4.2 4.5 5.0 5.7

• Student A estimated the derivative as f ′(4) ≈
f(5) − f(4)

5− 4
= 0.5.

• Student B estimated the derivative as f ′(4) ≈
f(4) − f(3)

4− 3
= 0.3.

• Student C suggested that they should split the differ-
ence and estimate the average of these two results,
that is, f ′(4) ≈ 1

2
(0.5 + 0.3) = 0.4.

16www.bts.gov. Accessed April 27, 2011.
17http://www.indexmundi.com/ukraine/population.html. Accessed April 27, 2011.
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(a) Sketch the graph of f , and indicate how the three
estimates are represented on the graph.

(b) Explain which answer is likely to be best.
(c) Use Student C’s method to find an algebraic formula

to approximate f ′(x) using increments of size h.

50. Use Figure 2.63 to fill in the blanks in the following state-
ments about the function f at point A.
(a) f( ) = (b) f ′( ) =

(7, 3)
A

(7.2, 3.8)
Tangent line

f(x)

Figure 2.63

51. Use Figure 2.64. At point A, we are told that x = 1. In
addition, f(1) = 3, f ′(1) = 2, and h = 0.1. What are
the values of x1, x2, x3, y1, y2, y3?

x1 x2 x3

y1

y2

y3

��h��h

y = f(x)

Tangent
at A

A

x

y

Figure 2.64

52. Given all of the following information about a function
f , sketch its graph.

• f(x) = 0 at x = −5, x = 0, and x = 5

• lim
x→−∞

f(x) = ∞
• lim

x→∞

f(x) = −3

• f ′(x) = 0 at x = −3, x = 2.5, and x = 7

53. Suppose w is the weight of a stack of papers in an open
container, and t is time. A lighted match is thrown into
the stack at time t = 0.

(a) What is the sign of dw/dt for t while the stack of
paper is burning?

(b) What behavior of dw/dt indicates that the fire is no
longer burning?

(c) If the fire starts small but increases in vigor over a
certain time interval, then does dw/dt increase or
decrease over that interval? What about |dw/dt|?

54. A yam has just been taken out of the oven and is cooling
off before being eaten. The temperature, T , of the yam
(measured in degrees Fahrenheit) is a function of how
long it has been out of the oven, t (measured in minutes).
Thus, we have T = f(t).

(a) Is f ′(t) positive or negative? Why?
(b) What are the units for f ′(t)?

55. For some painkillers, the size of the dose, D, given de-
pends on the weight of the patient, W . Thus, D = f(W ),
where D is in milligrams and W is in pounds.

(a) Interpret the statements f(140) = 120 and
f ′(140) = 3 in terms of this painkiller.

(b) Use the information in the statements in part (a) to
estimate f(145).

56. In April 1991, the Economist carried an article18 which
said:

Suddenly, everywhere, it is not the rate of
change of things that matters, it is the rate of
change of rates of change. Nobody cares much
about inflation; only whether it is going up or
down. Or rather, whether it is going up fast
or down fast. “Inflation drops by disappointing
two points,” cries the billboard. Which roughly
translated means that prices are still rising, but
less fast than they were, though not quite as
much less fast as everybody had hoped.

In the last sentence, there are three statements about
prices. Rewrite these as statements about derivatives.

57. At time, t, in years, the US population is growing at 0.8%
per year times its size, P (t), at that moment. Using the
derivative, write an equation representing this statement.

18From “The Tyranny of Differential Calculus: d2P/dt2 > 0 = misery.” The Economist (London: April 6, 1991).
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58. A continuous function defined for all x has the following
properties:
• f is increasing • f is concave down
• f(5) = 2 • f ′(5) = 1

2

(a) Sketch a possible graph for f .
(b) How many zeros does f have?
(c) What can you say about the location of the zeros?
(d) What is lim

x→−∞

f(x)?

(e) Is it possible that f ′(1) = 1?
(f) Is it possible that f ′(1) = 1

4
?

59. (a) Using the table, estimate f ′(0.6) and f ′(0.5).
(b) Estimate f ′′(0.6).
(c) Where do you think the maximum and minimum

values of f occur in the interval 0 ≤ x ≤ 1?

x 0 0.2 0.4 0.6 0.8 1.0

f(x) 3.7 3.5 3.5 3.9 4.0 3.9

60. Let g(x) =
√
x and f(x) = kx2, where k is a constant.

(a) Find the slope of the tangent line to the graph of g at
the point (4, 2).

(b) Find the equation of this tangent line.
(c) If the graph of f contains the point (4, 2), find k.
(d) Where does the graph of f intersect the tangent line

found in part (b)?

61. A circle with center at the origin and radius of length√
19 has equation x2 + y2 = 19. Graph the circle.

(a) Just from looking at the graph, what can you say
about the slope of the line tangent to the circle at the
point (0,

√
19)? What about the slope of the tangent

at (
√
19, 0)?

(b) Estimate the slope of the tangent to the circle at the
point (2,−√

15) by graphing the tangent carefully
at that point.

(c) Use the result of part (b) and the symmetry of the cir-
cle to find slopes of the tangents drawn to the circle
at (−2,

√
15), (−2,−√

15), and (2,
√
15).

62. Each of the graphs in Figure 2.65 shows the position of
a particle moving along the x-axis as a function of time,
0 ≤ t ≤ 5. The vertical scales of the graphs are the same.
During this time interval, which particle has

(a) Constant velocity?
(b) The greatest initial velocity?
(c) The greatest average velocity?
(d) Zero average velocity?
(e) Zero acceleration?
(f) Positive acceleration throughout?

5
t

x(I)

5
t

x(II)

5
t

x(III)

5
t

x(IV)

Figure 2.65

63. The population of a herd of deer is modeled by

P (t) = 4000 + 400 sin
(
π

6
t
)
+ 180 sin

(
π

3
t
)

where t is measured in months from the first of April.

(a) Use a calculator or computer to sketch a graph show-
ing how this population varies with time.

Use the graph to answer the following questions.

(b) When is the herd largest? How many deer are in it at
that time?

(c) When is the herd smallest? How many deer are in it
then?

(d) When is the herd growing the fastest? When is it
shrinking the fastest?

(e) How fast is the herd growing on April 1?

64. The number of hours, H , of daylight in Madrid is a func-
tion of t, the number of days since the start of the year.
Figure 2.66 shows a one-month portion of the graph of
H .

10 20 30

11
11.5
12

12.5

)(
days since
start of month

H (daylight in hours)

Figure 2.66

(a) Comment on the shape of the graph. Why does it
look like a straight line?

(b) What month does this graph show? How do you
know?

(c) What is the approximate slope of this line? What
does the slope represent in practical terms?
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65. You put a yam in a hot oven, maintained at a constant
temperature of 200◦C. As the yam picks up heat from
the oven, its temperature rises.19

(a) Draw a possible graph of the temperature T of the
yam against time t (minutes) since it is put into the
oven. Explain any interesting features of the graph,
and in particular explain its concavity.

(b) At t = 30, the temperature T of the yam is 120◦

and increasing at the (instantaneous) rate of 2◦/min.
Using this information and the shape of the graph,
estimate the temperature at time t = 40.

(c) In addition, you are told that at t = 60, the tem-
perature of the yam is 165◦. Can you improve your
estimate of the temperature at t = 40?

(d) Assuming all the data given so far, estimate the time
at which the temperature of the yam is 150◦.

66. You are given the following values for the error function,
erf(x).

erf(0) = 0 erf(1) = 0.84270079

erf(0.1) = 0.11246292 erf(0.01) = 0.01128342.

(a) Use all this information to determine your best es-
timate for erf ′(0). (Give only those digits of which
you feel reasonably certain.)

(b) You find that erf(0.001) = 0.00112838. How
does this extra information change your answer to
part (a)?

67. (a) Use your calculator to approximate the derivative of
the hyperbolic sine function (written sinhx) at the

points 0, 0.3, 0.7, and 1.
(b) Can you find a relation between the values of this

derivative and the values of the hyperbolic cosine
(written cosh x)?

68. In 2009, a study was done on the impact of sea level rise
in the mid-Atlantic states.20 Let a(t) be the depth of the
sea in millimeters (mm) at a typical point on the Atlantic
Coast, and let m(t) be the depth of the sea in mm at a
typical point on the Gulf of Mexico, with time t in years
since data collection started.

(a) The study reports “Sea level is rising and there is ev-
idence that the rate is accelerating.” What does this
statement tell us about a(t) and m(t)?

(b) The study also reports “The Atlantic Coast and the
Gulf of Mexico experience higher rates of sea-level
rise (2 to 4 mm per year and 2 to 10 mm per year, re-
spectively) than the current global average (1.7 mm
per year).” What does this tell us about a(t) and
m(t)?

(c) Assume the rate at which the sea level rises on the
Atlantic Coast and the Gulf of Mexico are constant
for a century and within the ranges given in the re-
port.

(i) What is the largest amount the sea could rise
on the Atlantic Coast during a century? Your
answer should be a range of values.

(ii) What is the shortest amount of time in which
the sea level in the Gulf of Mexico could rise 1
meter?

CAS Challenge Problems

69. Use a computer algebra system to find the derivative of
f(x) = sin2 x + cos2 x and simplify your answer. Ex-
plain your result.

70. (a) Use a computer algebra system to find the derivative
of f(x) = 2 sin x cos x.

(b) Simplify f(x) and f ′(x) using double angle formu-
las. Write down the derivative formula that you get
after doing this simplification.

71. (a) Use a computer algebra system to find the second
derivative of g(x) = e−ax2

with respect to x.
(b) Graph g(x) and g′′(x) on the same axes for a =

1, 2, 3 and describe the relation between the two
graphs.

(c) Explain your answer to part (b) in terms of concav-
ity.

72. (a) Use a computer algebra system to find the deriva-
tive of f(x) = ln(x), g(x) = ln(2x), and h(x) =
ln(3x). What is the relationship between the an-
swers?

(b) Use the properties of logarithms to explain what you
see in part (a).

73. (a) Use a computer algebra system to find the derivative
of (x2 + 1)2, (x2 + 1)3, and (x2 + 1)4.

(b) Conjecture a formula for the derivative of (x2+1)n

that works for any integer n. Check your formula
using the computer algebra system.

74. (a) Use a computer algebra system to find the deriva-
tives of sin x, cos x and sin x cos x.

(b) Is the derivative of a product of two functions always
equal to the product of their derivatives?

19From Peter D. Taylor, Calculus: The Analysis of Functions (Toronto: Wall & Emerson, Inc., 1992).
20www.epa.gov/climatechange/effects/coastal/sap4-1.html, Coastal Sensitivity to Sea-Level Rise: A Focus on the Mid-

Atlantic Region, US Climate Change Science Program, January 2009.
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PROJECTS FOR CHAPTER TWO

1. Hours of Daylight as a Function of Latitude
LetS(x) be the number of sunlight hours on a cloudless June 21, as a function of latitude, x,

measured in degrees.

(a) What is S(0)?
(b) Let x0 be the latitude of the Arctic Circle (x0 ≈ 66◦30′). In the northern hemisphere, S(x)

is given, for some constants a and b, by the formula:

S(x) =

⎧⎨
⎩ a+ b arcsin

(
tanx

tanx0

)
for 0 ≤ x < x0

24 for x0 ≤ x ≤ 90.

Find a and b so that S(x) is continuous.
(c) Calculate S(x) for Tucson, Arizona (x = 32◦13′) and Walla Walla, Washington (46◦4′).
(d) Graph S(x), for 0 ≤ x ≤ 90.
(e) Does S(x) appear to be differentiable?

2. US Population
Census figures for the US population (in millions) are listed in Table 2.12. Let f be the

function such that P = f(t) is the population (in millions) in year t.

Table 2.12 US population (in millions), 1790–2000

Year Population Year Population Year Population Year Population

1790 3.9 1850 23.1 1910 92.0 1970 205.0

1800 5.3 1860 31.4 1920 105.7 1980 226.5

1810 7.2 1870 38.6 1930 122.8 1990 248.7

1820 9.6 1880 50.2 1940 131.7 2000 281.4

1830 12.9 1890 62.9 1950 150.7

1840 17.1 1900 76.0 1960 179.0

(a) (i) Estimate the rate of change of the population for the years 1900, 1945, and 2000.

(ii) When, approximately, was the rate of change of the population greatest?

(iii) Estimate the US population in 1956.

(iv) Based on the data from the table, what would you predict for the census in the year
2010?

(b) Assume that f is increasing (as the values in the table suggest). Then f is invertible.

(i) What is the meaning of f−1(100)?

(ii) What does the derivative of f−1(P ) at P = 100 represent? What are its units?

(iii) Estimate f−1(100).

(iv) Estimate the derivative of f−1(P ) at P = 100.

(c) (i) Usually we think the US population P = f(t) as a smooth function of time. To what
extent is this justified? What happens if we zoom in at a point of the graph? What about
events such as the Louisiana Purchase? Or the moment of your birth?

(ii) What do we in fact mean by the rate of change of the population at a particular time t?

(iii) Give another example of a real-world function which is not smooth but is usually
treated as such.
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3.1 POWERS AND POLYNOMIALS

Derivative of a Constant Times a Function
Figure 3.1 shows the graph of y = f(x) and of three multiples: y = 3f(x), y = 1

2f(x), and
y = −2f(x). What is the relationship between the derivatives of these functions? In other words,
for a particular x-value, how are the slopes of these graphs related?

x

y

�

Slope = m

f(x)

x

y

�

Slope = 3m

3f(x)

x

y

�

Slope = m/2

f(x)/2

x

y

�

Slope = −2m

−2f(x)

Figure 3.1: A function and its multiples: Derivative of multiple is multiple of derivative

Multiplying the value of a function by a constant stretches or shrinks the original graph (and
reflects it across the x-axis if the constant is negative). This changes the slope of the curve at each
point. If the graph has been stretched, the “rises” have all been increased by the same factor, whereas
the “runs” remain the same. Thus, the slopes are all steeper by the same factor. If the graph has been
shrunk, the slopes are all smaller by the same factor. If the graph has been reflected across the x-
axis, the slopes will all have their signs reversed. In other words, if a function is multiplied by a
constant, c, so is its derivative:

Theorem 3.1: Derivative of a Constant Multiple

If f is differentiable and c is a constant, then

d

dx
[cf(x)] = cf ′

(x).

Proof Although the graphical argument makes the theorem plausible, to prove it we must use the definition
of the derivative:

d

dx
[cf(x)] = lim

h→0

cf(x+ h)− cf(x)

h
= lim

h→0
c
f(x+ h)− f(x)

h

= c lim
h→0

f(x+ h)− f(x)

h
= cf ′

(x).

We can take c across the limit sign by the properties of limits (part 1 of Theorem 1.2 on page 60).

Derivatives of Sums and Differences
Suppose we have two functions, f(x) and g(x), with the values listed in Table 3.1. Values of the
sum f(x) + g(x) are given in the same table.

Table 3.1 Sum of Functions

x f(x) g(x) f(x) + g(x)

0 100 0 100

1 110 0.2 110.2

2 130 0.4 130.4

3 160 0.6 160.6

4 200 0.8 200.8
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We see that adding the increments of f(x) and the increments of g(x) gives the increments of
f(x) + g(x). For example, as x increases from 0 to 1, f(x) increases by 10 and g(x) increases by
0.2, while f(x)+ g(x) increases by 110.2− 100 = 10.2. Similarly, as x increases from 3 to 4, f(x)
increases by 40 and g(x) by 0.2, while f(x) + g(x) increases by 200.8− 160.6 = 40.2.

From this example, we see that the rate at which f(x)+g(x) is increasing is the sum of the rates
at which f(x) and g(x) are increasing. Similar reasoning applies to the difference, f(x)− g(x). In
terms of derivatives:

Theorem 3.2: Derivative of Sum and Difference

If f and g are differentiable, then

d

dx
[f(x) + g(x)] = f ′

(x) + g′(x) and
d

dx
[f(x)− g(x)] = f ′

(x) − g′(x).

Proof Using the definition of the derivative:

d

dx
[f(x) + g(x)] = lim

h→0

[f(x+ h) + g(x+ h)]− [f(x) + g(x)]

h

= lim
h→0

⎡
⎢⎢⎣f(x+ h)− f(x)

h︸ ︷︷ ︸
Limit of this is f ′(x)

+
g(x+ h)− g(x)

h︸ ︷︷ ︸
Limit of this is g′(x)

⎤
⎥⎥⎦

= f ′
(x) + g′(x).

We have used the fact that the limit of a sum is the sum of the limits, part 2 of Theorem 1.2 on
page 60. The proof for f(x)− g(x) is similar.

Powers of x
In Chapter 2 we showed that

f ′
(x) =

d

dx
(x2

) = 2x and g′(x) =
d

dx
(x3

) = 3x2.

The graphs of f(x) = x2 and g(x) = x3 and their derivatives are shown in Figures 3.2 and 3.3.
Notice f ′(x) = 2x has the behavior we expect. It is negative for x < 0 (when f is decreasing),
zero for x = 0, and positive for x > 0 (when f is increasing). Similarly, g′(x) = 3x2 is zero when
x = 0, but positive everywhere else, as g is increasing everywhere else.

−5 5

−10

10

20

x

y f(x) = x2

f ′(x) = 2x

Figure 3.2: Graphs of f(x) = x2 and
its derivative f ′(x) = 2x

−3 3

−20

−10

10

20

x

y

g(x) = x3

g′(x) = 3x2

Figure 3.3: Graphs of g(x) = x3 and its
derivative g′(x) = 3x2



126 Chapter Three SHORT-CUTS TO DIFFERENTIATION

These examples are special cases of the power rule, which we justify for any positive integer n
on page 127:

The Power Rule

For any constant real number n,

d

dx
(xn

) = nxn−1.

Problem 80 asks you to show that this rule holds for negative integral powers; such powers can also
be differentiated using the quotient rule (Section 3.3). In Section 3.6 we indicate how to justify the
power rule for powers of the form 1/n.

Example 1 Use the power rule to differentiate (a)
1

x3
, (b) x1/2, (c)

1

3
√
x

.

Solution (a) For n = −3:
d

dx

(
1

x3

)
=

d

dx
(x−3

) = −3x−3−1
= −3x−4

= −
3

x4
.

(b) For n = 1/2:
d

dx

(
x1/2
)
=

1

2
x(1/2)−1

=
1

2
x−1/2

=
1

2
√
x
.

(c) For n = −1/3:
d

dx

(
1

3
√
x

)
=

d

dx

(
x−1/3

)
= −

1

3
x(−1/3)−1

= −
1

3
x−4/3

= −
1

3x4/3
.

Example 2 Use the definition of the derivative to justify the power rule for n = −2: Show
d

dx
(x−2

) = −2x−3.

Solution Provided x �= 0, we have

d

dx

(
x−2
)
=

d

dx

(
1

x2

)
= lim

h→0

(
1

(x+h)2 − 1
x2

h

)
= lim

h→0

1

h

[
x2 − (x+ h)2

(x+ h)2x2

]
(Combining fractions

over a common
denominator)

= lim
h→0

1

h

[
x2 − (x2 + 2xh+ h2)

(x + h)2x2

]
(Multiplying

out)

= lim
h→0

−2xh− h2

h(x+ h)2x2
(Simplifying numerator)

= lim
h→0

−2x− h

(x+ h)2x2

(Dividing numerator
and denominator by h)

=
−2x

x4
(Letting h → 0)

= −2x−3.

The graphs of x−2 and its derivative, −2x−3, are shown in Figure 3.4. Does the graph of the deriva-
tive have the features you expect?

x−2

x

−2x−3

x

Figure 3.4: Graphs of x−2 and its derivative, −2x−3



3.1 POWERS AND POLYNOMIALS 127

Justification of
d

dx

(xn) = nx
n−1, for n a Positive Integer

To calculate the derivatives of x2 and x3, we had to expand (x+ h)2 and (x+ h)3. To calculate the
derivative of xn, we must expand (x+ h)n. Let’s look back at the previous expansions:

(x+ h)2 = x2
+ 2xh+ h2, (x+ h)3 = x3

+ 3x2h+ 3xh2
+ h3,

and multiply out a few more examples:

(x + h)4 = x4
+ 4x3h+ 6x2h2

+ 4xh3
+ h4,

(x + h)5 = x5
+ 5x4h+ 10x3h2

+ 10x2h3
+ 5xh4

+ h5.︸ ︷︷ ︸
Terms involving h2 and higher powers of h

In general, we can say
(x+ h)n = xn

+ nxn−1h+ · · ·+ hn.︸ ︷︷ ︸
Terms involving h2 and higher powers of h

We have just seen this is true for n = 2, 3, 4, 5. It can be proved in general using the Binomial
Theorem (see www.wiley.com/college/hughes-hallett). Now to find the derivative,

d

dx
(xn

) = lim
h→0

(x+ h)n − xn

h

= lim
h→0

(xn + nxn−1h+ · · ·+ hn)− xn

h

= lim
h→0

nxn−1h+

Terms involving h2 and higher powers of h︷ ︸︸ ︷
· · ·+ hn

h
.

When we factor out h from terms involving h2 and higher powers of h, each term will still have an
h in it. Factoring and dividing, we get:

d

dx
(xn

) = lim
h→0

h(nxn−1 + · · ·+ hn−1)

h
= lim

h→0
(nxn−1

+

Terms involving h and higher powers of h︷ ︸︸ ︷
· · ·+ hn−1

).

But as h → 0, all terms involving an h will go to 0, so

d

dx
(xn

) = lim
h→0

(nxn−1
+ · · ·+ hn−1︸ ︷︷ ︸

These terms go to 0

) = nxn−1.

Derivatives of Polynomials
Now that we know how to differentiate powers, constant multiples, and sums, we can differentiate
any polynomial.

Example 3 Find the derivatives of (a) 5x2 + 3x+ 2, (b)
√
3x7 −

x5

5
+ π.

Solution (a)
d

dx
(5x2

+ 3x+ 2) = 5
d

dx
(x2

) + 3
d

dx
(x) +

d

dx
(2)

= 5 · 2x+ 3 · 1 + 0 (Since the derivative of a constant, d

dx
(2), is zero.)

= 10x+ 3.
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(b)
d

dx

(
√
3x7 −

x5

5
+ π

)
=

√
3
d

dx
(x7

)−
1

5

d

dx
(x5

) +
d

dx
(π)

=
√
3 · 7x6 −

1

5
· 5x4

+ 0 (Since π is a constant, dπ/dx = 0.)

= 7
√
3x6 − x4.

We can also use the rules we have seen so far to differentiate expressions that are not polynomials.

Example 4 Differentiate (a) 5
√
x−

10

x2
+

1

2
√
x

. (b) 0.1x3 + 2x
√
2.

Solution (a)
d

dx

(
5
√
x−

10

x2
+

1

2
√
x

)
=

d

dx

(
5x1/2 − 10x−2

+
1

2
x−1/2

)
= 5 ·

1

2
x−1/2 − 10(−2)x−3

+
1

2

(
−
1

2

)
x−3/2

=
5

2
√
x
+

20

x3
−

1

4x3/2
.

(b)
d

dx
(0.1x3

+ 2x
√
2
) = 0.1

d

dx
(x3

) + 2
d

dx
(x

√
2
) = 0.3x2

+ 2
√
2x

√
2−1.

Example 5 Find the second derivative and interpret its sign for
(a) f(x) = x2, (b) g(x) = x3, (c) k(x) = x1/2.

Solution (a) If f(x) = x2, then f ′(x) = 2x, so f ′′
(x) =

d

dx
(2x) = 2. Since f ′′ is always positive, f is

concave up, as expected for a parabola opening upward. (See Figure 3.5.)

(b) If g(x) = x3, then g′(x) = 3x2, so g′′(x) =
d

dx
(3x2

) = 3
d

dx
(x2

) = 3 · 2x = 6x. This is

positive for x > 0 and negative for x < 0, which means x3 is concave up for x > 0 and concave
down for x < 0. (See Figure 3.6.)

(c) If k(x) = x1/2, then k′(x) = 1
2x

(1/2)−1 = 1
2x

−1/2, so

k′′(x) =
d

dx

(
1

2
x−1/2

)
=

1

2
· (−

1

2
)x−(1/2)−1

= −
1

4
x−3/2.

Now k′ and k′′ are only defined on the domain of k, that is, x ≥ 0. When x > 0, we see that
k′′(x) is negative, so k is concave down. (See Figure 3.7.)

−2 2

4

x

f ′′ > 0

Figure 3.5: f(x) = x2 has
f ′′(x) = 2

−2 2

−8

8

x

g′′ > 0

g′′ < 0

Figure 3.6: g(x) = x3 has
g′′(x) = 6x

4

2

x

k′′ < 0

Figure 3.7: k(x) = x1/2 has
k′′(x) = − 1

4
x−3/2

Example 6 If the position of a body, in meters, is given as a function of time t, in seconds, by

s = −4.9t2 + 5t+ 6,

find the velocity and acceleration of the body at time t.
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Solution The velocity, v, is the derivative of the position:

v =
ds

dt
=

d

dt
(−4.9t2 + 5t+ 6) = −9.8t+ 5,

and the acceleration, a, is the derivative of the velocity:

a =
dv

dt
=

d

dt
(−9.8t+ 5) = −9.8.

Note that v is in meters/second and a is in meters/second2.

Example 7 Figure 3.8 shows the graph of a cubic polynomial. Both graphically and algebraically, describe the
behavior of the derivative of this cubic.

A

B

C

f

Figure 3.8: The cubic of Example 7

x
A

B

C

f ′

Figure 3.9: Derivative of the cubic of Example 7

Solution Graphical approach: Suppose we move along the curve from left to right. To the left of A, the slope
is positive; it starts very positive and decreases until the curve reaches A, where the slope is 0.
Between A and C the slope is negative. Between A and B the slope is decreasing (getting more
negative); it is most negative at B. Between B and C the slope is negative but increasing; at C the
slope is zero. From C to the right, the slope is positive and increasing. The graph of the derivative
function is shown in Figure 3.9.

Algebraic approach: f is a cubic that goes to +∞ as x → +∞, so

f(x) = ax3
+ bx2

+ cx+ d

with a > 0. Hence,
f ′
(x) = 3ax2

+ 2bx+ c,

whose graph is a parabola opening upward, as in Figure 3.9.

Exercises and Problems for Section 3.1
Exercises

1. Let f(x) = 7. Using the definition of the derivative,
show that f ′(x) = 0 for all values of x.

2. Let f(x) = 17x+11. Use the definition of the derivative
to calculate f ′(x).

For Exercises 3–5, determine if the derivative rules from this
section apply. If they do, find the derivative. If they don’t ap-
ply, indicate why.

3. y = 3x 4. y = x3 5. y = xπ

For Exercises 6–49, find the derivatives of the given functions.
Assume that a, b, c, and k are constants.

6. y = x12 7. y = x11

8. y = −x−11 9. y = x−12

10. y = x3.2 11. y = x−3/4

12. y = x4/3 13. y = x3/4

14. y = x2 + 5x+ 7 15. f(t) = t3−3t2+8t−4

16. f(x) =
1

x4
17. g(t) =

1

t5

18. f(z) = − 1

z6.1
19. y =

1

r7/2

20. y =
√
x 21. f(x) = 4

√
x

22. h(θ) =
1
3
√
θ

23. f(x) =

√
1

x3

24. h(x) = ln eax 25. y = 4x3/2 − 5x1/2
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26. f(t) = 3t2 − 4t+ 1 27. y = 17x + 24x1/2

28. y = z2 +
1

2z
29. f(x) = 5x4 +

1

x2

30. h(w) = −2w−3+3
√
w 31. y = −3x4 − 4x3 − 6x

32. y = 3t5 − 5
√
t+

7

t
33. y = 3t2 +

12√
t
− 1

t2

34. y =
√
x(x+ 1) 35. y = t3/2(2 +

√
t)

36. h(t) =
3

t
+

4

t2
37. h(θ) = θ(θ−1/2−θ−2)

38. y =
x2 + 1

x
39. f(z) =

z2 + 1

3z

40. g(x) =
x2 +

√
x+ 1

x3/2
41. y =

θ − 1√
θ

42. g(t) =

√
t(1 + t)

t2
43. j(x) =

x3

a
+

a

b
x2 − cx

44. f(x) =
ax+ b

x
45. h(x) =

ax+ b

c

46. V = 4
3
πr2b 47. w = 3ab2q

48. y = ax2 + bx+ c 49. P = a+ b
√
t

Problems

For Problems 50–55, determine if the derivative rules from
this section apply. If they do, find the derivative. If they don’t
apply, indicate why.

50. y = (x+ 3)1/2 51. y = πx

52. g(x) = xπ − x−π 53. y = 3x2 + 4

54. y =
1

3x2 + 4
55. y =

1

3z2
+

1

4

56. The graph of y = x3 − 9x2 − 16x + 1 has a slope of 5
at two points. Find the coordinates of the points.

57. Find the equation of the line tangent to the graph of f at
(1, 1), where f is given by f(x) = 2x3 − 2x2 + 1.

58. (a) Find the equation of the tangent line to f(x) = x3

at the point where x = 2.
(b) Graph the tangent line and the function on the same

axes. If the tangent line is used to estimate values of
the function, will the estimates be overestimates or
underestimates?

59. Find the equation of the line tangent to y = x2 +3x− 5
at x = 2.

60. Find the equation of the line tangent to f(x) at x = 2, if

f(x) =
x3

2
− 4

3x
.

61. Using a graph to help you, find the equations of all lines
through the origin tangent to the parabola

y = x2 − 2x+ 4.

Sketch the lines on the graph.

62. On what intervals is the graph of f(x) = x4 − 4x3 both
decreasing and concave up?

63. For what values of x is the function y = x5 − 5x both
increasing and concave up?

64. If f(x) = 4x3 + 6x2 − 23x + 7, find the intervals on
which f ′(x) ≥ 1.

65. If f(x) = (3x+ 8)(2x− 5), find f ′(x) and f ′′(x).

66. Given p(x) = xn − x, find the intervals over which p is
a decreasing function when:

(a) n = 2 (b) n = 1
2

(c) n = −1

67. Suppose W is proportional to r3. The derivative dW/dr
is proportional to what power of r?

68. The height of a sand dune (in centimeters) is represented
by f(t) = 700− 3t2, where t is measured in years since
2005. Find f(5) and f ′(5). Using units, explain what
each means in terms of the sand dune.

69. A ball is dropped from the top of the Empire State build-
ing to the ground below. The height, y, of the ball above
the ground (in feet) is given as a function of time, t, (in
seconds) by

y = 1250 − 16t2.

(a) Find the velocity of the ball at time t. What is the
sign of the velocity? Why is this to be expected?

(b) Show that the acceleration of the ball is a constant.
What are the value and sign of this constant?

(c) When does the ball hit the ground, and how fast is it
going at that time? Give your answer in feet per sec-
ond and in miles per hour (1 ft/sec = 15/22 mph).

70. At a time t seconds after it is thrown up in the air, a
tomato is at a height of f(t) = −4.9t2+25t+3 meters.

(a) What is the average velocity of the tomato during the
first 2 seconds? Give units.

(b) Find (exactly) the instantaneous velocity of the
tomato at t = 2. Give units.

(c) What is the acceleration at t = 2?
(d) How high does the tomato go?
(e) How long is the tomato in the air?
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71. A particle is moving on the x-axis, where x is in centime-
ters. Its velocity, v, in cm/sec, when it is at the point with
coordinate x is given by

v = x2 + 3x− 2.

Find the acceleration of the particle when it is at the point
x = 2. Give units in your answer.

72. Let f(t) and g(t) give, respectively, the amount of wa-
ter (in acre-feet) in two different reservoirs on day t.
Suppose that f(0) = 2000, g(0) = 1500 and that
f ′(0) = 11, g′(0) = 13.5. Let h(t) = f(t)− g(t).

(a) Evaluate h(0) and h′(0). What do these quantities
tell you about the reservoir?

(b) Assume h′ is constant for 0 ≤ t ≤ 250. Does h
have any zeros? What does this tell you about the
reservoirs?

73. If M is the mass of the earth and G is a constant, the
acceleration due to gravity, g, at a distance r from the
center of the earth is given by

g =
GM

r2
.

(a) Find dg/dr.
(b) What is the practical interpretation (in terms of ac-

celeration) of dg/dr? Why would you expect it to
be negative?

(c) You are told that M = 6·1024 and G = 6.67·10−20

where M is in kilograms and r in kilometers. What
is the value of dg/dr at the surface of the earth
(r = 6400 km)?

(d) What does this tell you about whether or not it is rea-
sonable to assume g is constant near the surface of
the earth?

74. The period, T , of a pendulum is given in terms of its
length, l, by

T = 2π

√
l

g
,

where g is the acceleration due to gravity (a constant).

(a) Find dT/dl.
(b) What is the sign of dT/dl? What does this tell you

about the period of pendulums?

75. (a) Use the formula for the area of a circle of radius r,
A = πr2, to find dA/dr.

(b) The result from part (a) should look familiar. What
does dA/dr represent geometrically?

(c) Use the difference quotient to explain the observa-
tion you made in part (b).

76. What is the formula for V , the volume of a sphere of ra-
dius r? Find dV /dr. What is the geometrical meaning of
dV /dr?

77. Show that for any power function f(x) = xn, we have
f ′(1) = n.

78. Given a power function of the form f(x) = axn, with
f ′(2) = 3 and f ′(4) = 24, find n and a.

79. Is there a value of n which makes y = xn a solution to
the equation 13x(dy/dx) = y? If so, what value?

80. Using the definition of derivative, justify the formula
d(xn)/dx = nxn−1.

(a) For n = −1; for n = −3.
(b) For any negative integer n.

81. (a) Find the value of a making f(x) continuous at x =
1:

f(x) =
{
ax 0 ≤ x ≤ 1
x2 + 3 1 < x ≤ 2.

(b) With the value of a you found in part (a), does f(x)
have a derivative at every point in 0 ≤ x ≤ 2? Ex-
plain.

82. Find values of a and b making f(x) continuous and dif-
ferentiable on 0 < x < 2:

f(x) =
{
ax+ b 0 ≤ x ≤ 1
x2 + 3 1 < x ≤ 2.

Strengthen Your Understanding

In Problems 83–84, explain what is wrong with the statement.

83. The only function that has derivative 2x is x2.

84. The derivative of f(x) = 1/x2 is f ′(x) = 1/(2x).

In Problems 85–87, give an example of:

85. Two functions f(x) and g(x) such that

d

dx
(f(x) + g(x)) = 2x+ 3.

86. A function whose derivative is g′(x) = 2x and whose
graph has no x-intercepts.

87. A function which has second derivative equal to 6 every-
where.

Are the statements in Problems 88–90 true or false? Give an
explanation for your answer.

88. The derivative of a polynomial is always a polynomial.

89. The derivative of π/x2 is −π/x.

90. If f ′(2) = 3.1 and g′(2) = 7.3, then the graph of
f(x) + g(x) has slope 10.4 at x = 2.

Suppose that f ′′ and g′′ exist and that f and g are concave up
for all x. Are the statements in Problems 91–92 true or false
for all such f and g? If a statement is true, explain how you
know. If a statement is false, give a counterexample.

91. f(x) + g(x) is concave up for all x.

92. f(x)− g(x) cannot be concave up for all x.
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3.2 THE EXPONENTIAL FUNCTION

What do we expect the graph of the derivative of the exponential function f(x) = ax to look like?
The exponential function in Figure 3.10 increases slowly for x < 0 and more rapidly for x > 0, so
the values of f ′ are small for x < 0 and larger for x > 0. Since the function is increasing for all
values of x, the graph of the derivative must lie above the x-axis. It appears that the graph of f ′ may
resemble the graph of f itself.

x

f(x) = ax

Figure 3.10: f(x) = ax, with a > 1

In this section we see that f ′(x) = k · ax, where k is a constant, so in fact f ′(x) is propor-
tional to f(x). This property of exponential functions makes them particularly useful in modeling
because many quantities have rates of change which are proportional to themselves. For example,
the simplest model of population growth has this property.

Derivatives of Exponential Functions and the Number e
We start by calculating the derivative of g(x) = 2x, which is given by

g′(x) = lim
h→0

(
2x+h − 2x

h

)
= lim

h→0

(
2x2h − 2x

h

)
= lim

h→0
2
x

(
2h − 1

h

)

= lim
h→0

(
2h − 1

h

)
· 2x. (Since x and 2x are fixed during this calculation).

To find limh→0(2
h − 1)/h, see Table 3.2 where we have substituted values of h near 0. The table

suggests that the limit exists and has value 0.693. Let us call the limit k, so k = 0.693. Then

d

dx
(2

x
) = k · 2x = 0.693 · 2x.

So the derivative of 2x is proportional to 2x with constant of proportionality 0.693. A similar calcu-
lation shows that the derivative of f(x) = ax is

f ′
(x) = lim

h→0

(
ax+h − ax

h

)
= lim

h→0

(
ah − 1

h

)
· ax.

Table 3.2

h (2h − 1)/h

−0.1 0.6697

−0.01 0.6908

−0.001 0.6929

0.001 0.6934

0.01 0.6956

0.1 0.7177

Table 3.3

a k = limh→0
ah

−1
h

2 0.693

3 1.099

4 1.386

5 1.609

6 1.792

7 1.946

Table 3.4

h (1 + h)1/h

−0.001 2.7196422

−0.0001 2.7184178

−0.00001 2.7182954

0.00001 2.7182682

0.0001 2.7181459

0.001 2.7169239

The quantity limh→0(a
h − 1)/h is also a constant, although the value of the constant depends

on a. Writing k = limh→0(a
h−1)/h, we see that the derivative of f(x) = ax is proportional to ax:



3.2 THE EXPONENTIAL FUNCTION 133

d

dx
(ax) = k · ax.

For particular values of a, we can estimate k by substituting values of h near 0 into the expres-
sion (ah − 1)/h. Table 3.3 shows the results. Notice that for a = 2, the value of k is less than 1,
while for a = 3, 4, 5, . . ., the values of k are greater than 1. The values of k appear to be increasing,
so we guess that there is a value of a between 2 and 3 for which k = 1. If so, we have found a value
of a with the remarkable property that the function ax is equal to its own derivative.

So let us look for such an a. This means we want to find a such that

lim
h→0

ah − 1

h
= 1, or, for small h,

ah − 1

h
≈ 1.

Solving for a, we can estimate a as follows:

ah − 1 ≈ h, or ah ≈ 1 + h, so a ≈ (1 + h)1/h.

Taking small values of h, as in Table 3.4, we see a ≈ 2.718 . . .. This is the number e introduced
in Chapter 1. In fact, it can be shown that if

e = lim
h→0

(1 + h)1/h = 2.718 . . . then lim
h→0

eh − 1

h
= 1.

This means that ex is its own derivative:

d

dx
(ex) = ex.

Figure 3.11 shows the graphs 2x, 3x, and ex together with their derivatives. Notice that the
derivative of 2x is below the graph of 2x, since k < 1 there, and the graph of the derivative of 3x

is above the graph of 3x, since k > 1 there. With e ≈ 2.718, the function ex and its derivative are
identical.

Note on Round-Off Error and Limits

If we try to evaluate (1+h)1/h on a calculator by taking smaller and smaller values of h, the values
of (1+h)1/h at first get closer to 2.718 . . .. However, they will eventually move away again because
of the round-off error (that is, errors introduced by the fact that the calculator can only hold a certain
number of digits).

As we try smaller and smaller values of h, how do we know when to stop? Unfortunately, there
is no fixed rule. A calculator can only suggest the value of a limit, but can never confirm that this
value is correct. In this case, it looks like the limit is 2.718 . . . because the values of (1 + h)1/h

approach this number for a while. To be sure this is correct, we have to find the limit analytically.

f(x) = 2x

f ′(x) ≈ (0.69)2x

x

ex and its derivative

x

g(x) = 3x

g′(x) ≈ (1.1)3x

x

Figure 3.11: Graphs of the functions 2x, ex, and 3x and their derivatives
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A Formula for the Derivative of ax

To get a formula for the derivative of ax, we must calculate

f ′
(x) = lim

h→0

ax+h − ax

h
=

(
lim
h→0

ah − 1

h

)
︸ ︷︷ ︸

k

ax.

However, without knowing the value of a, we can’t use a calculator to estimate k. We take a different
approach, rewriting a = elna, so

lim
h→0

ah − 1

h
= lim

h→0

(elna)h − 1

h
= lim

h→0

e(ln a)h − 1

h
.

To evaluate this limit, we use a limit that we already know:

lim
h→0

eh − 1

h
= 1.

In order to use this limit, we substitute t = (ln a)h. Since t approaches 0 as h approaches 0, we
have

lim
h→0

e(ln a)h − 1

h
= lim

t→0

et − 1

(t/ ln a)
= lim

t→0

(
ln a ·

et − 1

t

)
= ln a

(
lim
t→0

et − 1

t

)
= (ln a) · 1 = ln a.

Thus, we have

f ′
(x) = lim

h→0

ax+h − ax

h
=

(
lim
h→0

ah − 1

h

)
ax = (ln a)ax.

In Section 3.6 we obtain the same result by another method. We conclude that:

d

dx
(ax) = (ln a)ax.

Thus, for any a, the derivative of ax is proportional to ax. The constant of proportionality is ln a. The
derivative of ax is equal to ax if the constant of proportionality is 1, that is, if ln a = 1, then a = e.
The fact that the constant of proportionality is 1 when a = e makes e a particularly convenient base
for exponential functions.

Example 1 Differentiate 2 · 3x + 5ex.

Solution
d

dx
(2 · 3x + 5ex) = 2

d

dx
(3

x
) + 5

d

dx
(ex) = 2 ln 3 · 3x + 5ex ≈ (2.1972)3x + 5ex.

We can now use the new differentiation formula to compute rates.

Example 2 The population of the world in billions can be modeled by the function f(t) = 6.91(1.011)t, where
t is years since 2010. Find and interpret f(0) and f ′(0).

Solution We have f(t) = 6.91(1.011)t so f ′(t) = 6.91(ln 1.011)(1.011)t = 0.0756(1.011)t. Therefore,

f(0) = 6.91 billion people

and
f ′
(0) = 0.0756 billion people per year.

In 2010, the population of the world was 6.91 billion people and was increasing at a rate of 0.0756
billion, or 75.6 million, people per year.
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Exercises and Problems for Section 3.2
Exercises

In Exercises 1–26, find the derivatives of the functions . As-
sume that a, b, c, and k are constants.

1. f(x) = 2ex + x2 2. y = 5t2 + 4et

3. f(x) = a5x 4. f(x) = 12ex + 11x

5. y = 5x2 + 2x + 3 6. f(x) = 2x + 2 · 3x

7. y = 4 · 10x − x3 8. z = (ln 4)ex

9. y =
3x

3
+

33√
x

10. y = 2x +
2

x3

11. z = (ln 4)4x 12. f(t) = (ln 3)t

13. y = 5 · 5t + 6 · 6t 14. h(z) = (ln 2)z

15. f(x) = e2 + xe 16. y = π2 + πx

17. f(x) = eπ + πx 18. f(x) = πx + xπ

19. f(x) = ek + kx 20. f(x) = e1+x

21. f(t) = et+2 22. f(θ) = ekθ − 1

23. y(x) = ax + xa 24. f(x) = xπ2

+ (π2)x

25. g(x) = 2x− 1
3
√
x
+ 3x − e

26. f(x) = (3x2 + π)(ex − 4)

Problems

In Problems 27–37, can the functions be differentiated using
the rules developed so far? Differentiate if you can; otherwise,
indicate why the rules discussed so far do not apply.

27. y = x2 + 2x 28. y =
√
x− ( 1

2
)x

29. y = x2 · 2x 30. f(s) = 5ses

31. y = ex+5 32. y = e5x

33. y = 4(x
2) 34. f(z) = (

√
4)z

35. f(θ) = 4
√

θ 36. f(x) = 4(3
x)

37. y =
2x

x

38. An animal population is given by P (t) = 300(1.044)t

where t is the number of years since the study of the pop-
ulation began. Find P ′(5) and interpret your result.

39. With a yearly inflation rate of 5%, prices are given by

P = P0(1.05)
t,

where P0 is the price in dollars when t = 0 and t is time
in years. Suppose P0 = 1. How fast (in cents/year) are
prices rising when t = 10?

40. The value of an automobile purchased in 2009 can be ap-
proximated by the function V (t) = 25(0.85)t , where t
is the time, in years, from the date of purchase, and V (t)
is the value, in thousands of dollars.

(a) Evaluate and interpret V (4), including units.
(b) Find an expression for V ′(t), including units.
(c) Evaluate and interpret V ′(4), including units.
(d) Use V (t), V ′(t), and any other considerations you

think are relevant to write a paragraph in support of
or in opposition to the following statement: “From a
monetary point of view, it is best to keep this vehicle
as long as possible.”

41. In 2009, the population of Mexico was 111 million and
growing 1.13% annually, while the population of the US
was 307 million and growing 0.975% annually.1 If we
measure growth rates in people/year, which population
was growing faster in 2009?

42. Some antique furniture increased very rapidly in price
over the past decade. For example, the price of a particu-
lar rocking chair is well approximated by

V = 75(1.35)t,

where V is in dollars and t is in years since 2000. Find
the rate, in dollars per year, at which the price is increas-
ing at time t.

43. (a) Find the slope of the graph of f(x) = 1 − ex at the
point where it crosses the x-axis.

(b) Find the equation of the tangent line to the curve at
this point.

(c) Find the equation of the line perpendicular to the
tangent line at this point. (This is the normal line.)

44. Find the value of c in Figure 3.12, where the line l tangent
to the graph of y = 2x at (0, 1) intersects the x-axis.

x

y

l

y = 2x

c

Figure 3.12

1https:/www.cia.gov/library/publications/the-world-factbook/print/ms.html and https://www.cia.gov/library/publications/the-
world-factbook/print/us.html, accessed 4/14/09.
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45. Find the quadratic polynomial g(x) = ax2 + bx + c
which best fits the function f(x) = ex at x = 0, in the
sense that

g(0) = f(0), and g′(0) = f ′(0), and g′′(0) = f ′′(0).

Using a computer or calculator, sketch graphs of f and g
on the same axes. What do you notice?

46. Using the equation of the tangent line to the graph of ex

at x = 0, show that

ex ≥ 1 + x

for all values of x. A sketch may be helpful.

47. For what value(s) of a are y = ax and y = 1+x tangent
at x = 0? Explain.

48. Explain for which values of a the function ax is increas-
ing and for which values it is decreasing. Use the fact
that, for a > 0,

d

dx
(ax) = (ln a)ax.

Strengthen Your Understanding

In Problems 49–50, explain what is wrong with the statement.

49. The derivative of f(x) = 2x is f ′(x) = x2x−1.

50. The derivative of f(x) = πe is f ′(x) = eπe−1.

In Problems 51–52, give an example of:

51. An exponential function for which the derivative is al-
ways negative.

52. A function f such that f ′′′(x) = f(x).

Are the statements in Problems 53–55 true or false? Give an
explanation for your answer.

53. If f(x) is increasing, then f ′(x) is increasing.

54. There is no function such that f ′(x) = f(x) for all x.

55. If f(x) is defined for all x, then f ′(x) is defined for all x.

3.3 THE PRODUCT AND QUOTIENT RULES

We now know how to find derivatives of powers and exponentials, and of sums and constant multi-
ples of functions. This section shows how to find the derivatives of products and quotients.

Using Δ Notation

To express the difference quotients of general functions, some additional notation is helpful. We
write Δf , read “delta f ,” for a small change in the value of f at the point x,

Δf = f(x+ h)− f(x).

In this notation, the derivative is the limit of the ratio Δf/h:

f ′
(x) = lim

h→0

Δf

h
.

The Product Rule
Suppose we know the derivatives of f(x) and g(x) and want to calculate the derivative of the
product, f(x)g(x). The derivative of the product is calculated by taking the limit, namely,

d[f(x)g(x)]

dx
= lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)

h
.

To picture the quantity f(x + h)g(x + h) − f(x)g(x), imagine the rectangle with sides f(x + h)
and g(x+ h) in Figure 3.13, where Δf = f(x+ h)− f(x) and Δg = g(x+ h)− g(x). Then

f(x+ h)g(x+ h)− f(x)g(x) = (Area of whole rectangle) − (Unshaded area)

= Area of the three shaded rectangles

= Δf · g(x) + f(x) ·Δg +Δf ·Δg.
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Now divide by h:

f(x+ h)g(x+ h)− f(x)g(x)

h
=

Δf

h
· g(x) + f(x) ·

Δg

h
+

Δf ·Δg

h
.

Δf

Area = f(x) · g(x)

Δg

Area = Δf · g(x) Area = Δf ·Δg

Area = f(x) ·Δg

� �

�

�

�

f(x)

�
�

�

�

f(x+ h)

�� g(x) ��

�� g(x+ h)

Figure 3.13: Illustration for the product rule (with Δf , Δg positive)

To evaluate the limit as h → 0, we examine the three terms on the right separately. Notice that

lim
h→0

Δf

h
· g(x) = f ′

(x)g(x) and lim
h→0

f(x) ·
Δg

h
= f(x)g′(x).

In the third term we multiply the top and bottom by h to get
Δf

h
·
Δg

h
· h. Then,

lim
h→0

Δf ·Δg

h
= lim

h→0

Δf

h
·
Δg

h
· h = lim

h→0

Δf

h
· lim
h→0

Δg

h
· lim
h→0

h = f ′
(x) · g′(x) · 0 = 0.

Therefore, we conclude that

lim
h→0

f(x+ h)g(x+ h)− f(x)g(x)

h
= lim

h→0

(
Δf

h
· g(x) + f(x) ·

Δg

h
+

Δf ·Δg

h

)

= lim
h→0

Δf

h
· g(x) + lim

h→0
f(x) ·

Δg

h
+ lim

h→0

Δf ·Δg

h

= f ′
(x)g(x) + f(x)g′(x).

Thus we have proved the following rule:

Theorem 3.3: The Product Rule

If u = f(x) and v = g(x) are differentiable, then

(fg)′ = f ′g + fg′.
The product rule can also be written

d(uv)

dx
=

du

dx
· v + u ·

dv

dx
.

In words:
The derivative of a product is the derivative of the first times the second plus the first
times the derivative of the second.

Another justification of the product rule is given in Problem 41 on page 174.
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Example 1 Differentiate (a) x2ex, (b) (3x2 + 5x)ex, (c)
ex

x2
.

Solution (a)
d(x2ex)

dx
=

(
d(x2)

dx

)
ex + x2 d(e

x)

dx
= 2xex + x2ex = (2x+ x2

)ex.

(b)
d((3x2 + 5x)ex)

dx
=

(
d(3x2 + 5x)

dx

)
ex + (3x2

+ 5x)
d(ex)

dx

= (6x+ 5)ex + (3x2
+ 5x)ex = (3x2

+ 11x+ 5)ex.

(c) First we must write
ex

x2
as the product x−2ex:

d

dx

(
ex

x2

)
=

d(x−2ex)

dx
=

(
d(x−2)

dx

)
ex + x−2 d(e

x)

dx

= −2x−3ex + x−2ex = (−2x−3
+ x−2

)ex.

The Quotient Rule
Suppose we want to differentiate a function of the form Q(x) = f(x)/g(x). (Of course, we have to
avoid points where g(x) = 0.) We want a formula for Q′ in terms of f ′ and g′.

Assuming that Q(x) is differentiable, we can use the product rule on f(x) = Q(x)g(x):

f ′
(x) = Q′

(x)g(x) +Q(x)g′(x)

= Q′
(x)g(x) +

f(x)

g(x)
g′(x).

Solving for Q′(x) gives

Q′
(x) =

f ′(x) −
f(x)

g(x)
g′(x)

g(x)
.

Multiplying the top and bottom by g(x) to simplify gives

d

dx

(
f(x)

g(x)

)
=

f ′(x)g(x) − f(x)g′(x)

(g(x))2
.

So we have the following rule:

Theorem 3.4: The Quotient Rule

If u = f(x) and v = g(x) are differentiable, then(
f

g

)′

=
f ′g − fg′

g2
,

or equivalently,

d

dx

(u
v

)
=

du

dx
· v − u ·

dv

dx
v2

.

In words:
The derivative of a quotient is the derivative of the numerator times the denominator
minus the numerator times the derivative of the denominator, all over the denomina-
tor squared.
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Example 2 Differentiate (a)
5x2

x3 + 1
, (b)

1

1 + ex
, (c)

ex

x2
.

Solution (a)

d

dx

(
5x2

x3 + 1

)
=

(
d

dx
(5x2

)

)
(x3 + 1)− 5x2 d

dx
(x3

+ 1)

(x3 + 1)2
=

10x(x3 + 1)− 5x2(3x2)

(x3 + 1)2

=
−5x4 + 10x

(x3 + 1)2
.

(b)

d

dx

(
1

1 + ex

)
=

(
d

dx
(1)

)
(1 + ex)− 1

d

dx
(1 + ex)

(1 + ex)2
=

0(1 + ex)− 1(0 + ex)

(1 + ex)2

=
−ex

(1 + ex)2
.

(c) This is the same as part (c) of Example 1, but this time we do it by the quotient rule.

d

dx

(
ex

x2

)
=

(
d(ex)

dx

)
x2 − ex

(
d(x2)

dx

)
(x2)2

=
exx2 − ex(2x)

x4

= ex
(
x2 − 2x

x4

)
= ex

(
x− 2

x3

)
.

This is, in fact, the same answer as before, although it looks different. Can you show that it is
the same?

Exercises and Problems for Section 3.3
Exercises

1. If f(x) = x2(x3 + 5), find f ′(x) two ways: by using
the product rule and by multiplying out before taking the
derivative. Do you get the same result? Should you?

2. If f(x) = 2x · 3x, find f ′(x) two ways: by using the
product rule and by using the fact that 2x · 3x = 6x. Do
you get the same result?

For Exercises 3–30, find the derivative. It may be to your ad-
vantage to simplify first. Assume that a, b, c, and k are con-
stants.

3. f(x) = xex 4. y = x · 2x
5. y =

√
x · 2x 6. y = (t2 + 3)et

7. f(x) = (x2 −√
x)3x 8. y = (t3 − 7t2 + 1)et

9. f(x) =
x

ex
10. g(x) =

25x2

ex

11. y =
t+ 1

2t
12. g(w) =

w3.2

5w

13. q(r) =
3r

5r + 2
14. g(t) =

t− 4

t+ 4

15. z =
3t+ 1

5t+ 2
16. z =

t2 + 5t+ 2

t+ 3

17. f(t) = 2tet − 1√
t

18. f(x) =
x2 + 3

x

19. w =
y3 − 6y2 + 7y

y
20. g(t) =

4

3 +
√
t

21. f(z) =
z2 + 1√

z
22. w =

5− 3z

5 + 3z

23. h(r) =
r2

2r + 1
24. f(z) =

3z2

5z2 + 7z

25. w(x) =
17ex

2x
26. h(p) =

1 + p2

3 + 2p2

27. f(x) =
x2 + 3x+ 2

x+ 1
28. f(x) =

ax+ b

cx+ k

29. y =
(
x2 + 5

)3 (
3x3 − 2

)2
30. f(x) = (2− 4x− 3x2)(6xe − 3π)
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Problems

In Problems 31–33, use Figure 3.14 and the product or quo-
tient rule to estimate the derivative, or state why the rules of
this section do not apply. The graph of f(x) has a sharp corner
at x = 2.

1 2 3 4

1

2

3

4

g(x)

f(x)

x

y

Figure 3.14

31. Let h(x) = f(x) · g(x). Find:

(a) h′(1) (b) h′(2) (c) h′(3)

32. Let k(x) = (f(x))/(g(x)). Find:

(a) k′(1) (b) k′(2) (c) k′(3)

33. Let j(x) = (g(x))/(f(x)). Find:

(a) j′(1) (b) j′(2) (c) j′(3)

For Problems 34–39, let h(x) = f(x) · g(x), and k(x) =
f(x)/g(x), and l(x) = g(x)/f(x). Use Figure 3.15 to esti-
mate the derivatives.

−3 3

−3

3

x

f(x)

−3 3

−3

3

x

g(x)

Figure 3.15

34. h′(1) 35. k′(1) 36. h′(2)

37. k′(2) 38. l′(1) 39. l′(2)

40. Differentiate f(t) = e−t by writing it as f(t) =
1

et
.

41. Differentiate f(x) = e2x by writing it as f(x) = ex ·ex.

42. Differentiate f(x) = e3x by writing it as f(x) = ex ·e2x
and using the result of Problem 41.

43. For what intervals is f(x) = xex concave up?

44. For what intervals is g(x) =
1

x2 + 1
concave down?

45. Find the equation of the tangent line to the graph of

f(x) =
2x− 5

x+ 1
at the point at which x = 0.

46. Find the equation of the tangent line at x = 1 to y =

f(x) where f(x) =
3x2

5x2 + 7x
.

47. (a) Differentiate y =
ex

x
, y =

ex

x2
, and y =

ex

x3
.

(b) What do you anticipate the derivative of y =
ex

xn

will be? Confirm your guess.

In Problems 48–51, the functions f(x), g(x), and h(x) are
differentiable for all values of x. Find the derivative of each
of the following functions, using symbols such as f(x) and
f ′(x) in your answers as necessary.

48. x2f(x) 49. 4x(f(x) + g(x))

50.
f(x)

g(x) + 1
51.

f(x)g(x)

h(x)

52. Suppose f and g are differentiable functions with the val-
ues shown in the following table. For each of the follow-
ing functions h, find h′(2).

(a) h(x) = f(x) + g(x) (b) h(x) = f(x)g(x)

(c) h(x) =
f(x)

g(x)

x f(x) g(x) f ′(x) g′(x)

2 3 4 5 −2

53. If H(3) = 1,H ′(3) = 3, F (3) = 5, F ′(3) = 4, find:

(a) G′(3) if G(z) = F (z) ·H(z)
(b) G′(3) if G(w) = F (w)/H(w)

54. Let f(3) = 6, g(3) = 12, f ′(3) = 1
2

, and g′(3) = 4
3

.
Evaluate the following when x = 3.

(f(x)g(x))′ − (g(x)− 4f ′(x))

55. Find a possible formula for a function y = f(x) such
that f ′(x) = 10x9ex + x10ex.

56. The quantity, q, of a certain skateboard sold depends on
the selling price, p, in dollars, so we write q = f(p). You
are given that f(140) = 15,000 and f ′(140) = −100.

(a) What do f(140) = 15,000 and f ′(140) = −100
tell you about the sales of skateboards?

(b) The total revenue, R, earned by the sale of skate-

boards is given by R = pq. Find
dR

dp

∣∣∣∣
p=140

.

(c) What is the sign of
dR

dp

∣∣∣∣
p=140

? If the skateboards

are currently selling for $140, what happens to rev-
enue if the price is increased to $141?

57. When an electric current passes through two resistors
with resistance r1 and r2, connected in parallel, the com-
bined resistance, R, can be calculated from the equation

1

R
=

1

r1
+

1

r2
.

Find the rate at which the combined resistance changes
with respect to changes in r1. Assume that r2 is constant.
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58. A museum has decided to sell one of its paintings and
to invest the proceeds. If the picture is sold between the
years 2000 and 2020 and the money from the sale is in-
vested in a bank account earning 5% interest per year
compounded annually, then B(t), the balance in the year
2020, depends on the year, t, in which the painting is
sold and the sale price P (t). If t is measured from the
year 2000 so that 0 < t < 20 then

B(t) = P (t)(1.05)20−t.

(a) Explain why B(t) is given by this formula.
(b) Show that the formula for B(t) is equivalent to

B(t) = (1.05)20
P (t)

(1.05)t
.

(c) Find B′(10), given that P (10) = 150,000 and
P ′(10) = 5000.

59. Let f(v) be the gas consumption (in liters/km) of a car
going at velocity v (in km/hr). In other words, f(v) tells
you how many liters of gas the car uses to go one kilo-
meter, if it is going at velocity v. You are told that

f(80) = 0.05 and f ′(80) = 0.0005.

(a) Let g(v) be the distance the same car goes on one
liter of gas at velocity v. What is the relationship be-
tween f(v) and g(v)? Find g(80) and g′(80).

(b) Let h(v) be the gas consumption in liters per hour.
In other words, h(v) tells you how many liters of
gas the car uses in one hour if it is going at velocity
v. What is the relationship between h(v) and f(v)?
Find h(80) and h′(80).

(c) How would you explain the practical meaning of the
values of these functions and their derivatives to a
driver who knows no calculus?

60. The function f(x) = ex has the properties

f ′(x) = f(x) and f(0) = 1.

Explain why f(x) is the only function with both these
properties. [Hint: Assume g′(x) = g(x), and g(0) = 1,
for some function g(x). Define h(x) = g(x)/ex, and
compute h′(x). Then use the fact that a function with a
derivative of 0 must be a constant function.]

61. Find f ′(x) for the following functions with the product
rule, rather than by multiplying out.

(a) f(x) = (x− 1)(x− 2).
(b) f(x) = (x− 1)(x− 2)(x− 3).
(c) f(x) = (x− 1)(x− 2)(x− 3)(x− 4).

62. Use the answer from Problem 61 to guess f ′(x) for the
following function:

f(x) = (x− r1)(x− r2)(x− r3) · · · (x− rn)

where r1, r2, . . . , rn are any real numbers.

63. (a) Provide a three-dimensional analogue for the geo-
metrical demonstration of the formula for the deriva-
tive of a product, given in Figure 3.13 on page 137.
In other words, find a formula for the derivative of
F (x) ·G(x) ·H(x) using Figure 3.16.

(b) Confirm your results by writing F (x) ·G(x) ·H(x)
as [F (x) · G(x)] · H(x) and using the product rule
twice.

(c) Generalize your result to n functions: what is the
derivative of

f1(x) · f2(x) · f3(x) · · · fn(x)?

Figure 3.16: A graphical representation
of the three-dimensional product rule

64. If P (x) = (x − a)2Q(x), where Q(x) is a polynomial
and Q(a) �= 0, we call x = a a double zero of the poly-
nomial P (x).

(a) If x = a is a double zero of a polynomial P (x),
show that P (a) = P ′(a) = 0.

(b) If P (x) is a polynomial and P (a) = P ′(a) = 0,
show that x = a is a double zero of P (x).

65. Find and simplify
d2

dx2
(f(x)g(x)).

Strengthen Your Understanding

In Problems 66–68, explain what is wrong with the statement.

66. The derivative of f(x) = x2ex is f ′(x) = 2xex.

67. Differentiating f(x) = x/(x + 1) by the quotient rule

gives

f ′(x) =
x d

dx
(x+ 1)− (x+ 1) d

dx
(x)

(x+ 1)2
.

68. The quotient f(x) = (x + 1)/e−x cannot be differenti-
ated using the product rule.
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In Problems 69–70, give an example of:

69. A function involving a sine and an exponential that can
be differentiated using the product rule or the quotient
rule.

70. A function f(x) that can be differentiated both using the
product rule and in some other way.

Are the statements in Problems 71–73 true or false? Give an
explanation for your answer.

71. Let f and g be two functions whose second derivatives
are defined. Then

(fg)′′ = fg′′ + f ′′g.

72. If the function f(x)/g(x) is defined but not differen-
tiable at x = 1, then either f(x) or g(x) is not differ-
entiable at x = 1.

73. Suppose that f ′′ and g′′ exist and f and g are concave up
for all x, then f(x)g(x) is concave up for all x.

74. Which of the following would be a counterexample to the
product rule?

(a) Two differentiable functions f and g satisfying
(fg)′ = f ′g′.

(b) A differentiable function f such that (xf(x))′ =
xf ′(x) + f(x).

(c) A differentiable function f such that (f(x)2)′ =
2f(x).

(d) Two differentiable functions f and g such that
f ′(a) = 0 and g′(a) = 0 and fg has positive slope
at x = a.

3.4 THE CHAIN RULE

The chain rule enables us to differentiate composite functions such as
√
x2 + 1 or e−x2

. Before
seeing a formula, let’s think about the derivative of a composite function in a practical situation.

Intuition Behind the Chain Rule
Imagine we are moving straight upward in a hot air balloon. Let y be our distance from the ground.
The temperature, H , is changing as a function of altitude, so H = f(y). How does our temperature
change with time?

The rate of change of our temperature is affected both by how fast the temperature is chang-
ing with altitude (about 16◦F per mile), and by how fast we are climbing (say 2 mph). Then our
temperature changes by 16◦ for every mile we climb, and since we move 2 miles in an hour, our
temperature changes by 16 · 2 = 32 degrees in an hour.

Since temperature is a function of height, H = f(y), and height is a function of time, y = g(t),
we can think of temperature as a composite function of time, H = f(g(t)), with f as the outside
function and g as the inside function. The example suggests the following result, which turns out to
be true:

Rate of change

of composite function
=

Rate of change

of outside function
×

Rate of change

of inside function

The Derivative of a Composition of Functions
We now obtain a formula for the chain rule. Suppose f(g(x)) is a composite function, with f being
the outside function and g being the inside. Let us write

z = g(x) and y = f(z), so y = f(g(x)).

Then a small change in x, called Δx, generates a small change in z, called Δz. In turn, Δz generates
a small change in y called Δy. Provided Δx and Δz are not zero, we can say:

Δy

Δx
=

Δy

Δz
·
Δz

Δx
.

Since
dy

dx
= lim

Δx→0

Δy

Δx
, this suggests that in the limit as Δx, Δy, and Δz get smaller and smaller,

we have:
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The Chain Rule

dy

dx
=

dy

dz
·
dz

dx
.

In other words:
The rate of change of a composite function is the product of the rates of change of
the outside and inside functions.

Since
dy

dz
= f ′

(z) and
dz

dx
= g′(x), we can also write

d

dx
f(g(x)) = f ′

(z) · g′(x).

Substituting z = g(x), we can rewrite this as follows:

Theorem 3.5: The Chain Rule

If f and g are differentiable functions, then

d

dx
f(g(x)) = f ′

(g(x)) · g′(x).

In words:
The derivative of a composite function is the product of the derivatives of the outside
and inside functions. The derivative of the outside function must be evaluated at the
inside function.

A justification of the chain rule is given in Problem 42 on page 175. The following example shows
how units confirm that the rate of change of a composite function is the product of the rates of
change of the outside and inside functions.

Example 1 The length, L, in micrometers (μm), of steel depends on the air temperature,H◦C, and the tempera-
ture H depends on time, t, measured in hours. If the length of a steel bridge increases by 0.2 μm for
every degree increase in temperature, and the temperature is increasing at 3◦C per hour, how fast is
the length of the bridge increasing? What are the units for your answer?

Solution We want to know how much the length of the bridge changes in one hour; this rate is in μm/hr.
We are told that the length of the bridge changes by 0.2 μm for each degree that the temperature
changes, and that the temperature changes by 3◦C each hour. Thus, in one hour, the length of the
bridge changes by 0.2 · 3 = 0.6 μm.

Now we do the same calculation using derivative notation and the chain rule. We know that

Rate length increasing with respect to temperature =
dL

dH
= 0.2 μm/◦C

Rate temperature increasing with respect to time =
dH

dt
= 3

◦C/hr.

We want to calculate the rate at which the length is increasing with respect to time, or dL/dt. We
think of L as a function of H, and H as a function of t. The chain rule tells us that

dL

dt
=

dL

dH
·
dH

dt
=

(
0.2

μm
◦C

)
·

(
3

◦C
hr

)
= 0.6 μm/hr.

Thus, the length is increasing at 0.6 μm/hr. Notice that the units work out as we expect.

Example 1 shows us how to interpret the chain rule in practical terms. The next examples show
how the chain rule is used to compute derivatives of functions given by formulas.
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Example 2 Find the derivatives of the following functions:

(a) (x2 + 1)100 (b)
√
3x2 + 5x− 2 (c)

1

x2 + x4
(d) e3x (e) ex

2

Solution (a) Here z = g(x) = x2 + 1 is the inside function; f(z) = z100 is the outside function. Now
g′(x) = 2x and f ′(z) = 100z99, so

d

dx
((x2

+ 1)
100

) = 100z99 · 2x = 100(x2
+ 1)

99 · 2x = 200x(x2
+ 1)

99.

(b) Here z = g(x) = 3x2 + 5x− 2 and f(z) =
√
z, so g′(x) = 6x+ 5 and f ′(z) =

1

2
√
z

. Hence

d

dx
(
√

3x2 + 5x− 2) =
1

2
√
z
· (6x+ 5) =

1

2
√
3x2 + 5x− 2

· (6x+ 5).

(c) Let z = g(x) = x2 + x4 and f(z) = 1/z, so g′(x) = 2x + 4x3 and f ′
(z) = −z−2

= −
1

z2
.

Then
d

dx

(
1

x2 + x4

)
= −

1

z2
(2x+ 4x3

) = −
2x+ 4x3

(x2 + x4)2
.

We could have done this problem using the quotient rule. Try it and see that you get the same
answer!

(d) Let z = g(x) = 3x and f(z) = ez . Then g′(x) = 3 and f ′(z) = ez , so

d

dx

(
e3x
)
= ez · 3 = 3e3x.

(e) To figure out which is the inside function and which is the outside, notice that to evaluate
ex

2

we first evaluate x2 and then take e to that power. This tells us that the inside function is
z = g(x) = x2 and the outside function is f(z) = ez . Therefore, g′(x) = 2x, and f ′(z) = ez ,
giving

d

dx
(ex

2

) = ez · 2x = ex
2

· 2x = 2xex
2

.

To differentiate a complicated function, we may have to use the chain rule more than once, as
in the following example.

Example 3 Differentiate: (a)
√
e−x/7 + 5 (b) (1− e2

√
t)19

Solution (a) Let z = g(x) = e−x/7 + 5 be the inside function; let f(z) =
√
z be the outside function. Now

f ′
(z) =

1

2
√
z

, but we need the chain rule to find g′(x).

We choose inside and outside functions whose composition is g(x). Let u = h(x) = −x/7
and k(u) = eu + 5 so g(x) = k(h(x)) = e−x/7 + 5. Then h′(x) = −1/7 and k′(u) = eu, so

g′(x) = eu ·

(
−
1

7

)
= −

1

7
e−x/7.

Using the chain rule to combine the derivatives of f(z) and g(x), we have

d

dx
(

√
e−x/7 + 5) =

1

2
√
z

(
−
1

7
e−x/7

)
= −

e−x/7

14
√
e−x/7 + 5

.

(b) Let z = g(t) = 1 − e2
√
t be the inside function and f(z) = z19 be the outside function. Then

f ′(z) = 19z18 but we need the chain rule to differentiate g(t).
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Now we choose u = h(t) = 2
√
t and k(u) = 1 − eu, so g(t) = k(h(t)). Then h′

(t) =

2 ·
1

2
t−1/2

=
1
√
t

and k′(u) = −eu, so

g′(t) = −eu ·
1
√
t
= −

e2
√
t

√
t
.

Using the chain rule to combine the derivatives of f(z) and g(t), we have

d

dx
(1− e2

√
t
)
19

= 19z18

(
−
e2

√
t

√
t

)
= −19

e2
√
t

√
t

(
1− e2

√
t
)18

.

It is often faster to use the chain rule without introducing new variables, as in the following
examples.

Example 4 Differentiate
√
1 + e

√
3+x2 .

Solution The chain rule is needed four times:

d

dx

(√
1 + e

√
3+x2

)
=

1

2

(
1 + e

√
3+x2
)−1/2

·
d

dx

(
1 + e

√
3+x2
)

=
1

2

(
1 + e

√
3+x2
)−1/2

· e
√
3+x2

·
d

dx

(√
3 + x2

)
=

1

2

(
1 + e

√
3+x2
)−1/2

· e
√
3+x2

·
1

2

(
3 + x2

)−1/2
·
d

dx

(
3 + x2

)
=

1

2

(
1 + e

√
3+x2
)−1/2

· e
√
3+x2

·
1

2

(
3 + x2

)−1/2
· 2x.

Example 5 Find the derivative of e2x by the chain rule and by the product rule.

Solution Using the chain rule, we have

d

dx
(e2x) = e2x ·

d

dx
(2x) = e2x · 2 = 2e2x.

Using the product rule, we write e2x = ex · ex. Then

d

dx
(e2x) =

d

dx
(exex) =

(
d

dx
(ex)

)
ex + ex

(
d

dx
(ex)

)
= ex · ex + ex · ex = 2e2x.

Using the Product and Chain Rules to Differentiate a Quotient
If you prefer, you can differentiate a quotient by the product and chain rules, instead of by the
quotient rule. The resulting formulas may look different, but they will be equivalent.

Example 6 Find k′(x) if k(x) =
x

x2 + 1
.

Solution One way is to use the quotient rule:

k′(x) =
1 · (x2 + 1)− x · (2x)

(x2 + 1)2

=
1− x2

(x2 + 1)2
.
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Alternatively, we can write the original function as a product,

k(x) = x
1

x2 + 1
= x · (x2

+ 1)
−1,

and use the product rule:

k′(x) = 1 · (x2
+ 1)

−1
+ x ·

d

dx

[
(x2

+ 1)
−1
]
.

Now use the chain rule to differentiate (x2 + 1)−1, giving

d

dx

[
(x2

+ 1)
−1
]
= −(x2

+ 1)
−2 · 2x =

−2x

(x2 + 1)2
.

Therefore,

k′(x) =
1

x2 + 1
+ x ·

−2x

(x2 + 1)2
=

1

x2 + 1
−

2x2

(x2 + 1)2
.

Putting these two fractions over a common denominator gives the same answer as the quotient rule.

Exercises and Problems for Section 3.4
Exercises

In Exercises 1–56, find the derivatives. Assume that a and b
are constants.

1. f(x) = (x+ 1)99 2. w = (t3 + 1)100

3. g(x) = (4x2 + 1)7 4. f(x) =
√

1− x2

5. y =
√
ex + 1 6. w = (

√
t+ 1)100

7. h(w) = (w4 − 2w)5 8. s(t) = (3t2 + 4t+ 1)3

9. w(r) =
√
r4 + 1 10. k(x) = (x3 + ex)4

11. f(x) = e2x
(
x2 + 5x

)
12. y = e3w/2

13. g(x) = eπx 14. B = 15e0.20t

15. w = 100e−x2

16. f(θ) = 2−θ

17. y = π(x+2) 18. g(x) = 3(2x+7)

19. f(t) = te5−2t 20. p(t) = e4t+2

21. v(t) = t2e−ct 22. g(t) = e(1+3t)2

23. w = e
√

s 24. y = e−4t

25. y =
√
s3 + 1 26. y = te−t2

27. f(z) =
√
ze−z 28. z(x) = 3

√
2x + 5

29. z = 25t−3 30. w =
√

(x2 · 5x)3

31. f(y) =
√
10(5−y) 32. f(z) =

√
z

ez

33. y =

√
z

2z
34. y =

(
x2 + 2

3

)2

35. h(x) =

√
x2 + 9

x+ 3
36. y =

ex − e−x

ex + e−x

37. y =
1

e3x + x2
38. h(z) =

(
b

a+ z2

)4

39. f(x) =
1√

x3 + 1
40. f(z) =

1

(ez + 1)2

41. w = (t2+3t)(1−e−2t) 42. h(x) = 2e
3x

43. f(x) = 6e5x + e−x2

44. f(x) = e−(x−1)2

45. f(w) = (5w2 + 3)ew
2

46. f(θ) = (eθ + e−θ)−1

47. y =
√

e−3t2 + 5 48. z = (te3t + e5t)9

49. f(y) = ee
(y2)

50. f(t) = 2e−2e2t

51. f(x) = (ax2 + b)3 52. f(t) = aebt

53. f(x) = axe−bx 54. g(α) = eαe−2α

55. y = ae−be−cx

56. y =
(
ex − e−x

)2
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Problems

In Problems 57–60, use Figure 3.17 and the chain rule to esti-
mate the derivative, or state why the chain rule does not apply.
The graph of f(x) has a sharp corner at x = 2.

1 2 3 4

1

2

3

4

g(x)

f(x)

x

y

Figure 3.17

57. Let h(x) = f(g(x)). Find:

(a) h′(1) (b) h′(2) (c) h′(3)

58. Let u(x) = g(f(x)). Find:

(a) u′(1) (b) u′(2) (c) u′(3)

59. Let v(x) = f(f(x)). Find:

(a) v′(1) (b) v′(2) (c) v′(3)

60. Let w(x) = g(g(x)). Find:

(a) w′(1) (b) w′(2) (c) w′(3)

In Problems 61–64, use Figure 3.18 to evaluate the derivative.

80

80

0

f(x)

x
800

80

g(x)

x

Figure 3.18

61. d
dx

f(g(x))|x=30 62. d
dx

f(g(x))|x=70

63. d
dx

g(f(x))|x=30 64. d
dx

g(f(x))|x=70

65. Find the equation of the tangent line to f(x) = (x− 1)3

at the point where x = 2.

66. Find the equation of the line tangent to y = f(x) at
x = 1, where f(x) is the function in Exercise 43.

67. Find the equation of the line tangent to f(t) = 100e−0.3t

at t = 2.

68. For what values of x is the graph of y = e−x2

concave
down?

69. For what intervals is f(x) = xe−x concave down?

70. Suppose f(x) = (2x + 1)10(3x − 1)7. Find a formula
for f ′(x). Decide on a reasonable way to simplify your
result, and find a formula for f ′′(x).

71. A fish population is approximated by P (t) = 10e0.6t,
where t is in months. Calculate and use units to explain
what each of the following tells us about the population:

(a) P (12) (b) P ′(12)

72. Find the mean and variance of the normal distribution of
statistics using parts (a) and (b) withm(t) = eμt+σ2t2/2.

(a) Mean = m′(0)
(b) Variance = m′′(0)− (m′(0))2

73. If the derivative of y = k(x) equals 2 when x = 1, what
is the derivative of

(a) k(2x) when x =
1

2
?

(b) k(x+ 1) when x = 0?

(c) k
(
1

4
x
)

when x = 4?

74. Is x = 3
√
2t+ 5 a solution to the equation 3x2 dx

dt
= 2?

Why or why not?

75. Find a possible formula for a function m(x) such that

m′(x) = x5 · e(x6).

76. Given F (2) = 1, F ′(2) = 5, F (4) = 3, F ′(4) = 7 and
G(4) = 2, G′(4) = 6, G(3) = 4, G′(3) = 8, find:

(a) H(4) if H(x) = F (G(x))
(b) H ′(4) if H(x) = F (G(x))
(c) H(4) if H(x) = G(F (x))
(d) H ′(4) if H(x) = G(F (x))
(e) H ′(4) if H(x) = F (x)/G(x)

77. Given y = f(x) with f(1) = 4 and f ′(1) = 3, find

(a) g′(1) if g(x) =
√

f(x).
(b) h′(1) if h(x) = f(

√
x).

78. Figure 3.19 is the graph of f(x). Let h(x) = ef(x) and
p(x) = f(ex). Estimate the solution(s) to the equations

(a) h′(x) = 0 (b) p′(x) = 0

−4 4

−4

4

f(x)

x

Figure 3.19



148 Chapter Three SHORT-CUTS TO DIFFERENTIATION

In Problems 79–83, use Figures 3.20 and 3.21 and h(x) =
f(g(x)).

−d−c −b −a a b c d

−d

−b

b

d f(x)

x

Figure 3.20

−d−c −b −a a b c d

−d

−b

b

d

g(x)

x

Figure 3.21

79. Evaluate h(0) and h′(0).

80. At x = −c, is h positive, negative, or zero? Increasing
or decreasing?

81. At x = a, is h increasing or decreasing?

82. What are the signs of h(d) and h′(d)?

83. How does the value of h(x) change on the interval −d <
x < −b?

84. The world’s population2 is about f(t) = 6.91e0.011t

billion, where t is time in years since 2010. Find f(0),
f ′(0), f(10), and f ′(10). Using units, interpret your an-
swers in terms of population.

85. The 2010 Census3 determined the population of the US
was 308.75 million on April 1, 2010. If the population
was increasing exponentially at a rate of 2.85 million per
year on that date, find a formula for the population as a
function of time, t, in years since that date.

86. Since the 1950s, the carbon dioxide concentration in the
air has been recorded at the Mauna Loa Observatory in
Hawaii.4 A graph of this data is called the Keeling Curve,
after Charles Keeling, who started recording the data.
With t in years since 1950, fitting functions to the data
gives three models for the carbon dioxide concentration
in parts per million (ppm):

f(t) = 303 + 1.3t

g(t) = 304e0.0038t

h(t) = 0.0135t2 + 0.5133t + 310.5.

(a) What family of function is used in each model?
(b) Find the rate of change of carbon dioxide in 2010 in

each of the three models. Give units.
(c) Arrange the three models in increasing order of the

rates of change they give for 2010. (Which model
predicts the largest rate of change in 2010? Which
predicts the smallest?)

(d) Consider the same three models for all positive time
t. Will the ordering in part (c) remain the same for
all t? If not, how will it change?

87. Annual net sales for the Hershey Company, in billion
dollars, in t years from 2008 can be approximated by
f(t) = 5.1e0.043t . Find f(5) and f ′(5). Give units and
interpret in terms of Hershey sales.

88. A yam is put in a hot oven, maintained at a constant tem-
perature 200◦C. At time t = 30 minutes, the temperature
T of the yam is 120◦ and is increasing at an (instanta-
neous) rate of 2◦/min. Newton’s law of cooling (or, in
our case, warming) implies that the temperature at time t
is given by

T (t) = 200 − ae−bt.

Find a and b.

89. If you invest P dollars in a bank account at an annual
interest rate of r%, then after t years you will have B
dollars, where

B = P
(
1 +

r

100

)t
.

(a) Find dB/dt, assuming P and r are constant. In
terms of money, what does dB/dt represent?

(b) Find dB/dr, assuming P and t are constant. In
terms of money, what does dB/dr represent?

90. The balance in a bank account t years after money is de-
posited is given by f(t) = 1000e0.08t dollars.

(a) How much money was deposited? What is the inter-
est rate earned by the account?

(b) Find f(10) and f ′(10). Give units and interpret in
terms of balance in the account.

91. The theory of relativity predicts that an object whose
mass is m0 when it is at rest will appear heavier when
moving at speeds near the speed of light. When the ob-
ject is moving at speed v, its mass m is given by

m =
m0√

1− (v2/c2)
, where c is the speed of light.

(a) Find dm/dv.
(b) In terms of physics, what does dm/dv tell you?

2http://www.indexmundi.com/world/. Accessed April 27, 2011.
3http://2010.census.gov/2010census/
4www.esrl.hoaa.gov/gmd/ccgg
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92. The charge, Q, on a capacitor which starts discharging at
time t = 0 is given by

Q =

{
Q0 for t ≤ 0

Q0e
−t/RC for t > 0,

where R and C are positive constants depending on the
circuit and Q0 is the charge at t = 0, where Q0 �= 0. The
current, I , flowing in the circuit is given by I = dQ/dt.

(a) Find the current I for t < 0 and for t > 0.
(b) Is it possible to define I at t = 0?
(c) Is the function Q differentiable at t = 0?

93. A polynomial f is said to have a zero of multiplicity m at
x = a if

f(x) = (x− a)mh(x),

with h a polynomial such that h(a) �= 0. Explain why
a polynomial having a zero of multiplicity m at x = a
satisfies f (p)(a) = 0, for p = 1, 2, . . .m− 1.

[Note: f (p) is the pth derivative.]

94. Find and simplify
d2

dx2
(f(g(x))).

95. Find and simplify
d2

dx2

(
f(x)

g(x)

)
using the product and

chain rules.

Strengthen Your Understanding

In Problems 96–97, explain what is wrong with the statement.

96. The derivative of g(x) = (ex + 2)5 is
g′(x) = 5(ex + 2)4.

97. The derivative of w(x) = ex
2

is w′(x) = ex
2

.

In Problems 98–99, give an example of:

98. A function involving a sine and an exponential that re-
quires the chain rule to differentite.

99. A function that can be differentiated both using the chain
rule and by another method.

Are the statements in Problems 100–102 true or false? If a
statement is true, explain how you know. If a statement is
false, give a counterexample.

100. (fg)′(x) is never equal to f ′(x)g′(x).

101. If the derivative of f(g(x)) is equal to the derivative of
f(x) for all x, then g(x) = x for all x.

102. Suppose that f ′′ and g′′ exist and that f and g are con-
cave up for all x, then f(g(x)) is concave up for all x.

3.5 THE TRIGONOMETRIC FUNCTIONS

Derivatives of the Sine and Cosine
Since the sine and cosine functions are periodic, their derivatives must be periodic also. (Why?) Let’s
look at the graph of f(x) = sinx in Figure 3.22 and estimate the derivative function graphically.

−2π −π π 2π 3π 4π

−1

1

x

f(x) = sin x

Figure 3.22: The sine function

First we might ask where the derivative is zero. (At x = ±π/2, ±3π/2, ±5π/2, etc.) Then ask
where the derivative is positive and where it is negative. (Positive for −π/2 < x < π/2; negative
for π/2 < x < 3π/2, etc.) Since the largest positive slopes are at x = 0, 2π, and so on, and the
largest negative slopes are at x = π, 3π, and so on, we get something like the graph in Figure 3.23.

−2π −π π 2π 3π 4π

−1

1

x

f ′(x)

Figure 3.23: Derivative of f(x) = sin x

The graph of the derivative in Figure 3.23 looks suspiciously like the graph of the cosine func-
tion. This might lead us to conjecture, quite correctly, that the derivative of the sine is the cosine.
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Of course, we cannot be sure, just from the graphs, that the derivative of the sine really is the
cosine. However, for now we’ll assume that the derivative of the sine is the cosine and confirm the
result at the end of the section.

One thing we can do now is to check that the derivative function in Figure 3.23 has amplitude
1 (as it ought to if it is the cosine). That means we have to convince ourselves that the derivative of
f(x) = sinx is 1 when x = 0. The next example suggests that this is true when x is in radians.

Example 1 Using a calculator set in radians, estimate the derivative of f(x) = sinx at x = 0.

Solution Since f(x) = sinx,

f ′
(0) = lim

h→0

sin(0 + h)− sin 0

h
= lim

h→0

sinh

h
.

Table 3.5 contains values of (sinh)/h which suggest that this limit is 1, so we estimate

f ′
(0) = lim

h→0

sinh

h
= 1.

Table 3.5

h (radians) −0.1 −0.01 −0.001 −0.0001 0.0001 0.001 0.01 0.1

(sin h)/h 0.99833 0.99998 1.0000 1.0000 1.0000 1.0000 0.99998 0.99833

Warning: It is important to notice that in the previous example h was in radians; any conclusions
we have drawn about the derivative of sinx are valid only when x is in radians. If you find the
derivative with h in degrees, you get a different result.

Example 2 Starting with the graph of the cosine function, sketch a graph of its derivative.

Solution The graph of g(x) = cosx is in Figure 3.24(a). Its derivative is 0 at x = 0,±π,±2π, and so on; it is
positive for −π < x < 0, π < x < 2π, and so on; and it is negative for 0 < x < π, 2π < x < 3π,
and so on. The derivative is in Figure 3.24(b).

−2π −π π 2π 3π 4π

−1

1

x

g(x) = cos x(a)

−2π −π

π 2π 3π 4π

−1

1

x

g′(x)(b)

Figure 3.24: g(x) = cosx and its derivative, g′(x)

As we did with the sine, we use the graphs to make a conjecture. The derivative of the cosine in
Figure 3.24(b) looks exactly like the graph of sine, except reflected across the x-axis. But how can
we be sure that the derivative is − sinx?

Example 3 Use the relation
d

dx
(sinx) = cosx to show that

d

dx
(cosx) = − sinx.

Solution Since the cosine function is the sine function shifted to the left by π/2 (that is, cosx = sin (x+ π/2)),
we expect the derivative of the cosine to be the derivative of the sine, shifted to the left by π/2. Dif-
ferentiating using the chain rule:

d

dx
(cosx) =

d

dx

(
sin

(
x+

π

2

))
= cos

(
x+

π

2

)
.
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But cos(x + π/2) is the cosine shifted to the left by π/2, which gives a sine curve reflected across
the x-axis. So we have

d

dx
(cosx) = cos

(
x+

π

2

)
= − sinx.

At the end of this section and in Problems 66 and 67, we show that our conjectures for the
derivatives of sinx and cosx are correct. Thus, we have:

For x in radians,
d

dx
(sinx) = cosx and

d

dx
(cosx) = − sinx.

Example 4 Differentiate (a) 2 sin(3θ), (b) cos2 x, (c) cos(x2), (d) e− sin t.

Solution Use the chain rule:

(a)
d

dθ
(2 sin(3θ)) = 2

d

dθ
(sin(3θ)) = 2(cos(3θ))

d

dθ
(3θ) = 2(cos(3θ))3 = 6 cos(3θ).

(b)
d

dx
(cos

2 x) =
d

dx

(
(cos x)2

)
= 2(cosx) ·

d

dx
(cos x) = 2(cosx)(− sinx) = −2 cosx sinx.

(c)
d

dx

(
cos(x2

)
)
= − sin(x2

) ·
d

dx
(x2

) = −2x sin(x2
).

(d)
d

dt
(e− sin t

) = e− sin t d

dt
(− sin t) = −(cos t)e− sin t.

Derivative of the Tangent Function
Since tanx = sinx/ cosx, we differentiate tanx using the quotient rule. Writing (sinx)′ for
d(sinx)/dx, we have:

d

dx
(tanx) =

d

dx

(
sinx

cosx

)
=

(sinx)′(cosx)− (sinx)(cos x)′

cos2 x
=

cos2 x+ sin
2 x

cos2 x
=

1

cos2 x
.

For x in radians,
d

dx
(tanx) =

1

cos2 x
.

The graphs of f(x) = tanx and f ′(x) = 1/ cos2 x are in Figure 3.25. Is it reasonable that f ′ is
always positive? Are the asymptotes of f ′ where we expect?

−π π

1
x

f(x) = tanx�

f ′(x) =
1

cos2 x

�

Figure 3.25: The function tan x and its derivative
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1
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�

sin x

�

�

sin(x+ h)

�� cosx

Figure 3.26: Unit circle showing sin(x+ h) and sin x
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Example 5 Differentiate (a) 2 tan(3t), (b) tan(1− θ), (c)
1 + tan t

1− tan t
.

Solution (a) Use the chain rule:

d

dt
(2 tan(3t)) = 2

1

cos2(3t)

d

dt
(3t) =

6

cos2(3t)
.

(b) Use the chain rule:

d

dθ
(tan(1− θ)) =

1

cos2(1− θ)
·
d

dθ
(1 − θ) = −

1

cos2(1− θ)
.

(c) Use the quotient rule:

d

dt

(
1 + tan t

1− tan t

)
=

d

dt
(1 + tan t)(1− tan t)− (1 + tan t)

d

dt
(1− tan t)

(1− tan t)2

=

1

cos2 t
(1− tan t)− (1 + tan t)

(
−

1

cos2 t

)
(1− tan t)2

=
2

cos2 t · (1− tan t)2
.

Example 6 The Bay of Fundy in Canada is known for extreme tides. The depth of the water, y, in meters can
be modeled as a function of time, t, in hours after midnight, by

y = 10 + 7.5 cos(0.507t).

How quickly is the depth of the water rising or falling at 6:00 am and at 9:00 am?

Solution To find how fast the water depth is changing, we compute the derivative of y, using the chain rule:

dy

dt
= −7.5(0.507) sin(0.507t) = −3.8025 sin(0.507t).

When t = 6, we have
dy

dt
= −3.8025 sin(0.507 · 6) = −0.378 meters/hour. So the tide is

falling at 0.378 meters/hour.

When t = 9, we have
dy

dt
= −3.8025 sin(0.507 · 9) = 3.760 meters/hour. So the tide is rising

at 3.760 meters/hour.

Informal Justification of d
dx

(sin x) = cos x
Consider the unit circle in Figure 3.26. To find the derivative of sinx, we need to estimate

sin(x + h)− sinx

h
.

In Figure 3.26, the quantity sin(x + h) − sinx is represented by the length QA. The arc QP is of
length h, so

sin(x + h)− sinx

h
=

QA

Arc QP
.

Now, if h is small, QAP is approximately a right triangle because the arc QP is almost a straight
line. Furthermore, using geometry, we can show that angle AQP = x+ h. For small h, we have

sin(x+ h)− sinx

h
=

QA

Arc QP
≈ cos(x+ h).
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As h → 0, the approximation gets better, so

d

dx
(sinx) = lim

h→0

sin(x + h)− sinx

h
= cosx.

Other derivations of this result are given in Problems 66 and 67 on pages 154–155.

Exercises and Problems for Section 3.5
Exercises

1. Construct a table of values for cosx, x =
0, 0.1, 0.2, . . . , 0.6. Using the difference quotient, es-
timate the derivative at these points (use h = 0.001), and
compare it with − sin x.

In Exercises 2–47, find the derivatives of the functions. As-
sume a, b, and c are constants.

2. r(θ) = sin θ + cos θ 3. s(θ) = cos θ sin θ

4. z = cos(4θ) 5. f(x) = sin(3x)

6. y = 5 sin(3t) 7. P = 4 cos(2t)

8. g(x) = sin(2− 3x) 9. R(x) = 10−3 cos(πx)

10. g(θ) = sin2(2θ)− πθ 11. g(t) = (2+sin(πt))3

12. f(x) = x2 cosx 13. w = sin(et)

14. f(x) = ecos x 15. f(y) = esiny

16. z = θecos θ 17. R(θ) = esin(3θ)

18. g(θ) = sin(tan θ) 19. w(x) = tan(x2)

20. f(x) =
√
1− cos x 21. f(x) =

√
3 + sin(8x)

22. f(x) = cos(sin x) 23. f(x) = tan(sinx)

24. k(x) =
√

(sin(2x))3 25. f(x) = 2x sin(3x)

26. y = eθ sin(2θ) 27. f(x) = e−2x · sin x

28. z =
√
sin t 29. y = sin5 θ

30. g(z) = tan(ez) 31. z = tan(e−3θ)

32. w = e− sin θ 33. Q = cos(e2x)

34. h(t) = t cos t+ tan t 35. f(α) = cosα+ 3 sinα

36. k(α) = sin5 α cos3 α 37. f(θ) = θ3 cos θ

38. y = cos2 w + cos(w2) 39. y = sin(sin x + cos x)

40. y = sin(2x) · sin(3x) 41. P =
cos t

t3

42. t(θ) =
cos θ

sin θ
43. f(x) =

√
1− sin x

1− cosx

44. r(y) =
y

cos y + a
45. G(x) =

sin2 x+ 1

cos2 x+ 1

46. y = a sin(bt) + c 47. P = a cos(bt+ c)

Problems

48. Is the graph of y = sin(x4) increasing or decreasing
when x = 10? Is it concave up or concave down?

49. Find the line tangent to f(t) = 3 sin(2t) + 5 at the point
where t = π.

50. Find the 50th derivative of y = cos x.

51. Find d2x/dt2 as a function of x if dx/dt = x sin x.

52. Find a possible formula for the function q(x) such that

q′(x) =
ex · sin x− ex · cosx

(sin x)2
.

53. Find a function F (x) satisfying F ′(x) = sin(4x).

54. Let f(x) = sin2 x+ cos2 x.

(a) Find f ′(x) using the formula for f(x) and derivative
formulas from this section. Simplify your answer.

(b) Use a trigonometric identity to check your answer to
part (a). Explain.

55. Let f ′(x) = sin
(
x2
)
, Find h′′(x) if h(x) = f

(
x2
)
.

56. On page 39 the depth, y, in feet, of water in Boston har-
bor is given in terms of t, the number of hours since mid-
night, by

y = 5 + 4.9 cos
(
π

6
t
)
.

(a) Find dy/dt. What does dy/dt represent, in terms of
water level?

(b) For 0 ≤ t ≤ 24, when is dy/dt zero? (Figure 1.55
on page 39 may be helpful.) Explain what it means
(in terms of water level) for dy/dt to be zero.
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57. A boat at anchor is bobbing up and down in the sea. The
vertical distance, y, in feet, between the sea floor and the
boat is given as a function of time, t, in minutes, by

y = 15 + sin(2πt).

(a) Find the vertical velocity, v, of the boat at time t.
(b) Make rough sketches of y and v against t.

58. The voltage, V , in volts, in an electrical outlet is given
as a function of time, t, in seconds, by the function
V = 156 cos(120πt).

(a) Give an expression for the rate of change of voltage
with respect to time.

(b) Is the rate of change ever zero? Explain.
(c) What is the maximum value of the rate of change?

59. An oscillating mass at the end of a spring is at a distance
y from its equilibrium position given by

y = A sin

((√
k

m

)
t

)
.

The constant k measures the stiffness of the spring.

(a) Find a time at which the mass is farthest from its
equilibrium position. Find a time at which the mass
is moving fastest. Find a time at which the mass is
accelerating fastest.

(b) What is the period, T , of the oscillation?
(c) Find dT/dm. What does the sign of dT/dm tell

you?

60. With t in years, the population of a herd of deer is repre-
sented by

P (t) = 4000 + 500 sin
(
2πt− π

2

)
.

(a) How does this population vary with time? Graph
P (t) for one year.

(b) When in the year the population is a maximum?
What is that maximum? Is there a minimum? If so,
when?

(c) When is the population growing fastest? When is it
decreasing fastest?

(d) How fast is the population changing on July 1?

61. An environmentalist reports that the depth of the water in
a new reservoir is approximated by

h = d(t) =
{
kt 0 ≤ t ≤ 2
50 + sin(0.1t) t > 2,

where t is in weeks since the date the reservoir was com-
pleted and h is in meters.

(a) During what period was the reservoir filling at a con-
stant rate? What was that rate?

(b) In this model, is the rate at which the water level is
changing defined for all times t > 0? Explain.

62. The metal bar of length l in Figure 3.27 has one end at-
tached at the point P to a circle of radius a. Point Q at
the other end can slide back and forth along the x-axis.

(a) Find x as a function of θ.
(b) Assume lengths are in centimeters and the angular

speed (dθ/dt) is 2 radians/second counterclockwise.
Find the speed at which the point Q is moving when

(i) θ = π/2, (ii) θ = π/4.

�

O

P

Q�� x

l
a

θ �

Figure 3.27

63. Find the equations of the tangent lines to the graph of
f(x) = sin x at x = 0 and at x = π/3. Use each
tangent line to approximate sin(π/6). Would you expect
these results to be equally accurate, since they are taken
equally far away from x = π/6 but on opposite sides? If
the accuracy is different, can you account for the differ-
ence?

64. If k ≥ 1, the graphs of y = sin x and y = ke−x inter-
sect for x ≥ 0. Find the smallest value of k for which the
graphs are tangent. What are the coordinates of the point
of tangency?

65. A wave travels along a string that is joined to a thicker
rope. The wave both reflects back along the string and is
transmitted to the rope. For positive constants k1, k2, w
and time t, the wave along the string, given by x < 0, is

f(x) = cos(k1x− wt) +R cos(−k1x−wt)

and the wave along the rope, given by x > 0, is

g(x) = T cos(k2x− wt).

For every value of t, the two waves have the same tan-
gent line at x = 0, so they have the same value and same
slope at x = 0. Use this fact to show that

R =
k1 − k2
k1 + k2

and T =
2k1

k1 + k2
.

These amplitudes are called the reflection coefficient, R,
and the transmission coefficient, T .

66. We will use the following identities to calculate the
derivatives of sin x and cos x:

sin(a+ b) = sin a cos b+ cos a sin b

cos(a+ b) = cos a cos b− sin a sin b.
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(a) Use the definition of the derivative to show that if
f(x) = sin x,

f ′(x) = sin x lim
h→0

cosh− 1

h
+ cosx lim

h→0

sin h

h
.

(b) Estimate the limits in part (a) with your calculator to
explain why f ′(x) = cosx.

(c) If g(x) = cos x, use the definition of the derivative
to show that g′(x) = − sin x.

67. In this problem you will calculate the derivative of tan θ
rigorously (and without using the derivatives of sin θ or
cos θ). You will then use your result for tan θ to cal-
culate the derivatives of sin θ and cos θ. Figure 3.28
shows tan θ and Δ(tan θ), which is the change in tan θ,
namely tan(θ +Δθ)− tan θ.

(a) By paying particular attention to how the two figures
relate and using the fact that

Area of
Sector OAQ

≤ Area of
Triangle OQR

≤ Area of
Sector OBR

explain why

Δθ

2π
· π

(cos θ)2
≤ Δ(tan θ)

2
≤ Δθ

2π
· π

(cos(θ +Δθ))2
.

[Hint: A sector of a circle with angle α at the center
has area α/(2π) times the area of the whole circle.]

(b) Use part (a) to show as Δθ → 0 that

Δtan θ

Δθ
→
(

1

cos θ

)2
,

and hence that
d(tan θ)

dθ
=
(

1

cos θ

)2
.

(c) Derive the identity (tan θ)2 +1 =
(

1

cos θ

)2
. Then

differentiate both sides of this identity with respect
to θ, using the chain rule and the result of part (b) to

show that
d

dθ
(cos θ) = − sin θ.

(d) Differentiate both sides of the identity (sin θ)2 +
(cos θ)2 = 1 and use the result of part (c) to show

that
d

dθ
(sin θ) = cos θ.

0
θ

Δθ

P

Q

R

�� 1

�

�

tan θ

�

�

Δ(tan θ)

�

�
�




0

A

B

Q

R

P

Δθ

θ

1

cos θ

1

cos(θ +Δθ)

Arc of
circle

�� 1

�
�

Figure 3.28: tan θ and Δ(tan θ)

Strengthen Your Understanding

In Problems 68–69, explain what is wrong with the statement.

68. The derivative of n(x) = sin(cos x) is n′(x) =
cos(− sin x).

69. The derivative of f(x) = sin(sin x) is f ′(x) =
(cosx)(sin x) + (sin x)(cosx).

In Problems 70–71, give an example of:

70. A trigonometric function whose derivative must be cal-
culated using the chain rule.

71. A function f(x) such that f ′′(x) = −f(x).

Are the statements in Problems 72–74 true or false? Give an
explanation for your answer.

72. The derivative of tan θ is periodic.

73. If a function is periodic, with period c, then so is its
derivative.

74. The only functions whose fourth derivatives are equal to
cos t are of the form cos t+C, where C is any constant.
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3.6 THE CHAIN RULE AND INVERSE FUNCTIONS

In this section we will use the chain rule to calculate the derivatives of fractional powers, logarithms,
exponentials, and the inverse trigonometric functions.5 The same method is used to obtain a formula
for the derivative of a general inverse function.

Finding the Derivative of an Inverse Function: Derivative of x1/2

Earlier we calculated the derivative of xn with n an integer, but we have been using the result
for non-integer values of n as well. We now confirm that the power rule holds for n = 1/2 by
calculating the derivative of f(x) = x1/2 using the chain rule. Since

(f(x))2 = x,

the derivative of (f(x))2 and the derivative of x must be equal, so

d

dx
(f(x))

2
=

d

dx
(x).

We can use the chain rule with f(x) as the inside function to obtain:

d

dx
(f(x))2 = 2f(x) · f ′

(x) = 1.

Solving for f ′(x) gives

f ′
(x) =

1

2f(x)
=

1

2x1/2
,

or
d

dx
(x1/2

) =
1

2x1/2
=

1

2
x−1/2.

A similar calculation can be used to obtain the derivative of x1/n where n is a positive integer.

Derivative of ln x

We use the chain rule to differentiate an identity involving lnx. Since eln x = x, we have

d

dx
(elnx

) =
d

dx
(x),

elnx ·
d

dx
(lnx) = 1. (Since ex is outside function and ln x is inside function)

Solving for d(lnx)/dx gives
d

dx
(ln x) =

1

elnx
=

1

x
,

so

d

dx
(ln x) =

1

x
.

Example 1 Differentiate (a) ln(x2 + 1) (b) t2 ln t (c)
√
1 + ln(1− y).

Solution (a) Using the chain rule:

d

dx

(
ln(x2

+ 1)
)
=

1

x2 + 1

d

dx
(x2

+ 1) =
2x

x2 + 1
.

(b) Using the product rule:

d

dt
(t2 ln t) =

d

dt
(t2) · ln t+ t2

d

dt
(ln t) = 2t ln t+ t2 ·

1

t
= 2t ln t+ t.

5It requires a separate justification, not given here, that these functions are differentiable.
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(c) Using the chain rule:

d

dy

(√
1 + ln(1− y)

)
=

d

dy
(1 + ln(1− y))1/2

=
1

2
(1 + ln(1− y))

−1/2
·
d

dy
(1 + ln(1− y)) (Using the chain rule)

=
1

2
√
1 + ln(1− y)

·
1

1− y
·
d

dy
(1− y) (Using the chain rule again)

=
−1

2(1− y)
√
1 + ln(1− y)

.

Derivative of ax

In Section 3.2, we saw that the derivative of ax is proportional to ax. Now we see another way of
calculating the constant of proportionality. We use the identity

ln(ax) = x ln a.

Differentiating both sides, using
d

dx
(ln x) =

1

x
and the chain rule, and remembering that ln a is a

constant, we obtain:
d

dx
(ln ax) =

1

ax
·
d

dx
(ax) = ln a.

Solving gives the result we obtained earlier:

d

dx
(ax) = (ln a)ax.

Derivatives of Inverse Trigonometric Functions
In Section 1.5 we defined arcsinx as the angle between −π/2 and π/2 (inclusive) whose sine
is x. Similarly, arctanx as the angle strictly between −π/2 and π/2 whose tangent is x. To find
d

dx
(arctanx) we use the identity tan(arctanx) = x. Differentiating using the chain rule gives

1

cos2(arctanx)
·
d

dx
(arctanx) = 1,

so
d

dx
(arctanx) = cos

2
(arctanx).

Using the identity 1 + tan
2 θ =

1

cos2 θ
, and replacing θ by arctanx, we have

cos
2
(arctanx) =

1

1 + tan2(arctanx)
=

1

1 + x2
.

Thus we have

d

dx
(arctanx) =

1

1 + x2
.
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By a similar argument, we obtain the result:

d

dx
(arcsinx) =

1
√
1− x2

.

Example 2 Differentiate (a) arctan(t2) (b) arcsin(tan θ).

Solution Use the chain rule:

(a)
d

dt

(
arctan(t2)

)
=

1

1 + (t2)2
·
d

dt
(t2) =

2t

1 + t4
.

(b)
d

dt
(arcsin(tan θ)) =

1√
1− (tan θ)2

·
d

dθ
(tan θ) =

1
√
1− tan2 θ

·
1

cos2 θ
.

Derivative of a General Inverse Function
Each of the previous results gives the derivative of an inverse function. In general, if a function f
has a differentiable inverse, f−1, we find its derivative by differentiating f(f−1(x)) = x by the
chain rule:

d

dx

(
f
(
f−1

(x)
))

= 1

f ′
(
f−1

(x)
)
·
d

dx

(
f−1

(x)
)
= 1

so

d

dx

(
f−1

(x)
)
=

1

f ′(f−1(x))
.

Thus, the derivative of the inverse is the reciprocal of the derivative of the original function, but
evaluated at the point f−1(x) instead of the point x.

Example 3 Figure 3.29 shows f(x) and f−1(x). Using Table 3.6, find

(a) (i) f(2) (ii) f−1(2) (iii) f ′(2) (iv) (f−1)′(2)

(b) The equation of the tangent lines at the points P and Q.
(c) What is the relationship between the two tangent lines?

Table 3.6

x f(x) f ′(x)

0 1 0.7

1 2 1.4

2 4 2.8

3 8 5.5

4 8

4

8
P

Q

f(x)

f−1(x)

x

y

Figure 3.29

Solution (a) Reading from the table, we have
(i) f(2) = 4.

(ii) f−1(2) = 1.
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(iii) f ′(2) = 2.8.

(iv) To find the derivative of the inverse function, we use

(f−1
)
′
(2) =

1

f ′(f−1(2))
=

1

f ′(1)
=

1

1.4
= 0.714.

Notice that the derivative of f−1 is the reciprocal of the derivative of f . However, the
derivative of f−1 is evaluated at 2, while the derivative of f is evaluated at 1, where
f−1(2) = 1 and f(1) = 2.

(b) At the point P , we have f(3) = 8 and f ′(3) = 5.5, so the equation of the tangent line at P is

y − 8 = 5.5(x− 3).

At the point Q, we have f−1(8) = 3, so the slope at Q is

(f−1
)
′
(8) =

1

f ′(f−1(8))
=

1

f ′(3)
=

1

5.5
.

Thus, the equation of the tangent line at Q is

y − 3 =
1

5.5
(x− 8).

(c) The two tangent lines have reciprocal slopes, and the points (3, 8) and (8, 3) are reflections of
one another in the line y = x. Thus, the two tangent lines are reflections of one another in the
line y = x.

Exercises and Problems for Section 3.6
Exercises

For Exercises 1–41, find the derivative. It may be to your ad-
vantage to simplify before differentiating. Assume a, b, c, and
k are constants.

1. f(t) = ln(t2 + 1) 2. f(x) = ln(1− x)

3. f(x) = ln(5x2 + 3) 4. y = 2x2 + 3 ln x

5. y = arcsin(x+ 1) 6. f(x) = arctan(3x)

7. P = 3 ln(x2 + 5x+ 3) 8. Q = a ln(bx+ c)

9. f(x) = ln(e2x) 10. f(x) = eln(e
2x2+3)

11. f(x) = ln(1− e−x) 12. f(α) = ln(sinα)

13. f(x) = ln(ex + 1) 14. y = x ln x− x+ 2

15. j(x) = ln(eax + b) 16. y = x3 ln x

17. h(w) = w3 ln(10w) 18. f(x) = ln(e7x)

19. f(x) = e(lnx)+1 20. f(θ) = ln(cos θ)

21. f(t) = ln(eln t) 22. f(y) = arcsin(y2)

23. s(x) = arctan(2 − x) 24. g(α) = sin(arcsinα)

25. g(t) = earctan(3t
2) 26. g(t) = cos(ln t)

27. h(z) = zln 2 28. h(w) = w arcsinw

29. f(x) = eln(kx) 30. r(t) = arcsin(2t)

31. j(x) = cos
(
sin−1 x

)
32. f(x) = cos(arctan 3x)

33. f(z) =
1

ln z
34. g(t) =

ln(kt) + t

ln(kt)− t

35. f(w) = 6
√
w +

1

w2
+ 5 lnw

36. y = 2x(ln x+ ln 2)− 2x+ e

37. f(x) = ln(sinx+ cos x)

38. f(t) = ln(ln t) + ln(ln 2)

39. T (u) = arctan
(

u

1 + u

)
40. a(t) = ln

(
1− cos t

1 + cos t

)4
41. f(x) = cos(arcsin(x+ 1))
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Problems

42. Let f(x) = ln(3x).

(a) Find f ′(x) and simplify your answer.
(b) Use properties of logs to rewrite f(x) as a sum of

logs.
(c) Differentiate the result of part (b). Compare with the

result in part (a).

43. On what intervals is ln(x2 + 1) concave up?

44. Use the chain rule to obtain the formula for
d

dx
(arcsin x).

45. Using the chain rule, find
d

dx
(log x).

(Recall log x = log10 x.)

46. To compare the acidity of different solutions, chemists
use the pH (which is a single number, not the product of
p and H). The pH is defined in terms of the concentra-
tion, x, of hydrogen ions in the solution as

pH = − log x.

Find the rate of change of pH with respect to hydrogen
ion concentration when the pH is 2. [Hint: Use the result
of Problem 45.]

47. The number of years, T , it takes an investment of $1000
to grow to $F in an account which pays 5% interest com-
pounded continuously is given by

T = g(F ) = 20 ln(0.001F ).

Find g(5000) and g′(5000). Give units with your an-
swers and interpret them in terms of money in the ac-
count.

48. A firm estimates that the total revenue, R, in dollars, re-
ceived from the sale of q goods is given by

R = ln(1 + 1000q2).

The marginal revenue, MR, is the rate of change of
the total revenue as a function of quantity. Calculate the
marginal revenue when q = 10.

49. (a) Find the equation of the tangent line to y = ln x at
x = 1.

(b) Use it to calculate approximate values for ln(1.1)
and ln(2).

(c) Using a graph, explain whether the approximate val-
ues are smaller or larger than the true values. Would
the same result have held if you had used the tangent
line to estimate ln(0.9) and ln(0.5)? Why?

50. (a) Find the equation of the best quadratic approxima-
tion to y = lnx at x = 1. The best quadratic approx-
imation has the same first and second derivatives as
y = lnx at x = 1.

(b) Use a computer or calculator to graph the approxi-
mation and y = ln x on the same set of axes. What
do you notice?

(c) Use your quadratic approximation to calculate ap-
proximate values for ln(1.1) and ln(2).

51. (a) For x > 0, find and simplify the derivative of
f(x) = arctan x+ arctan(1/x).

(b) What does your result tell you about f?

52. Imagine you are zooming in on the graph of each of the
following functions near the origin:

y = x y =
√
x

y = x2 y = sin x

y = x sin x y = tan x

y =
√

x/(x+ 1) y = x3

y = ln(x+ 1) y = 1
2
ln(x2 + 1)

y = 1− cos x y =
√
2x− x2

Which of them look the same? Group together those
functions which become indistinguishable, and give the
equations of the lines they look like.

In Problems 53–56, use Figure 3.30 to find a point x where
h(x) = n(m(x)) has the given derivative.

100

100

0

m(x)

x
100

100

0

n(x)

x

Figure 3.30

53. h′(x) = −2 54. h′(x) = 2

55. h′(x) = 1 56. h′(x) = −1

In Problems 57–59, use Figure 3.31 to estimate the deriva-
tives.

10 20 30 40

5

10

15

20

0

f(x)

x
10 20 30 40

0.2

0.4

0.6

0.8

0

f ′(x)

x

Figure 3.31

57. (f−1)′(5) 58. (f−1)′(10) 59. (f−1)′(15)
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In Problems 60–62, use Figure 3.32 to calculate the derivative.

(2, 5)

(2.1, 5.3)

f(x)

Figure 3.32

60. h′(2) if h(x) = (f(x))3

61. k′(2) if k(x) = (f(x))−1

62. g′(5) if g(x) = f−1(x)

63. (a) Given that f(x) = x3, find f ′(2).
(b) Find f−1(x).
(c) Use your answer from part (b) to find (f−1)′(8).
(d) How could you have used your answer from part (a)

to find (f−1)′(8)?

64. (a) For f(x) = 2x5 + 3x3 + x, find f ′(x).
(b) How can you use your answer to part (a) to deter-

mine if f(x) is invertible?
(c) Find f(1).
(d) Find f ′(1).
(e) Find (f−1)′(6).

65. Use the table and the fact that f(x) is invertible and dif-
ferentiable everywhere to find (f−1)′(3).

x f(x) f ′(x)

3 1 7

6 2 10

9 3 5

66. At a particular location, f(p) is the number of gallons of
gas sold when the price is p dollars per gallon.

(a) What does the statement f(2) = 4023 tell you about
gas sales?

(b) Find and interpret f−1(4023).
(c) What does the statement f ′(2) = −1250 tell you

about gas sales?
(d) Find and interpret (f−1)′(4023)

67. Let P = f(t) give the US population6 in millions in
year t.

(a) What does the statement f(2005) = 296 tell you
about the US population?

(b) Find and interpret f−1(296). Give units.
(c) What does the statement f ′(2005) = 2.65 tell you

about the population? Give units.
(d) Evaluate and interpret (f−1)′(296). Give units.

68. Figure 3.33 shows the number of motor vehicles,7 f(t),
in millions, registered in the world t years after 1965.
With units, estimate and interpret

(a) f(20) (b) f ′(20)

(c) f−1(500) (d) (f−1)′(500)

’65 ’70 ’75 ’80 ’85 ’90 ’95 2000

200

400

600

800

(year)

(millions)

Figure 3.33

69. Using Figure 3.34, where f ′(2) = 2.1, f ′(4) = 3.0,
f ′(6) = 3.7, f ′(8) = 4.2, find (f−1)′(8).

2 4 6 8

8

16

24

x

f(x)

Figure 3.34

70. If f is increasing and f(20) = 10, which of the two op-
tions, (a) or (b), must be wrong?

(a) f ′(10)(f−1)′(20) = 1.
(b) f ′(20)(f−1)′(10) = 2.

71. An invertible function f(x) has values in the table. Eval-
uate

(a) f ′(a) · (f−1)′(A) (b) f ′(b) · (f−1)′(B)

(c) f ′(c) · (f−1)′(C)

x a b c d

f(x) A B C D

72. If f is continuous, invertible, and defined for all x, why
must at least one of the statements (f−1)′(10) = 8,
(f−1)′(20) = −6 be wrong?

73. (a) Calculate limh→0(ln(1 + h)/h) by identifying the
limit as the derivative of ln(1 + x) at x = 0.

(b) Use the result of part (a) to show that
limh→0(1 + h)1/h = e.

(c) Use the result of part (b) to calculate the related
limit, limn→∞(1 + 1/n)n .

6Data from www.census.gov/Press-Release/www/releases/archives/population/006142.html, accessed May 27, 2007.
7www.earth-policy.org, accessed May 18, 2007.
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Strengthen Your Understanding

In Problems 74–76, explain what is wrong with the statement.

74. If w(x) = ln(1 + x4) then w′(x) = 1/(1 + x4).

75. The derivative of f(x) = ln(ln x) is

f ′(x) =
1

x
ln x+ ln x

1

x
=

2 ln x

x
.

76. Given f(2) = 6, f ′(2) = 3, and f−1(3) = 4, we have

(f−1)′(2) =
1

f−1(f ′(2))
=

1

f−1(3)
=

1

4
.

In Problems 77–80, give an example of:

77. A function that is equal to a constant multiple of its
derivative but that is not equal to its derivative.

78. A function whose derivative is c/x, where c is a constant.

79. A function f(x) for which f ′(x) = f ′(cx), where c is a
constant.

80. A function f such that
d

dx

(
f−1(x)

)
=

1

f ′(x)
= 1.

Are the statements in Problems 81–82 true or false? Give an
explanation for your answer.

81. The graph of ln(x2) is concave up for x > 0.

82. If f(x) has an inverse function, g(x), then the derivative
of g(x) is 1/f ′(x).

3.7 IMPLICIT FUNCTIONS

In earlier chapters, most functions were written in the form y = f(x); here y is said to be an explicit
function of x. An equation such as

x2
+ y2 = 4

is said to give y as an implicit function of x. Its graph is the circle in Figure 3.35. Since there are
x-values which correspond to two y-values, y is not a function of x on the whole circle. Solving
gives

y = ±
√

4− x2,

where y =
√
4− x2 represents the top half of the circle and y = −

√
4− x2 represents the bottom

half. So y is a function of x on the top half, and y is a different function of x on the bottom half.
But let’s consider the circle as a whole. The equation does represent a curve which has a tangent

line at each point. The slope of this tangent can be found by differentiating the equation of the circle
with respect to x:

d

dx
(x2

) +
d

dx
(y2) =

d

dx
(4).

If we think of y as a function of x and use the chain rule, we get

2x+ 2y
dy

dx
= 0.

Solving gives
dy

dx
= −

x

y
.

−2 2

−2

2

x

y

Negative slope = −x/y

Positive slope = −x/y

Top half:
y =

√
4− x2

Bottom half:
y = −√

4− x2

Figure 3.35: Graph of x2 + y2 = 4

7

2

x

y

Curve has slope 2/5 here�

Figure 3.36: Graph of y3 − xy = −6 and its
tangent line at (7, 2)

The derivative here depends on both x and y (instead of just on x). This is because for many x-
values there are two y-values, and the curve has a different slope at each one. Figure 3.35 shows
that for x and y both positive, we are on the top right quarter of the curve and the slope is negative
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(as the formula predicts). For x positive and y negative, we are on the bottom right quarter of the
curve and the slope is positive (as the formula predicts).

Differentiating the equation of the circle has given us the slope of the curve at all points except
(2, 0) and (−2, 0), where the tangent is vertical. In general, this process of implicit differentiation
leads to a derivative whenever the expression for the derivative does not have a zero in the denomi-
nator.

Example 1 Make a table of x and approximate y-values for the equation y3 − xy = −6 near x = 7, y = 2.
Your table should include the x-values 6.8, 6.9, 7.0, 7.1, and 7.2.

Solution We would like to solve for y in terms of x, but we cannot isolate y by factoring. There is a formula
for solving cubics, somewhat like the quadratic formula, but it is too complicated to be useful here.
Instead, first observe that x = 7, y = 2 does satisfy the equation. (Check this!) Now find dy/dx by
implicit differentiation:

d

dx
(y3)−

d

dx
(xy) =

d

dx
(−6)

3y2
dy

dx
− 1 · y − x

dy

dx
= 0 (Differentiating with respect to x)

3y2
dy

dx
− x

dy

dx
= y

(3y2 − x)
dy

dx
= y (Factoring out dy

dx
)

dy

dx
=

y

3y2 − x
.

When x = 7 and y = 2, we have
dy

dx
=

2

12− 7
=

2

5
.

(See Figure 3.36.) The equation of the tangent line at (7, 2) is

y − 2 =
2

5
(x− 7)

or
y = 0.4x− 0.8.

Since the tangent lies very close to the curve near the point (7, 2), we use the equation of the tangent
line to calculate the following approximate y-values:

x 6.8 6.9 7.0 7.1 7.2

Approximate y 1.92 1.96 2.00 2.04 2.08

Notice that although the equation y3 − xy = −6 leads to a curve which is difficult to deal with
algebraically, it still looks like a straight line locally.

Example 2 Find all points where the tangent line to y3 − xy = −6 is either horizontal or vertical.

Solution From the previous example,
dy

dx
=

y

3y2 − x
. The tangent is horizontal when the numerator of dy/dx

equals 0, so y = 0. Since we also must satisfy y3 − xy = −6, we get 03 − x · 0 = −6, which is
impossible. We conclude that there are no points on the curve where the tangent line is horizontal.

The tangent is vertical when the denominator of dy/dx is 0, giving 3y2−x = 0. Thus, x = 3y2

at any point with a vertical tangent line. Again, we must also satisfy y3 − xy = −6, so

y3 − (3y2)y = −6,

−2y3 = −6,

y =
3
√
3 ≈ 1.442.
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We can then find x by substituting y =
3
√
3 in y3 − xy = −6. We get 3 − x( 3

√
3) = −6, so

x = 9/( 3
√
3) ≈ 6.240. So the tangent line is vertical at (6.240, 1.442).

Using implicit differentiation and the expression for dy/dx to locate the points where the tan-
gent is vertical or horizontal, as in the previous example, is a first step in obtaining an overall picture
of the curve y3−xy = −6. However, filling in the rest of the graph, even roughly, by using the sign
of dy/dx to tell us where the curve is increasing or decreasing can be difficult.

Exercises and Problems for Section 3.7
Exercises

For Exercises 1–21, find dy/dx. Assume a, b, c are constants.

1. x2 + y2 =
√
7 2. x2 + y3 = 8

3. x2 + xy − y3 = xy2 4. x2+y2+3x−5y = 25

5. xy + x+ y = 5 6. x2y − 2y + 5 = 0

7. x2y3 − xy = 6 8.
√
x = 5

√
y

9.
√
x+

√
y = 25 10. xy− x− 3y − 4 = 0

11. 6x2 + 4y2 = 36 12. ax2 − by2 = c2

13. ln x+ ln(y2) = 3 14. x ln y + y3 = lnx

15. sin(xy) = 2x+ 5 16. ecos y = x3 arctan y

17. arctan(x2y) = xy2 18. ex
2

+ ln y = 0

19. (x− a)2 + y2 = a2 20. x2/3 + y2/3 = a2/3

21. sin(ay) + cos(bx) = xy

In Exercises 22–25, find the slope of the tangent to the curve
at the point specified.

22. x2 + y2 = 1 at (0, 1)

23. sin(xy) = x at (1, π/2)

24. x3 + 2xy + y2 = 4 at (1, 1)

25. x3 + 5x2y + 2y2 = 4y + 11 at (1, 2)

For Exercises 26–30, find the equations of the tangent lines to
the following curves at the indicated points.

26. xy2 = 1 at (1,−1) 27. ln(xy) = 2x at (1, e2)

28. y2 =
x2

xy − 4
at (4, 2) 29. y =

x

y + a
at (0, 0)

30. x2/3 + y2/3 = a2/3 at (a, 0)

Problems

31. (a) Find dy/dx given that x2 + y2 − 4x+ 7y = 15.
(b) Under what conditions on x and/or y is the tangent

line to this curve horizontal? Vertical?

32. (a) Find the slope of the tangent line to the ellipse
x2

25
+

y2

9
= 1 at the point (x, y).

(b) Are there any points where the slope is not defined?

33. Find the equations of the tangent lines at x = 2 to the
ellipse

(x− 2)2

16
+

y2

4
= 1.

34. (a) Find the equations of the tangent lines to the circle
x2 + y2 = 25 at the points where x = 4.

(b) Find the equations of the normal lines to this circle
at the same points. (The normal line is perpendicular
to the tangent line at that point.)

(c) At what point do the two normal lines intersect?

35. (a) If x3 + y3 − xy2 = 5, find dy/dx.
(b) Using your answer to part (a), make a table of ap-

proximate y-values of points on the curve near x =

1, y = 2. Include x = 0.96, 0.98, 1, 1.02, 1.04.
(c) Find the y-value for x = 0.96 by substituting x =

0.96 in the original equation and solving for y using
a computer or calculator. Compare with your answer
in part (b).

(d) Find all points where the tangent line is horizontal
or vertical.

36. Find the equation of the tangent line to the curve y = x2

at x = 1. Show that this line is also a tangent to a circle
centered at (8, 0) and find the equation of this circle.

37. At pressure P atmospheres, a certain fraction f of a gas
decomposes. The quantities P and f are related, for some
positive constant K, by the equation

4f2P

1− f2
= K.

(a) Find df/dP .
(b) Show that df/dP < 0 always. What does this mean

in practical terms?
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38. Sketch the circles y2 + x2 = 1 and y2 + (x− 3)2 = 4.
There is a line with positive slope that is tangent to both
circles. Determine the points at which this tangent line
touches each circle.

39. If y = arcsin x then x = sin y. Use implicit differentia-
tion on x = sin y to show that

d

dx
arcsin x =

1√
1− x2

.

40. Show that the power rule for derivatives applies to ratio-
nal powers of the form y = xm/n by raising both sides
to the nth power and using implicit differentiation.

41. For constants a, b, n, R, Van der Waal’s equation relates
the pressure, P , to the volume, V , of a fixed quantity of
a gas at constant temperature T :(

P +
n2a

V 2

)
(V − nb) = nRT.

Find the rate of change of volume with pressure, dV/dP .

Strengthen Your Understanding

In Problems 42–43, explain what is wrong with the statement.

42. If y = sin(xy) then dy/dx = y cos(xy).

43. The formula dy/dx = −x/y gives the slope of the circle
x2 + y2 = 10 at every point in the plane except where
y = 0.

In Problems 44–45, give an example of:

44. A formula for dy/dx leading to a vertical tangent at
y = 2 and a horizontal tangent at x = ±2.

45. A curve that has two horizontal tangents at the same x-
value, but no vertical tangents.

46. True or false? Explain your answer: If y satisfies the
equation y2 + xy − 1 = 0, then dy/dx exists every-
where.

3.8 HYPERBOLIC FUNCTIONS

There are two combinations of ex and e−x which are used so often in engineering that they are
given their own name. They are the hyperbolic sine, abbreviated sinh, and the hyperbolic cosine,
abbreviated cosh. They are defined as follows:

Hyperbolic Functions

coshx =
ex + e−x

2
sinhx =

ex − e−x

2

Properties of Hyperbolic Functions
The graphs of coshx and sinhx are given in Figures 3.37 and 3.38 together with the graphs of
multiples of ex and e−x. The graph of coshx is called a catenary; it is the shape of a hanging cable.

−3 −2 −1 1 2 3

−3

−2

−1

2

3

4

y = 1
2
exy = 1

2
e−x

y = cosh(x)

x

y

Figure 3.37: Graph of y = cosh x

−3 3

−3

−2

−1

1

2

3

4

y = 1
2
ex

y = − 1
2
e−x

y = sinh(x)

x

y

Figure 3.38: Graph of y = sinhx

The graphs suggest that the following results hold:
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cosh 0 = 1 sinh 0 = 0

cosh(−x) = coshx sinh(−x) = − sinhx

To show that the hyperbolic functions really do have these properties, we use their formulas.

Example 1 Show that (a) cosh(0) = 1 (b) cosh(−x) = coshx

Solution (a) Substituting x = 0 into the formula for coshx gives

cosh 0 =
e0 + e−0

2
=

1 + 1

2
= 1.

(b) Substituting −x for x gives

cosh(−x) =
e−x + e−(−x)

2
=

e−x + ex

2
= coshx.

Thus, we know that coshx is an even function.

Example 2 Describe and explain the behavior of coshx as x → ∞ and x → −∞.

Solution From Figure 3.37, it appears that as x → ∞, the graph of coshx resembles the graph of 1
2e

x.
Similarly, as x → −∞, the graph of coshx resembles the graph of 1

2e
−x. This behavior is explained

by using the formula for coshx and the facts that e−x → 0 as x → ∞ and ex → 0 as x → −∞:

As x → ∞, coshx =
ex + e−x

2
→

1

2
ex.

As x → −∞, coshx =
ex + e−x

2
→

1

2
e−x.

Identities Involving cosh x and sinh x

The reason the hyperbolic functions have names that remind us of the trigonometric functions is
that they share similar properties. A familiar identity for trigonometric functions is

(cosx)2 + (sinx)2 = 1.

To discover an analogous identity relating (coshx)2 and (sinhx)2, we first calculate

(coshx)2 =

(
ex + e−x

2

)2

=
e2x + 2exe−x + e−2x

4
=

e2x + 2 + e−2x

4

(sinhx)2 =

(
ex − e−x

2

)2

=
e2x − 2exe−x + e−2x

4
=

e2x − 2 + e−2x

4
.

If we add these expressions, the resulting right-hand side contains terms involving both e2x and
e−2x. If, however, we subtract the expressions for (coshx)2 and (sinhx)2, we obtain a simple
result:

(coshx)2 − (sinhx)2 =
e2x + 2 + e−2x

4
−

e2x − 2 + e−2x

4
=

4

4
= 1.

Thus, writing cosh
2 x for (coshx)2 and sinh

2 x for (sinhx)2, we have the identity

cosh
2 x− sinh

2 x = 1

This identity shows us how the hyperbolic functions got their name. Suppose (x, y) is a point
in the plane and x = cosh t and y = sinh t for some t. Then the point (x, y) lies on the hyperbola
x2 − y2 = 1.
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The Hyperbolic Tangent
Extending the analogy to the trigonometric functions, we define

tanhx =
sinhx

coshx
=

ex − e−x

ex + e−x

Derivatives of Hyperbolic Functions

We calculate the derivatives using the fact that
d

dx
(ex) = ex. The results are again reminiscent of

the trigonometric functions. For example,

d

dx
(coshx) =

d

dx

(
ex + e−x

2

)
=

ex − e−x

2
= sinhx.

We find
d

dx
(sinhx) similarly, giving the following results:

d

dx
(coshx) = sinhx

d

dx
(sinhx) = coshx

Example 3 Compute the derivative of tanhx.

Solution Using the quotient rule gives

d

dx
(tanhx) =

d

dx

(
sinhx

coshx

)
=

(coshx)2 − (sinhx)2

(coshx)2
=

1

cosh
2 x

.

Exercises and Problems for Section 3.8
Exercises

In Exercises 1–11, find the derivative of the function.

1. y = sinh(3z + 5) 2. y = cosh(2x)

3. g(t) = cosh2 t 4. f(t) = cosh(sinh t)

5. f(t) = t3 sinh t 6. y = cosh(3t) sinh(4t)

7. y = tanh(3 + sinh x) 8. f(t) = cosh(et
2

)

9. g(θ) = ln (cosh(1 + θ))

10. f(y) = sinh (sinh(3y))

11. f(t) = cosh2 t− sinh2 t

12. Show that d(sinh x)/dx = cosh x.

13. Show that sinh 0 = 0.

14. Show that sinh(−x) = − sinh(x).

In Exercises 15–16, simplify the expressions.

15. cosh(ln t) 16. sinh(ln t)

Problems

17. Describe and explain the behavior of sinh x as x → ∞
and as x → −∞.

18. If x = cosh t and y = sinh t, explain why the point
(x, y) always lies on the curve x2 − y2 = 1. (This curve
is called a hyperbola and gave this family of functions its
name.)

19. Is there an identity analogous to sin(2x) = 2 sin x cosx
for the hyperbolic functions? Explain.

20. Is there an identity analogous to cos(2x) = cos2 x −
sin2 x for the hyperbolic functions? Explain.



168 Chapter Three SHORT-CUTS TO DIFFERENTIATION

Prove the identities in Problems 21–22.

21. cosh(A+B) = coshA coshB + sinhA sinhB

22. sinh(A+B) = sinhA coshB + coshA sinhB

In Problems 23–26, find the limit of the function as x → ∞.

23.
sinh(2x)

cosh(3x)
24.

e2x

sinh(2x)

25.
sinh(x2)

cosh(x2)
26.

cosh(2x)

sinh(3x)

27. For what values of k is lim
x→∞

e−3x cosh kx finite?

28. For what values of k is lim
x→∞

sinh kx

cosh 2x
finite?

29. The cable between the two towers of a power line hangs
in the shape of the curve

y =
T

w
cosh
(
wx

T

)
,

where T is the tension in the cable at its lowest point and
w is the weight of the cable per unit length. This curve is
called a catenary.

(a) Suppose the cable stretches between the points x =
−T/w and x = T/w. Find an expression for the
“sag” in the cable. (That is, find the difference be-
tween the height of the cable at the highest and low-
est points.)

(b) Show that the shape of the cable satisfies the equa-
tion

d2y

dx2
=

w

T

√
1 +
(
dy

dx

)2
.

30. The Saint Louis Arch can be approximated by using a
function of the form y = b − a cosh(x/a). Putting the
origin on the ground in the center of the arch and the y-
axis upward, find an approximate equation for the arch
given the dimensions shown in Figure 3.39. (In other
words, find a and b.)

�

�

615 ft

�� 530 ft

Figure 3.39

31. (a) Using a calculator or computer, sketch the graph of
y = 2ex + 5e−x for −3 ≤ x ≤ 3, 0 ≤ y ≤ 20.
Observe that it looks like the graph of y = cosh x.
Approximately where is its minimum?

(b) Show algebraically that y = 2ex + 5e−x can be
written in the form y = A cosh(x − c). Calculate
the values of A and c. Explain what this tells you
about the graph in part (a).

32. The following problem is a generalization of Problem 31.
Show that any function of the form

y = Aex +Be−x, A > 0, B > 0,

can be written, for some K and c, in the form

y = K cosh(x− c).

What does this tell you about the graph of y = Aex +
Be−x?

33. (a) Find tanh 0.
(b) For what values of x is tanhx positive? Negative?

Explain your answer algebraically.
(c) On what intervals is tanhx increasing? Decreasing?

Use derivatives to explain your answer.
(d) Find limx→∞ tanhx and limx→−∞ tanh x. Show

this information on a graph.
(e) Does tanh x have an inverse? Justify your answer

using derivatives.

Strengthen Your Understanding

In Problems 34–37, explain what is wrong with the statement.

34. The function f(x) = cosh x is periodic.

35. The derivative of the function f(x) = cosh x is f ′(x) =
− sinh x.

36. cosh2 x+ sinh2 x = 1.

37. tanhx → ∞ as x → ∞.

In Problems 38–40, give an example of:

38. A hyperbolic function which is concave up.

39. A value of k such that lim
x→∞

ekx cosh x does not exist.

40. A function involving the hyperbolic cosine that passes
through the point (1, 3).

Are the statements in Problems 41–45 true or false? Give an
explanation for your answer.

41. The function tanh x is odd, that is, tanh(−x) =
− tanhx.

42. The 100th derivative of sinhx is cosh x.

43. sinh x+ cosh x = ex.

44. The function sinh x is periodic.

45. The function sinh2 x is concave down everywhere.
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3.9 LINEAR APPROXIMATION AND THE DERIVATIVE

The Tangent Line Approximation
When we zoom in on the graph of a differentiable function, it looks like a straight line. In fact, the
graph is not exactly a straight line when we zoom in; however, its deviation from straightness is so
small that it can’t be detected by the naked eye. Let’s examine what this means. The straight line that
we think we see when we zoom in on the graph of f(x) at x = a has slope equal to the derivative,
f ′(a), so the equation is

y = f(a) + f ′
(a)(x − a).

The fact that the graph looks like a line means that y is a good approximation to f(x). (See Fig-
ure 3.40.) This suggests the following definition:

The Tangent Line Approximation

Suppose f is differentiable at a. Then, for values of x near a, the tangent line approximation
to f(x) is

f(x) ≈ f(a) + f ′
(a)(x − a).

The expression f(a) + f ′(a)(x− a) is called the local linearization of f near x = a. We are
thinking of a as fixed, so that f(a) and f ′(a) are constant.
The error, E(x), in the approximation is defined by

E(x) = f(x)− f(a)− f ′
(a)(x− a).

It can be shown that the tangent line approximation is the best linear approximation to f near a. See
Problem 43.

a x
x

Tangent
line

�

�

�

Error E(x)

�

�
f(a)

�

�
f(a)

�� x− a

�
�
f ′(a)(x− a)

True value f(x)

� Approximation

Figure 3.40: The tangent line approximation and its error

Example 1 What is the tangent line approximation for f(x) = sinx near x = 0?

Solution The tangent line approximation of f near x = 0 is

f(x) ≈ f(0) + f ′
(0)(x− 0).

If f(x) = sinx, then f ′(x) = cosx, so f(0) = sin 0 = 0 and f ′(0) = cos 0 = 1, and the
approximation is

sinx ≈ x.

This means that, near x = 0, the function f(x) = sinx is well approximated by the function y = x.
If we zoom in on the graphs of the functions sinx and x near the origin, we won’t be able to tell
them apart. (See Figure 3.41.)
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−π
2

π
2

y = sin x

y = x

−1

1

x

y

Figure 3.41: Tangent line approximation to y = sin x

Example 2 What is the local linearization of ekx near x = 0?

Solution If f(x) = ekx, then f(0) = 1 and, by the chain rule, f ′(x) = kekx, so f ′(0) = kek·0 = k. Thus

f(x) ≈ f(0) + f ′
(0)(x− 0)

becomes
ekx ≈ 1 + kx.

This is the tangent line approximation to ekx near x = 0. In other words, if we zoom in on the
functions f(x) = ekx and y = 1 + kx near the origin, we won’t be able to tell them apart.

Estimating the Error in the Approximation
Let us look at the error, E(x), which is the difference between f(x) and the local linearization.
(Look back at Figure 3.40.) The fact that the graph of f looks like a line as we zoom in means that
not only is E(x) small for x near a, but also that E(x) is small relative to (x − a). To demonstrate
this, we prove the following theorem about the ratio E(x)/(x− a).

Theorem 3.6: Differentiability and Local Linearity

Suppose f is differentiable at x = a and E(x) is the error in the tangent line approximation,
that is:

E(x) = f(x)− f(a)− f ′
(a)(x− a).

Then

lim
x→a

E(x)

x− a
= 0.

Proof Using the definition of E(x), we have

E(x)

x− a
=

f(x)− f(a)− f ′(a)(x− a)

x− a
=

f(x)− f(a)

x− a
− f ′

(a).

Taking the limit as x → a and using the definition of the derivative, we see that

lim
x→a

E(x)

x− a
= lim

x→a

(
f(x) − f(a)

x− a
− f ′

(a)

)
= f ′

(a)− f ′
(a) = 0.

Theorem 3.6 says that E(x) approaches 0 faster than (x − a). For the function in Example 3,
we see that E(x) ≈ k(x− a)2 for constant k if x is near a.

Example 3 Let E(x) be the error in the tangent line approximation to f(x) = x3 − 5x+ 3 for x near 2.

(a) What does a table of values for E(x)/(x − 2) suggest about limx→2 E(x)/(x − 2)?
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(b) Make another table to see that E(x) ≈ k(x−2)2. Estimate the value of k. Check that a possible
value is k = f ′′(2)/2.

Solution (a) Since f(x) = x3 − 5x + 3, we have f ′(x) = 3x2 − 5, and f ′′(x) = 6x. Thus, f(2) = 1 and
f ′(2) = 3 · 22 − 5 = 7, so the tangent line approximation for x near 2 is

f(x) ≈ f(2) + f ′
(2)(x − 2)

f(x) ≈ 1 + 7(x− 2).

Thus,

E(x) = True value − Approximation = (x3 − 5x+ 3)− (1 + 7(x− 2)).

The values of E(x)/(x − 2) in Table 3.7 suggest that E(x)/(x − 2) approaches 0 as x → 2.
(b) Notice that if E(x) ≈ k(x − 2)2, then E(x)/(x − 2)2 ≈ k. Thus we make Table 3.8 showing

values of E(x)/(x − 2)2. Since the values are all approximately 6, we guess that k = 6 and
E(x) ≈ 6(x− 2)2.

Since f ′′(2) = 12, our value of k satisfies k = f ′′(2)/2.

Table 3.7

x E(x)/(x− 2)

2.1 0.61

2.01 0.0601

2.001 0.006001

2.0001 0.00060001

Table 3.8

x E(x)/(x− 2)2

2.1 6.1

2.01 6.01

2.001 6.001

2.0001 6.0001

The relationship between E(x) and f ′′(x) that appears in Example 3 holds more generally. If
f(x) satisfies certain conditions, it can be shown that the error in the tangent line approximation
behaves near x = a as

E(x) ≈
f ′′(a)

2
(x− a)2.

This is part of a general pattern for obtaining higher-order approximations called Taylor polynomi-
als, which are studied in Chapter 10.

Why Differentiability Makes a Graph Look Straight

We use the properties of the error E(x) to understand why differentiability makes a graph look
straight when we zoom in.

Example 4 Consider the graph of f(x) = sinx near x = 0, and its linear approximation computed in Exam-
ple 1. Show that there is an interval around 0 with the property that the distance from f(x) = sinx
to the linear approximation is less than 0.1|x| for all x in the interval.

Solution The linear approximation of f(x) = sinx near 0 is y = x, so we write

sinx = x+ E(x).

Since sinx is differentiable at x = 0, Theorem 3.6 tells us that

lim
x→0

E(x)

x
= 0.

If we take ε = 1/10, then the definition of limit guarantees that there is a δ > 0 such that
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x

∣∣∣∣ < 0.1 for all |x| < δ.

In other words, for x in the interval (−δ, δ), we have |x| < δ, so

|E(x)| < 0.1|x|.

(See Figure 3.42.)

−δ δ0

��|E(x)| < 0.1|x|

� y = x
�

y = sin x

x

Figure 3.42: Graph of y = sin x and its linear approximation y = x, showing a window in
which the magnitude of the error, |E(x)|, is less than 0.1|x| for all x in the window

We can generalize from this example to explain why differentiability makes the graph of f look
straight when viewed over a small graphing window. Suppose f is differentiable at x = a. Then we

know lim
x→a

∣∣∣∣E(x)

x− a

∣∣∣∣ = 0. So, for any ε > 0, we can find a δ small enough so that

∣∣∣∣E(x)

x− a

∣∣∣∣ < ε, for a− δ < x < a+ δ.

So, for any x in the interval (a− δ, a+ δ), we have

|E(x)| < ε|x− a|.

Thus, the error, E(x), is less than ε times |x − a|, the distance between x and a. So, as we zoom in
on the graph by choosing smaller ε, the deviation, |E(x)|, of f from its tangent line shrinks, even
relative to the scale on the x-axis. So, zooming makes a differentiable function look straight.

Exercises and Problems for Section 3.9
Exercises

1. Find the tangent line approximation for
√
1 + x near

x = 0.

2. What is the tangent line approximation to ex near x = 0?

3. Find the tangent line approximation to 1/x near x = 1.

4. Find the local linearization of f(x) = x2 near x = 1.

5. What is the local linearization of ex
2

near x = 1?

6. Show that 1 − x/2 is the tangent line approximation to
1/

√
1 + x near x = 0.

7. Show that e−x ≈ 1− x near x = 0.
8. Local linearization gives values too small for the func-

tion x2 and too large for the function
√
x. Draw pictures

to explain why.

9. Using a graph like Figure 3.41, estimate to one decimal
place the magnitude of the error in approximating sin x
by x for −1 ≤ x ≤ 1. Is the approximation an over- or
an underestimate?

10. For x near 0, local linearization gives

ex ≈ 1 + x.

Using a graph, decide if the approximation is an over-
or underestimate, and estimate to one decimal place the
magnitude of the error for −1 ≤ x ≤ 1.
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Problems

11. (a) Find the best linear approximation, L(x), to f(x) =
ex near x = 0.

(b) What is the sign of the error, E(x) = f(x) − L(x)
for x near 0?

(c) Find the true value of the function at x = 1. What
is the error? (Give decimal answers.) Illustrate with
a graph.

(d) Before doing any calculations, explain which you
expect to be larger, E(0.1) or E(1), and why.

(e) Find E(0.1).

12. (a) Find the tangent line approximation to cosx at x =
π/4.

(b) Use a graph to explain how you know whether the
tangent line approximation is an under- or overesti-
mate for 0 ≤ x ≤ π/2.

(c) To one decimal place, estimate the error in the ap-
proximation for 0 ≤ x ≤ π/2.

13. (a) Graph f(x) = x3 − 3x2 + 3x+ 1.
(b) Find and add to your sketch the local linearization to

f(x) at x = 2.
(c) Mark on your sketch the true value of f(1.5), the

tangent line approximation to f(1.5) and the error
in the approximation.

14. (a) Show that 1+kx is the local linearization of (1+x)k

near x = 0.
(b) Someone claims that the square root of 1.1 is about

1.05. Without using a calculator, do you think that
this estimate is about right?

(c) Is the actual number above or below 1.05?

15. Figure 3.43 shows f(x) and its local linearization at
x = a. What is the value of a? Of f(a)? Is the approx-
imation an under- or overestimate? Use the linearization
to approximate the value of f(1.2).

21

f(x)

y = 2x− 1

x

y

Figure 3.43

In Problems 16–17, the equation has a solution near x = 0.
By replacing the left side of the equation by its linearization,
find an approximate value for the solution.

16. ex + x = 2 17. x+ ln(1 + x) = 0.2

18. (a) Given that f(7) = 13 and f ′(7) = −0.38, estimate
f(7.1).

(b) Suppose also f ′′(x) < 0 for all x. Does this make
your answer to part (a) an under- or overestimate?

19. (a) Explain why the following equation has a solution
near 0:

et = 0.02t + 1.098.

(b) Replace et by its linearization near 0. Solve the new
equation to get an approximate solution to the origi-
nal equation.

20. The speed of sound in dry air is

f(T ) = 331.3

√
1 +

T

273.15
meters/second

where T is the temperature in degrees Celsius. Find a
linear function that approximates the speed of sound for
temperatures near 0◦C.

21. Air pressure at sea level is 30 inches of mercury. At an
altitude of h feet above sea level, the air pressure, P , in
inches of mercury, is given by

P = 30e−3.23×10−5h

(a) Sketch a graph of P against h.
(b) Find the equation of the tangent line at h = 0.
(c) A rule of thumb used by travelers is that air pressure

drops about 1 inch for every 1000-foot increase in
height above sea level. Write a formula for the air
pressure given by this rule of thumb.

(d) What is the relation between your answers to parts
(b) and (c)? Explain why the rule of thumb works.

(e) Are the predictions made by the rule of thumb too
large or too small? Why?

22. On October 7, 2010, the Wall Street Journal8 reported
that Android cell phone users had increased to 10.9 mil-
lion by the end of August 2010 from 866,000 a year ear-
lier. During the same period, iPhone users increased to
13.5 million, up from 7.8 million a year earlier. Let A(t)
be the number of Android users, in millions, at time t
in years since the end of August 2009. Let P (t) be the
number of iPhone users in millions.

(a) Estimate A′(0). Give units.
(b) Estimate P ′(0). Give units.
(c) Using the tangent line approximation, when are the

numbers of Android and iPhone users predicted to
be the same?

(d) What assumptions did you make in part (c)?

8“Apple Readies Verizon iPhone”, WSJ, Oct 7, 2010.
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23. Writing g for the acceleration due to gravity, the period,
T , of a pendulum of length l is given by

T = 2π

√
l

g
.

(a) Show that if the length of the pendulum changes by
Δl, the change in the period, ΔT , is given by

ΔT ≈ T

2l
Δl.

(b) If the length of the pendulum increases by 2%, by
what percent does the period change?

24. Suppose now the length of the pendulum in Problem 23
remains constant, but that the acceleration due to gravity
changes.

(a) Use the method of the preceding problem to relate
ΔT approximately to Δg, the change in g.

(b) If g increases by 1%, find the percent change in T .

25. Suppose f has a continuous positive second derivative
for all x. Which is larger, f(1+Δx) or f(1)+f ′(1)Δx?
Explain.

26. Suppose f ′(x) is a differentiable decreasing function for
all x. In each of the following pairs, which number is the
larger? Give a reason for your answer.

(a) f ′(5) and f ′(6)
(b) f ′′(5) and 0
(c) f(5 +Δx) and f(5) + f ′(5)Δx

Problems 27–29 investigate the motion of a projectile shot
from a cannon. The fixed parameters are the acceleration of
gravity, g = 9.8 m/sec2, and the muzzle velocity, v0 =
500 m/sec, at which the projectile leaves the cannon. The an-
gle θ, in degrees, between the muzzle of the cannon and the
ground can vary.

27. The range of the projectile is

f(θ) =
v20
g

sin
πθ

90
wq = 25510 sin

πθ

90
meters.

(a) Find the range with θ = 20◦.
(b) Find a linear function of θ that approximates the

range for angles near 20◦.
(c) Find the range and its approximation from part (b)

for 21◦.

28. The time that the projectile stays in the air is

t(θ) =
2v0
g

sin
πθ

180
= 102 sin

πθ

180
seconds.

(a) Find the time in the air for θ = 20◦.
(b) Find a linear function of θ that approximates the

time in the air for angles near 20◦.
(c) Find the time in air and its approximation from

part (b) for 21◦.

29. At its highest point the projectile reaches a peak altitude
given by

h(θ) =
v20
2g

sin2 πθ

180
= 12755 sin2 πθ

180
meters.

(a) Find the peak altitude for θ = 20◦.
(b) Find a linear function of θ that approximates the

peak altitude for angles near 20◦.
(c) Find the peak altitude and its approximation from

part (b) for 21◦.

In Problems 30–32, find the local linearization of f(x) near 0
and use this to approximate the value of a.

30. f(x) = (1 + x)r, a = (1.2)3/5

31. f(x) = ekx, a = e0.3

32. f(x) =
√

b2 + x, a =
√
26

In Problems 33–37, find a formula for the error E(x) in the
tangent line approximation to the function near x = a. Using
a table of values for E(x)/(x−a) near x = a, find a value of
k such that E(x)/(x− a) ≈ k(x − a). Check that, approxi-
mately, k = f ′′(a)/2 and that E(x) ≈ (f ′′(a)/2)(x− a)2.

33. f(x) = x4, a = 1 34. f(x) = cos x, a = 0

35. f(x) = ex, a = 0 36. f(x) =
√
x, a = 1

37. f(x) = lnx, a = 1

38. Multiply the local linearization of ex near x = 0 by itself
to obtain an approximation for e2x. Compare this with
the actual local linearization of e2x. Explain why these
two approximations are consistent, and discuss which
one is more accurate.

39. (a) Show that 1 − x is the local linearization of
1

1 + x
near x = 0.

(b) From your answer to part (a), show that near x = 0,

1

1 + x2
≈ 1− x2.

(c) Without differentiating, what do you think the

derivative of
1

1 + x2
is at x = 0?

40. From the local linearizations of ex and sin x near x =
0, write down the local linearization of the function
ex sin x. From this result, write down the derivative of
ex sin x at x = 0. Using this technique, write down the
derivative of ex sin x/(1 + x) at x = 0.

41. Use local linearization to derive the product rule,

[f(x)g(x)]′ = f ′(x)g(x) + f(x)g′(x).

[Hint: Use the definition of the derivative and the local
linearizations f(x+h) ≈ f(x)+f ′(x)h and g(x+h) ≈
g(x) + g′(x)h.]
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42. Derive the chain rule using local linearization. [Hint: In
other words, differentiate f(g(x)), using g(x + h) ≈
g(x) + g′(x)h and f(z + k) ≈ f(z) + f ′(z)k.]

43. Consider a function f and a point a. Suppose there is a
number L such that the linear function g

g(x) = f(a) + L(x− a)

is a good approximation to f . By good approximation,
we mean that

lim
x→a

EL(x)

x− a
= 0,

where EL(x) is the approximation error defined by

f(x) = g(x) + EL(x) = f(a) + L(x− a) + EL(x).

Show that f is differentiable at x = a and that f ′(a) =
L. Thus the tangent line approximation is the only good
linear approximation.

44. Consider the graph of f(x) = x2 near x = 1. Find an
interval around x = 1 with the property that throughout
any smaller interval, the graph of f(x) = x2 never dif-
fers from its local linearization at x = 1 by more than
0.1|x − 1|.

Strengthen Your Understanding

In Problems 45–46, explain what is wrong with the statement.

45. To approximate f(x) = ex, we can always use the linear
approximation f(x) = ex ≈ x+ 1.

46. The linear approximation for F (x) = x3+1 near x = 0
is an underestimate for the function F for all x, x �= 0.

In Problems 47–49, give an example of:

47. Two different functions that have the same linear approx-
imation near x = 0.

48. A non-polynomial function that has the tangent line ap-
proximation f(x) ≈ 1 near x = 0.

49. A function that does not have a linear approximation at
x = −1.

50. Let f be a differentiable function and let L be the linear
function L(x) = f(a) + k(x − a) for some constant a.
Decide whether the following statements are true or false
for all constants k. Explain your answer.

(a) L is the local linearization for f near x = a,
(b) If lim

x→a
(f(x) − L(x)) = 0, then L is the local lin-

earization for f near x = a.

3.10 THEOREMS ABOUT DIFFERENTIABLE FUNCTIONS

A Relationship Between Local and Global: The Mean Value Theorem
We often want to infer a global conclusion (for example, f is increasing on an interval) from local
information (for example, f ′ is positive at each point on an interval). The following theorem relates
the average rate of change of a function on an interval (global information) to the instantaneous rate
of change at a point in the interval (local information).

Theorem 3.7: The Mean Value Theorem

If f is continuous on a ≤ x ≤ b and differentiable on a < x < b, then there exists a number
c, with a < c < b, such that

f ′
(c) =

f(b)− f(a)

b− a
.

In other words, f(b)− f(a) = f ′(c)(b− a).

To understand this theorem geometrically, look at Figure 3.44. Join the points on the curve
where x = a and x = b with a secant line and observe that

Slope of secant line =
f(b)− f(a)

b− a
.

Now consider the tangent lines drawn to the curve at each point between x = a and x = b. In
general, these lines have different slopes. For the curve shown in Figure 3.44, the tangent line at
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x = a is flatter than the secant line. Similarly, the tangent line at x = b is steeper than the secant
line. However, there appears to be at least one point between a and b where the slope of the tangent
line to the curve is precisely the same as the slope of the secant line. Suppose this occurs at x = c.
Then

Slope of tangent line = f ′
(c) =

f(b)− f(a)

b− a
.

The Mean Value Theorem tells us that the point x = c exists, but it does not tell us how to find c.
Problems 44 and 45 in Section 4.2 show how the Mean Value Theorem can be derived.

a c b
x



Secant line: Slope =
f(b)− f(a)

b− a

�
Tangent line: Slope = f ′(c)

(a, f(a))

(b, f(b))

f(x)

Figure 3.44: The point c with f ′(c) = f(b)−f(a)
b−a

If f satisfies the conditions of the Mean Value Theorem on a < x < b and f(a) = f(b) = 0,
the Mean Value Theorem tells us that there is a point c, with a < c < b, such that f ′(c) = 0. This
result is called Rolle’s Theorem.

The Increasing Function Theorem
We say that a function f is increasing on an interval if, for any two numbers x1 and x2 in the
interval such that x1 < x2, we have f(x1) < f(x2). If instead we have f(x1) ≤ f(x2), we say f is
nondecreasing.

Theorem 3.8: The Increasing Function Theorem

Suppose that f is continuous on a ≤ x ≤ b and differentiable on a < x < b.
• If f ′(x) > 0 on a < x < b, then f is increasing on a ≤ x ≤ b.

• If f ′(x) ≥ 0 on a < x < b, then f is nondecreasing on a ≤ x ≤ b.

Proof Suppose a ≤ x1 < x2 ≤ b. By the Mean Value Theorem, there is a number c, with x1 < c < x2,
such that

f(x2)− f(x1) = f ′
(c)(x2 − x1).

If f ′(c) > 0, this says f(x2) − f(x1) > 0, which means f is increasing. If f ′(c) ≥ 0, this says
f(x2)− f(x1) ≥ 0, which means f is nondecreasing.

It may seem that something as simple as the Increasing Function Theorem should follow imme-
diately from the definition of the derivative, and you may be surprised that the Mean Value Theorem
is needed.

The Constant Function Theorem
If f is constant on an interval, then we know that f ′(x) = 0 on the interval. The following theorem
is the converse.
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Theorem 3.9: The Constant Function Theorem

Suppose that f is continuous on a ≤ x ≤ b and differentiable on a < x < b. If f ′(x) = 0 on
a < x < b, then f is constant on a ≤ x ≤ b.

Proof The proof is the same as for the Increasing Function Theorem, only in this case f ′(c) = 0 so
f(x2)− f(x1) = 0. Thus f(x2) = f(x1) for a ≤ x1 < x2 ≤ b, so f is constant.

A proof of the Constant Function Theorem using the Increasing Function Theorem is given in
Problems 17 and 25.

The Racetrack Principle

Theorem 3.10: The Racetrack Principle9

Suppose that g and h are continuous on a ≤ x ≤ b and differentiable on a < x < b, and that
g′(x) ≤ h′(x) for a < x < b.
• If g(a) = h(a), then g(x) ≤ h(x) for a ≤ x ≤ b.

• If g(b) = h(b), then g(x) ≥ h(x) for a ≤ x ≤ b.

The Racetrack Principle has the following interpretation. We can think of g(x) and h(x) as the
positions of two racehorses at time x, with horse h always moving faster than horse g. If they start
together, horse h is ahead during the whole race. If they finish together, horse g was ahead during
the whole race.

Proof Consider the function f(x) = h(x) − g(x). Since f ′(x) = h′(x) − g′(x) ≥ 0, we know that f is
nondecreasing by the Increasing Function Theorem. So f(x) ≥ f(a) = h(a) − g(a) = 0. Thus
g(x) ≤ h(x) for a ≤ x ≤ b. This proves the first part of the Racetrack Principle. Problem 24 asks
for a proof of the second part.

Example 1 Explain graphically why ex ≥ 1 + x for all values of x. Then use the Racetrack Principle to prove
the inequality.

Solution The graph of the function y = ex is concave up everywhere and the equation of its tangent line at
the point (0, 1) is y = x + 1. (See Figure 3.45.) Since the graph always lies above its tangent, we
have the inequality

ex ≥ 1 + x.

1

x

y
y = ex

y = x+ 1

Figure 3.45: Graph showing that ex ≥ 1 + x

9Based on the Racetrack Principle in Calculus & Mathematica, by William Davis, Horacio Porta, Jerry Uhl (Reading:
Addison Wesley, 1994).
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Now we prove the inequality using the Racetrack Principle. Let g(x) = 1 + x and h(x) = ex.
Then g(0) = h(0) = 1. Furthermore, g′(x) = 1 and h′(x) = ex. Hence g′(x) ≤ h′(x) for x ≥ 0.
So by the Racetrack Principle, with a = 0, we have g(x) ≤ h(x), that is, 1 + x ≤ ex.

For x ≤ 0 we have h′(x) ≤ g′(x). So by the Racetrack Principle, with b = 0, we have
g(x) ≤ h(x), that is, 1 + x ≤ ex.

Exercises and Problems for Section 3.10
Exercises

In Exercises 1–5, decide if the statements are true or false.
Give an explanation for your answer.

1. Let f(x) = [x], the greatest integer less than or equal to
x. Then f ′(x) = 0, so f(x) is constant by the Constant
Function Theorem.

2. If a < b and f ′(x) is positive on [a, b] then f(a) < f(b).

3. If f(x) is increasing and differentiable on the interval
[a, b], then f ′(x) > 0 on [a, b].

4. The Racetrack Principle can be used to justify the state-
ment that if two horses start a race at the same time, the
horse that wins must have been moving faster than the
other throughout the race.

5. Two horses start a race at the same time and one runs
slower than the other throughout the race. The Racetrack
Principle can be used to justify the fact that the slower
horse loses the race.

Do the functions graphed in Exercises 6–9 appear to satisfy
the hypotheses of the Mean Value Theorem on the interval
[a, b]? Do they satisfy the conclusion?

6.

a b
x

f(x) 7.

a b

f(x)

x

8.

a b

f(x)

x

9.

a b

f(x)

x

Problems

10. Applying the Mean Value Theorem with a = 2, b = 7
to the function in Figure 3.46 leads to c = 4. What is the
equation of the tangent line at 4?

(2, 5)

(4, 8)

(7, 9)

Figure 3.46

11. Applying the Mean Value Theorem with a = 3, b = 13
to the function in Figure 3.47 leads to the point c shown.
What is the value of f ′(c)? What can you say about the
values of f ′(x1) and f ′(x2)?

f(x)

(3, 12)
x1

c

x2

(13, 7)

Figure 3.47



3.10 THEOREMS ABOUT DIFFERENTIABLE FUNCTIONS 179

12. Let p(x) = x5+8x4−30x3+30x2−31x+22. What is
the relationship between p(x) and f(x) = 5x4+32x3−
90x2 + 60x − 31? What do the values of p(1) and p(2)
tell you about the values of f(x)?

13. Let p(x) be a seventh-degree polynomial with 7 distinct
zeros. How many zeros does p′(x) have?

14. Use the Racetrack Principle and the fact that sin 0 = 0
to show that sin x ≤ x for all x ≥ 0.

15. Use the Racetrack Principle to show that ln x ≤ x− 1.

16. Use the fact that ln x and ex are inverse functions to show
that the inequalities ex ≥ 1+x and ln x ≤ x−1 are
equivalent for x > 0.

17. State a Decreasing Function Theorem, analogous to
the Increasing Function Theorem. Deduce your theorem
from the Increasing Function Theorem. [Hint: Apply the
Increasing Function Theorem to −f .]

18. Dominic drove from Phoenix to Tucson on Interstate 10,
a distance of 116 miles. The speed limit on this highway
varies between 55 and 75 miles per hour. He started his
trip at 11:44 pm and arrived in Tucson at 1:12 am. Prove
that Dominic was speeding at some point during his trip.

In Problems 19–22, use one of the theorems in this section to
prove the statements .

19. If f ′(x) ≤ 1 for all x and f(0) = 0, then f(x) ≤ x for
all x ≥ 0.

20. If f ′′(t) ≤ 3 for all t and f(0) = f ′(0) = 0, then
f(t) ≤ 3

2
t2 for all t ≥ 0.

21. If f ′(x) = g′(x) for all x and f(5) = g(5), then
f(x) = g(x) for all x.

22. If f is differentiable and f(0) < f(1), then there is a
number c, with 0 < c < 1, such that f ′(c) > 0.

23. The position of a particle on the x-axis is given by s =
f(t); its initial position and velocity are f(0) = 3 and

f ′(0) = 4. The acceleration is bounded by 5 ≤ f ′′(t) ≤
7 for 0 ≤ t ≤ 2. What can we say about the position
f(2) of the particle at t = 2?

24. Suppose that g and h are continuous on [a, b] and dif-
ferentiable on (a, b). Prove that if g′(x) ≤ h′(x) for
a < x < b and g(b) = h(b), then h(x) ≤ g(x) for
a ≤ x ≤ b.

25. Deduce the Constant Function Theorem from the In-
creasing Function Theorem and the Decreasing Function
Theorem. (See Problem 17.)

26. Prove that if f ′(x) = g′(x) for all x in (a, b), then
there is a constant C such that f(x) = g(x) + C on
(a, b). [Hint: Apply the Constant Function Theorem to
h(x) = f(x)− g(x).]

27. Suppose that f ′(x) = f(x) for all x. Prove that f(x) =
Cex for some constant C. [Hint: Consider f(x)/ex.]

28. Suppose that f is continuous on [a, b] and differentiable
on (a, b) and that m ≤ f ′(x) ≤ M on (a, b). Use
the Racetrack Principle to prove that f(x) − f(a) ≤
M(x − a) for all x in [a, b], and that m(x − a) ≤
f(x) − f(a) for all x in [a, b]. Conclude that m ≤
(f(b) − f(a))/(b − a) ≤ M . This is called the Mean
Value Inequality. In words: If the instantaneous rate of
change of f is between m and M on an interval, so is the
average rate of change of f over the interval.

29. Suppose that f ′′(x) ≥ 0 for all x in (a, b). We will show
the graph of f lies above the tangent line at (c, f(c)) for
any c with a < c < b.

(a) Use the Increasing Function Theorem to prove that
f ′(c) ≤ f ′(x) for c ≤ x < b and that f ′(x) ≤
f ′(c) for a < x ≤ c.

(b) Use (a) and the Racetrack Principle to conclude that
f(c) + f ′(c)(x− c) ≤ f(x), for a < x < b.

Strengthen Your Understanding

In Problems 30–32, explain what is wrong with the statement.

30. The Mean Value Theorem applies to f(x) = |x|, for
−2 < x < 2.

31. The following function satisfies the conditions of the
Mean Value Theorem on the interval [0, 1]:

f(x) =

{
x if 0 < x ≤ 1

1 if x = 0.

32. If f ′(x) = 0 on a < x < b, then by the Constant Func-
tion Theorem f is constant on a ≤ x ≤ b.

In Problems 33–37, give an example of:

33. An interval where the Mean Value Theorem applies when
f(x) = ln x.

34. An interval where the Mean Value Theorem does not ap-
ply when f(x) = 1/x.

35. A continuous function f on the interval [−1, 1] that does
not satisfy the conclusion of the Mean Value Theorem.

36. A function f that is differentiable on the interval (0, 2),
but does not satisfy the conclusion of the Mean Value
Theorem on the interval [0, 2].

37. A function that is differentiable on (0, 1) and not contin-
uous on [0, 1], but which satisfies the conclusion of the
Mean Value Theorem.
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Are the statements in Problems 38–41 true or false for a func-
tion f whose domain is all real numbers? If a statement is true,
explain how you know. If a statement is false, give a coun-
terexample.

38. If f ′(x) ≥ 0 for all x, then f(a) ≤ f(b) whenever
a ≤ b.

39. If f ′(x) ≤ g′(x) for all x, then f(x) ≤ g(x) for all x.

40. If f ′(x) = g′(x) for all x, then f(x) = g(x) for all x.

41. If f ′(x) ≤ 1 for all x and f(0) = 0, then f(x) ≤ x for
all x.

CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• Derivatives of elementary functions
Power, polynomial, rational, exponential, logarithmic,
trigonometric, inverse trigonometric, and hyperbolic
functions.

• Derivatives of sums, differences, and constant multi-
ples

• Product and quotient rules

• Chain rule

• Differentiation of implicitly defined functions and in-
verse functions

• Hyperbolic functions

• Tangent line approximation, local linearity

• Theorems about differentiable functions
Mean value theorem, increasing function theorem, con-
stant function theorem, Racetrack Principle.

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER THREE

Exercises

Find derivatives for the functions in Exercises 1–73. Assume
a, b, c, and k are constants.

1. w = (t2 + 1)100 2. f(t) = e3t

3. z =
t2 + 3t+ 1

t+ 1
4. y =

√
t

t2 + 1

5. h(t) =
4− t

4 + t
6. f(x) = xe

7. f(x) =
x3

9
(3 ln x−1) 8. f(x) =

1 + x

2 + 3x+ 4x2

9. g(θ) = esin θ 10. y =
√
θ

(√
θ +

1√
θ

)
11. f(w) = ln(cos(w−1)) 12. f(y) = ln

(
ln(2y3)

)
13. g(x) = xk + kx 14. y = e−π + π−e

15. z = sin3 θ 16. f(t) = cos2(3t+ 5)

17. M(α) = tan2(2 + 3α) 18. s(θ) = sin2(3θ − π)

19. h(t) = ln
(
e−t − t

)
20. p(θ) =

sin(5− θ)

θ2

21. w(θ) =
θ

sin2 θ
22. f(θ) =

1

1 + e−θ

23. g(w) =
1

2w + ew
24. f(t) =

t2 + t3 − 1

t4

25. h(z) =

√
sin(2z)

cos(2z)
26. q(θ)=

√
4θ2−sin2(2θ)

27. w = 2−4z sin(πz) 28. g(t) = arctan(3t − 4)

29. r(θ) = e(e
θ+e−θ) 30. m(n) = sin(en)

31. G(α) = etan(sinα) 32. g(t) = t cos(
√
tet)

33. f(r) = (tan 2+tan r)e 34. h(x) = xetanx

35. y = e2x sin2(3x) 36. g(x) = tan−1(3x2+1)

37. y = 2sin x cosx 38. F (x) = ln(eax) + ln b

39. y = eθ−1 40. f(t) = e−4kt sin t

41. H(t) = (at2 + b)e−ct 42. g(θ) =
√

a2 − sin2 θ

43. y = 5x + 2 44. f(x) =
a2 − x2

a2 + x2

45. w(r) =
ar2

b+ r3
46. f(s) =

a2 − s2√
a2 + s2

47. y = arctan
(
2

x

)
48. r(t) = ln

(
sin

(
t

k

))

49. g(w) =
5

(a2 − w2)2
50. y =

e2x

x2 + 1
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51. g(u) =
eau

a2 + b2
52. y =

eax − e−ax

eax + e−ax

53. f(x) =
x

1 + ln x
54. z =

et
2

+ t

sin(2t)

55. f(t) = sin
√
et + 1 56. g(y) = e2e

(y3)

57. y = 6x3 + 4x2 − 2x

58. g(z) =
z7 + 5z6 − z3

z2

59. f(z) = (ln 3)z2 + (ln 4)ez

60. y = 3x− 2 · 4x
61. f(x) = x3 + 3x

62. f(θ) = θ2 sin θ + 2θ cos θ − 2 sin θ

63. y =
√

cos(5θ) + sin2(6θ)

64. r(θ) = sin
(
(3θ − π)2

)
65. z = (s2 −√

s)(s2 +
√
s)

66. N(θ) = tan(arctan(kθ))

67. h(t) = ekt(sin at+ cos bt)

68. f(y) = 4y(2− y2)

69. f(t) = (sin(2t)− cos(3t))4

70. s(y) = 3
√

(cos2 y + 3 + sin2 y)

71. f(x) = (4− x2 + 2x3)(6− 4x+ x7)

72. h(x) =
(
1

x
− 1

x2

) (
2x3 + 4

)
73. f(z) =

√
5z + 5

√
z +

5√
z
−
√

5

z
+

√
5

For Exercises 74–75, assume that y is a differentiable function
of x and find dy/dx.

74. x3 + y3 − 4x2y = 0

75. cos2 y + sin2 y = y + 2

76. Find the slope of the curve x2 + 3y2 = 7 at (2,−1).

77. Assume y is a differentiable function of x and that
y+sin y+x2 = 9. Find dy/dx at the point x = 3, y = 0.

78. Find the equations for the lines tangent to the graph of
xy + y2 = 4 where x = 3.

Problems

79. If f(t) = 2t3 − 4t2 + 3t− 1, find f ′(t) and f ′′(t).

80. If f(x) = 13− 8x+
√
2x2 and f ′(r) = 4, find r.

81. If f(x) = x3 − 6x2 − 15x + 20, find analytically all
values of x for which f ′(x) = 0. Show your answers on
a graph of f .

82. (a) Find the eighth derivative of f(x) = x7 + 5x5 −
4x3 + 6x− 7. Think ahead!
(The nth derivative, f (n)(x), is the result of differ-
entiating f(x) n times.)

(b) Find the seventh derivative of f(x).

For Problems 83–88, use Figure 3.48.

−4 4

−4

4

t(x)

x

y

s(x)

−4 4

−4

4

x

y

Figure 3.48

83. Let h(x) = t(x)s(x) and p(x) = t(x)/s(x). Estimate:

(a) h′(1) (b) h′(0) (c) p′(0)

84. Let r(x) = s(t(x)). Estimate r′(0).

85. Let h(x) = s(s(x)). Estimate:

(a) h′(1) (b) h′(2)

86. Estimate all values of x for which the tangent line to
y = s(s(x)) is horizontal.

87. Let h(x) = x2t(x) and p(x) = t(x2). Estimate:

(a) h′(−1) (b) p′(−1)

88. Find an approximate equation for the tangent line to
r(x) = s(t(x)) at x = 1.

For Problems 89–92, let h(x) = f(g(x)) and k(x) =
g(f(x)). Use Figure 3.49 to estimate the derivatives.

−3 3

−3

3

x

f(x)

−3 3

−3

3

x

g(x)

Figure 3.49

89. h′(1) 90. k′(1) 91. h′(2) 92. k′(2)
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93. Using the information in the table about f and g, find:

(a) h(4) if h(x) = f(g(x))
(b) h′(4) if h(x) = f(g(x))
(c) h(4) if h(x) = g(f(x))
(d) h′(4) if h(x) = g(f(x))
(e) h′(4) if h(x) = g(x)/f(x)
(f) h′(4) if h(x) = f(x)g(x)

x 1 2 3 4

f(x) 3 2 1 4

f ′(x) 1 4 2 3

g(x) 2 1 4 3

g′(x) 4 2 3 1

94. Given: r(2) = 4, s(2) = 1, s(4) = 2, r′(2) = −1,
s′(2) = 3, s′(4) = 3. Compute the following deriva-
tives, or state what additional information you would
need to be able to do so.

(a) H ′(2) if H(x) = r(x) · s(x)
(b) H ′(2) if H(x) =

√
r(x)

(c) H ′(2) if H(x) = r(s(x))
(d) H ′(2) if H(x) = s(r(x))

95. If g(2) = 3 and g′(2) = −4, find f ′(2) for the follow-
ing:

(a) f(x) = x2 − 4g(x) (b) f(x) =
x

g(x)

(c) f(x) = x2g(x) (d) f(x) = (g(x))2

(e) f(x) = x sin(g(x)) (f) f(x) = x2 ln(g(x))

96. For parts (a)–(f) of Problem 95, determine the equation
of the line tangent to f at x = 2.

97. Imagine you are zooming in on the graphs of the follow-
ing functions near the origin:

y = arcsin x y = sin x− tan x y = x− sin x

y = arctan x y =
sin x

1 + sin x
y =

x2

x2 + 1

y =
1− cosx

cos x
y =

x

x2 + 1
y =

sin x

x
− 1

y = −x ln x y = ex − 1 y = x10 + 10
√
x

y =
x

x+ 1

Which of them look the same? Group together those
functions which become indistinguishable, and give the
equation of the line they look like. [Note: (sin x)/x − 1
and −x ln x never quite make it to the origin.]

98. The graphs of sin x and cos x intersect once between 0
and π/2. What is the angle between the two curves at the
point where they intersect? (You need to think about how
the angle between two curves should be defined.)

In Problems 99–100, show that the curves meet at least once
and determine whether the curves are perpendicular at the
point of intersection.

99. y = 1 + x− x2 and y = 1− x+ x2

100. y = 1− x3/3 and y = x− 1

101. For some constant b and x > 0, let y = x ln x− bx. Find
the equation of the tangent line to this graph at the point
at which the graph crosses the x-axis.

In Problems 102–104, find the limit as x → −∞.

102.
cosh(2x)

sinh(3x)
103.

e−2x

sinh(2x)
104.

sinh(x2)

cosh(x2)

105. Consider the function f(x) =
√
x.

(a) Find and sketch f(x) and the tangent line approxi-
mation to f(x) near x = 4.

(b) Compare the true value of f(4.1) with the value ob-
tained by using the tangent line approximation.

(c) Compare the true and approximate values of f(16).
(d) Using a graph, explain why the tangent line approx-

imation is a good one when x = 4.1 but not when
x = 16.

106. Figure 3.50 shows the tangent line approximation to f(x)
near x = a.

(a) Find a, f(a), f ′(a).
(b) Estimate f(2.1) and f(1.98). Are these under- or

overestimates? Which estimate would you expect to
be more accurate and why?

2

f(x)

y = −3x+ 7

x

Figure 3.50

107. Global temperatures have been rising, on average, for
more than a century, sparking concern that the polar ice
will melt and sea levels will rise. With t in years since
1880, fitting functions to the data10 gives three models
for the average global temperature in Celsius:

f(t) = 13.625 + 0.006t

g(t) = 0.00006t2 − 0.0017t + 13.788

h(t) = 13.63e0.0004t .

(a) What family of functions is used in each model?

10From data.giss.nasa.gov/gistemp/tabledate/GLB.Ts.txt



REVIEW EXERCISES AND PROBLEMS FOR CHAPTER THREE 183

(b) Find the rate of change of temperature in 2010 in
each of the three models. Give units.

(c) For each model, find the change in temperature over
a 130-year period if the temperature had been chang-
ing at the rate you found in part (b) for that model.

(d) For each model, find the predicted change in temper-
ature for the 130 years from 1880 to 2010.

(e) For which model, if any, are the answers equal in
parts (c) and (d)?

(f) For which model is the discrepancy largest between
the answers in parts (c) and (d)?

108. In 2009, the population of Hungary11 was approximated
by

P = 9.906(0.997)t ,

where P is in millions and t is in years since 2009. As-
sume the trend continues.

(a) What does this model predict for the population of
Hungary in the year 2020?

(b) How fast (in people/year) does this model predict
Hungary’s population will be decreasing in 2020?

109. The gravitational attraction, F , between the earth and a
satellite of mass m at a distance r from the center of the
earth is given by

F =
GMm

r2
,

where M is the mass of the earth, and G is a constant.
Find the rate of change of force with respect to distance.

110. The distance, s, of a moving body from a fixed point is
given as a function of time, t, by s = 20et/2.

(a) Find the velocity, v, of the body as a function of t.
(b) Find a relationship between v and s, then show that

s satisfies the differential equation s′ = 1
2
s.

111. At any time, t, a population, P (t), is growing at a rate
proportional to the population at that moment.

(a) Using derivatives, write an equation representing the
growth of the population. Let k be the constant of
proportionality.

(b) Show that the function P (t) = Aekt satisfies the
equation in part (a) for any constant A.

112. An object is oscillating at the end of a spring. Its posi-
tion, in centimeters, relative to a fixed point, is given as a
function of time, t, in seconds, by

y = y0 cos(2πωt), with ω a constant.

(a) Find an expression for the velocity and acceleration
of the object.

(b) How do the amplitudes of the position, velocity, and
acceleration functions compare? How do the periods
of these functions compare?

(c) Show that the function y satisfies the differential
equation

d2y

dt2
+ 4π2ω2y = 0.

113. The total number of people, N , who have contracted a
disease by a time t days after its outbreak is given by

N =
1,000,000

1 + 5,000e−0.1t
.

(a) In the long run, how many people get the disease?
(b) Is there any day on which more than a million peo-

ple fall sick? Half a million? Quarter of a million?
(Note: You do not have to find on what days these
things happen.)

114. The world population was 6.7 billion at the beginning of
2008. An exponential model predicts the population to be
P (t) = 6.7ekt billion t years after 2008, where k is the
continuous annual growth rate.

(a) How long does the model predict it will take for the
population to reach 10 billion, as a function f(k)?

(b) One current estimate is k = 0.012 = 1.2%. How
long will it take for the population to reach 10 bil-
lion if k has this value?

(c) For continuous growth rates near 1.2%, find a lin-
ear function of k that approximates the time for the
world population to reach 10 billion.

(d) Find the time to reach 10 billion and its approxima-
tion from part (c) if the continuous growth rate is
1.0%.

115. The acceleration due to gravity, g, is given by

g =
GM

r2
,

where M is the mass of the earth, r is the distance from
the center of the earth, and G is the universal gravita-
tional constant.

(a) Show that when r changes by Δr, the change in the
acceleration due to gravity, Δg, is given by

Δg ≈ −2g
Δr

r
.

(b) What is the significance of the negative sign?
(c) What is the percent change in g when moving from

sea level to the top of Pike’s Peak (4.315 km)? As-
sume the radius of the earth is 6400 km.

116. Given that f and g are differentiable everywhere, g is the
inverse of f , and that f(3) = 4, f ′(3) = 6, f ′(4) = 7,
find g′(4).

117. An increasing function f(x) has the value f(10) = 5.
Explain how you know that the calculations f ′(10) = 8
and (f−1)′(5) = 8 cannot both be correct.

118. A particle is moving on the x-axis. It has velocity v(x)
when it is at the point with coordinate x. Show that its
acceleration at that point is v(x)v′(x).

11https://www.cia.gov/library/publications/the-world-factbook/print/hu.html, accessed 4/14/09.
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119. If f is decreasing and f(20) = 10, which of the follow-
ing must be incorrect?

(a) (f−1)′(20) = −3. (b) (f−1)′(10) = 12.

120. Find the nth derivative of the following functions:

(a) lnx (b) xex (c) ex cos x

121. The derivative f ′ gives the (absolute) rate of change of a
quantity f , and f ′/f gives the relative rate of change of
the quantity. In this problem, we show that the product
rule is equivalent to an additive rule for relative rates of
change. Assume h = f · g with f �= 0 and g �= 0.

(a) Show that the additive rule

f ′

f
+

g′

g
=

h′

h

implies the product rule, by multiplying through by
h and using the fact that h = f · g.

(b) Show that the product rule implies the additive rule
in part (a), by starting with the product rule and di-
viding through by h = f · g.

122. The relative rate of change of a function f is defined to be
f ′/f . Find an expression for the relative rate of change
of a quotient f/g in terms of the relative rates of change
of the functions f and g.

CAS Challenge Problems

123. (a) Use a computer algebra system to differentiate
(x+ 1)x and (sin x)x.

(b) Conjecture a rule for differentiating (f(x))x, where
f is any differentiable function.

(c) Apply your rule to g(x) = (ln x)x. Does your an-
swer agree with the answer given by the computer
algebra system?

(d) Prove your conjecture by rewriting (f(x))x in the
form eh(x).

For Problems 124–126,
(a) Use a computer algebra system to find and simplify the

derivative of the given function.

(b) Without a computer algebra system, use differentiation
rules to calculate the derivative. Make sure that the an-
swer simplifies to the same answer as in part (a).

(c) Explain how you could have predicted the derivative by
using algebra before taking the derivative.

124. f(x) = sin(arcsin x)

125. g(r) = 2−2r4r

126. h(t) = ln(1− 1/t) + ln(t/(t− 1))

PROJECTS FOR CHAPTER THREE

1. Rule of 70
The “Rule of 70” is a rule of thumb to estimate how long it takes money in a bank to

double. Suppose the money is in an account earning i% annual interest, compounded yearly.
The Rule of 70 says that the time it takes the amount of money to double is approximately 70/i
years, assuming i is small. Find the local linearization of ln(1 + x) near x = 0, and use it to
explain why this rule works.

2. Newton’s Method
Read about how to find roots using bisection and Newton’s method in Appendices A and C.

(a) What is the smallest positive zero of the function f(x) = sinx? Apply Newton’s method,
with initial guess x0 = 3, to see how fast it converges to π = 3.1415926536 . . . .

(i) Compute the first two approximations, x1 and x2; compare x2 with π.
(ii) Newton’s method works very well here. Explain why. To do this, you will have to

outline the basic idea behind Newton’s method.
(iii) Estimate the location of the zero using bisection, starting with the interval [3, 4]. How

does bisection compare to Newton’s method in terms of accuracy?
(b) Newton’s method can be very sensitive to your initial estimate, x0. For example, consider

finding a zero of f(x) = sinx− 2
3x.

(i) Use Newton’s method with the following initial estimates to find a zero:

x0 = 0.904, x0 = 0.905, x0 = 0.906.

(ii) What happens?
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4.1 USING FIRST AND SECOND DERIVATIVES

What Derivatives Tell Us About a Function and Its Graph
As we saw in Chapter 2, the connection between derivatives of a function and the function itself is
given by the following:
• If f ′ > 0 on an interval, then f is increasing on that interval.

• If f ′ < 0 on an interval, then f is decreasing on that interval.
If f ′ is always positive on an interval or always negative on an interval, then f is monotonic over
that interval.
• If f ′′ > 0 on an interval, then the graph of f is concave up on that interval.

• If f ′′ < 0 on an interval, then the graph of f is concave down on that interval.
We can do more with these principles now than we could in Chapter 2 because we now have formu-
las for the derivatives of the elementary functions.

When we graph a function on a computer or calculator, we often see only part of the picture,
and we may miss some significant features. Information given by the first and second derivatives
can help identify regions with interesting behavior.

Example 1 Use the first and second derivatives to analyze the function f(x) = x3 − 9x2 − 48x+ 52.

Solution Since f is a cubic polynomial, we expect a graph that is roughly S-shaped. We can use the derivative
to determine where the function is increasing and where it is decreasing. The derivative of f is

f ′
(x) = 3x2 − 18x− 48.

To find where f ′ > 0 or f ′ < 0, we first find where f ′ = 0, that is, where 3x2 − 18x − 48 = 0.
Factoring, we get 3(x + 2)(x − 8) = 0, so x = −2 or x = 8. Since f ′ = 0 only at x = −2 and
x = 8, and since f ′ is continuous, f ′ cannot change sign on any of the three intervals x < −2, or
−2 < x < 8, or 8 < x. How can we tell the sign of f ′ on each of these intervals? One way is to
pick a point and substitute into f ′. For example, since f ′(−3) = 33 > 0, we know f ′ is positive for
x < −2, so f is increasing for x < −2. Similarly, since f ′(0) = −48 and f ′(10) = 72, we know
that f decreases between x = −2 and x = 8 and increases for x > 8. Summarizing:

f ′ = 0

x = −2

f ′ = 0

x = 8

f ′ > 0

f increasing ↗
f ′ < 0

f decreasing ↘
f ′ > 0

f increasing ↗
x

We find that f(−2) = 104 and f(8) = −396. Hence on the interval −2 < x < 8 the function
decreases from a high of 104 to a low of −396. One more point on the graph is easy to get: the y
intercept, f(0) = 52. With just these three points we can get a graph. See Figure 4.1.

In Figure 4.1, we see that part of the graph is concave up and part is concave down. We can use
the second derivative to analyze concavity. We have

f ′′
(x) = 6x− 18.

Thus, f ′′(x) < 0 when x < 3 and f ′′(x) > 0 when x > 3, so the graph of f is concave down for
x < 3 and concave up for x > 3. At x = 3, we have f ′′(x) = 0. See Figure 4.1. Summarizing:
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−10 10 20

52

−400

400

x

f increasing f decreasing f increasing

Local maximum
(−2, 104)
�

Local minimum
(8,−396)

�

(3,−146)

Figure 4.1: Useful graph of f(x) = x3 − 9x2 − 48x+ 52

f ′′ < 0

f concave down
⋂

f ′′ > 0

f concave up
⋃

f ′′ = 0

x = 3

Local Maxima and Minima
We are often interested in points such as those marked local maximum and local minimum in Fig-
ure 4.1. We have the following definition:

Suppose p is a point in the domain of f :

• f has a local minimum at p if f(p) is less than or equal to the values of f for points near
p.

• f has a local maximum at p if f(p) is greater than or equal to the values of f for points
near p.

We use the adjective “local” because we are describing only what happens near p. Local max-
ima and minima are sometimes called local extrema.

How Do We Detect a Local Maximum or Minimum?
In the preceding example, the points x = −2 and x = 8, where f ′(x) = 0, played a key role in
leading us to local maxima and minima. We give a name to such points:

For any function f , a point p in the domain of f where f ′(p) = 0 or f ′(p) is undefined is
called a critical point of the function. In addition, the point (p, f(p)) on the graph of f is
also called a critical point. A critical value of f is the value, f(p), at a critical point, p.

Notice that “critical point of f” can refer either to points in the domain of f or to points on the graph
of f . You will know which meaning is intended from the context.

Geometrically, at a critical point where f ′(p) = 0, the line tangent to the graph of f at p is
horizontal. At a critical point where f ′(p) is undefined, there is no horizontal tangent to the graph—
there’s either a vertical tangent or no tangent at all. (For example, x = 0 is a critical point for the
absolute value function f(x) = |x|.) However, most of the functions we work with are differentiable
everywhere, and therefore most of our critical points are of the f ′(p) = 0 variety.

The critical points divide the domain of f into intervals within which the sign of the derivative
remains the same, either positive or negative. Therefore, if f is defined on the interval between two
successive critical points, its graph cannot change direction on that interval; it is either increasing
or decreasing. The following result, which is proved on page 192, tells us that all local maxima and
minima which are not at endpoints occur at critical points.
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Theorem 4.1: Local Extrema and Critical Points

Suppose f is defined on an interval and has a local maximum or minimum at the point x = a,
which is not an endpoint of the interval. If f is differentiable at x = a, then f ′(a) = 0. Thus,
a is a critical point.

Warning! Not every critical point is a local maximum or local minimum. Consider f(x) = x3,
which has a critical point at x = 0. (See Figure 4.2.) The derivative, f ′(x) = 3x2, is positive on
both sides of x = 0, so f increases on both sides of x = 0, and there is neither a local maximum
nor a local minimum at x = 0.

x

f(x) = x3

Critical point

�

Figure 4.2: Critical point which is not a local maximum or minimum

Testing for Local Maxima and Minima at a Critical Point
If f ′ has different signs on either side of a critical point p, with f ′(p) = 0, then the graph changes
direction at p and looks like one of those in Figure 4.3. So we have the following criterion:

The First-Derivative Test for Local Maxima and Minima

Suppose p is a critical point of a continuous function f . Moving from left to right:
• If f ′ changes from negative to positive at p, then f has a local minimum at p.

• If f ′ changes from positive to negative at p, then f has a local maximum at p.

p

Local min
f ′(p) = 0f decreasing

f ′ < 0
f increasing
f ′ > 0

p

Local max
f ′(p) = 0

f increasing
f ′ > 0

f decreasing
f ′ < 0

Figure 4.3: Changes in direction at a critical point, p: Local maxima and minima

Example 2 Use a graph of the function f(x) =
1

x(x − 1)
to observe its local maxima and minima. Confirm

your observation analytically.

Solution The graph in Figure 4.4 suggests that this function has no local minima but that there is a local
maximum at about x = 1

2 . Confirming this analytically means using the formula for the derivative
to show that what we expect is true. Since f(x) = (x2 − x)−1, we have

f ′
(x) = −1(x2 − x)−2

(2x− 1) = −
2x− 1

(x2 − x)2
.

So f ′(x) = 0 where 2x− 1 = 0. Thus, the only critical point in the domain of f is x = 1
2 .
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Furthermore, f ′(x) > 0 where 0 < x < 1/2, and f ′(x) < 0 where 1/2 < x < 1. Thus, f
increases for 0 < x < 1/2 and decreases for 1/2 < x < 1. According to the first derivative test, the
critical point x = 1/2 is a local maximum.

For −∞ < x < 0 or 1 < x < ∞, there are no critical points and no local maxima or minima.
Although 1/(x(x − 1)) → 0 both as x → ∞ and as x → −∞, we don’t say 0 is a local minimum
because 1/ (x(x − 1)) never actually equals 0.

Notice that although f ′ > 0 everywhere that it is defined for x < 1/2, the function f is not
increasing throughout this interval. The problem is that f and f ′ are not defined at x = 0, so we
cannot conclude that f is increasing when x < 1/2.

1
x

( 1
2
,−4)

f(x) = 1
x(x−1)

Figure 4.4: Find local maxima and minima

x

f(x) = sin x+ 2ex

Figure 4.5: Explain the absence of local
maxima and minima for x ≥ 0

Example 3 The graph of f(x) = sinx + 2ex is in Figure 4.5. Using the derivative, explain why there are no
local maxima or minima for x ≥ 0.

Solution Local maxima and minima can occur only at critical points. Now f ′(x) = cosx + 2ex, which is
defined for all x. We know cosx is always between −1 and 1, and 2ex ≥ 2 for x ≥ 0, so f ′(x)
cannot be 0 for any x ≥ 0. Therefore there are no local maxima or minima there.

The Second-Derivative Test for Local Maxima and Minima

Knowing the concavity of a function can also be useful in testing if a critical point is a local maxi-
mum or a local minimum. Suppose p is a critical point of f , with f ′(p) = 0, so that the graph of f
has a horizontal tangent line at p. If the graph is concave up at p, then f has a local minimum at p.
Likewise, if the graph is concave down, f has a local maximum. (See Figure 4.6.) This suggests:

The Second-Derivative Test for Local Maxima and Minima

• If f ′(p) = 0 and f ′′(p) > 0 then f has a local minimum at p.

• If f ′(p) = 0 and f ′′(p) < 0 then f has a local maximum at p.

• If f ′(p) = 0 and f ′′(p) = 0 then the test tells us nothing.

Local min

Concave up
f ′′ > 0

Local max

Concave down
f ′′ < 0

Figure 4.6: Local maxima and minima and concavity
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Example 4 Classify as local maxima or local minima the critical points of f(x) = x3 − 9x2 − 48x+ 52.

Solution As we saw in Example 1 on page 186,

f ′
(x) = 3x2 − 18x− 48

and the critical points of f are x = −2 and x = 8. We have

f ′′
(x) = 6x− 18.

Thus f ′′(8) = 30 > 0, so f has a local minimum at x = 8. Since f ′′(−2) = −30 < 0, f has a local
maximum at x = −2.

Warning! The second-derivative test does not tell us anything if both f ′(p) = 0 and f ′′(p) = 0.
For example, if f(x) = x3 and g(x) = x4, both f ′(0) = f ′′(0) = 0 and g′(0) = g′′(0) = 0. The
point x = 0 is a minimum for g but is neither a maximum nor a minimum for f . However, the
first-derivative test is still useful. For example, g′ changes sign from negative to positive at x = 0,
so we know g has a local minimum there.

Concavity and Inflection Points
Investigating points where the slope changes sign led us to critical points. Now we look at points
where the concavity changes.

A point, p, at which the graph of a continuous function, f , changes concavity is called an
inflection point of f .

The words “inflection point of f” can refer either to a point in the domain of f or to a point on the
graph of f . The context of the problem will tell you which is meant.

How Do We Detect an Inflection Point?
To identify candidates for an inflection point of a continuous function, we often use the second
derivative.

Suppose f ′′ is defined on both sides of a point p:
• If f ′′ is zero or undefined at p, then p is a possible inflection point.

• To test whether p is an inflection point, check whether f ′′ changes sign at p.

The following example illustrates how local maxima and minima and inflection points are found.

Example 5 For x ≥ 0, find the local maxima and minima and inflection points for g(x) = xe−x and sketch the
graph of g.

Solution Taking derivatives and simplifying, we have

g′(x) = (1− x)e−x and g′′(x) = (x− 2)e−x.

So x = 1 is a critical point, and g′ > 0 for x < 1 and g′ < 0 for x > 1. Hence g increases to a local
maximum at x = 1 and then decreases. Since g(0) = 0 and g(x) > 0 for x > 0, there is a local
minimum at x = 0. Also, g(x) → 0 as x → ∞. There is an inflection point at x = 2 since g′′ < 0

for x < 2 and g′′ > 0 for x > 2. The graph is sketched in Figure 4.7.
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Local min
1 2

x

g increasing
Concave down

Critical point
Local max

g decreasing
Concave down

Inflection point

g decreasing
Concave up

Figure 4.7: Graph of g(x) = xe−x

Warning! Not every point x where f ′′(x) = 0 (or f ′′ is undefined) is an inflection point (just
as not every point where f ′ = 0 is a local maximum or minimum). For instance f(x) = x4 has
f ′′(x) = 12x2 so f ′′(0) = 0, but f ′′ > 0 when x < 0 and when x > 0, so there is no change in
concavity at x = 0. See Figure 4.8.

f ′′ = 0 but
no inflection
point here

	 x

Figure 4.8: Graph of f(x) = x4

Inflection Points and Local Maxima and Minima of the Derivative

Inflection points can also be interpreted in terms of first derivatives. Applying the First Derivative
Test for local maxima and minima to f ′, we obtain the following result:

Suppose a function f has a continuous derivative. If f ′′ changes sign at p, then f has an
inflection point at p, and f ′ has a local minimum or a local maximum at p.

Figure 4.9 shows two inflection points. Notice that the curve crosses the tangent line at these
points and that the slope of the curve is a maximum or a minimum there.

p

Concave up
f ′′ > 0

Point of
inflection

f ′′(p) = 0

�

Maximum slope

Concave down
f ′′ < 0

� �

p

Concave up
f ′′ > 0

Point of
inflection
f ′′(p) = 0

�

Minimum slope

Figure 4.9: Change in concavity at p: Points of inflection

Example 6 Water is being poured into the vase in Figure 4.10 at a constant rate, measured in volume per unit
time. Graph y = f(t), the depth of the water against time, t. Explain the concavity and indicate the
inflection points.

Solution At first the water level, y, rises slowly because the base of the vase is wide, and it takes a lot of
water to make the depth increase. However, as the vase narrows, the rate at which the water is
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rising increases. Thus, y is increasing at an increasing rate and the graph is concave up. The rate of
increase in the water level is at a maximum when the water reaches the middle of the vase, where
the diameter is smallest; this is an inflection point. After that, the rate at which y increases decreases
again, so the graph is concave down. (See Figure 4.11.)

Figure 4.10: A vase

Inflection point,
corresponding to
narrowest point on vase

y (depth of water)

t (time)
Concave up

Concave down

�

Figure 4.11: Graph of depth of water in the vase, y,
against time, t

Showing Local Extrema Are at Critical Points
We now prove Theorem 4.1, which says that inside an interval, local maxima and minima can only
occur at critical points. Suppose that f has a local maximum at x = a. Assuming that f ′(a) is
defined, the definition of the derivative gives

f ′
(a) = lim

h→0

f(a+ h)− f(a)

h
.

Since this is a two-sided limit, we have

f ′
(a) = lim

h→0−

f(a+ h)− f(a)

h
= lim

h→0+

f(a+ h)− f(a)

h
.

By the definition of local maximum, f(a+ h) ≤ f(a) for all sufficiently small h. Thus f(a+ h)−
f(a) ≤ 0 for sufficiently small h. The denominator, h, is negative when we take the limit from the
left and positive when we take the limit from the right. Thus

lim
h→0−

f(a+ h)− f(a)

h
≥ 0 and lim

h→0+

f(a+ h)− f(a)

h
≤ 0.

Since both these limits are equal to f ′(a), we have f ′(a) ≥ 0 and f ′(a) ≤ 0, so we must have
f ′(a) = 0. The proof for a local minimum at x = a is similar.

Exercises and Problems for Section 4.1
Exercises

1. Indicate all critical points on the graph of f in Figure 4.12
and determine which correspond to local maxima of f ,
which to local minima, and which to neither.

x

f(x)

Figure 4.12

2. Graph a function which has exactly one critical point, at
x = 2, and exactly one inflection point, at x = 4.

3. Graph a function with exactly two critical points, one of
which is a local minimum and the other is neither a local
maximum nor a local minimum.

In Exercises 4–8, use derivatives to find the critical points and
inflection points.

4. f(x) = x3 − 9x2 + 24x+ 5

5. f(x) = x5 − 10x3 − 8

6. f(x) = x5 + 15x4 + 25

7. f(x) = 5x− 3 lnx

8. f(x) = 4xe3x
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In Exercises 9–12, find all critical points and then use the first-
derivative test to determine local maxima and minima. Check
your answer by graphing.

9. f(x) = 3x4−4x3+6 10. f(x) = (x2 − 4)7

11. f(x) = (x3 − 8)4 12. f(x) =
x

x2 + 1

In Exercises 13–14, find the critical points of the function and
classify them as local maxima or local minima or neither.

13. g(x) = xe−3x 14. h(x) = x+ 1/x

15. (a) Use a graph to estimate the x-values of any critical
points and inflection points of f(x) = e−x2

.
(b) Use derivatives to find the x-values of any critical

points and inflection points exactly.

In Exercises 16–19, the function f is defined for all x. Use the
graph of f ′ to decide:
(a) Over what intervals is f increasing? Decreasing?

(b) Does f have local maxima or minima? If so, which, and
where?

16.

x

f ′(x) 17.

x

f ′(x)

18.

2 4
x

f ′(x) 19.

−1 1
x

f ′(x)

Problems

20. (a) Show that if a is a positive constant, then x = 0 is
the only critical point of f(x) = x+ a

√
x.

(b) Use derivatives to show that f is increasing and its
graph is concave down for all x > 0.

21. (a) If b is a positive constant and x > 0, find all critical
points of f(x) = x− b ln x.

(b) Use the second-derivative test to determine whether
the function has a local maximum or local minimum
at each critical point.

22. (a) If a is a nonzero constant, find all critical points of

f(x) =
a

x2
+ x.

(b) Use the second-derivative test to show that if a is
positive then the graph has a local minimum, and if
a is negative then the graph has a local maximum.

23. If U and V are positive constants, find all critical points
of

F (t) = Uet + V e−t.

24. Indicate on the graph of the derivative function f ′ in Fig-
ure 4.13 the x-values that are critical points of the func-
tion f itself. At which critical points does f have local
maxima, local minima, or neither?

x

f ′(x)

Figure 4.13
25. Indicate on the graph of the derivative f ′ in Figure 4.14

the x-values that are inflection points of the function f .

x

f ′(x)

Figure 4.14
26. Indicate on the graph of the second derivative f ′′ in Fig-

ure 4.15 the x-values that are inflection points of the
function f .

x

f ′′(x)

Figure 4.15

For Problems 27–30, sketch a possible graph of y = f(x),
using the given information about the derivatives y′ = f ′(x)
and y′′ = f ′′(x). Assume that the function is defined and
continuous for all real x.

27.

��

� � x

x

y′ = 0y′ = 0

y′′ < 0y′′ > 0y′′ < 0

y′ < 0y′ > 0y′ > 0

y′′ = 0y′′ = 0

x2 x3x1

28.

��

� � x

x

y′′ < 0y′′ > 0y′′ < 0y′′ > 0

y′ < 0

y′′ = 0y′′ = 0y′′ = 0

x2 x3x1
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29.

��

� � x

x

y′ = 0y′ undefined

y′′ > 0y′′ > 0

y′ > 0y′ < 0y′ > 0

y′′ undefined

x2x1

30.

��

� � x

x

y′ = 2

y′′ > 0y′′ = 0

y′ > 0y′ = 2

y′′ = 0

x1

31. Suppose f has a continuous derivative whose values are
given in the following table.

(a) Estimate the x-coordinates of critical points of f for
0 ≤ x ≤ 10.

(b) For each critical point, indicate if it is a local maxi-
mum of f , local minimum, or neither.

x 0 1 2 3 4 5 6 7 8 9 10

f ′(x) 5 2 1 −2 −5 −3 −1 2 3 1 −1

32. (a) The following table gives values of the differentiable
function y = f(x). Estimate the x-values of critical
points of f(x) on the interval 0 < x < 10. Classify
each critical point as a local maximum, local mini-
mum, or neither.

(b) Now assume that the table gives values of the contin-
uous function y = f ′(x) (instead of f(x)). Estimate
and classify critical points of the function f(x).

x 0 1 2 3 4 5 6 7 8 9 10

y 1 2 1 −2 −5 −3 −1 2 3 1 −1

33. If water is flowing at a constant rate (i.e., constant vol-
ume per unit time) into the vase in Figure 4.16, sketch a
graph of the depth of the water against time. Mark on the
graph the time at which the water reaches the corner of
the vase.

Figure 4.16 Figure 4.17

34. If water is flowing at a constant rate (i.e., constant volume
per unit time) into the Grecian urn in Figure 4.17, sketch
a graph of the depth of the water against time. Mark on
the graph the time at which the water reaches the widest
point of the urn.

35. Find and classify the critical points of f(x) = x3(1−x)4

as local maxima and minima.

36. If m,n ≥ 2 are integers, find and classify the critical
points of f(x) = xm(1− x)n.

37. The rabbit population on a small Pacific island is approx-
imated by

P =
2000

1 + e5.3−0.4t

with t measured in years since 1774, when Captain James
Cook left 10 rabbits on the island.

(a) Graph P . Does the population level off?
(b) Estimate when the rabbit population grew most

rapidly. How large was the population at that time?
(c) What natural causes could lead to the shape of the

graph of P ?

38. Find values of a and b so that the function f(x) =
x2 + ax+ b has a local minimum at the point (6,−5).

39. Find the value of a so that the function f(x) = xeax has
a critical point at x = 3.

40. Find constants a and b in the function f(x) = axebx

such that f( 1
3
) = 1 and the function has a local maxi-

mum at x = 1
3

.

41. Graph f(x) = x + sin x, and determine where f is in-
creasing most rapidly and least rapidly.

42. You might think the graph of f(x) = x2 + cos x should
look like a parabola with some waves on it. Sketch the
actual graph of f(x) using a calculator or computer. Ex-
plain what you see using f ′′(x).

Problems 43–44 show graphs of the three functions f , f ′, f ′′.
Identify which is which.

43.

A

B

C

x
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44.
A

A

B

B

C

x

Problems 45–46 show graphs of f , f ′, f ′′. Each of these
three functions is either odd or even. Decide which functions
are odd and which are even. Use this information to identify
which graph corresponds to f , which to f ′, and which to f ′′.

45. I II III

x

46.

I

II

III

x

47. Use the derivative formulas and algebra to find the inter-
vals where f(x) = (x + 50)/(x2 + 525) is increasing
and the intervals where it is decreasing. It is possible, but
difficult, to solve this problem by graphing f ; describe
the difficulty.

48. Let f be a function with f(x) > 0 for all x. Set g = 1/f .

(a) If f is increasing in an interval around x0, what
about g?

(b) If f has a local maximum at x1, what about g?
(c) If f is concave down at x2, what about g?

In Problems 49–50, the differentiable function f has x = 1 as
its only zero and x = 2 as its only critical point. For the given
functions, find all

(a) Zeros (b) Critical points.

49. y = f
(
x2 − 3

)
50. y = (f(x))2 + 3

In Problems 51–52, the graph of f lies entirely above the x-
axis and f ′(x) < 0 for all x.

(a) Give the critical point(s) of the function, or explain how
you know there are none.

(b) Say where the function increases and where it decreases.

51. y = (f(x))2 52. y = f
(
x2
)

Strengthen Your Understanding

In Problems 53–54, explain what is wrong with the statement.

53. An increasing function has no inflection points.

54. For any function f , if f ′′(0) = 0, there is an inflection
point at x = 0.

In Problems 55–57, give an example of:

55. A function which has no critical points on the interval
between 0 and 1.

56. A function, f , which has a critical point at x = 1 but for
which f ′(1) �= 0.

57. A function with local maxima and minima at an infinite
number of points.

Are the statements in Problems 58–66 true or false for a func-
tion f whose domain is all real numbers? If a statement is true,

explain how you know. If a statement is false, give a coun-
terexample.

58. A local minimum of f occurs at a critical point of f .

59. If x = p is not a critical point of f , then x = p is not a
local maximum of f .

60. A local maximum of f occurs at a point where

f ′(x) = 0.

61. If x = p is not a local maximum of f , then x = p is not
a critical point of f .

62. If f ′(p) = 0, then f(x) has a local minimum or local
maximum at x = p.

63. If f ′(x) is continuous and f(x) has no critical points,
then f is everywhere increasing or everywhere decreas-
ing.
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64. If f ′′(x) is continuous and the graph of f has an inflec-
tion point at x = p, then f ′′(p) = 0.

65. A critical point of f must be a local maximum or mini-
mum of f .

66. Every cubic polynomial has an inflection point.

In Problems 67–72, give an example of a function f that
makes the statement true, or say why such an example is im-
possible. Assume that f ′′ exists everywhere.

67. f is concave up and f(x) is positive for all x.

68. f is concave down and f(x) is positive for all x.

69. f is concave down and f(x) is negative for all x.

70. f is concave up and f(x) is negative for all x.

71. f(x)f ′′(x) < 0 for all x.

72. f(x)f ′(x)f ′′(x)f ′′′(x) < 0 for all x.1

73. Given that f ′(x) is continuous everywhere and changes
from negative to positive at x = a, which of the follow-
ing statements must be true?

(a) a is a critical point of f(x)
(b) f(a) is a local maximum
(c) f(a) is a local minimum
(d) f ′(a) is a local maximum
(e) f ′(a) is a local minimum

4.2 OPTIMIZATION

The largest and smallest values of a quantity often have practical importance. For example, automo-
bile engineers want to construct a car that uses the least amount of fuel, scientists want to calculate
which wavelength carries the maximum radiation at a given temperature, and urban planners want to
design traffic patterns to minimize delays. Such problems belong to the field of mathematics called
optimization. The next three sections show how the derivative provides an efficient way of solving
many optimization problems.

Global Maxima and Minima
The single greatest (or least) value of a function f over a specified domain is called the global
maximum (or minimum) of f . Recall that the local maxima and minima tell us where a function
is locally largest or smallest. Now we are interested in where the function is absolutely largest or
smallest in a given domain. We say

Suppose p is a point in the domain of f :
• f has a global minimum at p if f(p) is less than or equal to all values of f .

• f has a global maximum at p if f(p) is greater than or equal to all values of f .

Global maxima and minima are sometimes called extrema or optimal values.

Existence of Global Extrema

The following theorem describes when global extrema are guaranteed to exist:

Theorem 4.2: The Extreme Value Theorem

If f is continuous on the closed interval a ≤ x ≤ b, then f has a global maximum and a
global minimum on that interval.

For a proof of Theorem 4.2, see www.wiley.com/college/hughes-hallett.

1From the 1998 William Lowell Putnam Mathematical Competition, by permission of the Mathematical Association of
America.
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How Do We Find Global Maxima and Minima?

If f is a continuous function defined on a closed interval a ≤ x ≤ b (that is, an interval containing
its endpoints), then Theorem 4.2 guarantees that global maxima and minima exist. Figure 4.18 illus-
trates that the global maximum or minimum of f occurs either at a critical point or at an endpoint
of the interval, x = a or x = b. These points are the candidates for global extrema.

a b
x

Local min

�

Local max
�

�

Local min,
global min

�

Global max,
local max

�

Figure 4.18: Global maximum and minimum on a closed interval a ≤ x ≤ b

Global Maxima and Minima on a Closed Interval: Test the Candidates

For a continuous function f on a closed interval a ≤ x ≤ b:
• Find the critical points of f in the interval.

• Evaluate the function at the critical points and at the endpoints, a and b. The largest value
of the function is the global maximum; the smallest value is the global minimum.

If the function is defined on an open interval a < x < b (that is, an interval not including
its endpoints) or on all real numbers, there may or may not be a global maximum or minimum.
For example, there is no global maximum in Figure 4.19 because the function has no actual largest
value. The global minimum in Figure 4.19 coincides with the local minimum. There is a global
minimum but no global maximum in Figure 4.20.

Global Maxima and Minima on an Open Interval or on All Real Numbers

For a continuous function, f , find the value of f at all the critical points and sketch a graph.
Look at values of f when x approaches the endpoints of the interval, or approaches ±∞,
as appropriate. If there is only one critical point, look at the sign of f ′ on either side of the
critical point.

a b
x

Local and global minimum

�

No global
maximum

Figure 4.19: Global minimum on
a < x < b

x

Local
min

�

Local max

�

Local min,
global min

�

No global
maximum

Figure 4.20: Global minimum when the
domain is all real numbers
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Example 1 Find the global maxima and minima of f(x) = x3 − 9x2 − 48x+ 52 on the following intervals:

(a) −5 ≤ x ≤ 12 (b) −5 ≤ x ≤ 14 (c) −5 ≤ x < ∞.

Solution (a) We have previously obtained the critical points x = −2 and x = 8 using

f ′
(x) = 3x2 − 18x− 48 = 3(x+ 2)(x− 8).

We evaluate f at the critical points and the endpoints of the interval:

f(−5) = (−5)
3 − 9(−5)

2 − 48(−5) + 52 = −58

f(−2) = 104

f(8) = −396

f(12) = −92.

Comparing these function values, we see that the global maximum on [−5, 12] is 104 and occurs
at x = −2, and the global minimum on [−5, 12] is −396 and occurs at x = 8.

(b) For the interval [−5, 14], we compare

f(−5) = −58, f(−2) = 104, f(8) = −396, f(14) = 360.

The global maximum is now 360 and occurs at x = 14, and the global minimum is still −396

and occurs at x = 8. Since the function is increasing for x > 8, changing the right-hand end
of the interval from x = 12 to x = 14 alters the global maximum but not the global minimum.
See Figure 4.21.

(c) Figure 4.21 shows that for −5 ≤ x < ∞ there is no global maximum, because we can make
f(x) as large as we please by choosing x large enough. The global minimum remains −396 at
x = 8.

(−5,−58)

(−2, 104)

(8,−396)

(12,−92)

(14, 360)

x

y

Figure 4.21: Graph of f(x) = x3 − 9x2 − 48x+ 52

π/2−0.5

0.5

x

y

Figure 4.22: Graph of
g(x) = x− sin(2x)

Example 2 Find the global maximum and minimum of g(x) = x− sin(2x) on the interval 0 ≤ x ≤ π/2.

Solution Since g(x) = x − sin(2x) is continuous and the interval 0 ≤ x ≤ π/2 is closed, there must be
a global maximum and minimum. The possible candidates are critical points in the interval and
endpoints. Since there are no points where g′(x) is undefined, we solve g′(x) = 0 to find all the
critical points:

g′(x) = 1− 2 cos(2x) = 0,

so cos(2x) = 1/2. Therefore 2x = π/3, 5π/3, . . .. Thus the only critical point in the interval is
x = π/6. We compare values of g at the critical points and the endpoints:

g(0) = 0, g(π/6) = π/6−
√
3/2 = −0.342, g(π/2) = π/2 = 1.571.

Thus the global maximum is 1.571 at x = π/2 and the global minimum is −0.342 at x = π/6. See
Figure 4.22.
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Example 3 Jared is coughing. The speed in m/sec, v(r), with which he expels air depends on the radius, r, of
his windpipe, given for 0 ≤ r ≤ 9 in mm by

v(r) = 0.1(9− r)r2.

What value of r maximizes the speed? For what value is the speed minimized?

Solution Notice that v(0) = v(9) = 0, and that v(r) is positive for 0 < r < 9. Therefore the maximum
occurs somewhere between r = 0 and r = 9. Since

v(r) = 0.1(9− r)r2 = 0.9r2 − 0.1r3,

the derivative is
v′(r) = 1.8r − 0.3r2 = 0.3r(6− r).

The derivative is zero if r = 0 or r = 6. These are the critical points of v. We already know
v(0) = v(9) = 0, and

v(6) = 0.1(9− 6)6
2
= 10.8 m/sec.

Thus, v has a global maximum at r = 6 mm. The global minimum of v = 0 m/sec occurs at both
endpoints r = 0 mm and r = 9 mm.

In applications of optimization, the function being optimized often contains a parameter whose
value depends on the situation, and the maximum or minimum depends on the parameter.

Example 4 (a) For a positive constant b, the surge function f(t) = te−bt gives the quantity of a drug in the
body for time t ≥ 0. Find the global maximum and minimum of f(t) for t ≥ 0.

(b) Find the value of b making t = 10 the global maximum.

Solution (a) Differentiating and factoring gives

f ′
(t) = 1 · e−bt − bte−bt

= (1− bt)e−bt,

so there is a critical point at t = 1/b.
The sign of f ′ is determined by the sign of (1 − bt), so f ′ is positive to the left of t = 1/b

and negative to the right of t = 1/b. Since f increases to the left of t = 1/b and decreases to the
right of t = 1/b, the global maximum occurs at t = 1/b. In addition, f(0) = 0 and f(t) ≥ 0

for all t ≥ 0, so the global minimum occurs at t = 0. Thus

The global maximum value is f

(
1

b

)
=

1

b
e−b(1/b)

=
e−1

b
.

The global minimum value is f(0) = 0.
(b) Since t = 10 gives the global maximum, we have 1/b = 10, so b = 0.1. See Figure 4.23.

10 20

Global maximum



Global minimum
f(t) = te−0.1t

t

Figure 4.23: Graph of f(t) = te−bt for b = 0.1
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Example 5 When an arrow is shot into the air, its range, R, is defined as the horizontal distance from the archer
to the point where the arrow hits the ground. If the ground is horizontal and we neglect air resistance,
it can be shown that

R =
v0

2 sin(2θ)

g
,

where v0 is the initial velocity of the arrow, g is the (constant) acceleration due to gravity, and θ is
the angle above horizontal, so 0 ≤ θ ≤ π/2. (See Figure 4.24.) What angle θ maximizes R?

Ground

Archer



�

θ

v0

�� R

Figure 4.24: Arrow’s path

Solution We can find the maximum of this function without using calculus. The maximum value of R occurs
when sin(2θ) = 1, so θ = arcsin(1)/2 = π/4, giving R = v20/g.

Let’s see how we can do the same problem with calculus. We want to find the global maximum
of R for 0 ≤ θ ≤ π/2. First we look for critical points:

dR

dθ
= 2

v20 cos(2θ)

g
.

Setting dR/dθ equal to 0, we get

0 = cos(2θ), or 2θ = ±
π

2
,±

3π

2
,±

5π

2
, . . .

so π/4 is the only critical point in the interval 0 ≤ θ ≤ π/2. The range at θ = π/4 is R = v0
2/g.

Now we must check the value of R at the endpoints θ = 0 and θ = π/2. Since R = 0 at each
endpoint (the arrow is shot horizontally or vertically), the critical point θ = π/4 gives both a local
and a global maximum on 0 ≤ θ ≤ π/2. Therefore, the arrow goes farthest if shot at an angle of
π/4, or 45◦.

Finding Upper and Lower Bounds
A problem which is closely related to finding maxima and minima is finding the bounds of a func-
tion. In Example 1 on page 198, the value of f(x) on the interval [−5, 12] ranges from −396 to 104.
Thus

−396 ≤ f(x) ≤ 104,

and we say that −396 is a lower bound for f and 104 is an upper bound for f on [−5, 12]. (See
Appendix A for more on bounds.) Of course, we could also say that

−400 ≤ f(x) ≤ 150,

so that f is also bounded below by −400 and above by 150 on [−5, 12]. However, we consider
the −396 and 104 to be the best possible bounds because they describe more accurately how the
function f(x) behaves on [−5, 12].
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Example 6 An object on a spring oscillates about its equilibrium position at y = 0. See Figure 4.25. Its dis-
placement, y, from equilibrium is given as a function of time, t, by

y = e−t
cos t.

Find the greatest distance the object goes above and below the equilibrium for t ≥ 0.

Solution We are looking for bounds for y as a function of t. What does the graph look like? We can think of
it as a cosine curve with a decreasing amplitude of e−t; in other words, it is a cosine curve squashed
between the graphs of y = e−t and y = −e−t, forming a wave with lower and lower crests and
shallower and shallower troughs. (See Figure 4.26.)

�
y

Equilibrium

Figure 4.25: Object on spring
(y < 0 below equilibrium)

π
2

π 3π
2

−1

1

t

y
y = 1

y = −1y = −e−t

y = e−t

y = e−t cos t

�

Figure 4.26: f(t) = e−t cos t for t ≥ 0

From the graph, we see that for t ≥ 0, the curve lies between the horizontal lines y = −1 and
y = 1. This means that −1 and 1 are bounds:

−1 ≤ e−t
cos t ≤ 1.

The line y = 1 is the best possible upper bound because the graph does come up that high (at
t = 0). However, we can find a better lower bound if we find the global minimum value of y for
t ≥ 0; this minimum occurs in the first trough between t = π/2 and t = 3π/2 because later troughs
are squashed closer to the t-axis. At the minimum, dy/dt = 0. The product rule gives

dy

dt
= (−e−t

) cos t+ e−t
(− sin t) = −e−t

(cos t+ sin t) = 0.

Since e−t is never 0, we must have

cos t+ sin t = 0, so
sin t

cos t
= −1.

The smallest positive solution of

tan t = −1 is t =
3π

4
.

Thus, the global minimum we see on the graph occurs at t = 3π/4. The value of y there is

y = e−3π/4
cos

(
3π

4

)
≈ −0.07.

The greatest distance the object goes below equilibrium is 0.07. Thus, for all t ≥ 0,

−0.07 ≤ e−t
cos t ≤ 1.

Notice how much smaller in magnitude the lower bound is than the upper. This is a reflection of
how quickly the factor e−t causes the oscillation to die out.
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Exercises and Problems for Section 4.2
Exercises

For Exercises 1–2, indicate all critical points on the given
graphs. Determine which correspond to local minima, local
maxima, global minima, global maxima, or none of these.
(Note that the graphs are on closed intervals.)

1.

1 2 3 4 5

4

8

x

y 2.

2 4 6 8 10

2

4

x

y

3. For x > 0, find the x-value and the corresponding y-
value that maximizes y = 25 + 6x2 − x3, by

(a) Estimating the values from a graph of y.
(b) Finding the values using calculus.

In Exercises 4–10, find the global maximum and minimum for
the function on the closed interval.

4. f(x) = x3 − 3x2 + 20, −1 ≤ x ≤ 3

5. f(x) = x4 − 8x2, −3 ≤ x ≤ 1

6. f(x) = xe−x2/2, −2 ≤ x ≤ 2

7. f(x) = 3x1/3 − x, −1 ≤ x ≤ 8

8. f(x) = x− 2 ln(x+ 1), 0 ≤ x ≤ 2

9. f(x) = x2 − 2|x|, −3 ≤ x ≤ 4

10. f(x) =
x+ 1

x2 + 3
, −1 ≤ x ≤ 2

In Exercises 11–13, find the value(s) of x for which:

(a) f(x) has a local maximum or local minimum. Indicate
which ones are maxima and which are minima.

(b) f(x) has a global maximum or global minimum.

11. f(x) = x10 − 10x, and 0 ≤ x ≤ 2

12. f(x) = x− ln x, and 0.1 ≤ x ≤ 2

13. f(x) = sin2 x− cosx, and 0 ≤ x ≤ π

In Exercises 14–19, find the exact global maximum and min-
imum values of the function. The domain is all real numbers
unless otherwise specified.

14. g(x) = 4x− x2 − 5

15. f(x) = x+ 1/x for x > 0

16. g(t) = te−t for t > 0

17. f(x) = x− ln x for x > 0

18. f(t) =
t

1 + t2

19. f(t) = (sin2 t+ 2) cos t

In Exercises 20–25, find the best possible bounds for the func-
tion.

20. x3 − 4x2 + 4x, for 0 ≤ x ≤ 4

21. e−x2

, for |x| ≤ 0.3

22. x3e−x, for x ≥ 0

23. x+ sin x, for 0 ≤ x ≤ 2π

24. ln(1 + x), for x ≥ 0

25. ln(1 + x2), for −1 ≤ x ≤ 2

Problems

26. A grapefruit is tossed straight up with an initial veloc-
ity of 50 ft/sec. The grapefruit is 5 feet above the ground
when it is released. Its height, in feet, at time t seconds is
given by

y = −16t2 + 50t+ 5.

How high does it go before returning to the ground?

27. Find the value(s) of x that give critical points of y =
ax2 + bx + c, where a, b, c are constants. Under what
conditions on a, b, c is the critical value a maximum? A
minimum?

28. What value of w minimizes S if S−5pw = 3qw2−6pq
and p and q are positive constants?

29. Let y = at2e−bt with a and b positive constants. For
t ≥ 0, what value of t maximizes y? Sketch the curve if
a = 1 and b = 1.

30. For some positive constant C, a patient’s temperature
change, T , due to a dose, D, of a drug is given by

T =
(
C

2
− D

3

)
D2.

(a) What dosage maximizes the temperature change?
(b) The sensitivity of the body to the drug is defined as

dT/dD. What dosage maximizes sensitivity?

31. A warehouse selling cement has to decide how often and
in what quantities to reorder. It is cheaper, on average, to
place large orders, because this reduces the ordering cost
per unit. On the other hand, larger orders mean higher
storage costs. The warehouse always reorders cement in
the same quantity, q. The total weekly cost, C, of order-
ing and storage is given by

C =
a

q
+ bq, where a, b are positive constants.
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(a) Which of the terms, a/q and bq, represents the or-
dering cost and which represents the storage cost?

(b) What value of q gives the minimum total cost?

32. The bending moment M of a beam, supported at one end,
at a distance x from the support is given by

M = 1
2
wLx− 1

2
wx2,

where L is the length of the beam, and w is the uniform
load per unit length. Find the point on the beam where
the moment is greatest.

33. A chemical reaction converts substance A to substance
Y . At the start of the reaction, the quantity of A present
is a grams. At time t seconds later, the quantity of Y
present is y grams. The rate of the reaction, in grams/sec,
is given by

Rate = ky(a− y), k is a positive constant.

(a) For what values of y is the rate nonnegative? Graph
the rate against y.

(b) For what values of y is the rate a maximum?

34. The potential energy, U , of a particle moving along the
x-axis is given by

U = b

(
a2

x2
− a

x

)
,

where a and b are positive constants and x > 0. What
value of x minimizes the potential energy?

35. For positive constants A and B , the force between two
atoms in a molecule is given by

f(r) = − A

r2
+

B

r3
,

where r > 0 is the distance between the atoms. What
value of r minimizes the force between the atoms?

36. When an electric current passes through two resistors
with resistance r1 and r2, connected in parallel, the com-
bined resistance, R, can be calculated from the equation

1

R
=

1

r1
+

1

r2
,

where R, r1, and r2 are positive. Assume that r2 is con-
stant.

(a) Show that R is an increasing function of r1.
(b) Where on the interval a ≤ r1 ≤ b does R take its

maximum value?

37. As an epidemic spreads through a population, the num-
ber of infected people, I , is expressed as a function of the
number of susceptible people, S, by

I = k ln
(

S

S0

)
− S + S0 + I0, for k, S0, I0 > 0.

(a) Find the maximum number of infected people.

(b) The constant k is a characteristic of the particular
disease; the constants S0 and I0 are the values of S
and I when the disease starts. Which of the follow-
ing affects the maximum possible value of I? Ex-
plain.

• The particular disease, but not how it starts.

• How the disease starts, but not the particular
disease.

• Both the particular disease and how it starts.

38. Two points on the curve y =
x3

1 + x4
have opposite x-

values, x and −x. Find the points making the slope of the
line joining them greatest.

39. The function y = t(x) is positive and continuous with a
global maximum at the point (3, 3). Graph t(x) if t′(x)
and t′′(x) have the same sign for x < 3, but opposite
signs for x > 3.

40. Figure 4.27 gives the derivative of g(x) on −2 ≤ x ≤ 2.

(a) Write a few sentences describing the behavior of
g(x) on this interval.

(b) Does the graph of g(x) have any inflection points?
If so, give the approximate x-coordinates of their lo-
cations. Explain your reasoning.

(c) What are the global maxima and minima of g on
[−2, 2]?

(d) If g(−2) = 5, what do you know about g(0) and
g(2)? Explain.

−2 −1 1 2
x

g′(x)

Figure 4.27

41. Figure 4.28 shows the second derivative of h(x) for
−2 ≤ x ≤ 1. If h′(−1) = 0 and h(−1) = 2,

(a) Explain why h′(x) is never negative on this interval.
(b) Explain why h(x) has a global maximum at x = 1.
(c) Sketch a possible graph of h(x) for −2 ≤ x ≤ 1.

−2

−1 1

1

x

h′′(x)

Figure 4.28
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42. Show that if f ′′(x) is continuous and f(x) has exactly
two critical points, then f ′(x) has a local maximum or
local minimum between the two critical points.

43. You are given the n numbers a1, a2, a3, · · · , an. For a
variable x, consider the expression

D = (x−a1)
2+(x−a2)

2+(x−a3)
2+· · ·+(x−an)

2.

Show that D is a minimum when x is the average of
a1, a2, a3, · · · , an.

44. In this problem we prove a special case of the Mean
Value Theorem where f(a) = f(b) = 0. This special
case is called Rolle’s Theorem: If f is continuous on
[a, b] and differentiable on (a, b), and if f(a) = f(b) =
0, then there is a number c, with a < c < b, such that

f ′(c) = 0.

By the Extreme Value Theorem, f has a global maximum
and a global minimum on [a, b].

(a) Prove Rolle’s Theorem in the case that both the
global maximum and the global minimum are at

endpoints of [a, b]. [Hint: f(x) must be a very sim-
ple function in this case.]

(b) Prove Rolle’s Theorem in the case that either the
global maximum or the global minimum is not at
an endpoint. [Hint: Think about local maxima and
minima.]

45. Use Rolle’s Theorem to prove the Mean Value Theorem.
Suppose that f(x) is continuous on [a, b] and differen-
tiable on (a, b). Let g(x) be the difference between f(x)
and the y-value on the secant line joining (a, f(a)) to
(b, f(b)), so

g(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a).

(a) Show g(x) on a sketch of f(x).
(b) Use Rolle’s Theorem (Problem 44) to show that

there must be a point c in (a, b) such that g′(c) = 0.
(c) Show that if c is the point in part (b), then

f ′(c) =
f(b)− f(a)

b− a
.

Strengthen Your Understanding

In Problems 46–48, explain what is wrong with the statement.

46. The function f(x) = (x− 1)2(x− 2), 0 ≤ x ≤ 3 has a
global maximum at x = 1.

47. The global minimum of f(x) = x4 on any closed inter-
val a ≤ x ≤ b occurs at x = 0.

48. The best possible bounds for f(x) = 1/(1 − x) on the
interval 0 ≤ x ≤ 2 are f(0) ≤ f(x) ≤ f(2).

In Problems 49–52, give an example of:

49. A function which has a global maximum at x = 0 and a
global minimum at x = 1 on the interval 0 ≤ x ≤ 1 but
no critical points in between x = 0 and x = 1.

50. A function for which the global maximum is equal to the
global minimum.

51. An interval where the best possible bounds for f(x) =
x2 are 2 ≤ f(x) ≤ 5.

52. A differentiable function f with best possible bounds
−1 ≤ f(x) ≤ 1 on the interval −4 ≤ x ≤ 4.

In Problems 53–57, let f(x) = x2. Decide if the following
statements are true or false. Explain your answer.

53. f has an upper bound on the interval (0, 2).

54. f has a global maximum on the interval (0, 2).

55. f does not have a global minimum on the interval (0, 2).

56. f does not have a global minimum on any interval (a, b).

57. f has a global minimum on any interval [a, b].

58. Which of the following statements is implied by the state-
ment “If f is continuous on [a, b] then f has a global
maximum on [a, b]?”

(a) If f has a global maximum on [a, b] then f must be
continuous on [a, b].

(b) If f is not continuous on [a, b] then f does not have
a global maximum on [a, b].

(c) If f does not have a global maximum on [a, b] then
f is not continuous on [a, b].

Are the statements in Problems 59–63 true of false? Give an
explanation for your answer.

59. Since the function f(x) = 1/x is continuous for x > 0
and the interval (0, 1) is bounded, f has a maximum on
the interval (0, 1).

60. The Extreme Value Theorem says that only continu-
ous functions have global maxima and minima on every
closed, bounded interval.

61. The global maximum of f(x) = x2 on every closed in-
terval is at one of the endpoints of the interval.

62. A function can have two different upper bounds.

63. If a differentiable function f(x) has a global maximum
on the interval 0 ≤ x ≤ 10 at x = 0, then f ′(0) ≤ 0.
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4.3 OPTIMIZATION AND MODELING

Finding global maxima and minima is often made possible by having a formula for the function
to be maximized or minimized. The process of translating a problem into a function with a known
formula is called mathematical modeling. The examples that follow give the flavor of modeling.

Example 1 What are the dimensions of an aluminum can that holds 40 in3 of juice and that uses the least
material? Assume that the can is cylindrical, and is capped on both ends.

Solution It is often a good idea to think about a problem in general terms before trying to solve it. Since
we’re trying to use as little material as possible, why not make the can very small, say, the size of a
peanut? We can’t, since the can must hold 40 in3. If we make the can short, to try to use less material
in the sides, we’ll have to make it fat as well, so that it can hold 40 in3. See Figure 4.29(a).
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h
(a)

(b)

r

r

Large r, small h Small r, large h

Figure 4.29: Various cylindrical-shaped cans

Table 4.1 Height, h, and
material, M , used in can for
various choices of radius, r

r (in) h (in) M (in2)

0.2 318.31 400.25

1 12.73 86.28

2 3.18 65.13

3 1.41 83.22

4 0.80 120.53

10 0.13 636.32

If we try to save material by making the top and bottom small, the can has to be tall to ac-
commodate the 40 in3 of juice. So any savings we get by using a small top and bottom may be
outweighed by the height of the sides. See Figure 4.29(b).

Table 4.1 gives the height h and amount of material M used in the can for some choices of the
radius, r. You can see that r and h change in opposite directions, and that more material is used at
the extremes (very large or very small r) than in the middle. It appears that the radius needing the
smallest amount of material, M , is somewhere between 1 and 3 inches. Thinking of M as a function
of the radius, r, we get the graph in Figure 4.30. The graph shows that the global minimum we want
is at a critical point.

1 2 3 4
0

50

100

r (in)

M (in2)

Figure 4.30: Total material used in can, M ,
as a function of radius, r

Both the table and the graph were obtained from a mathematical model, which in this case is a
formula for the material used in making the can. Finding such a formula depends on knowing the
geometry of a cylinder, in particular its area and volume. We have

M = Material used in the can = Material in ends + Material in the side



206 Chapter Four USING THE DERIVATIVE

where

Material in ends = 2 · Area of a circle with radius r = 2 · πr2,

Material in the side = Area of curved side of cylinder with height h and radius r = 2πrh.

We have
M = 2πr2 + 2πrh.

However, h is not independent of r: if r grows, h shrinks, and vice-versa. To find the relation-
ship, we use the fact that the volume of the cylinder, πr2h, is equal to the constant 40 in3:

Volume of can = πr2h = 40, giving h =
40

πr2
.

This means

Material in the side = 2πrh = 2πr
40

πr2
=

80

r
.

Thus we obtain the formula for the total material, M , used in a can of radius r if the volume is 40
in3:

M = 2πr2 +
80

r
.

The domain of this function is all r > 0 because the radius of the can cannot be negative or zero.
To find the minimum of M , we look for critical points:

dM

dr
= 4πr −

80

r2
= 0 at a critical point, so 4πr =

80

r2
.

Therefore,

πr3 = 20, so r =

(
20

π

)1/3

= 1.85 inches,

which agrees with the graph in Figure 4.30. We also have

h =
40

πr2
=

40

π(1.85)2
= 3.7 inches.

The material used is M = 2π(1.85)2 + 80/1.85 = 64.7 in2.
To confirm that we have found the global minimum, we look at the formula for dM/dr. For

small r, the −80/r2 term dominates and for large r, the 4πr term dominates, so dM/dr is negative
for r < 1.85 and positive for r > 1.85. Thus, M is decreasing for r < 1.85 and increasing for
r > 1.85, so the global minimum occurs at r = 1.85.

Practical Tips for Modeling Optimization Problems

1. Make sure that you know what quantity or function is to be optimized.

2. If possible, make several sketches showing how the elements that vary are related. Label
your sketches clearly by assigning variables to quantities which change.

3. Try to obtain a formula for the function to be optimized in terms of the variables that
you identified in the previous step. If necessary, eliminate from this formula all but one
variable. Identify the domain over which this variable varies.

4. Find the critical points and evaluate the function at these points and the endpoints (if
relevant) to find the global maxima and/or minima.

The next example, another problem in geometry, illustrates this approach.

Example 2 Alaina wants to get to the bus stop as quickly as possible. The bus stop is across a grassy park, 2000
feet west and 600 feet north of her starting position. Alaina can walk west along the edge of the park
on the sidewalk at a speed of 6 ft/sec. She can also travel through the grass in the park, but only at a
rate of 4 ft/sec. What path gets her to the bus stop the fastest?
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Solution (a) (b) (c)

Park Park Park

Bus stop Bus stop Bus stop

�

�

600 ft

�� 2000 ft �� 2000 ft �� 2000 ft

��
1000 ft

��
1000 ft

�

�

�

�

�

Figure 4.31: Three possible paths to the bus stop

We might first think that she should take a path that is the shortest distance. Unfortunately, the
path that follows the shortest distance to the bus stop is entirely in the park, where her speed is
slow. (See Figure 4.31(a).) That distance is

√
20002 + 6002 = 2088 feet, which takes her about 522

seconds to traverse. She could instead walk quickly the entire 2000 feet along the sidewalk, which
leaves her just the 600-foot northward journey through the park. (See Figure 4.31(b).) This method
would take 2000/6+ 600/4 ≈ 483 seconds total walking time.

But can she do even better? Perhaps another combination of sidewalk and park gives a shorter
travel time. For example, what is the travel time if she walks 1000 feet west along the sidewalk and
the rest of the way through the park? (See Figure 4.31(c).) The answer is about 458 seconds.

We make a model for this problem. We label the distance that Alaina walks west along the
sidewalk x and the distance she walks through the park y, as in Figure 4.32. Then the total time, t,
is

t = tsidewalk + tpark.

Since
Time = Distance/Speed,

and she can walk 6 ft/sec on the sidewalk and 4 ft/sec in the park, we have

t =
x

6
+

y

4
.

Now, by the Pythagorean Theorem, y =
√

(2000− x)2 + 6002. Therefore

t =
x

6
+

√
(2000− x)2 + 6002

4
for 0 ≤ x ≤ 2000.

We can find the critical points of this function analytically. (See Problem 15 on page 211.) Alterna-
tively, we can graph the function on a calculator and estimate the critical point, which is x ≈ 1463

feet. This gives a minimum total time of about 445 seconds.

�� (2000 − x) �� x

�

�

600

Bus stop

y =
√

(2000 − x)2 + 6002
�

�

Figure 4.32: Modeling time to bus stop

a 9
x

y =
√
x

y

Figure 4.33: Find the rectangle of maximum area
with one corner on y =

√
x

Example 3 Figure 4.33 shows the curves y =
√
x, x = 9, y = 0, and a rectangle with vertical sides at x = a

and x = 9. Find the dimensions of the rectangle having the maximum possible area.
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Solution We want to choose a to maximize the area of the rectangle with corners at (a,
√
a) and (9,

√
a). The

area of this rectangle is given by

R = Height · Length =
√
a(9 − a) = 9a1/2 − a3/2.

We are restricted to 0 ≤ a ≤ 9. To maximize this area, we first set dR/da = 0 to find critical points:

dR

da
=

9

2
a−1/2 −

3

2
a1/2 = 0

9

2
√
a
=

3
√
a

2

18 = 6a

a = 3.

Notice that R = 0 at the endpoints a = 0 and a = 9, and R is positive between these values. Since
a = 3 is the only critical point, the rectangle with the maximum area has length 9 − 3 = 6 and
height

√
3.

Example 4 A closed box has a fixed surface area A and a square base with side x.

(a) Find a formula for the volume, V , of the box as a function of x. What is the domain of V ?
(b) Graph V as a function of x.
(c) Find the maximum value of V .

Solution (a) The height of the box is h, as shown in Figure 4.34. The box has six sides, four with area xh
and two, the top and bottom, with area x2. Thus,

4xh+ 2x2
= A.

So

h =
A− 2x2

4x
.

Then, the volume, V , is given by

V = x2h = x2

(
A− 2x2

4x

)
=

x

4

(
A− 2x2

)
=

A

4
x−

1

2
x3.

Since the area of the top and bottom combined must be less than A, we have 2x2 ≤ A. Thus,
the domain of V is 0 ≤ x ≤

√
A/2.

(b) Figure 4.35 shows the graph for x ≥ 0. (Note that A is a positive constant.)
(c) To find the maximum, we differentiate, regarding A as a constant:

dV

dx
=

A

4
−

3

2
x2

= 0

so

x = ±

√
A

6
.

Since x ≥ 0 in the domain of V , we use x =
√
A/6. Figure 4.35 indicates that at this value of

x, the volume is a maximum.

x
x

h

Figure 4.34: Box with
base of side x, height
h, surface area A, and

volume V

√
A
2

V = A
4
x− 1

2
x3

x

V

Figure 4.35: Volume, V , against
length of side of base, x
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From the formula, we see that dV/dx > 0 for x <
√
A/6, so V is increasing, and that

dV/dx < 0 for x >
√
A/6, so V is decreasing. Thus, x =

√
A/6 gives the global maximum.

Evaluating V at x =
√
A/6 and simplifying, we get

V =
A

4

√
A

6
−

1

2

(√
A

6

)3

=

(
A

6

)3/2

.

Example 5 A light is suspended at a height h above the floor. (See Figure 4.36.) The illumination at the point
P is inversely proportional to the square of the distance from the point P to the light and directly
proportional to the cosine of the angle θ. How far from the floor should the light be to maximize the
illumination at the point P ?

Light

O

r

P

θ

Floor

10 m

�

�

h

Figure 4.36: How high should the light be?

Solution If the illumination is represented by I and r is the distance from the light to the point P , then we
know that for some k ≥ 0,

I =
k cos θ

r2
.

Since r2 = h2 + 102 and cos θ = h/r = h/
√
h2 + 102, we have, for h ≥ 0,

I =
kh

(h2 + 102)3/2
.

To find the height at which I is maximized, we differentiate using the quotient rule:

dI

dh
=

k(h2 + 102)3/2 − kh(32 (h
2 + 102)1/2(2h))

[(h2 + 102)3/2]2

=
(h2 + 102)1/2[k(h2 + 102)− 3kh2]

(h2 + 102)3

=
k(h2 + 102)− 3kh2

(h2 + 102)5/2

=
k(102 − 2h2)

(h2 + 102)5/2
.

Setting dI/dh = 0 for h ≥ 0 gives

10
2 − 2h2

= 0

h =
√
50 meters.

Since dI/dh > 0 for h <
√
50 and dI/dh < 0 for h >

√
50, there is a local maximum at h =

√
50

meters. There is only one critical point, so the global maximum of I occurs at that point. Thus, the
illumination is greatest if the light is suspended at a height of

√
50 ≈ 7 meters above the floor.

A Graphical Example: Minimizing Gas Consumption
Next we look at an example in which a function is given graphically and the optimum values are
read from a graph. We already know how to estimate the optimum values of f(x) from a graph of
f(x)—read off the highest and lowest values. In this example, we see how to estimate the optimum
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value of the quantity f(x)/x from a graph of f(x) against x. The question we investigate is how to
set driving speeds to maximize fuel efficiency.2

Example 6 Gas consumption, g (in gallons/hour), as a function of velocity, v (in mph), is given in Figure 4.37.
What velocity minimizes the gas consumption per mile, represented by g/v?

20 30 40 50 60

1

1.5

2

v (mph)

g (gal/hour)

Figure 4.37: Gas consumption versus velocity

Solution Figure 4.38 shows that g/v is the slope of the line from the origin to the point P . Where on the
curve should P be to make the slope a minimum? From the possible positions of the line shown in
Figure 4.38, we see that the slope of the line is both a local and global minimum when the line is
tangent to the curve. From Figure 4.39, we can see that the velocity at this point is about 50 mph.
Thus to minimize gas consumption per mile, we should drive about 50 mph.

1

1.5

2

g (gal/hour)

v (mph)

P

�� v

�

�

g

Slope =
g

v
(gal/mi) �

Figure 4.38: Graphical representation of gas
consumption per mile, g/v

20 30 40 50 60

1

1.5

2

v (mph)

g (gal/hour)

Minimum gas per mile, g/v

�

Figure 4.39: Velocity for maximum fuel efficiency

Exercises and Problems for Section 4.3
Exercises

1. The sum of two nonnegative numbers is 100. What is the
maximum value of the product of these two numbers?

2. The product of two positive numbers is 784. What is the
minimum value of their sum?

3. The sum of three nonnegative numbers is 36, and one of
the numbers is twice one of the other numbers. What is
the maximum value of the product of these three num-
bers?

4. The perimeter of a rectangle is 64 cm. Find the lengths of
the sides of the rectangle giving the maximum area.

5. If you have 100 feet of fencing and want to enclose a

rectangular area up against a long, straight wall, what is
the largest area you can enclose?

For the solids in Exercises 6–9, find the dimensions giving the
minimum surface area, given that the volume is 8 cm3.

6. A closed rectangular box, with a square base x by x cm
and height h cm.

7. An open-topped rectangular box, with a square base x by
x cm and height h cm.

8. A closed cylinder with radius r cm and height h cm.

9. A cylinder open at one end with radius r cm and height
h cm.

2Adapted from Peter D. Taylor, Calculus: The Analysis of Functions (Toronto: Wall & Emerson, 1992).
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In Exercises 10–11, find the x-value maximizing the shaded
area. One vertex is on the graph of f(x) = x2/3−50x+1000,
where 0 ≤ x ≤ 20.

10.

0 x 20

(x, f(x))
11.

0 20

(x, f(x))

12. A rectangle has one side on the x-axis and two vertices
on the curve

y =
1

1 + x2
.

Find the vertices of the rectangle with maximum area.

13. A right triangle has one vertex at the origin and one ver-
tex on the curve y = e−x/3 for 1 ≤ x ≤ 5. One of the
two perpendicular sides is along the x-axis; the other is
parallel to the y-axis. Find the maximum and minimum
areas for such a triangle.

14. A rectangle has one side on the x-axis, one side on the
y-axis, one vertex at the origin and one on the curve
y = e−2x for x ≥ 0. Find the

(a) Maximum area (b) Minimum perimeter

Problems

15. Find analytically the exact critical point of the function
which represents the time, t, to walk to the bus stop in
Example 2. Recall that t is given by

t =
x

6
+

√
(2000 − x)2 + 6002

4
.

16. Of all rectangles with given area, A, which has the short-
est diagonals?

17. A rectangular beam is cut from a cylindrical log of radius
30 cm. The strength of a beam of width w and height h
is proportional to wh2. (See Figure 4.40.) Find the width
and height of the beam of maximum strength.

w

h
30

Figure 4.40

In Problems 18–19 a vertical line divides a region into two
pieces. Find the value of the coordinate x that maximizes the
product of the two areas.

18.

0 x 1

2

19.

0 x 1

2

In Problems 20–22 the figures are made of rectangles and
semicircles.

(a) Find a formula for the area.

(b) Find a formula for the perimeter.

(c) Find the dimensions x and y that maximize the area
given that the perimeter is 100.

20.

x

y

21.

x

y

22.

x

y

23. A piece of wire of length L cm is cut into two pieces.
One piece, of length x cm, is made into a circle; the rest
is made into a square.

(a) Find the value of x that makes the sum of the areas
of the circle and square a minimum. Find the value
of x giving a maximum.

(b) For the values of x found in part (a), show that the
ratio of the length of wire in the square to the length
of wire in the circle is equal to the ratio of the area
of the square to the area of the circle.3

(c) Are the values of x found in part (a) the only values
of x for which the ratios in part (b) are equal?

3From Sally Thomas.
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In Problems 24–27, find the minimum and maximum values
of the expression where x and y are lengths in Figure 4.41 and
0 ≤ x ≤ 10.

x

y

�� 10

�

�

5

Figure 4.41

24. x 25. y 26. x+ 2y 27. 2x+ y

28. Which point on the curve y =
√
1− x is closest to the

origin?

29. Find the point(s) on the ellipse

x2

9
+ y2 = 1

(a) Closest to the point (2, 0).
(b) Closest to the focus (

√
8, 0).

[Hint: Minimize the square of the distance—this avoids
square roots.]

30. What are the dimensions of the closed cylindrical can that
has surface area 280 square centimeters and contains the
maximum volume?

31. A hemisphere of radius 1 sits on a horizontal plane. A
cylinder stands with its axis vertical, the center of its
base at the center of the sphere, and its top circular rim
touching the hemisphere. Find the radius and height of
the cylinder of maximum volume.

32. In a chemical reaction, substance A combines with sub-
stance B to form substance Y . At the start of the reaction,
the quantity of A present is a grams, and the quantity of
B present is b grams. At time t seconds after the start of
the reaction, the quantity of Y present is y grams. As-
sume a < b and y ≤ a. For certain types of reactions,
the rate of the reaction, in grams/sec, is given by

Rate = k(a− y)(b− y), k is a positive constant.

(a) For what values of y is the rate nonnegative? Graph
the rate against y.

(b) Use your graph to find the value of y at which the
rate of the reaction is fastest.

33. A smokestack deposits soot on the ground with a concen-
tration inversely proportional to the square of the distance
from the stack. With two smokestacks 20 miles apart, the
concentration of the combined deposits on the line join-
ing them, at a distance x from one stack, is given by

S =
k1
x2

+
k2

(20− x)2

where k1 and k2 are positive constants which depend on
the quantity of smoke each stack is emitting. If k1 = 7k2,
find the point on the line joining the stacks where the con-
centration of the deposit is a minimum.

34. A wave of wavelength λ traveling in deep water has
speed, v, given for positive constants c and k, by

v = k

√
λ

c
+

c

λ

As λ varies, does such a wave have a maximum or mini-
mum velocity? If so, what is it? Explain.

35. A circular ring of wire of radius r0 lies in a plane per-
pendicular to the x-axis and is centered at the origin. The
ring has a positive electric charge spread uniformly over
it. The electric field in the x-direction, E, at the point x
on the axis is given by

E =
kx

(x2 + r20)
3/2

for k > 0.

At what point on the x-axis is the field greatest? Least?

36. A woman pulls a sled which, together with its load, has
a mass of m kg. If her arm makes an angle of θ with her
body (assumed vertical) and the coefficient of friction (a
positive constant) is μ, the least force, F , she must exert
to move the sled is given by

F =
mgμ

sin θ + μ cos θ
.

If μ = 0.15, find the maximum and minimum values of
F for 0 ≤ θ ≤ π/2. Give answers as multiples of mg.

37. Four equally massive particles can be made to rotate,
equally spaced, around a circle of radius r. This is phys-
ically possible provided the radius and period T of the
rotation are chosen so that the following action function
is at its global minimum:

A(r) =
r2

T
+

T

r
, r > 0.

(a) Find the radius r at which A(r) has a global mini-
mum.

(b) If the period of the rotation is doubled, determine
whether the radius of the rotation increases or de-
creases, and by approximately what percentage.

38. You run a small furniture business. You sign a deal with
a customer to deliver up to 400 chairs, the exact number
to be determined by the customer later. The price will be
$90 per chair up to 300 chairs, and above 300, the price
will be reduced by $0.25 per chair (on the whole order)
for every additional chair over 300 ordered. What are the
largest and smallest revenues your company can make
under this deal?
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39. The cost of fuel to propel a boat through the water (in
dollars per hour) is proportional to the cube of the speed.
A certain ferry boat uses $100 worth of fuel per hour
when cruising at 10 miles per hour. Apart from fuel, the
cost of running this ferry (labor, maintenance, and so on)
is $675 per hour. At what speed should it travel so as to
minimize the cost per mile traveled?

40. A business sells an item at a constant rate of r units per
month. It reorders in batches of q units, at a cost of a+bq
dollars per order. Storage costs are k dollars per item per
month, and, on average, q/2 items are in storage, waiting
to be sold. [Assume r, a, b, k are positive constants.]

(a) How often does the business reorder?
(b) What is the average monthly cost of reordering?
(c) What is the total monthly cost, C of ordering and

storage?
(d) Obtain Wilson’s lot size formula, the optimal batch

size which minimizes cost.

41. A bird such as a starling feeds worms to its young. To
collect worms, the bird flies to a site where worms are to
be found, picks up several in its beak, and flies back to
its nest. The loading curve in Figure 4.42 shows how the
number of worms (the load) a starling collects depends
on the time it has been searching for them.4 The curve is
concave down because the bird can pick up worms more
efficiently when its beak is empty; when its beak is partly
full, the bird becomes much less efficient. The traveling
time (from nest to site and back) is represented by the
distance PO in Figure 4.42. The bird wants to maximize
the rate at which it brings worms to the nest, where

Rate worms arrive =
Load

Traveling time + Searching time

(a) Draw a line in Figure 4.42 whose slope is this rate.
(b) Using the graph, estimate the load which maximizes

this rate.
(c) If the traveling time is increased, does the optimal

load increase or decrease? Why?

O

P

4

8

time

load
(number of worms)

Number of worms

Searching timeTraveling time

Figure 4.42

42. On the same side of a straight river are two towns, and the
townspeople want to build a pumping station, S. See Fig-
ure 4.43. The pumping station is to be at the river’s edge
with pipes extending straight to the two towns. Where

should the pumping station be located to minimize the
total length of pipe?

Town 1

Town 2

1 mile

4 miles

S

�� 4 miles��x

Figure 4.43

43. A pigeon is released from a boat (point B in Figure 4.44)
floating on a lake. Because of falling air over the cool wa-
ter, the energy required to fly one meter over the lake is
twice the corresponding energy e required for flying over
the bank (e = 3 joule/meter). To minimize the energy re-
quired to fly from B to the loft, L, the pigeon heads to a
point P on the bank and then flies along the bank to L.
The distance AL is 2000 m, and AB is 500 m.

(a) Express the energy required to fly from B to L via
P as a function of the angle θ (the angle BPA).

(b) What is the optimal angle θ?
(c) Does your answer change if AL, AB, and e have

different numerical values?

A

|
−

LP

B

θ

Lake

Figure 4.44

44. To get the best view of the Statue of Liberty in Fig-
ure 4.45, you should be at the position where θ is a max-
imum. If the statue stands 92 meters high, including the
pedestal, which is 46 meters high, how far from the base
should you be? [Hint: Find a formula for θ in terms of
your distance from the base. Use this function to maxi-
mize θ, noting that 0 ≤ θ ≤ π/2.]

θ

c©Wesley Hitt/Getty Images

Figure 4.45

4Alex Kacelnick (1984). Reported by J. R. Krebs and N. B. Davis, An Introduction to Behavioural Ecology (Oxford:
Blackwell, 1987).
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45. A light ray starts at the origin and is reflected off a mirror
along the line y = 1 to the point (2, 0). See Figure 4.46.
Fermat’s Principle says that light’s path minimizes the
time of travel.5 The speed of light is a constant.

(a) Using Fermat’s Principle, find the optimal position
of P .

(b) Using your answer to part (a), derive the Law of Re-
flection, that θ1 = θ2.

(2, 0) = Q
End

(0, 0)
Start

1

θ1 θ2

P = (x, 1)
Mirror

x

y

Figure 4.46

46. (a) For which positive number x is x1/x largest? Justify
your answer.

[Hint: You may want to write x1/x = eln(x
1/x).]

(b) For which positive integer n is n1/n largest? Justify
your answer.

(c) Use your answer to parts (a) and (b) to decide which
is larger: 31/3 or π1/π .

47. The arithmetic mean of two numbers a and b is defined
as (a+b)/2; the geometric mean of two positive numbers
a and b is defined as

√
ab.

(a) For two positive numbers, which of the two means
is larger? Justify your answer.
[Hint: Define f(x) = (a+x)/2−√

ax for fixed a.]
(b) For three positive numbers a, b, c, the arithmetic and

geometric mean are (a+b+c)/3 and 3
√
abc, respec-

tively. Which of the two means of three numbers is
larger? [Hint: Redefine f(x) for fixed a and b.]

48. A line goes through the origin and a point on the curve
y = x2e−3x, for x ≥ 0. Find the maximum slope of
such a line. At what x-value does it occur?

49. The distance, s, traveled by a cyclist, who starts at 1 pm,
is given in Figure 4.47. Time, t, is in hours since noon.

(a) Explain why the quantity s/t is represented by the
slope of a line from the origin to the point (t, s) on
the graph.

(b) Estimate the time at which the quantity s/t is a max-
imum.

(c) What is the relationship between the quantity s/t
and the instantaneous speed of the cyclist at the time
you found in part (b)?

1 2 3 4 5

20

40

t (hours)

s (km)

Figure 4.47

50. When birds lay eggs, they do so in clutches of several
at a time. When the eggs hatch, each clutch gives rise to
a brood of baby birds. We want to determine the clutch
size which maximizes the number of birds surviving to
adulthood per brood. If the clutch is small, there are few
baby birds in the brood; if the clutch is large, there are
so many baby birds to feed that most die of starvation.
The number of surviving birds per brood as a function of
clutch size is shown by the benefit curve in Figure 4.48.6

(a) Estimate the clutch size which maximizes the num-
ber of survivors per brood.

(b) Suppose also that there is a biological cost to having
a larger clutch: the female survival rate is reduced by
large clutches. This cost is represented by the dotted
line in Figure 4.48. If we take cost into account by
assuming that the optimal clutch size in fact maxi-
mizes the vertical distance between the curves, what
is the new optimal clutch size?

5 10 15
clutch
size

benefit
or cost Cost: adult mortality

Benefit: number
of surviving young

�

�

Figure 4.48

51. Let f(v) be the amount of energy consumed by a fly-
ing bird, measured in joules per second (a joule is a unit
of energy), as a function of its speed v (in meters/sec).
Let a(v) be the amount of energy consumed by the same
bird, measured in joules per meter.

(a) Suggest a reason in terms of the way birds fly for the
shape of the graph of f(v) in Figure 4.49.

(b) What is the relationship between f(v) and a(v)?
(c) Where on the graph is a(v) a minimum?

5See, for example, D. Halliday, R. Resnik, K. Kane, Physics, Vol 2, 4th ed, (New York: Wiley, 1992), p. 909.
6Data from C. M. Perrins and D. Lack, reported by J. R. Krebs and N. B. Davies in An Introduction to Behavioural

Ecology (Oxford: Blackwell, 1987).
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(d) Should the bird try to minimize f(v) or a(v) when
it is flying? Why?

f(v)

v, speed (m/sec)

energy (joules/sec)

Figure 4.49

52. The forward motion of an aircraft in level flight is re-
duced by two kinds of forces, known as induced drag
and parasite drag. Induced drag is a consequence of the
downward deflection of air as the wings produce lift. Par-
asite drag results from friction between the air and the
entire surface of the aircraft. Induced drag is inversely
proportional to the square of speed and parasite drag is
directly proportional to the square of speed. The sum of
induced drag and parasite drag is called total drag. The
graph in Figure 4.50 shows a certain aircraft’s induced
drag and parasite drag functions.

(a) Sketch the total drag as a function of air speed.
(b) Estimate two different air speeds which each result

in a total drag of 1000 pounds. Does the total drag
function have an inverse? What about the induced
and parasite drag functions?

(c) Fuel consumption (in gallons per hour) is roughly
proportional to total drag. Suppose you are low on
fuel and the control tower has instructed you to en-
ter a circular holding pattern of indefinite duration to
await the passage of a storm at your landing field. At
what air speed should you fly the holding pattern?
Why?

100 200 300 400 500 600

1

2

3

� Parasite
Drag

� Induced
Drag

speed
(miles/hour)

drag (thousands of lbs)

Figure 4.50

53. Let f(v) be the fuel consumption, in gallons per hour, of
a certain aircraft as a function of its airspeed, v, in miles
per hour. A graph of f(v) is given in Figure 4.51.

(a) Let g(v) be the fuel consumption of the same air-
craft, but measured in gallons per mile instead of
gallons per hour. What is the relationship between
f(v) and g(v)?

(b) For what value of v is f(v) minimized?
(c) For what value of v is g(v) minimized?
(d) Should a pilot try to minimize f(v) or g(v)?

200 400 600

25

50

75

100

f(v)

v
(miles/hour)

fuel consumption
(gallons/hour)

Figure 4.51

Strengthen Your Understanding

In Problems 54–56, explain what is wrong with the statement.

54. If A is the area of a rectangle of sides x and 2x, for
0 ≤ x ≤ 10, the maximum value of A occurs where
dA/dx = 0.

55. An open box is made from a 20-inch square piece of card-
board by cutting squares of side h from the corners and
folding up the edges, giving the box in Figure 4.52. To
find the maximum volume of such a box, we work on the
domain h ≥ 0.

(20 − 2h)
(20 − 2h)

h

Figure 4.52: Box of volume V = h(20− 2h)2

56. The solution of an optimization problem modeled by a
quadratic function occurs at the vertex of the quadratic.

In Problems 57–59, give an example of:

57. The sides of a rectangle with perimeter 20 cm and area
smaller than 10 cm2.

58. A context for a modeling problem where you are given
that xy = 120 and you are minimizing the quantity
2x+ 6y.

59. A modeling problem where you are minimizing the cost
of the material in a cylindrical can of volume 250 cubic
centimeters.
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4.4 FAMILIES OF FUNCTIONS AND MODELING

We saw in Chapter 1 that knowledge of one function can provide knowledge of the graphs of many
others. The shape of the graph of y = x2 also tells us, indirectly, about the graphs of y = x2 +

2, y = (x + 2)2, y = 2x2, and countless other functions. We say that all functions of the form
y = a(x + b)2 + c form a family of functions; their graphs are like that of y = x2, except for shifts
and stretches determined by the values of a, b, and c. The constants a, b, c are called parameters.
Different values of the parameters give different members of the family.

The Bell-Shaped Curve: y = e
−(x−a)

2
/b

The family of bell-shaped curves includes the family of normal density functions, used in probability
and statistics.7 We assume that b > 0. See Section 8.8 for applications of the normal distribution.

First we let b = 1 and examine the role of a.

Example 1 Graph y = e−(x−a)2 for a = −2, 0, 2 and explain the role of a in the shape of the graph.

Solution See Figure 4.53. The role of the parameter a is to shift the graph of y = e−x2

to the right or left.
Notice that the value of y is always positive. Since y → 0 as x → ±∞, the x-axis is a horizontal
asymptote. Thus y = e−(x−a)2 is the family of horizontal shifts of the bell-shaped curve y = e−x2

.

−2 2

1 �

y = e−x2

y = e−(x+2)2 � y = e−(x−2)2

x

y

Figure 4.53: The family y = e−(x−a)2

We now consider the role of the parameter b by studying the family with a = 0.

Example 2 Find the critical points and points of inflection of y = e−x2/b.

Solution To investigate the critical points and points of inflection, we calculate

dy

dx
= −

2x

b
e−x2/b

and, using the product rule, we get

d2y

dx2
= −

2

b
e−x2/b −

2x

b

(
−
2x

b
e−x2/b

)
=

2

b

(
2x2

b
− 1

)
e−x2/b.

Critical points occur where dy/dx = 0, that is, where

dy

dx
= −

2x

b
e−x2/b

= 0.

Since e−x2/b is never zero, the only critical point is x = 0. At that point, y = 1 and d2y/dx2 < 0.
Hence, by the second derivative test, there is a local maximum at x = 0, and this is also a global
maximum.

Inflection points occur where the second derivative changes sign; thus, we start by finding
values of x for which d2y/dx2 = 0. Since e−x2/b is never zero, d2y/dx2 = 0 when

2x2

b
− 1 = 0.

7Probabilists divide our function by a constant,
√
πb, to get the normal density.
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Solving for x gives

x = ±

√
b

2
.

Looking at the expression for d2y/dx2, we see that d2y/dx2 is negative for x = 0, and positive as
x → ±∞. Therefore the concavity changes at x = −

√
b/2 and at x =

√
b/2, so we have inflection

points at x = ±
√
b/2.

Returning to the two-parameter family y = e−(x−a)2/b, we conclude that there is a maximum
at x = a, obtained by horizontally shifting the maximum at x = 0 of y = e−x2/b by a units. There
are inflection points at x = a ±

√
b/2 obtained by shifting the inflection points x = ±

√
b/2 of

y = e−x2/b by a units. (See Figure 4.54.) At the inflection points y = e−1/2 ≈ 0.6.
With this information we can see the effect of the parameters. The parameter a determines the

location of the center of the bell and the parameter b determines how narrow or wide the bell is. (See
Figure 4.55.) If b is small, then the inflection points are close to a and the bell is sharply peaked
near a; if b is large, the inflection points are farther away from a and the bell is spread out.

a
a−
√

b
2

a+
√

b
2

1

x

y

Inflection
point

Maximum

Inflection
point

� �

Figure 4.54: Graph of y = e−(x−a)2/b:
bell-shaped curve with peak at x = a

a

1

x

y
b large

b small

�

�

Figure 4.55: Graph of y = e−(x−a)2/b for
fixed a and various b

Modeling with Families of Functions
One reason for studying families of functions is their use in mathematical modeling. Confronted
with the problem of modeling some phenomenon, a crucial first step involves recognizing families
of functions which might fit the available data.

Motion Under Gravity: y = −4.9t2 + v0t + y0

The position of an object moving vertically under the influence of gravity can be described by a
function in the two-parameter family

y = −4.9t2 + v0t+ y0

where t is time in seconds and y is the distance in meters above the ground. Why do we need the
parameters v0 and y0? Notice that at time t = 0 we have y = y0. Thus the parameter y0 gives the
height above ground of the object at time t = 0. Since dy/dt = −9.8t+ v0, the parameter v0 gives
the velocity of the object at time t = 0. From this equation we see that dy/dt = 0 when t = v0/9.8.
This is the time when the object reaches its maximum height.

Example 3 Give a function describing the position of a projectile launched upward from ground level with an
initial velocity of 50 m/sec. How high does the projectile rise?

Solution We have y0 = 0 and v0 = 50, so the height of the projectile after t seconds is y = −4.9t2 + 50t.
It reaches its maximum height when t = 50/9.8 = 5.1 seconds, and its height at that time is
−4.9(5.1)2 + 50(5.1) = 127.5, or about 128 meters.
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Exponential Model with a Limit: y = a(1− e
−bx)

We consider a, b > 0. The graph of one member, with a = 2 and b = 1, is in Figure 4.56. Such
a graph represents a quantity which is increasing but leveling off. For example, a body dropped
in a thick fluid speeds up initially, but its velocity levels off as it approaches a terminal velocity.
Similarly, if a pollutant pouring into a lake builds up toward a saturation level, its concentration
may be described in this way. The graph also represents the temperature of an object in an oven.

1 2 3

1

2

x

y

y = 2(1− e−x)

Figure 4.56: One member of the family
y = a(1− e−bx), with a = 2, b = 1

1 2 3

1

2

3

4 a = 4

a = 3

a = 2

a = 1

x

y

Figure 4.57: Fixing b = 1 gives
y = a(1− e−x), graphed for

various a

2

y

x

b large

b small

�
�

Figure 4.58: Fixing a = 2 gives
y = 2(1− e−bx), graphed for various b

Example 4 Describe the effect of varying the parameters a and b on the graph of y = a(1− e−bx).

Solution First examine the effect on the graph of varying a. Fix b at some positive number, say b = 1.
Substitute different values for a and look at the graphs in Figure 4.57. We see that as x gets larger,
y approaches a from below, so a is an upper bound for this function. Analytically, this follows from
the fact that e−bx → 0 as x → ∞. Physically, the value of a represents the terminal velocity of a
falling body or the saturation level of the pollutant in the lake.

Now examine the effect of varying b on the graph. Fix a at some positive number, say a = 2.
Substitute different values for b and look at the graphs in Figure 4.58. The parameter b determines
how sharply the curve rises and how quickly it gets close to the line y = a.

Let’s confirm the last observation in Example 4 analytically. For y = a(1 − e−bx), we have
dy/dx = abe−bx, so the slope of the tangent to the curve at x = 0 is ab. For larger b, the curve rises
more rapidly at x = 0. How long does it take the curve to climb halfway up from y = 0 to y = a?
When y = a/2, we have

a(1− e−bx
) =

a

2
, which leads to x =

ln 2

b
.

If b is large then (ln 2)/b is small, so in a short distance the curve is already half way up to a. If b is
small, then (ln 2)/b is large and we have to go a long way out to get up to a/2. See Figure 4.59.

ln 2
b

a
2

a

x

y

b large

y = abx

ln 2
b

a
2

a

x

y
y = abx

b small

Figure 4.59: Tangent at x = 0 to y = a(1− e−bx), with fixed a, and large and small b

The following example illustrates an application of this family.
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Example 5 The number, N , of people who have heard a rumor spread by mass media by time t is modeled by

N(t) = a(1− e−bt
).

There are 200,000 people in the population who hear the rumor eventually. If 10% of them heard it
the first day, find a and b, assuming t is measured in days.

Solution Since lim
t→∞

N(t) = a, we have a = 200,000. When t = 1, we have N = 0.1(200,000) = 20,000

people, so substituting into the formula gives

N(1) = 20,000 = 200,000
(
1− e−b(1)

)
.

Solving for b gives
0.1 = 1− e−b

e−b
= 0.9

b = − ln 0.9 = 0.105.

The Logistic Model: y = L/(1 + Ae
−kt)

The logistic family is often used to model population growth when it is limited by the environment.
(See Section 11.7.) We assume that L,A, k > 0 and we look at the roles of each of the three
parameters in turn.
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L = 20

L = 30
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Figure 4.60: Graph of
y = L/(1 + Ae−kt) varying L

with A = 50, k = 1
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Figure 4.61: Graph of
y = L/(1 + Ae−kt) varying A

with L = 30, k = 1
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Figure 4.62: Graph of
y = L/(1 + Ae−kt) varying k,

with L = 30, A = 50

Logistic curves with varying values of L are shown in Figure 4.60. The values of y level off as
t → ∞ because Ae−kt → 0 as t → ∞. Thus, as t increases, the values of y approach L. The line
y = L is a horizontal asymptote, called the limiting value or carrying capacity, and representing
the maximum sustainable population. The parameter L stretches or shrinks the graph vertically.

In Figure 4.61 we investigate the effect of the parameter A, with k and L fixed. The parameter
A alters the point at which the curve cuts the y-axis—larger values of A move the y-intercept closer
to the origin. At t = 0 we have y = L/(1+A), confirming that increasing A decreases the value of
y at t = 0.

Figure 4.62 shows the effect of the parameter k. With L and A fixed, we see that varying k
affects the rate at which the function approaches the limiting value L. If k is small, the graph rises
slowly; if k is large, the graph rises steeply. At t = 0, we have dy/dt = LAk/(1 + A)2, so the
initial slope of a logistic curve is proportional to k.

The graphs suggest that none of the curves has a critical point for t > 0. Some curves appear
to have a point of inflection; others have none. To investigate, we take derivatives:

dy

dt
=

LAke−kt

(1 +Ae−kt)2
.

Since every factor of dy/dt is positive, the first derivative is always positive. Thus, there are no
critical points and the function is always increasing.
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Using a computer algebra system or the quotient rule, we find

d2y

dt2
=

LAk2e−kt(−1 +Ae−kt)

(1 +Ae−kt)3
.

Since L,A, k, e−kt, and the denominator are always positive, the sign of d2y/dt2 is determined
by the sign of (−1 + Ae−kt). Points of inflection may occur where d2y/dt2 = 0. This is where
−1 +Ae−kt = 0, or

Ae−kt
= 1.

At this value of t,

y =
L

1 +Ae−kt
=

L

1 + 1
=

L

2
.

In Problem 22 on page 221, we see that d2y/dt2 changes sign at y = L/2. Since the concavity
changes at y = L/2, there is a point of inflection when the population is half the carrying capacity. If
the initial population is L/2 or above, there is no inflection point. (See the top graph in Figure 4.61.)

To find the value of t at the inflection point, we solve for t in the equation

Ae−kt
= 1

t =
ln(1/A)

−k
=

lnA

k
.

Thus, increasing the value of A moves the inflection point to the right. (See the bottom two graphs
in Figure 4.61.)

Exercises and Problems for Section 4.4
Exercises

In Exercises 1–6, investigate the one-parameter family of
functions. Assume that a is positive.

(a) Graph f(x) using three different values for a.

(b) Using your graph in part (a), describe the critical points
of f and how they appear to move as a increases.

(c) Find a formula for the x-coordinates of the critical
point(s) of f in terms of a.

1. f(x) = (x− a)2 2. f(x) = x3 − ax

3. f(x) = ax3 − x 4. f(x) = x− a
√
x

5. f(x) = x2e−ax

6. f(x) =
a

x2
+ x for x > 0

7. Consider the family

y =
A

x+B
.

(a) If B = 0, what is the effect of varying A on the
graph?

(b) If A = 1, what is the effect of varying B?
(c) On one set of axes, graph the function for several

values of A and B.

8. If A and B are positive constants, find all critical points
of

f(w) =
A

w2
− B

w
.

9. The graphs of f(x) = 1 + e−ax for a = 1, 2, and 5, are
in Figure 4.63. Without a calculator, identify the graphs
by looking at f ′(0).
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y

Figure 4.63

10. The graphs of f(x) = xe−ax for a = 1, 2 , and 3, are in
Figure 4.64. Without a calculator, identify the graphs by
locating the critical points of f(x).
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C
x

y

Figure 4.64
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In Exercises 11–16, investigate the given two parameter fam-
ily of functions. Assume that a and b are positive.
(a) Graph f(x) using b = 1 and three different values for a.
(b) Graph f(x) using a = 1 and three different values for b.
(c) In the graphs in parts (a) and (b), how do the critical

points of f appear to move as a increases? As b in-
creases?

(d) Find a formula for the x-coordinates of the critical
point(s) of f in terms of a and b.

11. f(x) = (x− a)2 + b

12. f(x) = x3 − ax2 + b

13. f(x) = ax(x− b)2

14. f(x) =
ax

x2 + b

15. f(x) =
√

b− (x− a)2

16. f(x) =
a

x
+ bx for x > 0

Problems

17. The graphs of the function f(x) = x + a2/x for a = 1
and 2, and a third integer value of a, are shown in Fig-
ure 4.65. Without a calculator, identify the graphs, and
estimate the third value of a.
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Figure 4.65

18. The graphs of the function f(x) = x + a sin x for var-
ious values of a > 0 are shown in Figure 4.66. Explain
why, no matter what the positive value of a, the curves
intersect in the same points.
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Figure 4.66

19. (a) Sketch graphs of y = xe−bx for b = 1, 2, 3, 4. De-
scribe the graphical significance of b.

(b) Find the coordinates of the critical point of y =
xe−bx and use it to confirm your answer to part (a).

20. Consider the surge function y = axe−bx for a, b > 0.

(a) Find the local maxima, local minima, and points of
inflection.

(b) How does varying a and b affect the shape of the
graph?

(c) On one set of axes, graph this function for several
values of a and b.

21. Find a formula for the family of cubic polynomials with
an inflection point at the origin. How many parameters
are there?

22. (a) Derive formulas for the first and second derivatives
of the logistic function:

y =
L

1 + Ae−kt
for L,A, and k positive constants.

(b) Derive a formula for the t value of any inflection
point(s).

(c) Use the second derivative to determine the concavity
on either side of any inflection points.

23. (a) Graph f(x) = x+ a sin x for a = 0.5 and a = 3.
(b) For what values of a is f(x) increasing for all x?

24. (a) Graph f(x) = x2 + a sin x for a = 1 and a = 20.
(b) For what values of a is f(x) concave up for all x?

25. Consider the family of functions y = a cosh(x/a) for
a > 0. Sketch graphs for a = 1, 2, 3. Describe in words
the effect of increasing a.

26. Sketch several members of the family y = e−ax sin bx
for b = 1, and describe the graphical significance of the
parameter a.

27. Sketch several members of the family e−ax sin bx for
a = 1, and describe the graphical significance of the pa-
rameter b.

28. If a > 0, b > 0, show that f(x) = a(1− e−bx) is every-
where increasing and everywhere concave down.

29. Let f(x) = bxe1+bx, where b is constant and b > 0.

(a) What is the x-coordinate of the critical point of f?
(b) Is the critical point a local maximum or a local min-

imum?
(c) Show that the y-coordinate of the critical point does

not depend on the value of b.
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30. Let h(x) = e−x+kx, where k is any constant. For what
value(s) of k does h have

(a) No critical points?
(b) One critical point?
(c) A horizontal asymptote?

31. Let g(x) = x − kex, where k is any constant. For what
value(s) of k does the function g have a critical point?

Find formulas for the functions described in Problems 32–43.

32. A function of the form y = a(1 − e−bx) with a, b > 0
and a horizontal asymptote of y = 5.

33. A function of the form y = be−(x−a)2/2 with its maxi-
mum at the point (0, 3).

34. A curve of the form y = e−(x−a)2/b for b > 0 with a lo-
cal maximum at x = 2 and points of inflection at x = 1
and x = 3.

35. A logistic curve with carrying capacity of 12, y-intercept
of 4, and point of inflection at (0.5, 6).

36. A function of the form y =
a

1 + be−t
with y-intercept 2

and an inflection point at t = 1.

37. A cubic polynomial with a critical point at x = 2, an
inflection point at (1, 4), and a leading coefficient of 1.

38. A fourth-degree polynomial whose graph is symmetric
about the y-axis, has a y-intercept of 0, and global max-
ima at (1, 2) and (−1, 2).

39. A function of the form y = a sin(bt2) whose first critical
point for positive t occurs at t = 1 and whose derivative
is 3 when t = 2.

40. A function of the form y = a cos(bt2) whose first critical
point for positive t occurs at t = 1 and whose derivative
is −2 when t = 1/

√
2.

41. A function of the form y = ae−x + bx with the global
minimum at (1, 2).

42. A function of the form y = bxe−ax with a local maxi-
mum at (3, 6).

43. A function of the form y = at + b/t, with a local mini-
mum (3, 12) and a local maximum at (−3,−12).

44. Consider the family of functions y = f(x) = x− k
√
x,

with k a positive constant and x ≥ 0. Show that the
graph of f(x) has a local minimum at a point whose x-
coordinate is 1/4 of the way between its x-intercepts.

45. For any constant a, let f(x) = ax− x ln x for x > 0.

(a) What is the x-intercept of the graph of f(x)?
(b) Graph f(x) for a = −1 and a = 1.
(c) For what values of a does f(x) have a critical point

for x > 0? Find the coordinates of the critical point
and decide if it is a local maximum, a local mini-
mum, or neither.

46. Let f(x) = x2 + cos(kx), for k > 0.

(a) Graph f for k = 0.5, 1, 3, 5. Find the smallest num-
ber k at which you see points of inflection in the
graph of f .

(b) Explain why the graph of f has no points of inflec-
tion if k ≤ √

2, and infinitely many points of inflec-
tion if k >

√
2.

(c) Explain why f has only a finite number of critical
points, no matter what the value of k.

47. Let f(x) = ex − kx, for k > 0.

(a) Graph f for k = 1/4, 1/2, 1, 2, 4. Describe what
happens as k changes.

(b) Show that f has a local minimum at x = ln k.
(c) Find the value of k for which the local minimum is

the largest.

48. A family of functions is given by

r(x) =
1

a+ (x− b)2
.

(a) For what values of a and b does the graph of r have
a vertical asymptote? Where are the vertical asymp-
totes in this case?

(b) Find values of a and b so that the function r has a
local maximum at the point (3, 5).

49. (a) Find all critical points of f(x) = x4 + ax2 + b.
(b) Under what conditions on a and b does this func-

tion have exactly one critical point? What is the one
critical point, and is it a local maximum, a local min-
imum, or neither?

(c) Under what conditions on a and b does this function
have exactly three critical points? What are they?
Which are local maxima and which are local min-
ima?

(d) Is it ever possible for this function to have two criti-
cal points? No critical points? More than three criti-
cal points? Give an explanation in each case.

50. Let y = Aex +Be−x for any constants A, B.

(a) Sketch the graph of the function for

(i) A = 1, B = 1 (ii) A = 1, B = −1
(iii) A = 2, B = 1 (iv) A = 2, B = −1
(v) A = −2, B = −1 (vi) A = −2, B = 1

(b) Describe in words the general shape of the graph if
A and B have the same sign. What effect does the
sign of A have on the graph?

(c) Describe in words the general shape of the graph if
A and B have different signs. What effect does the
sign of A have on the graph?

(d) For what values of A and B does the function have
a local maximum? A local minimum? Justify your
answer using derivatives.
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51. The temperature, T , in ◦ C, of a yam put into a 200◦C
oven is given as a function of time, t, in minutes, by

T = a(1− e−kt) + b.

(a) If the yam starts at 20◦C, find a and b.
(b) If the temperature of the yam is initially increasing

at 2◦C per minute, find k.

52. For positive a, b, the potential energy, U , of a particle is

U = b

(
a2

x2
− a

x

)
for x > 0.

(a) Find the intercepts and asymptotes.
(b) Compute the local maxima and minima.
(c) Sketch the graph.

53. The force, F , on a particle with potential energy U is
given by

F = −dU

dx
.

Using the expression for U in Problem 52, graph F and
U on the same axes, labeling intercepts and local maxima
and minima.

54. The Lennard-Jones model predicts the potential energy
V (r) of a two-atom molecule as a function of the dis-
tance r between the atoms to be

V (r) =
A

r12
− B

r6
, r > 0,

where A and B are positive constants.

(a) Evaluate limr→0+ V (r), and interpret your answer.

(b) Find the critical point of V (r). Is it a local maximum
or local minimum?

(c) The inter-atomic force is given by F (r) = −V ′(r).
At what distance r is the inter-atomic force zero?
(This is called the equilibrium size of the molecule.)

(d) Describe how the parameters A and B affect the
equilibrium size of the molecule.

55. For positive A,B, the force between two atoms is a func-
tion of the distance, r, between them:

f(r) = −A

r2
+

B

r3
r > 0.

(a) What are the zeros and asymptotes of f?
(b) Find the coordinates of the critical points and inflec-

tion points of f .
(c) Graph f .
(d) Illustrating your answers with a sketch, describe the

effect on the graph of f of:

(i) Increasing B, holding A fixed

(ii) Increasing A, holding B fixed

56. An organism has size W at time t. For positive constants
A, b, and c, the Gompertz growth function gives

W = Ae−eb−ct

, t ≥ 0.

(a) Find the intercepts and asymptotes.
(b) Find the critical points and inflection points.
(c) Graph W for various values of A, b, and c.
(d) A certain organism grows fastest when it is about 1/3

of its final size. Would the Gompertz growth func-
tion be useful in modeling its growth? Explain.

Strengthen Your Understanding

In Problems 57–58, explain what is wrong with the statement.

57. Every function of the form f(x) = x2 + bx+ c, where b
and c are constants, has two zeros.

58. Every function of the form f(x) = a/x + bx, where a
and b are non-zero constants, has two critical points.

In Problems 59–62, give an example of:

59. A family of quadratic functions which has zeros at x = 0
and x = b.

60. A member of the family f(x) = ax3 − bx that has no
critical points.

61. A family of functions, f(x), depending on a parameter
a, such that each member of the family has exactly one
critical point.

62. A family of functions, g(x), depending on two parame-
ters, a and b, such that each member of the family has

exactly two critical points and one inflection point. You
may want to restrict a and b.

63. Let f(x) = ax+b/x. Suppose a and b are positive. What
happens to f(x) as b increases?

(a) The critical points move further apart.
(b) The critical points move closer together.
(c) The critical values move further apart.
(d) The critical values move closer together.

64. Let f(x) = ax+b/x. Suppose a and b are positive. What
happens to f(x) as a increases?

(a) The critical points move further apart.
(b) The critical points move closer together.
(c) The critical values move further apart.
(d) The critical values move closer together.
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4.5 APPLICATIONS TO MARGINALITY

Management decisions within a particular business usually aim at maximizing profit for the com-
pany. In this section we see how the derivative can be used to maximize profit. Profit depends on both
production cost and revenue (or income) from sales. We begin by looking at the cost and revenue
functions.

The cost function, C(q), gives the total cost of producing a quantity q of some good.

What sort of function do we expect C to be? The more goods that are made, the higher the total
cost, so C is an increasing function. In fact, cost functions usually have the general shape shown
in Figure 4.67. The intercept on the C-axis represents the fixed costs, which are incurred even if
nothing is produced. (This includes, for instance, the machinery needed to begin production.) The
cost function increases quickly at first and then more slowly because producing larger quantities of
a good is usually more efficient than producing smaller quantities—this is called economy of scale.
At still higher production levels, the cost function starts to increase faster again as resources become
scarce, and sharp increases may occur when new factories have to be built. Thus, the graph of C(q)
may start out concave down and become concave up later on.

q (quantity)

C (cost)

Figure 4.67: Cost as a function of quantity

The revenue function,R(q), gives the total revenue received by a firm from selling a quantity
q of some good.

Revenue is income obtained from sales. If the price per item is p, and the quantity sold is q,
then

Revenue = Price × Quantity, so R = pq.

If the price per item does not depend on the quantity sold, then the graph of R(q) is a straight line
through the origin with slope equal to the price p. See Figure 4.68. In practice, for large values of q,
the market may become glutted, causing the price to drop, giving R(q) the shape in Figure 4.69.

R (revenue)

q (quantity)

Figure 4.68: Revenue: Constant price

q (quantity)

R (revenue)

Figure 4.69: Revenue: Decreasing price
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The profit is usually written as π. (Economists use π to distinguish it from the price, p; this π
has nothing to do with the area of a circle, and merely stands for the Greek equivalent of the letter
“p.”) The profit resulting from producing and selling q items is defined by

Profit = Revenue − Cost, so π(q) = R(q)− C(q).

Example 1 If cost, C, and revenue, R, are given by the graph in Figure 4.70, for what production quantities, q,
does the firm make a profit? Approximately what production level maximizes profit?

130 q0 215
q

$

C
R

Figure 4.70: Costs and revenues for Example 1

Solution The firm makes a profit whenever revenues are greater than costs, that is, when R > C. The graph
of R is above the graph of C approximately when 130 < q < 215. Production between q = 130

units and q = 215 units generates a profit. The vertical distance between the cost and revenue curves
is largest at q0, so q0 units gives maximum profit.

Marginal Analysis
Many economic decisions are based on an analysis of the costs and revenues “at the margin.” Let’s
look at this idea through an example.

Suppose we are running an airline and we are trying to decide whether to offer an additional
flight. How should we decide? We’ll assume that the decision is to be made purely on financial
grounds: if the flight will make money for the company, it should be added. Obviously we need to
consider the costs and revenues involved. Since the choice is between adding this flight and leaving
things the way they are, the crucial question is whether the additional costs incurred are greater or
smaller than the additional revenues generated by the flight. These additional costs and revenues are
called the marginal costs and marginal revenues.

Suppose C(q) is the function giving the total cost of running q flights. If the airline had orig-
inally planned to run 100 flights, its costs would be C(100). With the additional flight, its costs
would be C(101). Therefore,

Additional cost “at the margin” = C(101)− C(100).

Now

C(101)− C(100) =
C(101)− C(100)

101− 100
,

and this quantity is the average rate of change of cost between 100 and 101 flights. In Figure 4.71 the
average rate of change is the slope of the line joining the C(100) and C(101) points on the graph. If
the graph of the cost function is not curving fast near the point, the slope of this line is close to the
slope of the tangent line there. Therefore, the average rate of change is close to the instantaneous
rate of change. Since these rates of change are not very different, many economists choose to define
marginal cost, MC, as the instantaneous rate of change of cost with respect to quantity:
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100 101
q

C(q)

Slope = C(101) − C(100)

Slope = C′(100)

The slopes of the
two lines are close

⎫⎪⎬
⎪⎭

Figure 4.71: Marginal cost: Slope of one of these lines

Marginal cost = MC = C′(q) so Marginal cost ≈ C(q + 1)− C(q).

Similarly, if the revenue generated by q flights is R(q) and the number of flights increases from
100 to 101, then

Additional revenue “at the margin” = R(101)−R(100).

Now R(101) − R(100) is the average rate of change of revenue between 100 and 101 flights. As
before, the average rate of change is usually almost equal to the instantaneous rate of change, so
economists often define:

Marginal revenue = MR = R′(q) so Marginal revenue ≈ R(q + 1)−R(q).

We often refer to total cost, C, and total revenue, R, to distinguish them from marginal cost,
MC, and marginal revenue, MR. If the words cost and revenue are used alone, they are understood
to mean total cost and total revenue.

Example 2 If C(q) and R(q) for the airline are given in Figure 4.72, should the company add the 101st flight?

Solution The marginal revenue is the slope of the revenue curve, and the marginal cost is the slope of the cost
curve at the point 100. From Figure 4.72, you can see that the slope at the point A is smaller than
the slope at B, so MC < MR. This means that the airline will make more in extra revenue than it
will spend in extra costs if it runs another flight, so it should go ahead and run the 101st flight.

R(q)

C(q)

q = 100

A

B

Slope = MC

Slope = MR

�

�

Figure 4.72: Should the company add the 101st flight?

Since MC and MR are derivative functions, they can be estimated from the graphs of total
cost and total revenue.
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Example 3 If R and C are given by the graphs in Figure 4.73, sketch graphs of MR = R′(q) and MC = C ′(q).

$

q

R
$

q

C

100

Figure 4.73: Total revenue and total cost for Example 3

Solution The revenue graph is a line through the origin, with equation

R = pq

where p is the price, which is a constant. The slope is p and

MR = R′
(q) = p.

The total cost is increasing, so the marginal cost is always positive (above the q-axis). For small q
values, the total cost curve is concave down, so the marginal cost is decreasing. For larger q, say
q > 100, the total cost curve is concave up and the marginal cost is increasing. Thus the marginal
cost has a minimum at about q = 100. (See Figure 4.74.)

$/unit

q (quantity)

MR = R′

100

$/unit

q (quantity)

MC = C′

Figure 4.74: Marginal revenue and costs for Example 3

Maximizing Profit
Now let’s look at how to maximize profit, given functions for total revenue and total cost.

Example 4 Find the maximum profit if the total revenue and total cost are given, for 0 ≤ q ≤ 200, by the curves
R and C in Figure 4.75.

q (quantity)
40 80 120 160 200

60

80

q (quantity)

$ (thousands)

C
R

�
�

�

�

Figure 4.75: Maximum profit at q = 140
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Solution The profit is represented by the vertical difference between the curves and is marked by the vertical
arrows on the graph. When revenue is below cost, the company is taking a loss; when revenue is
above cost, the company is making a profit. We can see that the profit is largest at about q = 140,
so this is the production level we’re looking for. To be sure that the local maximum is a global
maximum, we need to check the endpoints. At q = 0 and q = 200, the profit is negative, so the
global maximum is indeed at q = 140.

To find the actual maximum profit, we estimate the vertical distance between the curves at
q = 140. This gives a maximum profit of $80,000− $60,000 = $20,000.

Suppose we wanted to find the minimum profit. In this example, we must look at the endpoints,
when q = 0 or q = 200. We see the minimum profit is negative (a loss), and it occurs at q = 0.

Maximum Profit Occurs Where MR = MC

In Example 4, observe that at q = 140 the slopes of the two curves in Figure 4.75 are equal. To the
left of q = 140, the revenue curve has a larger slope than the cost curve, and the profit increases as
q increases. The company will make more money by producing more units, so production should
increase toward q = 140. To the right of q = 140, the slope of the revenue curve is less than
the slope of the cost curve, and the profit is decreasing. The company will make more money by
producing fewer units so production should decrease toward q = 140. At the point where the slopes
are equal, the profit has a local maximum; otherwise the profit could be increased by moving toward
that point. Since the slopes are equal at q = 140, we have MR = MC there.

Now let’s look at the general situation. To maximize or minimize profit over an interval, we
optimize the profit, π, where

π(q) = R(q)− C(q).

We know that global maxima and minima can only occur at critical points or at endpoints of an
interval. To find critical points of π, look for zeros of the derivative:

π′
(q) = R′

(q)− C′
(q) = 0.

So
R′

(q) = C ′
(q),

that is, the slopes of the revenue and cost curves are equal. This is the same observation that we
made in the previous example. In economic language,

The maximum (or minimum) profit can occur where

Marginal cost = Marginal revenue.

Of course, maximal or minimal profit does not have to occur where MR = MC; there are also
the endpoints to consider.

Example 5 Find the quantity q which maximizes profit if the total revenue, R(q), and total cost, C(q), are given
in dollars by

R(q) = 5q − 0.003q2

C(q) = 300 + 1.1q,

where 0 ≤ q ≤ 800 units. What production level gives the minimum profit?
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Solution We look for production levels that give marginal revenue = marginal cost:

MR = R′
(q) = 5− 0.006q

MC = C′
(q) = 1.1.

So 5− 0.006q = 1.1, giving
q = 3.9/0.006 = 650 units.

Does this value of q represent a local maximum or minimum of π? We can tell by looking at
production levels of 649 units and 651 units. When q = 649 we have MR = $1.106, which is
greater than the (constant) marginal cost of $1.10. This means that producing one more unit will
bring in more revenue than its cost, so profit will increase. When q = 651, MR = $1.094, which
is less than MC, so it is not profitable to produce the 651st unit. We conclude that q = 650 is a
local maximum for the profit function π. The profit earned by producing and selling this quantity is
π(650) = R(650)− C(650) = $967.50.

To check for global maxima we need to look at the endpoints. If q = 0, the only cost is $300
(the fixed costs) and there is no revenue, so π(0) = −$300. At the upper limit of q = 800, we
have π(800) = $900. Therefore, the maximum profit is at the production level of 650 units, where
MR = MC. The minimum profit (a loss) occurs when q = 0 and there is no production at all.

Exercises and Problems for Section 4.5
Exercises

1. Figure 4.76 shows cost and revenue. For what production
levels is the profit function positive? Negative? Estimate
the production at which profit is maximized.

5 10 15

100

200

300

400
C(q)

R(q)

q (thousands)

$ (thousands)

Figure 4.76

2. Figure 4.77 gives cost and revenue. What are fixed costs?
What quantity maximizes profit, and what is the maxi-
mum profit earned?

q (quantity)
100

1.1

2.5

3.7

q (quantity)

$ (millions)

C
R

�
�

�

�

Figure 4.77

3. Total cost and revenue are approximated by the functions
C = 5000 + 2.4q and R = 4q, both in dollars. Iden-
tify the fixed cost, marginal cost per item, and the price
at which this commodity is sold.

In Exercises 4–7, give the cost, revenue, and profit functions.

4. An online seller of T-shirts pays $500 to start up the web-
site and $6 per T-shirt, then sells the T-shirts for $12 each.

5. A car wash operator pays $35,000 for a franchise, then
spends $10 per car wash, which costs the consumer $15.

6. A couple running a house-cleaning business invests
$5000 in equipment, and they spend $15 in supplies to
clean a house, for which they charge $60.

7. A lemonade stand operator sets up the stand for free in
front of the neighbor’s house, makes 5 quarts of lemon-
ade for $4, then sells each 8 oz cup for 25 cents.

8. The revenue from selling q items is R(q) = 500q − q2,
and the total cost is C(q) = 150 + 10q. Write a function
that gives the total profit earned, and find the quantity
which maximizes the profit.

9. Revenue is given by R(q) = 450q and cost is given by
C(q) = 10,000 + 3q2. At what quantity is profit maxi-
mized? What is the total profit at this production level?

10. A company estimates that the total revenue, R, in dollars,
received from the sale of q items is R = ln(1+1000q2).
Calculate and interpret the marginal revenue if q = 10.
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11. Table 4.2 shows cost, C(q), and revenue, R(q).

(a) At approximately what production level, q, is profit
maximized? Explain your reasoning.

(b) What is the price of the product?
(c) What are the fixed costs?

Table 4.2

q 0 500 1000 1500 2000 2500 3000

R(q) 0 1500 3000 4500 6000 7500 9000

C(q) 3000 3800 4200 4500 4800 5500 7400

12. Table 4.3 shows marginal cost, MC, and marginal rev-
enue, MR.

(a) Use the marginal cost and marginal revenue at a pro-
duction of q = 5000 to determine whether produc-
tion should be increased or decreased from 5000.

(b) Estimate the production level that maximizes profit.

Table 4.3

q 5000 6000 7000 8000 9000 10000

MR 60 58 56 55 54 53

MC 48 52 54 55 58 63

Problems

13. Let C(q) be the total cost of producing a quantity q of a
certain product. See Figure 4.78.

(a) What is the meaning of C(0)?
(b) Describe in words how the marginal cost changes as

the quantity produced increases.
(c) Explain the concavity of the graph (in terms of eco-

nomics).
(d) Explain the economic significance (in terms of

marginal cost) of the point at which the concavity
changes.

(e) Do you expect the graph of C(q) to look like this for
all types of products?

$

q

C(q)

Figure 4.78

14. When production is 2000, marginal revenue is $4 per unit
and marginal cost is $3.25 per unit. Do you expect maxi-
mum profit to occur at a production level above or below
2000? Explain.

15. If C′(500) = 75 and R′(500) = 100, should the quan-
tity produced be increased or decreased from q = 500 in
order to increase profits?

16. An online seller of knitted sweaters finds that it costs
$35 to make her first sweater. Her cost for each addi-
tional sweater goes down until it reaches $25 for her
100th sweater, and after that it starts to rise again. If she
can sell each sweater for $35, is the quantity sold that
maximizes her profit less than 100? Greater than 100?

17. The marginal revenue and marginal cost for a certain item
are graphed in Figure 4.79. Do the following quantities
maximize profit for the company? Explain your answer.

(a) q = a (b) q = b

ba

MR

MC

q

$/unit

Figure 4.79

18. The total cost C(q) of producing q goods is given by:

C(q) = 0.01q3 − 0.6q2 + 13q.

(a) What is the fixed cost?
(b) What is the maximum profit if each item is sold for

$7? (Assume you sell everything you produce.)
(c) Suppose exactly 34 goods are produced. They all sell

when the price is $7 each, but for each $1 increase
in price, 2 fewer goods are sold. Should the price be
raised, and if so by how much?

19. A company manufactures only one product. The quan-
tity, q, of this product produced per month depends on
the amount of capital, K, invested (i.e., the number of
machines the company owns, the size of its building, and
so on) and the amount of labor, L, available each month.
We assume that q can be expressed as a Cobb-Douglas
production function:

q = cKαLβ ,
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where c, α, β are positive constants, with 0 < α < 1
and 0 < β < 1. In this problem we will see how the
Russian government could use a Cobb-Douglas function
to estimate how many people a newly privatized industry
might employ. A company in such an industry has only a
small amount of capital available to it and needs to use all
of it, so K is fixed. Suppose L is measured in man-hours
per month, and that each man-hour costs the company w
rubles (a ruble is the unit of Russian currency). Suppose
the company has no other costs besides labor, and that
each unit of the good can be sold for a fixed price of p
rubles. How many man-hours of labor per month should
the company use in order to maximize its profit?

20. An agricultural worker in Uganda is planting clover to
increase the number of bees making their home in the re-
gion. There are 100 bees in the region naturally, and for
every acre put under clover, 20 more bees are found in
the region.

(a) Draw a graph of the total number, N(x), of bees as a
function of x, the number of acres devoted to clover.

(b) Explain, both geometrically and algebraically, the
shape of the graph of:

(i) The marginal rate of increase of the number of
bees with acres of clover, N ′(x).

(ii) The average number of bees per acre of clover,
N(x)/x.

21. If you invest x dollars in a certain project, your return is
R(x). You want to choose x to maximize your return per
dollar invested,8 which is

r(x) =
R(x)

x
.

(a) The graph of R(x) is in Figure 4.80, with R(0) = 0.
Illustrate on the graph that the maximum value of
r(x) is reached at a point at which the line from the
origin to the point is tangent to the graph of R(x).

(b) Also, the maximum of r(x) occurs at a point at
which the slope of the graph of r(x) is zero. On the
same axes as part (a), sketch r(x). Illustrate that the
maximum of r(x) occurs where its slope is 0.

(c) Show, by taking the derivative of the formula for
r(x), that the conditions in part (a) and (b) are equiv-
alent: the x-value at which the line from the origin is
tangent to the graph of R is the same as the x-value
at which the graph of r has zero slope.

R(x)

x

$

Figure 4.80

Problems 22–23 involve the average cost of manufacturing a
quantity q of a good, which is defined to be

a(q) =
C(q)

q
.

22. Figure 4.81 shows the cost of production, C(q), as a
function of quantity produced, q.

(a) For some q0, sketch a line whose slope is the
marginal cost, MC, at that point.

(b) For the same q0, explain why the average cost a(q0)
can be represented by the slope of the line from that
point on the curve to the origin.

(c) Use the method of Example 6 on page 210 to ex-
plain why at the value of q which minimizes a(q),
the average and marginal costs are equal.

$

q

C(q)

Figure 4.81

23. The average cost per item to produce q items is given by

a(q) = 0.01q2 − 0.6q + 13, for q > 0.

(a) What is the total cost, C(q), of producing q goods?
(b) What is the minimum marginal cost? What is the

practical interpretation of this result?
(c) At what production level is the average cost a mini-

mum? What is the lowest average cost?
(d) Compute the marginal cost at q = 30. How does

this relate to your answer to part (c)? Explain this
relationship both analytically and in words.

24. The production function f(x) gives the number of units
of an item that a manufacturing company can produce
from x units of raw material. The company buys the raw
material at price w dollars per unit and sells all it pro-
duces at a price of p dollars per unit. The quantity of raw
material that maximizes profit is denoted by x∗.

(a) Do you expect the derivative f ′(x) to be positive or
negative? Justify your answer.

(b) Explain why the formula π(x) = pf(x)−wx gives
the profit π(x) that the company earns as a function
of the quantity x of raw materials that it uses.

8From Peter D. Taylor, Calculus: The Analysis of Functions (Toronto: Wall & Emerson, 1992).
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(c) Evaluate f ′(x∗).
(d) Assuming it is nonzero, is f ′′(x∗) positive or nega-

tive?
(e) If the supplier of the raw materials is likely to change

the price w, then it is appropriate to treat x∗ as
a function of w. Find a formula for the derivative
dx∗/dw and decide whether it is positive or nega-
tive.

(f) If the price w goes up, should the manufacturing
company buy more or less of the raw material?

In many applications, we want to maximize or minimize some
quantity subject to a condition. Such constrained optimization
problems are solved using Lagrange multipliers in multivari-
able calculus; Problems 25–27 show an alternate method.9

25. Minimize x2 + y2 while satisfying x+ y = 4 using the
following steps.

(a) Graph x+ y = 4. On the same axes, graph
x2 + y2 = 1, x2 + y2 = 4, x2 + y2 = 9.

(b) Explain why the minimum value of x2 + y2 on
x + y = 4 occurs at the point at which a graph of
x2+y2 = Constant is tangent to the line x+y = 4.

(c) Using your answer to part (b) and implicit differenti-
ation to find the slope of the circle, find the minimum
value of x2 + y2 such that x+ y = 4.

26. The quantity Q of an item which can be produced from

quantities x and y of two raw materials is given by
Q = 10xy at a cost of C = x + 2y thousand dollars.
If the budget for raw materials is 10 thousand dollars,
find the maximum production using the following steps.

(a) Graph x+2y = 10 in the first quadrant. On the same
axes, graph Q = 10xy = 100, Q = 10xy = 200,
and Q = 10xy = 300.

(b) Explain why the maximum production occurs at a
point at which a production curve is tangent to the
cost line C = 10.

(c) Using your answer to part (b) and implicit differen-
tiation to find the slope of the curve, find the maxi-
mum production under this budget.

27. With quantities x and y of two raw materials available,
Q = x1/2y1/2 thousand items can be produced at a
cost of C = 2x + y thousand dollars. Using the follow-
ing steps, find the minimum cost to produce 1 thousand
items.

(a) Graph x1/2y1/2 = 1. On the same axes, graph
2x+ y = 2, 2x+ y = 3, and 2x+ y = 4.

(b) Explain why the minimum cost occurs at a point at
which a cost line is tangent to the production curve
Q = 1.

(c) Using your answer to part (b) and implicit differenti-
ation to find the slope of the curve, find the minimum
cost to meet this production level.

Strengthen Your Understanding

In Problems 28–29, explain what is wrong with the statement.

28. If C(100) = 90 and R(100) = 150, increasing the
quantity produced from 100 increases profit.

29. For the cost, C, and revenue, R, in Figure 4.82, profit is
maximized when the quantity produced is about 3,500
units.

5 10 15

100

200

300 R
C

q (thousands)

$ (thousands)

Figure 4.82

In Problems 30–31, give an example of:

30. A quantity, q, in Figure 4.82 where MC > MR.

31. Cost and revenue curves such that the item can never be
sold for a profit.

32. Which is correct? A company generally wants to

(a) Maximize revenue
(b) Maximize marginal revenue
(c) Minimize cost
(d) Minimize marginal cost
(e) None of the above

33. Which is correct? A company can increase its profit by
increasing production if, at its current level of produc-
tion,

(a) Marginal revenue − Marginal cost > 0
(b) Marginal revenue − Marginal cost = 0
(c) Marginal revenue − Marginal cost < 0
(d) Marginal revenue − Marginal cost is increasing

9Kelly Black, “Putting Constraints in Optimization for First-Year Calculus Students,” pp. 310–312, SIAM Review, Vol.
39, No. 2, June 1997.
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4.6 RATES AND RELATED RATES

Derivatives represent rates of change. In this section, we see how to calculate rates in a variety of
situations.

Example 1 A spherical snowball is melting. Its radius decreases at a constant rate of 2 cm per minute from an
initial value of 70 cm. How fast is the volume decreasing half an hour later?

Solution The radius, r, starts at 70 cm and decreases at 2 cm/min. At time t minutes since the start,

r = 70− 2t cm.

The volume of the snowball is given by

V =
4

3
πr3 =

4

3
π(70− 2t)3 cm3.

The rate at which the volume is changing at time t is

dV

dt
=

4

3
π · 3(70− 2t)2(−2) = −8π(70− 2t)2 cm3/min.

The volume is measured in cm3, and time is in minutes, so after half an hour t = 30, and

dV

dt

∣∣∣∣
t=30

= −8π(70− 2 · 30)2 = −800π cm3/min.

Thus, the rate at which the volume is increasing is −800π ≈ −2500 cm3/min; the rate at which the
volume is decreasing is about 2500 cm3/min.

Example 2 A skydiver of mass m jumps from a plane at time t = 0. Under certain assumptions, the distance,
s(t), he has fallen in time t is given by

s(t) =
m2g

k2

(
kt

m
+ e−kt/m − 1

)
for some positive constant k.

(a) Find s′(0) and s′′(0) and interpret in terms of the skydiver.
(b) Relate the units of s′(t) and s′′(t) to the units of t and s(t).

Solution (a) Differentiating using the chain rule gives

s′(t) =
m2g

k2

(
k

m
+ e−kt/m

(
−

k

m

))
=

mg

k

(
1− e−kt/m

)
s′′(t) =

mg

k
(−ekt/m)

(
−

k

m

)
= ge−kt/m.

Since e−k·0/m = 1, evaluating at t = 0 gives

s′(0) =
mg

k
(1− 1) = 0 and s′′(0) = g.

The first derivative of distance is velocity, so the fact that s′(0) = 0 tells us that the sky-
diver starts with zero velocity. The second derivative of distance is acceleration, so the fact that
s′′(0) = g tells us that the skydiver’s initial acceleration is g, the acceleration due to gravity.

(b) The units of velocity, s′(t), and acceleration, s′′(t), are given by

Units of s′(t) are
Units of s(t)

Units of t
=

Units of distance
Units of time

; for example, meters/sec.

Units of s′′(t) are
Units of s′(t)

Units of t
=

Units of distance
(Units of time)2

; for example, meters/sec2.
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Related Rates
In Example 1, the radius of the snowball decreased at a constant rate. A more realistic scenario is
that the radius decreases at a varying rate. In this case, we may not be able to write a formula for V
as a function of t. However, we may still be able to calculate dV/dt, as in the following example.

Example 3 A spherical snowball melts in such a way that the instant at which its radius is 20 cm, its radius is
decreasing at 3 cm/min. At what rate is the volume of the ball of snow changing at that instant?

Solution Since the snowball is spherical, we again have that

V =
4

3
πr3.

We can no longer write a formula for r in terms of t, but we know that

dr

dt
= −3 when r = 20.

We want to know dV/dt when r = 20. Think of r as an (unknown) function of t and differentiate
the expression for V with respect to t using the chain rule:

dV

dt
=

4

3
π · 3r2

dr

dt
= 4πr2

dr

dt
.

At the instant at which r = 20 and dr/dt = −3, we have

dV

dt
= 4π · 202 · (−3) = −4800π ≈ −15,080 cm3/min.

So the volume of the ball is decreasing at a rate of 15,080 cm3 per minute at the moment when
r = 20 cm. Notice that we have sidestepped the problem of not knowing r as a function of t by
calculating the derivatives only at the moment we are interested in.

Example 4 Figure 4.83 shows the fuel consumption, g, in miles per gallon (mpg), of a car traveling at v mph.
At one moment, the car was going 70 mph and its deceleration was 8000 miles/hour2. How fast was
the fuel consumption changing at that moment? Include units.

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

v (mph)

g (mpg)

Figure 4.83: Fuel consumption versus velocity

Solution Acceleration is rate of change of velocity, dv/dt, and we are told that the deceleration is 8000
miles/hour2, so we know dv/dt = −8000 when v = 70. We want dg/dt. The chain rule gives

dg

dt
=

dg

dv
·
dv

dt
.
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The value of dg/dv is the slope of the curve in Figure 4.83 at v = 70. Since the points (30, 40) and
(100, 20) lie approximately on the tangent to the curve at v = 70, we can estimate the derivative

dg

dv
≈

20− 40

100− 30
= −

2

7
mpg/mph.

Thus,
dg

dt
=

dg

dv
·
dv

dt
≈ −

2

7
(−8000) ≈ 2300 mpg/hr.

In other words, fuel consumption is increasing at about 2300/60 ≈ 38 mpg per minute. Since we
approximated dg/dv, we can only get a rough estimate for dg/dt.

A famous problem involves the rate at which the top of a ladder slips down a wall as the foot
of the ladder moves.

Example 5 (a) A 3-meter ladder stands against a high wall. The foot of the ladder moves outward at a constant
speed of 0.1 meter/sec. When the foot is 1 meter from the wall, how fast is the top of the ladder
falling? What about when the foot is 2 meters from the wall?

(b) If the foot of the ladder moves out at a constant speed, how does the speed at which the top falls
change as the foot gets farther out?

Solution (a) Let the foot be x meters from the base of the wall and let the top be y meters from the base. See
Figure 4.84. Then, since the ladder is 3 meters long, by Pythagoras’ Theorem,

x2
+ y2 = 3

2
= 9.

Thinking of x and y as functions of t, we differentiate with respect to t using the chain rule:

2x
dx

dt
+ 2y

dy

dt
= 0.

We are interested in the moment at which dx/dt = 0.1 and x = 1. We want to know dy/dt, so
we solve, giving

dy

dt
= −

x

y

dx

dt
.

When the foot of the ladder is 1 meter from the wall, x = 1 and y =
√
9− 12 =

√
8, so

dy

dt
= −

1
√
8
0.1 = −0.035 meter/sec.

Thus, the top falls at 0.035 meter/sec.
When the foot is 2 meters from the wall, x = 2 and y =

√
9− 22 =

√
5, so

dy

dt
= −

2
√
5
0.1 = −0.089 meter/sec.

Thus, the top falls at 0.089 meter/sec. Notice that the top falls faster when the base of the ladder
is farther from the wall.

(b) As the foot of the ladder moves out, x increases and y decreases. Looking at the expression

dy

dt
= −

x

y

dx

dt
,

we see that if dx/dt is constant, the magnitude of dy/dt increases as the foot gets farther out.
Thus, the top falls faster and faster.
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�� x

�

�

y
Ladder
3 meters

Ground

Wall

Figure 4.84: Side view of ladder standing against wall (x, y in meters)

Example 6 An airplane, flying at 450 km/hr at a constant altitude of 5 km, is approaching a camera mounted
on the ground. Let θ be the angle of elevation above the ground at which the camera is pointed. See
Figure 4.85. When θ = π/3, how fast does the camera have to rotate in order to keep the plane in
view?

Solution Suppose the camera is at point C and the plane is vertically above point B. Let x km be the distance
between B and C. The fact that the plane is moving horizontally toward C at 450 km/hr means that
x is decreasing and dx/dt = −450 km/hr. From Figure 4.85, we see that tan θ = 5/x.

Differentiating tan θ = 5/x with respect to t and using the chain rule gives

1

cos2 θ

dθ

dt
= −5x−2 dx

dt
.

�

C
Camera Ground

x B

5 km

Plane

θ

Figure 4.85: Plane approaching a camera at C (side view; x in km)

We want to calculate dθ/dt when θ = π/3. At that moment, cos θ = 1/2 and tan θ =
√
3, so

x = 5/
√
3. Substituting gives

1

(1/2)2
dθ

dt
= −5

(
5
√
3

)−2

· (−450)

dθ

dt
= 67.5 radians/hour.

Since there are 60 minutes in an hour, the camera must turn at roughly 1 radian per minute if it is to
remain pointed at the plane. With 1 radian ≈ 60◦, this is a rotation of about one degree per second.



4.6 RATES AND RELATED RATES 237

Exercises and Problems for Section 4.6
Exercises

1. With time, t, in minutes, the temperature, H , in degrees
Celsius, of a bottle of water put in the refrigerator at
t = 0 is given by

H = 4 + 16e−0.02t.

How fast is the water cooling initially? After 10 minutes?
Give units.

2. According to the US Census, the world population P , in
billions, was approximately

P = 6.7e0.011t ,

where t is in years since January 1, 2007. At what
rate was the world’s population increasing on that date?
Give your answer in millions of people per year. [The
world population growth rate has actually decreased
since 2007.]

3. The power, P , dissipated when a 9-volt battery is put
across a resistance of R ohms is given by

P =
81

R
.

What is the rate of change of power with respect to resis-
tance?

4. With length, l, in meters, the period T , in seconds, of a
pendulum is given by

T = 2π

√
l

9.8
.

(a) How fast does the period increase as l increases?
(b) Does this rate of change increase or decrease as l

increases?

5. A plane is climbing at 500 feet per minute, and the air
temperature outside the plane is falling at 2◦C per 1000
feet. What is the rate of change (as a function of time) of
the air temperature just outside the plane?

6. Atmospheric pressure decays exponentially as altitude
increases. With pressure, P , in inches of mercury and al-
titude, h, in feet above sea level, we have

P = 30e−3.23×10−5h.

(a) At what altitude is the atmospheric pressure 25
inches of mercury?

(b) A glider measures the pressure to be 25 inches
of mercury and experiences a pressure increase of
0.1 inches of mercury per minute. At what rate is it
changing altitude?

7. The gravitational force, F , on a rocket at a distance, r,
from the center of the earth is given by

F =
k

r2
,

where k = 1013 newton · km2. When the rocket is 104

km from the center of the earth, it is moving away at 0.2
km/sec. How fast is the gravitational force changing at
that moment? Give units. (A newton is a unit of force.)

8. A voltage V across a resistance R generates a current

I =
V

R
.

A constant voltage of 9 volts is put across a resistance
that is increasing at a rate of 0.2 ohms per second when
the resistance is 5 ohms. At what rate is the current
changing?

9. If θ is the angle between a line through the origin and the
positive x-axis, the area, in cm2, of part of a rose petal is

A =
9

16
(4θ − sin(4θ)).

If the angle θ is increasing at a rate of 0.2 radians per
minute, at what rate is the area changing when θ = π/4?

10. The potential, φ, of a charge distribution at a point on the
positive x-axis is given, for x in centimeters, by

φ = 2π
(√

x2 + 4− x
)
.

A particle at x = 3 is moving to the left at a rate of
0.2 cm/sec. At what rate is its potential changing?

11. The average cost per item, C, in dollars, of manufactur-
ing a quantity q of cell phones is given by

C =
a

q
+ b where a, b are positive constants.

(a) Find the rate of change of C as q increases. What are
its units?

(b) If production increases at a rate of 100 cell phones
per week, how fast is the average cost changing? Is
the average cost increasing or decreasing?

12. If x2 + y2 = 25 and dx/dt = 6, find dy/dt when y is
positive and

(a) x = 0 (b) x = 3 (c) x = 4

13. A pyramid has height h and a square base with side x.
The volume of a pyramid is V = 1

3
x2h. If the height

remains fixed and the side of the base is decreasing by
0.002 meter/yr, what rate is the volume decreasing when
the height is 120 meters and the width is 150 meters?



238 Chapter Four USING THE DERIVATIVE

14. A thin uniform rod of length l cm and a small particle
lie on a line separated by a distance of a cm. If K is
a positive constant and F is measured in newtons, the
gravitational force between them is

F =
K

a(a+ l)
.

(a) If a is increasing at the rate 2 cm/min when a = 15
and l = 5, how fast is F decreasing?

(b) If l is decreasing at the rate 2 cm/min when a = 15
and l = 5, how fast is F increasing?

15. The Dubois formula relates a person’s surface area, s, in
meters2, to weight, w, in kg, and height, h, in cm, by

s = 0.01w0.25h0.75.

(a) What is the surface area of a person who weighs
60 kg and is 150 cm tall?

(b) The person in part (a) stays constant height but in-
creases in weight by 0.5 kg/year. At what rate is his
surface area increasing when his weight is 62 kg?

Problems

16. A rectangle has one side of 10 cm. How fast is the area of
the rectangle changing at the instant when the other side
is 12 cm and increasing at 3 cm per minute?

17. A rectangle has one side of 8 cm. How fast is the diago-
nal of the rectangle changing at the instant when the other
side is 6 cm and increasing at 3 cm per minute?

18. A right triangle has one leg of 7 cm. How fast is its area
changing at the instant that the other leg has length 10 cm
and is decreasing at 2 cm per second?

19. The area, A, of a square is increasing at 3 cm2 per minute.
How fast is the side length of the square changing when
A = 576 cm2?

20. If two electrical resistances, R1 and R2, are connected in
parallel, their combined resistance, R, is given by

1

R
=

1

R1
+

1

R2
.

Suppose R1 is held constant at 10 ohms, and that R2 is
increasing at 2 ohms per minute when R2 is 20 ohms.
How fast is R changing at that moment?

21. A dose, D, of a drug causes a temperature change, T , in
a patient. For C a positive constant, T is given by

T =
(
C

2
− D

3

)
D2.

(a) What is the rate of change of temperature change
with respect to dose?

(b) For what doses does the temperature change increase
as the dose increases?

22. An item costs $500 at time t = 0 and costs $P in year t.
When inflation is r% per year, the price is given by

P = 500ert/100.

(a) If r is a constant, at what rate is the price rising (in
dollars per year)

(i) Initially? (ii) After 2 years?

(b) Now suppose that r is increasing by 0.3 per year
when r = 4 and t = 2. At what rate (dollars per
year) is the price increasing at that time?

23. For positive constants A and B, the force, F , between
two atoms in a molecule at a distance r apart is given by

F = − A

r2
+

B

r3
.

(a) How fast does force change as r increases? What
type of units does it have?

(b) If at some time t the distance is changing at a rate k,
at what rate is the force changing with time? What
type of units does this rate of change have?

24. For positive constants k and g, the velocity, v, of a parti-
cle of mass m at time t is given by

v =
mg

k

(
1− e−kt/m

)
.

At what rate is the velocity changing at time 0? At t = 1?
What do your answers tell you about the motion?

25. A 10 m ladder leans against a vertical wall and the bot-
tom of the ladder slides away from the wall at a rate of
0.5 m/sec. How fast is the top of the ladder sliding down
the wall when the bottom of the ladder is

(a) 4 m from the wall? (b) 8 m from the wall?

26. Gasoline is pouring into a vertical cylindrical tank of ra-
dius 3 feet. When the depth of the gasoline is 4 feet, the
depth is increasing at 0.2 ft/sec. How fast is the volume
of gasoline changing at that instant?

27. Water is being pumped into a vertical cylinder of radius
5 meters and height 20 meters at a rate of 3 meters3/min.
How fast is the water level rising when the cylinder is half
full?

28. A spherical snowball is melting. Its radius is decreasing
at 0.2 cm per hour when the radius is 15 cm. How fast is
its volume decreasing at that time?

29. The radius of a spherical balloon is increasing by 2
cm/sec. At what rate is air being blown into the balloon
at the moment when the radius is 10 cm? Give units in
your answer.
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30. The circulation time of a mammal (that is, the average
time it takes for all the blood in the body to circulate once
and return to the heart) is proportional to the fourth root
of the body mass of the mammal. The constant of pro-
portionality is 17.40 if circulation time is in seconds and
body mass is in kilograms. The body mass of a growing
child is 45 kg and is increasing at a rate of 0.1 kg/month.
What is the rate of change of the circulation time of the
child?

31. A certain quantity of gas occupies a volume of 20 cm3 at
a pressure of 1 atmosphere. The gas expands without the
addition of heat, so, for some constant k, its pressure, P ,
and volume, V , satisfy the relation

PV 1.4 = k.

(a) Find the rate of change of pressure with volume.
Give units.

(b) The volume is increasing at 2 cm3/min when the
volume is 30 cm3. At that moment, is the pressure
increasing or decreasing? How fast? Give units.

32. The metal frame of a rectangular box has a square base.
The horizontal rods in the base are made out of one metal
and the vertical rods out of a different metal. If the hori-
zontal rods expand at a rate of 0.001 cm/hr and the ver-
tical rods expand at a rate of 0.002 cm/hr, at what rate is
the volume of the box expanding when the base has an
area of 9 cm2 and the volume is 180 cm3?

33. A ruptured oil tanker causes a circular oil slick on the
surface of the ocean. When its radius is 150 meters, the
radius of the slick is expanding by 0.1 meter/minute and
its thickness is 0.02 meter. At that moment:

(a) How fast is the area of the slick expanding?
(b) The circular slick has the same thickness every-

where, and the volume of oil spilled remains fixed.
How fast is the thickness of the slick decreasing?

34. A potter forms a piece of clay into a cylinder. As he rolls
it, the length, L, of the cylinder increases and the radius,
r, decreases. If the length of the cylinder is increasing at
0.1 cm per second, find the rate at which the radius is
changing when the radius is 1 cm and the length is 5 cm.

35. A cone-shaped coffee filter of radius 6 cm and depth 10
cm contains water, which drips out through a hole at the
bottom at a constant rate of 1.5 cm3 per second.

(a) If the filter starts out full, how long does it take to
empty?

(b) Find the volume of water in the filter when the depth
of the water is h cm.

(c) How fast is the water level falling when the depth is
8 cm?

36. Water is being poured into the cone-shaped container in
Figure 4.86. When the depth of the water is 2.5 in, it is

increasing at 3 in/min. At that time, how fast is the sur-
face area, A, that is covered by water increasing? [Hint:
A = πrs, where r, s are as shown.]
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Figure 4.86: Cone and cross section

37. Grit, which is spread on roads in winter, is stored in
mounds which are the shape of a cone. As grit is added
to the top of a mound at 2 cubic meters per minute, the
angle between the slant side of the cone and the verti-
cal remains 45◦. How fast is the height of the mound
increasing when it is half a meter high? [Hint: Volume
V = πr2h/3, where r is radius and h is height.]

38. A gas station stands at the intersection of a north-south
road and an east-west road. A police car is traveling to-
ward the gas station from the east, chasing a stolen truck
which is traveling north away from the gas station. The
speed of the police car is 100 mph at the moment it is 3
miles from the gas station. At the same time, the truck is
4 miles from the gas station going 80 mph. At this mo-
ment:

(a) Is the distance between the car and truck increas-
ing or decreasing? How fast? (Distance is measured
along a straight line joining the car and the truck.)

(b) How does your answer change if the truck is going
70 mph instead of 80 mph?

39. The London Eye is a large Ferris wheel that has diameter
135 meters and revolves continuously. Passengers enter
the cabins at the bottom of the wheel and complete one
revolution in about 27 minutes. One minute into the ride
a passenger is rising at 0.06 meters per second. How fast
is the horizontal motion of the passenger at that moment?

40. Point P moves around the unit circle.10 (See Fig-
ure 4.87.) The angle θ, in radians, changes with time as
shown in Figure 4.88.

(a) Estimate the coordinates of P when t = 2.
(b) When t = 2, approximately how fast is the point P

moving in the x-direction? In the y-direction?

P

θ x

y

Figure 4.87

2 4 6 8 10

1

3

5

7

t

θ

Figure 4.88

10Based on an idea from Caspar Curjel.
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41. Figure 4.89 shows the number of gallons, G, of gasoline
used on a trip of M miles.

(a) The function f is linear on each of the intervals
0 < M < 70 and 70 < M < 100. What is the slope
of these lines? What are the units of these slopes?

(b) What is gas consumption (in miles per gallon) dur-
ing the first 70 miles of this trip? During the next 30
miles?

(c) Figure 4.90 shows distance traveled, M (in miles),
as a function of time t, in hours since the start of
the trip. Describe this trip in words. Give a possible
explanation for what happens one hour into the trip.
What do your answers to part (b) tell you about the
trip?

(d) If we let G = k(t) = f(h(t)), estimate k(0.5) and
interpret your answer in terms of the trip.

(e) Find k′(0.5) and k′(1.5). Give units and interpret
your answers.

70 100

G = f(M)

2.8

4.6

M (miles)

G (gallons)

Figure 4.89

1 2

70

100
M = h(t)

t (hours)

M (miles)

Figure 4.90:

42. On February 16, 2007, paraglider Eva Wisnierska11 was
caught in a freak thunderstorm over Australia and carried
upward at a speed of about 3000 ft/min. Table 4.4 gives
the temperature at various heights. Approximately how
fast (in ◦F/ per minute) was her temperature decreasing
when she was at 4000 feet?

Table 4.4

y (thousand ft) 2 4 6 8 10 12 14 16

H (◦F) 60 52 38 31 23 16 9 2

43. Coroners estimate time of death using the rule of thumb
that a body cools about 2◦F during the first hour after
death and about 1◦F for each additional hour. Assuming
an air temperature of 68◦F and a living body temperature
of 98.6◦F, the temperature T (t) in ◦F of a body at a time
t hours since death is given by

T (t) = 68 + 30.6e−kt.

(a) For what value of k will the body cool by 2◦F in the
first hour?

(b) Using the value of k found in part (a), after how
many hours will the temperature of the body be de-
creasing at a rate of 1◦F per hour?

(c) Using the value of k found in part (a), show that, 24
hours after death, the coroner’s rule of thumb gives
approximately the same temperature as the formula.

44. A train is traveling at 0.8 km/min along a long straight
track, moving in the direction shown in Figure 4.91. A
movie camera, 0.5 km away from the track, is focused
on the train.

(a) Express z, the distance between the camera and the
train, as a function of x.

(b) How fast is the distance from the camera to the train
changing when the train is 1 km from the camera?
Give units.

(c) How fast is the camera rotating (in radians/min) at
the moment when the train is 1 km from the cam-
era?

0 x km Train

z km

Camera

0.5 km

�

Figure 4.91

45. A lighthouse is 2 km from the long, straight coastline
shown in Figure 4.92. Find the rate of change of the dis-
tance of the spot of light from the point O with respect to
the angle θ.

Lighthouse

Spot of light

θ

O Shoreline

�
Beam of light�

�

2 km

Figure 4.92

11www.sciencedaily.com, accessed May 15, 2007.
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46. When the growth of a spherical cell depends on the
flow of nutrients through the surface, it is reasonable
to assume that the growth rate, dV/dt, is proportional
to the surface area, S. Assume that for a particular cell
dV/dt = 1

3
S. At what rate is its radius r increasing?

47. The length of each side of a cube is increased at a con-
stant rate. Which is greater, the relative rate of change of

the volume of the cube,
1

V

dV

dt
, or the relative change of

the surface area of the cube,
1

A

dA

dt
?

48. A circular region is irrigated by a 20 meter long pipe,
fixed at one end and rotating horizontally, spraying wa-
ter. One rotation takes 5 minutes. A road passes 30 meters
from the edge of the circular area. See Figure 4.93.

(a) How fast is the end of the pipe, P , moving?
(b) How fast is the distance PQ changing when θ is

π/2? When θ is 0?

20
m 0

P

Q

θ

�

�

30 m

Road

Figure 4.93

49. A water tank is in the shape of an inverted cone with
depth 10 meters and top radius 8 meters. Water is flowing
into the tank at 0.1 cubic meters/min but leaking out at a
rate of 0.004h2 cubic meters/min, where h is the depth
of the water in meters. Can the tank ever overflow?

50. For the amusement of the guests, some hotels have eleva-
tors on the outside of the building. One such hotel is 300
feet high. You are standing by a window 100 feet above
the ground and 150 feet away from the hotel, and the el-
evator descends at a constant speed of 30 ft/sec, starting
at time t = 0, where t is time in seconds. Let θ be the
angle between the line of your horizon and your line of
sight to the elevator. (See Figure 4.94.)

(a) Find a formula for h(t), the elevator’s height above
the ground as it descends from the top of the hotel.

(b) Using your answer to part (a), express θ as a func-
tion of time t and find the rate of change of θ with
respect to t.

(c) The rate of change of θ is a measure of how fast the
elevator appears to you to be moving. At what height
is the elevator when it appears to be moving fastest?

�
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� �
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�

300 ft

100 ft

150 ft

h(t)
θ

Elevator

Figure 4.94

51. In a romantic relationship between Angela and Brian,
who are unsuited for each other, a(t) represents the affec-
tion Angela has for Brian at time t days after they meet,
while b(t) represents the affection Brian has for Angela
at time t. If a(t) > 0 then Angela likes Brian; if a(t) < 0
then Angela dislikes Brian; if a(t) = 0 then Angela
neither likes nor dislikes Brian. Their affection for each
other is given by the relation (a(t))2 + (b(t))2 = c,
where c is a constant.

(a) Show that a(t) · a′(t) = −b(t) · b′(t).
(b) At any time during their relationship, the rate per

day at which Brian’s affection for Angela changes is
b′(t) = −a(t). Explain what this means if Angela

(i) Likes Brian, (ii) Dislikes Brian.

(c) Use parts (a) and (b) to show that a′(t) = b(t). Ex-
plain what this means if Brian

(i) Likes Angela, (ii) Dislikes Angela.

(d) If a(0) = 1 and b(0) = 1 who first dislikes the
other?

52. In a 19th century sea-battle, the number of ships on each
side remaining t hours after the start are given by x(t)
and y(t). If the ships are equally equipped, the relation
between them is (x(t))2− (y(t))2 = c, where c is a pos-
itive constant. The battle ends when one side has no ships
remaining.

(a) If, at the start of the battle, 50 ships on one side op-
pose 40 ships on the other, what is the value of c?

(b) If y(3) = 16, what is x(3)? What does this represent
in terms of the battle?

(c) There is a time T when y(T ) = 0. What does this T
represent in terms of the battle?

(d) At the end of the battle, how many ships remain on
the victorious side?

(e) At any time during the battle, the rate per hour at
which y loses ships is directly proportional to the
number of x ships, with constant of proportionality
k. Write an equation that represents this. Is k posi-
tive or negative?

(f) Show that the rate per hour at which x loses ships is
directly proportional to the number of y ships, with
constant of proportionality k.

(g) Three hours after the start of the battle, x is losing
ships at the rate of 32 ships per hour. What is k? At
what rate is y losing ships at this time?
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Strengthen Your Understanding

In Problems 53–54, explain what is wrong with the statement.

53. If the radius, R, of a circle increases at a constant rate, its
diameter, D, increases at the same constant rate.

54. If two variables x and y are functions of t and are related
by the equation y = 1− x2 then dy/dt = −2x.

In Problems 55–56, give an example of:

55. Two functions f and g where y = f(x) and x = g(t)
such that dy/dt and dx/dt are both constant.

56. Two functions g and f where x = g(t) and y = f(x)
such that dx/dt is constant and dy/dt is not constant.

Are the statements in Problems 57–58 true of false? Give an
explanation for your answer.

57. If the radius of a circle is increasing at a constant rate,
then so is the circumference.

58. If the radius of a circle is increasing at a constant rate,
then so is the area.

59. The light in the lighthouse in Figure 4.95 rotates at 2 rev-
olutions per minute. To calculate the speed at which the
spot of light moves along the shore, it is best to differen-
tiate:

(a) r2 = 52 + x2

(b) x = r sin θ
(c) x = 5 tan θ
(d) r2 = 22 + x2

x miles

r miles θ



Beam of
light

Lighthouse

5 miles

Shore

Figure 4.95

4.7 L’HOPITAL’S RULE, GROWTH, AND DOMINANCE

Suppose we want to calculate the exact value of the limit

lim
x→0

e2x − 1

x
.

Substituting x = 0 gives us 0/0, which is undefined:

e2(0) − 1

0
=

1− 1

0
=

0

0
.

Substituting values of x near 0 gives us an approximate value for the limit.
However, the limit can be calculated exactly using local linearity. Suppose we let f(x) be the

numerator, so f(x) = e2x − 1, and g(x) be the denominator, so g(x) = x. Then f(0) = 0 and
f ′(x) = 2e2x, so f ′(0) = 2. When we zoom in on the graph of f(x) = e2x − 1 near the origin, we
see its tangent line y = 2x shown in Figure 4.96. We are interested in the ratio f(x)/g(x), which is
approximately the ratio of the y-values in Figure 4.96. So, for x near 0,

f(x)

g(x)
=

e2x − 1

x
≈

2x

x
=

2

1
=

f ′(0)

g′(0)
.

As x → 0, this approximation gets better, and we have

lim
x→0

e2x − 1

x
= 2.
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�
�
x

�

�

2x

x

y = 2x: Approximates graph of f

y = x: Graph of g

Figure 4.96: Ratio (e2x − 1)/x is approximated by
ratio of slopes as we zoom in near the origin

a

x

Approximate graph of g

Approximate graph of f

�

�

f ′(a)(x − a)
�
�
g′(a)(x − a)

Figure 4.97: Ratio f(x)/g(x) is approximated by
ratio of slopes, f ′(a)/g′(a), as we zoom in at a

L’Hopital’s Rule

If f(a) = g(a) = 0, we can use the same method to investigate limits of the form

lim
x→a

f(x)

g(x)
.

As in the previous case, we zoom in on the graphs of f(x) and g(x). Figure 4.97 shows that both
graphs cross the x-axis at x = a. This suggests that the limit of f(x)/g(x) as x → a is the ratio of
slopes, giving the following result:

L’Hopital’s rule:12 If f and g are differentiable, f(a) = g(a) = 0, and g′(a) �= 0, then

lim
x→a

f(x)

g(x)
=

f ′(a)

g′(a)
.

Example 1 Use l’Hopital’s rule to confirm that lim
x→0

sinx

x
= 1.

Solution Let f(x) = sinx and g(x) = x. Then f(0) = g(0) = 0 and f ′(x) = cosx and g′(x) = 1. Thus,

lim
x→0

sinx

x
=

cos 0

1
= 1.

If we also have f ′(a) = g′(a) = 0, then we can use the following result:

More general form of l’Hopital’s rule: If f and g are differentiable and f(a) = g(a) = 0,
then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
,

provided the limit on the right exists.

Example 2 Calculate lim
t→0

et − 1− t

t2
.

Solution Let f(t) = et− 1− t and g(t) = t2. Then f(0) = e0− 1− 0 = 0 and g(0) = 0, and f ′(t) = et− 1

and g′(t) = 2t. So

lim
t→0

et − 1− t

t2
= lim

t→0

et − 1

2t
.

12Marquis de l’Hopital (1661–1704) was a French nobleman who wrote the first calculus text.
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Since f ′(0) = g′(0) = 0, the ratio f ′(0)/g′(0) is not defined. So we use l’Hopital’s rule again:

lim
t→0

et − 1− t

t2
= lim

t→0

et − 1

2t
= lim

t→0

et

2
=

1

2
.

We can also use l’Hopital’s rule in cases involving infinity.

L’Hopital’s rule applies to limits involving infinity, provided f and g are differentiable.
For a any real number or ±∞:
• When limx→a f(x) = ±∞ and limx→a g(x) = ±∞,

or

• When lim
x→∞

f(x) = lim
x→∞

g(x) = 0.

it can be shown that:

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
,

provided the limit on the right-hand side exists.

The next example shows how this version of l’Hopital’s rule is used.

Example 3 Calculate lim
x→∞

5x+ e−x

7x
.

Solution Let f(x) = 5x + e−x and g(x) = 7x. Then lim
x→∞

f(x) = lim
x→∞

g(x) = ∞, and f ′(x) = 5 − e−x

and g′(x) = 7, so

lim
x→∞

5x+ e−x

7x
= lim

x→∞

(5− e−x)

7
=

5

7
.

Dominance: Powers, Polynomials, Exponentials, and Logarithms
In Chapter 1, we see that some functions are much larger than others as x → ∞. For positive

functions f and g, we say that g dominates f as x → ∞ if lim
x→∞

f(x)

g(x)
= 0. L’Hopital’s rule gives

us an easy way of checking this.

Example 4 Check that x1/2 dominates lnx as x → ∞.

Solution We apply l’Hopital’s rule to (lnx)/x1/2:

lim
x→∞

lnx

x1/2
= lim

x→∞

1/x
1
2x

−1/2
.

To evaluate this limit, we simplify and get

lim
x→∞

1/x
1
2x

−1/2
= lim

x→∞

2x1/2

x
= lim

x→∞

2

x1/2
= 0.

Therefore we have

lim
x→∞

lnx

x1/2
= 0,

which tells us that x1/2 dominates lnx as x → ∞.

Example 5 Check that any exponential function of the form ekx (with k > 0) dominates any power function of
the form Axp (with A and p positive) as x → ∞.
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Solution We apply l’Hopital’s rule repeatedly to Axp/ekx:

lim
x→∞

Axp

ekx
= lim

x→∞

Apxp−1

kekx
= lim

x→∞

Ap(p− 1)xp−2

k2ekx
= · · ·

Keep applying l’Hopital’s rule until the power of x is no longer positive. Then the limit of the
numerator must be a finite number, while the limit of the denominator must be ∞. Therefore we
have

lim
x→∞

Axp

ekx
= 0,

so ekx dominates Axp.

Recognizing the Form of a Limit
Although expressions like 0/0 and ∞/∞ have no numerical value, they are useful in describing the
form of a limit. We can also use l’Hopital’s rule to calculate some limits of the form 0 ·∞, ∞−∞,
1∞, 00, and ∞0.

Example 6 Calculate lim
x→∞

xe−x.

Solution Since lim
x→∞

x = ∞ and lim
x→∞

e−x
= 0, we see that

xe−x → ∞ · 0 as x → ∞.

Rewriting

∞ · 0 as
∞
1
0

=
∞

∞

gives a form whose value can be determined using l’Hopital’s rule, so we rewrite the function xe−x

as
xe−x

=
x

ex
→

∞

∞
as x → ∞.

Taking f(x) = x and g(x) = ex gives f ′(x) = 1 and g′(x) = ex, so

lim
x→∞

xe−x
= lim

x→∞

x

ex
= lim

x→∞

1

ex
= 0.

A Famous Limit

In the following example, l’Hopital’s rule is applied to calculate a limit that can be used to define e.

Example 7 Evaluate lim
x→∞

(
1 +

1

x

)x

.

Solution As x → ∞, we see that

(
1 +

1

x

)x

→ 1
∞, a form whose value in this context is to be determined.

Since ln 1∞ = ∞ · ln 1 = ∞ · 0, we write

y =

(
1 +

1

x

)x

and find the limit of ln y:

lim
x→∞

ln y = lim
x→∞

ln

(
1 +

1

x

)x

= lim
x→∞

x ln

(
1 +

1

x

)
= ∞ · 0.

As in the previous example, we rewrite

∞ · 0 as
0

1
∞

=
0

0
,
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which suggests rewriting

lim
x→∞

x ln

(
1 +

1

x

)
as lim

x→∞

ln(1 + 1/x)

1/x
.

Since limx→∞ ln(1 + 1/x) = 0 and limx→∞(1/x) = 0, we can use l’Hopital’s rule with f(x) =
ln(1 + 1/x) and g(x) = 1/x. We have

f ′
(x) =

1

1 + 1/x

(
−

1

x2

)
and g′(x) = −

1

x2
,

so

lim
x→∞

ln y = lim
x→∞

ln(1 + 1/x)

1/x
= lim

x→∞

1

1 + 1/x

(
−

1

x2

)/(
−

1

x2

)
= lim

x→∞

1

1 + 1/x
= 1.

Since limx→∞ ln y = 1, we have
lim
x→∞

y = e1 = e.

Example 8 Put the following limits in a form that can be evaluated using l’Hopital’s rule:

(a) lim
x→0+

x lnx (b) lim
x→∞

x1/x (c) lim
x→0+

xx (d) lim
x→0

1

x
−

1

sinx

Solution (a) We have
lim

x→0+
x ln x = 0 · ∞.

We can rewrite
0 · ∞ as

∞

1/0
=

∞

∞
.

This corresponds to rewriting

lim
x→0+

x lnx as lim
x→0+

lnx

1/x
.

This is an ∞/∞ form that can be evaluated using l’Hopital’s rule. (Note that we could also have
written

0 · ∞ as
0

1/∞
=

0

0
,

but this leads to rewriting

lim
x→0+

x lnx as lim
x→0+

x

1/lnx
.

It turns out that l’Hopital’s rule fails to simplify this limit.)
(b) In this case we have a ∞0 form, so we take the logarithm and get a 0 · ∞ form:

lim
x→∞

ln(x1/x
) = lim

x→∞

1

x
lnx = lim

x→∞

lnx

x
.

This is an ∞/∞ form that can be evaluated using l’Hopital’s rule. Once we get the answer, we
exponentiate it to get the original limit.

(c) Since limx→0+ x = 0, this is a 00 form. If we take the logarithm, we get

ln 0
0
= 0 · ln 0 = 0 · ∞.

This corresponds to the limit
lim

x→0+
lnxx

= lim
x→0+

x ln x,

which is considered in part (a).
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(d) We have

lim
x→0

1

x
−

1

sinx
=

1

0
−

1

0
= ∞−∞.

Limits like this can often be calculated by adding the fractions:

lim
x→0

1

x
−

1

sinx
= lim

x→0

sinx− x

x sinx
,

giving a 0/0 form that can be evaluated using l’Hopital’s rule twice.

Exercises and Problems for Section 4.7
Exercises

In Exercises 1–11, find the limit. Use l’Hopital’s rule if it ap-
plies.

1. lim
x→2

x− 2

x2 − 4
2. lim

x→1

x2 + 3x− 4

x− 1

3. lim
x→1

x6 − 1

x4 − 1
4. lim

x→0

ex − 1

sin x

5. lim
x→0

sinx

ex
6. lim

x→1

ln x

x− 1

7. lim
x→∞

ln x

x
8. lim

x→∞

(lnx)3

x2

9. lim
x→0

e4x − 1

cosx

10. lim
x→1

xa − 1

xb − 1
, b �= 0

11. lim
x→a

3
√
x− 3

√
a

x− a
, a �= 0

In Exercises 12–15, which function dominates as x → ∞?

12. x5 and 0.1x7 13. 0.01x3 and 50x2

14. ln(x+ 3) and x0.2 15. x10 and e0.1x

Problems

16. The functions f and g and their tangent lines at (4, 0) are

shown in Figure 4.98. Find lim
x→4

f(x)

g(x)
.

4

f(x)

g(x)

y = −0.7(x− 4)

y = 1.4(x− 4)

x

y

Figure 4.98

For Problems 17–20, find the sign of lim
x→a

f(x)

g(x)
from the fig-

ure.
17.

a

f(x)

g(x)

x

18.

a

f(x)

g(x)

x

19.

a

f(x)

g(x)

x

Assume f ′′(a) �= 0, g′′(a) �= 0

20. f(x)

g(x)

a

Assume f ′′′(a) �= 0, g′′′(a) �= 0

x

Based on your knowledge of the behavior of the numera-
tor and denominator, predict the value of the limits in Prob-
lems 21–24. Then find each limit using l’Hopital’s rule.

21. lim
x→0

x2

sin x
22. lim

x→0

sin2 x

x

23. lim
x→0

sin x

x1/3
24. lim

x→0

x

(sin x)1/3

In Problems 25–30, describe the form of the limit (0/0,
∞/∞, ∞ · 0, ∞−∞, 1∞, 00, ∞0, or none of these). Does
l’Hopital’s rule apply? If so, explain how.

25. lim
x→∞

x

ex
26. lim

x→1

x

x− 1

27. lim
t→∞

(
1

t
− 2

t2

)
28. lim

t→0+

1

t
− 1

et − 1

29. lim
x→0

(1 + x)x 30. lim
x→∞

(1 + x)1/x
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In Problems 31–44 determine whether the limit exists, and
where possible evaluate it.

31. lim
x→1

lnx

x2 − 1
32. lim

t→π

sin2 t

t− π

33. lim
n→∞

n

√
n 34. lim

x→0+
x lnx

35. lim
x→0

sinh(2x)

x
36. lim

x→0

1− cosh(3x)

x

37. lim
x→1−

cos−1 x

x− 1
38. lim

x→0

(
1

x
− 1

sin x

)
39. lim

t→0+

(
2

t
− 1

et − 1

)
40. lim

t→0

(
1

t
− 1

et − 1

)
41. lim

x→∞

(
1 + sin

(
3

x

))x
42. lim

t→0

sin2 At

cosAt− 1
, A �= 0

43. lim
t→∞

et − tn, where n is

a positive integer

44. lim
x→0+

xa ln x, where a

is a positive constant.

In Problems 45–47, explain why l’Hopital’s rule cannot be
used to calculate the limit. Then evaluate the limit if it exists.

45. lim
x→1

sin(2x)

x
46. lim

x→0

cos x

x

47. lim
x→∞

e−x

sin x

In Problems 48–50, evaluate the limit using the fact that

lim
n→∞

(
1 +

1

n

)n
= e.

48. lim
x→0+

(1 + x)1/x 49. lim
n→∞

(
1 +

2

n

)n

50. lim
x→0+

(1 + kx)t/x; k > 0

51. Show that lim
n→∞

(
1− 1

n

)n
= e−1.

52. Use the result of Problem 51 to evaluate

lim
n→∞

(
1− λ

n

)n
.

Evaluate the limits in Problems 53–55 where

f(t) =

(
3t + 5t

2

)1/t

for t �= 0.

53. lim
t→−∞

f(t) 54. lim
t→+∞

f(t) 55. lim
t→0

f(t)

In Problems 56–59, evaluate the limits as x approaches 0.

56.
sinh(2x)

x
57.

1− cosh(3x)

x

58.
1− cosh(5x)

x2
59.

x− sinh(x)

x3

Problems 60–62 are examples Euler used to illustrate
l’Hopital’s rule. Find the limit.

60. lim
x→0

ex − 1− ln(1 + x)

x2

61. lim
x→π/2

1− sin x+ cos x

sin x+ cosx− 1

62. lim
x→1

xx − x

1− x+ ln x

Strengthen Your Understanding

In Problems 63–64, explain what is wrong with the statement.

63. There is a positive integer n such that function xn domi-
nates ex as x → ∞.

64. L’Hopital’s rule shows that

lim
x→∞

5x+ cos x

x
= 5.

In Problems 65–66, give an example of:

65. A limit of a rational function for which l’Hopital’s rule
cannot be applied.

66. A function f such that L’Hopital’s rule can be applied to
find

lim
x→∞

f(x)

lnx
.

67. Is the following statement true of false? If g′(a) �= 0,

then lim
x→a

f(x)

g(x)
=

f ′(a)

g′(a)
. Give an explanation for your

answer.

68. Which of the limits cannot be computed with l’Hopital’s
rule?

(a) lim
x→0

sin x

x
(b) lim

x→0

cosx

x

(c) lim
x→0

x

sin x
(d) lim

x→∞

x

ex
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4.8 PARAMETRIC EQUATIONS

Representing Motion in the Plane
To represent the motion of a particle in the xy-plane we use two equations, one for the x-coordinate
of the particle, x = f(t), and another for the y-coordinate, y = g(t). Thus at time t the particle
is at the point (f(t), g(t)). The equation for x describes the right-left motion; the equation for y
describes the up-down motion. The two equations for x and y are called parametric equations with
parameter t.

Example 1 Describe the motion of the particle whose coordinates at time t are x = cos t and y = sin t.

Solution Since (cos t)2 + (sin t)2 = 1, we have x2 + y2 = 1. That is, at any time t the particle is at a point
(x, y) on the unit circle x2 + y2 = 1. We plot points at different times to see how the particle moves
on the circle. (See Figure 4.99 and Table 4.5.) The particle completes one full trip counterclockwise
around the circle every 2π units of time. Notice how the x-coordinate goes repeatedly back and forth
from −1 to 1 while the y-coordinate goes repeatedly up and down from −1 to 1. The two motions
combine to trace out a circle.

t = 0 t = 2π

t = π/2

t = π

t = 3π/2

y

x

Figure 4.99: The circle parameterized by
x = cos t, y = sin t

Table 4.5 Points on the circle with x = cos t,
y = sin t

t x y

0 1 0

π/2 0 1

π −1 0

3π/2 0 −1

2π 1 0

Example 2 Figure 4.100 shows the graphs of two functions, f(t) and g(t). Describe the motion of the particle
whose coordinates at time t are x = f(t) and y = g(t).

1 2 3 4

1 f(t)

t

x

1 2 3 4

1 g(t)

t

y

Figure 4.100: Graphs of x = f(t) and y = g(t) used to trace out the path (f(t), g(t)) in
Figure 4.101

Solution Between times t = 0 and t = 1, the x-coordinate goes from 0 to 1, while the y-coordinate stays
fixed at 0. So the particle moves along the x-axis from (0, 0) to (1, 0). Then, between times t = 1

and t = 2, the x-coordinate stays fixed at x = 1, while the y-coordinate goes from 0 to 1. Thus,
the particle moves along the vertical line from (1, 0) to (1, 1). Similarly, between times t = 2 and
t = 3, it moves horizontally back to (0, 1), and between times t = 3 and t = 4 it moves down the
y-axis to (0, 0). Thus, it traces out the square in Figure 4.101.
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1

1

x

y

t = 0
t = 4 t = 1

t = 2t = 3

Figure 4.101: The square parameterized by (f(t), g(t))

Different Motions Along the Same Path

Example 3 Describe the motion of the particle whose x and y coordinates at time t are given by the equations

x = cos(3t), y = sin(3t).

Solution Since (cos(3t))2 + (sin(3t))2 = 1, we have x2 + y2 = 1, giving motion around the unit circle. But
from Table 4.6, we see that the particle in this example is moving three times as fast as the particle
in Example 1. (See Figure 4.102.)

y

x

t = 3π/6

t = 2π/6

t = π/6

t = 0 t = 4π/6

Figure 4.102: The circle parameterized by
x = cos(3t), y = sin(3t)

Table 4.6 Points on circle with
x = cos(3t), y = sin(3t)

t x y

0 1 0

π/6 0 1

2π/6 −1 0

3π/6 0 −1

4π/6 1 0

Example 3 is obtained from Example 1 by replacing t by 3t; this is called a change in parameter.
If we make a change in parameter, the particle traces out the same curve (or a part of it) but at a

different speed or in a different direction.

Example 4 Describe the motion of the particle whose x and y coordinates at time t are given by

x = cos(e−t2
), y = sin(e−t2

).

Solution As in Examples 1 and 3, we have x2 + y2 = 1 so the motion lies on the unit circle. As time t goes
from −∞ (way back in the past) to 0 (the present) to ∞ (way off in the future), e−t2 goes from
near 0 to 1 back to near 0. So (x, y) = (cos(e−t2), sin(e−t2)) goes from near (1, 0) to (cos 1, sin 1)
and back to near (1, 0). The particle does not actually reach the point (1, 0). (See Figure 4.103 and
Table 4.7.)
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t = 0

t = −1, t = 1

t = −100, t = 1001 radian

(cos 1, sin 1)

(1, 0)
x

y

Figure 4.103: The circle parameterized by
x = cos (e−t2), y = sin (e−t2)

Table 4.7 Points on circle
with x = cos(e−t2),
y = sin(e−t2)

t x y

−100 ∼ 1 ∼ 0

−1 0.93 0.36

0 0.54 0.84

1 0.93 0.36

100 ∼ 1 ∼ 0

Motion in a Straight Line

An object moves with constant speed along a straight line through the point (x0, y0). Both the x-
and y-coordinates have a constant rate of change. Let a = dx/dt and b = dy/dt. Then at time t the
object has coordinates x = x0 + at, y = y0 + bt. (See Figure 4.104.) Notice that a represents the
change in x in one unit of time, and b represents the change in y. Thus the line has slope m = b/a.

t = −1
t = 0

t = 1

t = 2
(x0 − a, y0 − b)

(x0, y0)
(x0 + a, y0 + b)

(x0 + 2a, y0 + 2b)

(0, 0)

Figure 4.104: The line x = x0 + at, y = y0 + bt

This yields the following:

Parametric Equations for a Straight Line

An object moving along a line through the point (x0, y0), with dx/dt = a and dy/dt = b,
has parametric equations

x = x0 + at, y = y0 + bt.

The slope of the line is m = b/a.

Example 5 Find parametric equations for:

(a) The line passing through the points (2,−1) and (−1, 5).
(b) The line segment from (2,−1) to (−1, 5).

Solution (a) Imagine an object moving with constant speed along a straight line from (2,−1) to (−1, 5),
making the journey from the first point to the second in one unit of time. Then dx/dt = ((−1)−

2)/1 = −3 and dy/dt = (5− (−1))/1 = 6. Thus the parametric equations are

x = 2− 3t, y = −1 + 6t.
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(b) In the parameterization in part (a), t = 0 corresponds to the point (2,−1) and t = 1 corresponds
to the point (−1, 5). So the parameterization of the segment is

x = 2− 3t, y = −1 + 6t, 0 ≤ t ≤ 1.

There are many other possible parametric equations for this line.

Speed and Velocity
An object moves along a straight line at a constant speed, with dx/dt = a and dy/dt = b. In one
unit of time, the object moves a units horizontally and b units vertically. Thus, by the Pythagorean
Theorem, it travels a distance

√
a2 + b2. So its speed is

Speed =
Distance traveled

Time taken
=

√
a2 + b2

1
=
√
a2 + b2.

For general motion along a curve with varying speed, we make the following definition:

The instantaneous speed of a moving object is defined to be

v =

√(
dx

dt

)2

+

(
dy

dt

)2

.

The quantity vx = dx/dt is the instantaneous velocity in the x-direction; vy = dy/dt is the
instantaneous velocity in the y-direction. The velocity vector �v is written �v = vx�i + vy�j .

The quantities vx and vy are called the components of the velocity in the x- and y-directions.
The velocity vector �v is a useful way to keep track of the velocities in both directions using one
mathematical object. The symbols �i and �j represent vectors of length one in the positive x and
y-directions, respectively. For more about vectors, see Appendix D.

Example 6 A particle moves along a curve in the xy-plane with x(t) = 2t+ et and y(t) = 3t − 4, where t is
time. Find the velocity vector and speed of the particle when t = 1.

Solution Differentiating gives
dx

dt
= 2 + et,

dy

dt
= 3.

When t = 1 we have vx = 2 + e, vy = 3. So the velocity vector is �v = (2 + e)�i + 3�j and the
speed is

√
(2 + e)2 + 32 =

√
13 + 4e+ e2 = 5.591.

Example 7 A particle moves in the xy-plane with x = 2t3 − 9t2 + 12t and y = 3t4 − 16t3 + 18t2, where t is
time.

(a) At what times is the particle

(i) Stopped (ii) Moving parallel to the x- or y- axis?

(b) Find the speed of the particle at time t.

Solution (a) Differentiating gives

dx

dt
= 6t2 − 18t+ 12,

dy

dt
= 12t3 − 48t2 + 36t.

We are interested in the points at which dx/dt = 0 or dy/dt = 0. Solving gives

dx

dt
= 6(t2 − 3t+ 2) = 6(t− 1)(t− 2) so

dx

dt
= 0 if t = 1 or t = 2.

dy

dt
= 12t(t2 − 4t+ 3) = 12t(t− 1)(t− 3) so

dy

dt
= 0 if t = 0, t = 1, or t = 3.
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(i) The particle is stopped if both dx/dt and dy/dt are 0, which occurs at t = 1.
(ii) The particle is moving parallel to the x-axis if dy/dt = 0 but dx/dt �= 0. This occurs at

t = 0 and t = 3. The particle is moving parallel to the y-axis if dx/dt = 0 but dy/dt �= 0.
This occurs at t = 2.

(b) We have

Speed =

√(
dx

dt

)2

+

(
dy

dt

)2

=
√
(6t2 − 18t+ 12)2 + (12t3 − 48t2 + 36t)2.

Example 8 A child is sitting on a Ferris wheel of diameter 10 meters, making one revolution every 2 minutes.
Find the speed of the child

(a) Using geometry. (b) Using a parameterization of the motion.

Solution (a) The child moves at a constant speed around a circle of radius 5 meters, completing one revo-
lution every 2 minutes. One revolution around a circle of radius 5 is a distance of 10π, so the
child’s speed is 10π/2 = 5π ≈ 15.7 m/min. See Figure 4.105.

5 m

5 m Speed
15.7 m/min

Speed
15.7 m/min

Figure 4.105: Motion of a child on a Ferris wheel at two different times is represented by
the arrows. The direction of each arrow is the direction of motion at that time.

(b) The Ferris wheel has radius 5 meters and completes 1 revolution counterclockwise every 2

minutes. If the origin is at the center of the circle and we measure x and y in meters, the motion
is parameterized by equations of the form

x = 5 cos(ωt), y = 5 sin(ωt),

where ω is chosen to make the period 2 minutes. Since the period of cos(ωt) and sin(ωt) is
2π/ω, we must have

2π

ω
= 2, so ω = π.

Thus, for t in minutes, the motion is described by the equations

x = 5 cos(πt), y = 5 sin(πt).

So the speed is given by

v =

√(
dx

dt

)2

+

(
dy

dt

)2

=

√
(−5π)2 sin2(πt) + (5π)2 cos2(πt) = 5π

√
sin

2
(πt) + cos2(πt) = 5π ≈ 15.7 m/min,

which agrees with the speed we calculated in part (a).

Tangent Lines
To find the tangent line at a point (x0, y0) to a curve given parametrically, we find the straight line
motion through (x0, y0) with the same velocity in the x and y directions as a particle moving along
the curve.

Example 9 Find the tangent line at the point (1, 2) to the curve defined by the parametric equations

x = t3, y = 2t.
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Solution At time t = 1 the particle is at the point (1, 2). The velocity in the x-direction at time t is vx =

dx/dt = 3t2, and the velocity in the y-direction is vy = dy/dt = 2. So at t = 1 the velocity in
the x-direction is 3 and the velocity in the y-direction is 2. Thus the tangent line has parametric
equations

x = 1 + 3t, y = 2 + 2t.

Parametric Representations of Curves in the Plane
Sometimes we are more interested in the curve traced out by the particle than we are in the motion
itself. In that case we call the parametric equations a parameterization of the curve. As we can see
by comparing Examples 1 and 3, two different parameterizations can describe the same curve in the
xy-plane. Though the parameter, which we usually denote by t, may not have physical meaning, it
is often helpful to think of it as time.

Example 10 Give a parameterization of the semicircle of radius 1 shown in Figure 4.106.

−1 1

1

−1

x

y

Figure 4.106: Parameterization of
semicircle for Example 10

1
2

− 1
2

−1

1

x

y

Figure 4.107: Parameterization of the
ellipse 4x2 + y2 = 1 for Example 11

Solution We can use the equations x = cos t and y = sin t for counterclockwise motion in a circle, from
Example 1 on page 249. The particle passes (0, 1) at t = π/2, moves counterclockwise around the
circle, and reaches (0,−1) at t = 3π/2. So a parameterization is

x = cos t, y = sin t,
π

2
≤ t ≤

3π

2
.

To find the xy-equation of a curve given parametrically, we eliminate the parameter t in the
parametric equations. In the previous example, we use the Pythagorean identity, so

cos
2 t+ sin

2 t = 1 gives x2
+ y2 = 1.

Example 11 Give a parameterization of the ellipse 4x2 + y2 = 1 shown in Figure 4.107.

Solution Since (2x)2 + y2 = 1, we adapt the parameterization of the circle in Example 1. Replacing x by 2x
gives the equations 2x = cos t, y = sin t. A parameterization of the ellipse is thus

x = 1
2 cos t, y = sin t, 0 ≤ t ≤ 2π.

We usually require that the parameterization of a curve go from one end of the curve to the
other without retracing any portion of the curve. This is different from parameterizing the motion
of a particle, where, for example, a particle may move around the same circle many times.

Parameterizing the Graph of a Function

The graph of any function y = f(x) can be parameterized by letting the parameter t be x:

x = t, y = f(t).
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Example 12 Give parametric equations for the curve y = x3 − x. In which direction does this parameterization
trace out the curve?

Solution Let x = t, y = t3 − t. Thus, y = t3 − t = x3 − x. Since x = t, as time increases the x-coordinate
moves from left to right, so the particle traces out the curve y = x3 − x from left to right.

Curves Given Parametrically

Some complicated curves can be graphed more easily using parametric equations; the next example
shows such a curve.

Example 13 Assume t is time in seconds. Sketch the curve traced out by the particle whose motion is given by

x = cos(3t), y = sin(5t).

Solution The x-coordinate oscillates back and forth between 1 and −1, completing 3 oscillations every 2π
seconds. The y-coordinate oscillates up and down between 1 and −1, completing 5 oscillations
every 2π seconds. Since both the x- and y-coordinates return to their original values every 2π
seconds, the curve is retraced every 2π seconds. The result is a pattern called a Lissajous figure.
(See Figure 4.108.) Problems 57–60 concern Lissajous figures x = cos(at), y = sin(bt) for other
values of a and b.

−1 1

−1

1

x

y

Figure 4.108: A Lissajous figure: x = cos(3t), y = sin(5t)

Slope and Concavity of Parametric Curves

Suppose we have a curve traced out by the parametric equations x = f(t), y = g(t). To find the
slope at a point on the curve, we could, in theory, eliminate the parameter t and then differentiate
the function we obtain. However, the chain rule gives us an easier way.

Suppose the curve traced out by the parametric equations is represented by y = h(x). (It may
be represented by an implicit function.) Thinking of x and y as functions of t, the chain rule gives

dy

dt
=

dy

dx
·
dx

dt
,

so we obtain the slope of the curve as a function of t:

Slope of curve =
dy

dx
=

dy/dt

dx/dt
.

We can find the second derivative, d2y/dx2, by a similar method and use it to investigate the con-
cavity of the curve. The chain rule tells us that if w is any differentiable function of x, then

dw

dx
=

dw/dt

dx/dt
.
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For w = dy/dx, we have
dw

dx
=

d

dx

(
dy

dx

)
=

d2y

dx2
,

so the chain rule gives the second derivative at any point on a parametric curve:

d2y

dx2
=

d

dt

(
dy

dx

)/
dx

dt
.

Example 14 If x = cos t, y = sin t, find the point corresponding to t = π/4, the slope of the curve at the point,
and d2y/dx2 at the point.

Solution The point corresponding to t = π/4 is (cos(π/4), sin(π/4)) = (1/
√
2, 1/

√
2).

To find the slope, we use
dy

dx
=

dy/dt

dx/dt
=

cos t

− sin t
,

so when t = π/4,

Slope =
cos(π/4)

− sin(π/4)
= −1.

Thus, the curve has slope −1 at the point (1/
√
2, 1/

√
2). This is as we would expect, since the curve

traced out is the circle of Example 1.
To find d2y/dx2, we use w = dy/dx = −(cos t)/(sin t), so

d2y

dx2
=

d

dt

(
−
cos t

sin t

)/
(− sin t) = −

(− sin t)(sin t)− (cos t)(cos t)

sin
2 t

·

(
−

1

sin t

)
= −

1

sin
3 t

.

Thus, at t = π/4
d2y

dx2

∣∣∣∣
t=π/4

= −
1

(sin(π/4))3
= −2

√
2.

Since the second derivative is negative, the concavity is negative. This is as expected, since the point
is on the top half of the circle where the graph is bending downward.

Exercises and Problems for Section 4.8
Exercises

For Exercises 1–4, use the graphs of f and g to describe
the motion of a particle whose position at time t is given by
x = f(t), y = g(t).

1.

1 2 3 4
−1

1

t

x
f(t)

1 2 3 4
−1

1

t

y
g(t)

2.

1 2 3 4

1

2

t

x

f(t)

1 2 3 4

1

2

t

y

g(t)

3.

1 2 3 4

1

2

t

x
f(t)

1 2 3 4
−1

1

t

y g(t)

4.

1 2 3 4
−1

1

t

x

f(t)

1 2 3 4
−1

1

t

y

g(t)
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In Exercises 5–11, write a parameterization for the curves in
the xy-plane.

5. A circle of radius 3 centered at the origin and traced out
clockwise.

6. A vertical line through the point (−2,−3).

7. A circle of radius 5 centered at the point (2, 1) and traced
out counterclockwise.

8. A circle of radius 2 centered at the origin traced clock-
wise starting from (−2, 0) when t = 0.

9. The line through the points (2,−1) and (1, 3).

10. An ellipse centered at the origin and crossing the x-axis
at ±5 and the y-axis at ±7.

11. An ellipse centered at the origin, crossing the x-axis at
±3 and the y-axis at ±7. Start at the point (−3, 0) and
trace out the ellipse counterclockwise.

Exercises 12–17 give parameterizations of the unit circle or a
part of it. Describe in words how the circle is traced out, in-
cluding when and where the particle is moving clockwise and
when and where the particle is moving counterclockwise.

12. x = sin t, y = cos t

13. x = cos t, y = − sin t

14. x = cos(t2), y = sin(t2)

15. x = cos(t3 − t), y = sin(t3 − t)

16. x = cos(ln t), y = sin(ln t)

17. x = cos(cos t), y = sin(cos t)

In Exercises 18–20, what curves do the parametric equations
trace out? Find the equation for each curve.

18. x = 2 + cos t, y = 2− sin t

19. x = 2 + cos t, y = 2− cos t

20. x = 2 + cos t, y = cos2 t

In Exercises 21–26, the parametric equations describe the mo-
tion of a particle. Find an equation of the curve along which
the particle moves.

21. x = 3t + 1
y = t− 4

22. x = t2 + 3
y = t2 − 2

23. x = t+ 4
y = t2 − 3

24. x = cos 3t
y = sin 3t

25. x = 3 cos t
y = 3 sin t

26. x = 2 + 5 cos t
y = 7 + 5 sin t

In Exercises 27–29, find an equation of the tangent line to the
curve for the given value of t.

27. x = t3 − t, y = t2 when t = 2

28. x = t2 − 2t, y = t2 + 2t when t = 1

29. x = sin(3t), y = sin(4t) when t = π

For Exercises 30–33, find the speed for the given motion of a
particle. Find any times when the particle comes to a stop.

30. x = t2, y = t3

31. x = cos(t2), y = sin(t2)

32. x = cos 2t, y = sin t

33. x = t2 − 4t, y = t3 − 12t

34. Find parametric equations for the tangent line at t = 2
for Problem 30.

Problems

Problems 35–36 show motion twice around a square, be-
ginning at the origin at time t = 0 and parameterized by
x = f(t), y = g(t). Sketch possible graphs of f and g con-
sisting of line segments.

35.

1

1

x

y

t = 0
t = 16
t = 32

t = 1
t = 17

t = 8
t = 24

t = 9
t = 25

36.

1

1

x

y

t = 0
t = 16
t = 32

t = 1
t = 17

t = 2
t = 18

t = 3
t = 19

37. A line is parameterized by x = 10 + t and y = 2t.

(a) What part of the line do we get by restricting t to
t < 0?

(b) What part of the line do we get by restricting t to
0 ≤ t ≤ 1?

38. A line is parameterized by x = 2 + 3t and y = 4 + 7t.

(a) What part of the line is obtained by restricting t to
nonnegative numbers?

(b) What part of the line is obtained if t is restricted to
−1 ≤ t ≤ 0?

(c) How should t be restricted to give the part of the line
to the left of the y-axis?

39. (a) Explain how you know that the following two pairs
of equations parameterize the same line:

x = 2+ t, y = 4+ 3t and x = 1− 2t, y = 1− 6t.

(b) What are the slope and y intercept of this line?
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40. Describe the similarities and differences among the mo-
tions in the plane given by the following three pairs of
parametric equations:
(a) x = t, y = t2 (b) x = t2, y = t4

(c) x = t3, y = t6.

41. What can you say about the values of a, b and k if the
equations

x = a+ k cos t, y = b+ k sin t, 0 ≤ t ≤ 2π,

trace out the following circles in Figure 4.109?
(a) C1 (b) C2 (c) C3

10

−10

10
C2

C1

C3

x

y

Figure 4.109

42. Suppose a, b, c, d,m, n, p, q > 0. Match each pair of
parametric equations with one of the lines l1, l2, l3, l4 in
Figure 4.110.

I.

{
x = a+ ct,

y = −b+ dt.
II.

{
x = m+ pt,

y = n− qt.

l1

l2

l3

l4

x

y

Figure 4.110

43. Describe in words the curve represented by the paramet-
ric equations

x = 3 + t3, y = 5− t3.

44. (a) Sketch the parameterized curve x = t cos t, y =
t sin t for 0 ≤ t ≤ 4π.

(b) By calculating the position at t = 2 and t = 2.01,
estimate the speed at t = 2.

(c) Use derivatives to calculate the speed at t = 2 and
compare your answer to part (b).

45. The position of a particle at time t is given by x = et and
y = 2e2t.

(a) Find dy/dx in terms of t.
(b) Eliminate the parameter and write y in terms of x.
(c) Using your answer to part (b), find dy/dx in terms

of x.

46. For x and y in meters, the motion of the particle given by

x = t3 − 3t, y = t2 − 2t,

where the y-axis is vertical and the x-axis is horizontal.

(a) Does the particle ever come to a stop? If so, when
and where?

(b) Is the particle ever moving straight up or down? If
so, when and where?

(c) Is the particle ever moving straight horizontally right
or left? If so, when and where?

47. At time t, the position of a particle moving on a curve is
given by x = e2t − e−2t and y = 3e2t + e−2t.

(a) Find all values of t at which the curve has

(i) A horizontal tangent.

(ii) A vertical tangent.

(b) Find dy/dx in terms of t.
(c) Find lim

t→∞

dy/dx.

48. Figure 4.111 shows the graph of a parameterized curve
x = f(t), y = f ′(t) for a function f(t).

(a) Is f(t) an increasing or decreasing function?
(b) As t increases, is the curve traced from P to Q or

from Q to P ?
(c) Is f(t) concave up or concave down?

1 2 3 4 5

2

4

6

8

10
P

Q
x

y

Figure 4.111
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49. At time t, the position of a particle is x(t) = 5 sin(2t)
and y(t) = 4 cos(2t), with 0 ≤ t < 2π.

(a) Graph the path of the particle for 0 ≤ t < 2π, indi-
cating the direction of motion.

(b) Find the position and velocity of the particle when
t = π/4.

(c) How many times does the particle pass through the
point found in part (b)?

(d) What does your answer to part (b) tell you about
the direction of the motion relative to the coordinate
axes when t = π/4?

(e) What is the speed of the particle at time t = π?

50. At time t, a projectile launched with angle of elevation
α and initial velocity v0 has position x(t) = (v0 cosα)t
and y(t) = (v0 sinα)t − 1

2
gt2, where g is the accelera-

tion due to gravity.

(a) A football player kicks a ball at an angle of 36◦

above the ground with an initial velocity of 60 feet
per second. Write the parametric equations for the
position of the football at time t seconds. Use g =
32 ft/sec2.

(b) Graph the path that the football follows.
(c) How long does it take for the football to hit the

ground? How far is it from the spot where the foot-
ball player kicked it?

(d) What is the maximum height the football reaches
during its flight?

(e) At what speed is the football traveling 1 second after
it was kicked?

51. Two particles move in the xy-plane. At time t, the po-
sition of particle A is given by x(t) = 4t − 4 and
y(t) = 2t − k, and the position of particle B is given
by x(t) = 3t and y(t) = t2 − 2t − 1.

(a) If k = 5, do the particles ever collide? Explain.
(b) Find k so that the two particles do collide.
(c) At the time that the particles collide in part (b),

which particle is moving faster?

52. (a) Find d2y/dx2 for x = t3 + t, y = t2.
(b) Is the curve concave up or down at t = 1?

53. (a) An object moves along the path x = 3t and y =
cos(2t), where t is time. Write the equation for the
line tangent to this path at t = π/3.

(b) Find the smallest positive value of t for which the
y-coordinate is a local maximum.

(c) Find d2y/dx2 when t = 2. What does this tell you
about the concavity of the graph at t = 2?

54. The position of a particle at time t is given by x = et+3
and y = e2t + 6et + 9.

(a) Find dy/dx in terms of t.
(b) Find d2y/dx2. What does this tell you about the

concavity of the graph?
(c) Eliminate the parameter and write y in terms of x.
(d) Using your answer from part (c), find dy/dx and

d2y/dx2 in terms of x. Show that these answers are
the same as the answers to parts (a) and (b).

55. A particle moves in the xy-plane so that its position at
time t is given by x = sin t and y = cos(2t) for
0 ≤ t < 2π.

(a) At what time does the particle first touch the x-axis?
What is the speed of the particle at that time?

(b) Is the particle ever at rest?
(c) Discuss the concavity of the graph.

56. Derive the general formula for the second derivative
d2y/dx2 of a parametrically defined curve:

d2y

dx2
=

(dx/dt)(d2y/dt2)− (dy/dt)(d2x/dt2)

(dx/dt)3
.

Graph the Lissajous figures in Problems 57–60 using a calcu-
lator or computer.

57. x = cos 2t, y = sin 5t

58. x = cos 3t, y = sin 7t

59. x = cos 2t, y = sin 4t

60. x = cos 2t, y = sin
√
3t

61. A hypothetical moon orbits a planet which in turn or-
bits a star. Suppose that the orbits are circular and that
the moon orbits the planet 12 times in the time it takes
for the planet to orbit the star once. In this problem we
will investigate whether the moon could come to a stop
at some instant. (See Figure 4.112.)

(a) Suppose the radius of the moon’s orbit around the
planet is 1 unit and the radius of the planet’s orbit
around the star is R units. Explain why the motion
of the moon relative to the star can be described by
the parametric equations

x = R cos t+ cos(12t), y = R sin t+ sin(12t).

(b) Find values for R and t such that the moon stops
relative to the star at time t.

(c) On a graphing calculator, plot the path of the moon
for the value of R you obtained in part (b). Experi-
ment with other values for R.

Star

Planet’s path

Moon’s path

Figure 4.112
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Strengthen Your Understanding

In Problems 62–63, explain what is wrong with the statement.

62. The line segment from (2, 2) to (0, 0) is parameterized
by x = 2t, y = 2t, 0 ≤ t ≤ 1.

63. A circle of radius 2 centered at (0, 1) is parameterized by
x = 2 cos πt, y = 2 sin πt, 0 ≤ t ≤ 2.

In Problems 64–65, give an example of:

64. A parameterization of a quarter circle centered at the ori-
gin of radius 2 in the first quadrant.

65. A parameterization of the line segment between (0, 0)
and (1, 2).

Are the statements in Problems 66–67 true of false? Give an
explanation for your answer.

66. The curve given parametrically by x = f(t) and y =
g(t) has no sharp corners if f and g are differentiable.

67. If a curve is given parametrically by x = cos(t2), y =
sin(t2), then its slope is tan(t2).

CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• Local extrema
Maximum, minimum, critical point, tests for local max-
ima/minima.

• Using the second derivative
Concavity, inflection point.

• Families of curves
Role of parameters

• Optimization
Global extremum, modeling problems, graphical opti-
mization, upper and lower bounds, extreme value theo-
rem.

• Marginality
Cost/revenue functions, marginal cost/marginal revenue
functions.

• Rates and Related Rates

• L’Hopital’s Rule
Limits, growth, dominance

• Parametric equations
Motion of a particle in the plane, parametric equations
for lines and other curves, velocity, tangent lines, slope,
concavity.

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER FOUR

Exercises

For Exercises 1–2, indicate all critical points on the given
graphs. Which correspond to local minima, local maxima,
global maxima, global minima, or none of these? (Note that
the graphs are on closed intervals.)

1.

1 2 3 4 5 6

10

30

50
f(x)

x

2.

1 2 3 4 5

4

8
f(x)

x

In Exercises 3–6, do the following:
(a) Find f ′ and f ′′.

(b) Find the critical points of f .

(c) Find any inflection points.

(d) Evaluate f at the critical points and the endpoints. Iden-
tify the global maxima and minima of f .

(e) Sketch f . Indicate clearly where f is increasing or de-
creasing, and its concavity.

3. f(x) = x3 − 3x2 (−1 ≤ x ≤ 3)

4. f(x) = x+ sin x (0 ≤ x ≤ 2π)

5. f(x) = e−x sin x (0 ≤ x ≤ 2π)

6. f(x) = x−2/3 + x1/3 (1.2 ≤ x ≤ 3.5)

In Exercises 7–9, find the limits as x tends to +∞ and −∞,
and then proceed as in Exercises 3–6. (That is, find f ′, etc.).

7. f(x) = 2x3 − 9x2 + 12x + 1

8. f(x) =
4x2

x2 + 1

9. f(x) = xe−x

In Exercises 10–13, find the global maximum and minimum
for the function on the closed interval.

10. f(x) = e−x sin x, 0 ≤ x ≤ 2π

11. f(x) = ex + cos x, 0 ≤ x ≤ π

12. f(x) = x2 + 2x+ 1, 0 ≤ x ≤ 3

13. f(x) = e−x2

, 0 ≤ x ≤ 10

In Exercises 14–16, find the exact global maximum and min-
imum values of the function.

14. h(z) =
1

z
+ 4z2 for z > 0

15. g(t) =
1

t3 + 1
for t ≥ 0
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16. f(x) =
1

(x− 1)2 + 2

In Exercises 17–23, use derivatives to identify local maxima
and minima and points of inflection. Graph the function.

17. f(x) = x3 + 3x2 − 9x− 15

18. f(x) = x5 − 15x3 + 10

19. f(x) = x− 2 ln x for x > 0

20. f(x) = e−x2

21. f(x) = x2e5x

22. f(x) =
x2

x2 + 1
23. When you cough, your windpipe contracts. The speed,

v(r), with which you expel air depends on the radius, r,
of your windpipe. If a is the normal (rest) radius of your
windpipe, then for 0 ≤ r ≤ a, the speed is given by:

v(r) = k(a− r)r2 where k is a positive constant.

What value of r maximizes the speed? For what value is
the speed minimized?

24. Find the point where the following curve is steepest:

y =
50

1 + 6e−2t
for t ≥ 0.

25. The graphs of the function f(x) = x/(x2 + a2) for
a = 1, 2 , and 3, are shown in Figure 4.113. Without
a calculator, identify the graphs by locating the critical
points of f(x).

1 2 3 4

0.1

0.2

0.3

0.4

0.5 A

B

C

x

y

Figure 4.113

26. The graphs of the function f(x) = 1−e−ax for a = 1, 2,
and 3, are shown in Figure 4.114. Without a calculator,
identify the graphs.

1 2 3

0.2

0.4

0.6

0.8

1

CB

A

x

y

Figure 4.114

27. (a) Find all critical points and all inflection points of the
function f(x) = x4−2ax2+b. Assume a and b are
positive constants.

(b) Find values of the parameters a and b if f has a crit-
ical point at the point (2, 5).

(c) If there is a critical point at (2, 5), where are the in-
flection points?

28. (a) For a a positive constant, find all critical points of
f(x) = x− a

√
x.

(b) What value of a gives a critical point at x = 5? Does
f(x) have a local maximum or a local minimum at
this critical point?

29. If a and b are nonzero constants, find the domain and all
critical points of

f(x) =
ax2

x− b
.

30. The average of two nonnegative numbers is 180. What is
the largest possible product of these two numbers?

31. The product of three positive numbers is 192, and one of
the numbers is twice one of the other numbers. What is
the minimum value of their sum?

32. The difference between two numbers is 24. If both num-
bers are 100 or greater, what is the minimum value of
their product?

33. (a) Fixed costs are $3 million; variable costs are $0.4
million per item. Write a formula for total cost as a
function of quantity, q.

(b) The item in part (a) is sold for $0.5 million each.
Write a formula for revenue as a function of q.

(c) Write a formula for the profit function for this item.

34. A number x is increasing. When x = 10, the square of x
is increasing at 5 units per second. How fast is x increas-
ing at that time?

35. The mass of a cube in grams is M = x3 + 0.1x4, where
x is the length of one side in centimeters. If the length is
increasing at a rate of 0.02 cm/hr, at what rate is the mass
of the cube increasing when its length is 5 cm?

36. If θ is the angle between a line through the origin and the
positive x-axis, the area, in cm 2, of part of a cardioid is

A = 3θ + 4 sin θ +
1

2
sin(2θ).

If the angle θ is increasing at a rate of 0.3 radians per
minute, at what rate is the area changing when θ = π/2?

In Exercises 37–38, describe the motion of a particle moving
according to the parametric equations. Find an equation of the
curve along which the particle moves.

37. x = 4− 2t
y = 4t + 1

38. x = 2 sin t
y = 2 cos t
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Problems

39. Figure 4.115 is the graph of f ′, the derivative of a func-
tion f . At which of the points 0, x1, x2, x3, x4, x5, is the
function f :

(a) At a local maximum value?
(b) At a local minimum value?
(c) Climbing fastest?
(d) Falling most steeply?

x1

x2 x3

x4

x5

f ′

x

Figure 4.115: Graph of f ′ not f

40. Figure 4.116 is a graph of f ′. For what values of x does
f have a local maximum? A local minimum?

1 3 5

f ′

x

Figure 4.116: Graph of f ′ (not f )

41. On the graph of f ′ in Figure 4.117, indicate the x-values
that are critical points of the function f itself. Are they
local maxima, local minima, or neither?

−2 −1 1 2
−2

2

4

x

f ′(x)

Figure 4.117: Graph of f ′ (not f )

42. Graph f given that:

• f ′(x) = 0 at x = 2, f ′(x) < 0 for x < 2,
f ′(x) > 0 for x > 2,

• f ′′(x) = 0 at x = 4, f ′′(x) > 0 for x < 4,
f ′′(x) < 0 for x > 4.

In Problems 43–47, find formulas for the functions.

43. A cubic polynomial with a local maximum at x = 1, a
local minimum at x = 3, a y-intercept of 5, and an x3

term whose coefficient is 1.

44. A quartic polynomial whose graph is symmetric about
the y-axis and has local maxima at (−1, 4) and (1, 4)
and a y-intercept of 3.

45. A function of the form y = axb ln x, where a and b
are nonzero constants, which has a local maximum at the
point (e2, 6e−1).

46. A function of the form y = A sin(Bx) +C with a max-
imum at (5, 2), a minimum at (15, 1.5), and no critical
points between these two points.

47. A function of the form y = axe−bx2

with a global max-
imum at (1, 2) and a global minimum at (−1,−2).

In Problems 48–51, find the dimensions of the solid giving the
maximum volume, given that the surface area is 8 cm2.

48. A closed rectangular box, with a square base x by x cm
and height h cm.

49. A open-topped rectangular box, with a square base x by
x cm and height h cm.

50. A closed cylinder with radius r cm and height h cm.

51. A cylinder open at one end with radius r cm and height
h cm.

In Problems 52–54, find the best possible bounds for the func-
tions.

52. e−x sin x, for x ≥ 0

53. x sin x, for 0 ≤ x ≤ 2π

54. x3 − 6x2 + 9x+ 5 for 0 ≤ x ≤ 5

55. Find the value(s) of m, if any, that give the global maxi-
mum and minimum of P as a function of m where

6jm2+P = 4jk−5km, for positive constants j and k.

56. Find values of a and b so that the function y = axe−bx

has a local maximum at the point (2, 10).

57. (a) Find all critical points of f(t) = at2e−bt, assuming
a and b are nonzero constants.

(b) Find values of the parameters a and b so that f has a
critical point at the point (5, 12).

(c) Identify each critical point as a local maximum or
local minimum of the function f in part (b).

58. What effect does increasing the value of a have on the
graph of f(x) = x2+2ax? Consider roots, maxima and
minima, and both positive and negative values of a.

59. Sketch several members of the family y = x3 − ax2

on the same axes. Show that the critical points lie on the
curve y = − 1

2
x3.

60. A drug is injected into a patient at a rate given by r(t) =
ate−bt ml/sec, where t is in seconds since the injection
started, 0 ≤ t ≤ 5, and a and b are constants. The max-
imum rate of 0.3 ml/sec occurs half a second after the
injection starts. Find a formula for a and b.
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61. An object at a distance p from a thin glass lens produces
an image at a distance q from the lens, where

1

p
+

1

q
=

1

f
.

The constant f is called the focal length of the lens. Sup-
pose an object is moving at 3 mm per second toward a
lens of focal length 15 mm. How fast and in what di-
rection is the image moving at the moment at which the
object is 35 mm from the lens?

62. Any body radiates energy at various wavelengths. Fig-
ure 4.118 shows the intensity of the radiation of a black
body at a temperature T = 3000 kelvins as a function of
the wavelength. The intensity of the radiation is highest
in the infrared range, that is, at wavelengths longer than
that of visible light (0.4–0.7μm). Max Planck’s radiation
law, announced to the Berlin Physical Society on October
19, 1900, states that

r(λ) =
a

λ5(eb/λ − 1)
.

Find constants a and b so that the formula fits the graph.
(Later in 1900 Planck showed from theory that a =
2πc2h and b = hc

Tk
where c = speed of light, h = Planck’s

constant, and k = Boltzmann’s constant.)

4

wavelength
λ (μm)

intensity of radiation

r(λ) (MW/m2/μm)

(0.96, 3.13)

Figure 4.118

63. An electric current, I , in amps, is given by

I = cos(wt) +
√
3 sin(wt),

where w �= 0 is a constant. What are the maximum and
minimum values of I?

64. The efficiency of a screw, E, is given by

E =
(θ − μθ2)

μ+ θ
, θ > 0,

where θ is the angle of pitch of the thread and μ is the co-
efficient of friction of the material, a (positive) constant.
What value of θ maximizes E?

65. A rectangle has one side on the x-axis and two corners
on the top half of the circle of radius 1 centered at the
origin. Find the maximum area of such a rectangle. What
are the coordinates of its vertices?

66. The hypotenuse of a right triangle has one end at the ori-
gin and one end on the curve y = x2e−3x, with x ≥ 0.
One of the other two sides is on the x-axis, the other side
is parallel to the y-axis. Find the maximum area of such
a triangle. At what x-value does it occur?

67. Which point on the parabola y = x2 is nearest to (1, 0)?
Find the coordinates to two decimals. [Hint: Minimize
the square of the distance—this avoids square roots.]

68. Find the coordinates of the point on the parabola y = x2

which is closest to the point (3,0).

69. The cross-section of a tunnel is a rectangle of height h
surmounted by a semicircular roof section of radius r
(See Figure 4.119). If the cross-sectional area is A, deter-
mine the dimensions of the cross section which minimize
the perimeter.

�

�

h

r
�

Figure 4.119

70. A landscape architect plans to enclose a 3000 square-foot
rectangular region in a botanical garden. She will use
shrubs costing $45 per foot along three sides and fenc-
ing costing $20 per foot along the fourth side. Find the
minimum total cost.

71. A rectangular swimming pool is to be built with an area
of 1800 square feet. The owner wants 5-foot wide decks
along either side and 10-foot wide decks at the two ends.
Find the dimensions of the smallest piece of property on
which the pool can be built satisfying these conditions.

72. (a) A cruise line offers a trip for $2000 per passenger. If
at least 100 passengers sign up, the price is reduced
for all the passengers by $10 for every additional
passenger (beyond 100) who goes on the trip. The
boat can accommodate 250 passengers. What num-
ber of passengers maximizes the cruise line’s total
revenue? What price does each passenger pay then?

(b) The cost to the cruise line for n passengers is
80,000+400n. What is the maximum profit that the
cruise line can make on one trip? How many passen-
gers must sign up for the maximum to be reached
and what price will each pay?
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73. A manufacturer’s cost of producing a product is given in
Figure 4.120. The manufacturer can sell the product for a
price p each (regardless of the quantity sold), so that the
total revenue from selling a quantity q is R(q) = pq.

(a) The difference π(q) = R(q) − C(q) is the total
profit. For which quantity q0 is the profit a maxi-
mum? Mark your answer on a sketch of the graph.

(b) What is the relationship between p and C′(q0)? Ex-
plain your result both graphically and analytically.
What does this mean in terms of economics? (Note
that p is the slope of the line R(q) = pq. Note also
that π(q) has a maximum at q = q0, so π′(q0) = 0.)

(c) Graph C′(q) and p (as a horizontal line) on the same
axes. Mark q0 on the q-axis.

74. Using the cost and revenue graphs in Figure 4.120, sketch
the following functions. Label the points q1 and q2.

(a) Total profit (b) Marginal cost
(c) Marginal revenue

q1 q2
q

$

C(q)

R(q)

Figure 4.120

75. A ship is steaming due north at 12 knots (1 knot = 1.85
kilometers/hour) and sights a large tanker 3 kilometers
away northwest steaming at 15 knots due east. For rea-
sons of safety, the ships want to maintain a distance of at
least 100 meters between them. Use a calculator or com-
puter to determine the shortest distance between them if
they remain on their current headings, and hence decide
if they need to change course.

76. A polystyrene cup is in the shape of a frustum (the part
of a cone between two parallel planes cutting the cone),
has top radius 2r, base radius r and height h. The surface
area S of such a cup is given by S = 3πr

√
r2 + h2 and

its volume V by V = 7πr2h/3. If the cup is to hold 200
ml, use a calculator or a computer to estimate the value
of r that minimizes its surface area.

77. Suppose g(t) = (ln t)/t for t > 0.

(a) Does g have either a global maximum or a global
minimum on 0 < t < ∞? If so, where, and what
are their values?

(b) What does your answer to part (a) tell you about the
number of solutions to the equation

ln x

x
=

ln 5

5
?

(Note: There are many ways to investigate the num-
ber of solutions to this equation. We are asking you
to draw a conclusion from your answer to part (a).)

(c) Estimate the solution(s).

78. For a > 0, the following line forms a triangle in the first
quadrant with the x- and y-axes:

a(a2 + 1)y = a− x.

(a) In terms of a, find the x- and y-intercepts of the line.
(b) Find the area of the triangle, as a function of a.
(c) Find the value of a making the area a maximum.
(d) What is this greatest area?
(e) If you want the triangle to have area 1/5, what

choices do you have for a?

79. (a) Water is flowing at a constant rate (i.e., constant vol-
ume per unit time) into a cylindrical container stand-
ing vertically. Sketch a graph showing the depth of
water against time.

(b) Water is flowing at a constant rate into a cone-shaped
container standing on its point. Sketch a graph show-
ing the depth of the water against time.

80. The vase in Figure 4.121 is filled with water at a constant
rate (i.e., constant volume per unit time).

(a) Graph y = f(t), the depth of the water, against time,
t. Show on your graph the points at which the con-
cavity changes.

(b) At what depth is y = f(t) growing most quickly?
Most slowly? Estimate the ratio between the growth
rates at these two depths.

y

�

y1

y2

y3

Figure 4.121

81. A chemical storage tank is in the shape of an inverted
cone with depth 12 meters and top radius 5 meters. When
the depth of the chemical in the tank is 1 meter, the level
is falling at 0.1 meters per minute. How fast is the volume
of chemical changing?
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In Problems 82–83, describe the form of the limit (0/0,
∞/∞, ∞ · 0, ∞−∞, 1∞, 00, ∞0, or none of these). Does
l’Hopital’s rule apply? If so, explain how.

82. lim
x→0

x

ex
83. lim

x→1

sin πx

x− 1

In Problems 84–87, determine whether the limit exists, and
where possible evaluate it.

84. lim
t→0

et − 1− t

t2
85. lim

t→0+

3 sin t− sin 3t

3 tan t− tan 3t

86. lim
x→0

1− cosh(5x)

x2
87. lim

x→0

x− sinh(x)

x3

88. The rate of change of a population depends on the current
population, P , and is given by

dP

dt
= kP (L− P ) for positive constants k, L.

(a) For what nonnegative values of P is the population
increasing? Decreasing? For what values of P does
the population remain constant?

(b) Find d2P/dt2 as a function of P .

89. A spherical cell is growing at a constant rate of
400 μm3/day (1 μm= 10−6 m). At what rate is its ra-
dius increasing when the radius is 10 μm?

90. A raindrop is a perfect sphere with radius r cm and sur-
face area S cm2. Condensation accumulates on the rain-
drop at a rate equal to kS, where k = 2 cm/sec. Show
that the radius of the raindrop increases at a constant rate
and find that rate.

91. A horizontal disk of radius a centered at the origin in
the xy-plane is rotating about a vertical axis through the
center. The angle between the positive x-axis and a radial
line painted on the disk is θ radians.

(a) What does dθ/dt represent?
(b) What is the relationship between dθ/dt and the

speed v of a point on the rim?

92. The depth of soot deposited from a smokestack is given
by D = K(r + 1)e−r, where r is the distance from the
smokestack. What is the relationship between the rate of
change of r with respect to time and the rate of change
of D with respect to time?

93. The mass of a circular oil slick of radius r is M =
K (r − ln(1 + r)), where K is a positive constant. What
is the relationship between the rate of change of the ra-
dius with respect to t and the rate of change of the mass
with respect to time?

94. Ice is being formed in the shape of a circular cylinder
with inner radius 1 cm and height 3 cm. The outer ra-
dius of the ice is increasing at 0.03 cm per hour when the
outer radius is 1.5 cm. How fast is the volume of the ice
increasing at this time?

95. Sand falls from a hopper at a rate of 0.1 cubic meters
per hour and forms a conical pile beneath. If the side of
the cone makes an angle of π/6 radians with the vertical,
find the rate at which the height of the cone increases. At
what rate does the radius of the base increase? Give both
answers in terms of h, the height of the pile in meters.

96. (a) A hemispherical bowl of radius 10 cm contains wa-
ter to a depth of h cm. Find the radius of the surface
of the water as a function of h.

(b) The water level drops at a rate of 0.1 cm per hour. At
what rate is the radius of the water decreasing when
the depth is 5 cm?

97. A particle lies on a line perpendicular to a thin circular
ring and through its center. The radius of the ring is a,
and the distance from the point to the center of the ring
is y. For a positive constant K, the gravitational force
exerted by the ring on the particle is given by

F =
Ky

(a2 + y2)3/2
,

If y is increasing, how is F changing with respect to time,
t, when

(a) y = 0 (b) y = a/
√
2 (c) y = 2a

98. A voltage, V volts, applied to a resistor of R ohms pro-
duces an electric current of I amps where V = IR.
As the current flows the resistor heats up and its resis-
tance falls. If 100 volts is applied to a resistor of 1000
ohms the current is initially 0.1 amps but rises by 0.001
amps/minute. At what rate is the resistance falling if the
voltage remains constant?

99. A train is heading due west from St. Louis. At noon, a
plane flying horizontally due north at a fixed altitude of
4 miles passes directly over the train. When the train has
traveled another mile, it is going 80 mph, and the plane
has traveled another 5 miles and is going 500 mph. At
that moment, how fast is the distance between the train
and the plane increasing?

Problems 100–101 involve Boyle’s Law, which states that for
a fixed quantity of gas at a constant temperature, the pressure,
P , and the volume, V , are inversely related. Thus, for some
constant k

PV = k.

100. A fixed quantity of gas is allowed to expand at constant
temperature. Find the rate of change of pressure with re-
spect to volume.

101. A certain quantity of gas occupies 10 cm3 at a pressure of
2 atmospheres. The pressure is increased, while keeping
the temperature constant.

(a) Does the volume increase or decrease?
(b) If the pressure is increasing at a rate of 0.05 atmo-

spheres/minute when the pressure is 2 atmospheres,
find the rate at which the volume is changing at that
moment. What are the units of your answer?
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CAS Challenge Problems

102. A population, P , in a restricted environment may grow
with time, t, according to the logistic function

P =
L

1 +Ce−kt

where L is called the carrying capacity and L, C and k
are positive constants.

(a) Find lim
t→∞

P . Explain why L is called the carrying

capacity.
(b) Using a computer algebra system, show that the

graph of P has an inflection point at P = L/2.

103. For positive a, consider the family of functions

y = arctan

(√
x+

√
a

1−√
ax

)
, x > 0.

(a) Graph several curves in the family and describe how
the graph changes as a varies.

(b) Use a computer algebra system to find dy/dx, and
graph the derivative for several values of a. What do
you notice?

(c) Do your observations in part (b) agree with the an-
swer to part (a)? Explain. [Hint: Use the fact that√
ax =

√
a
√
x for a > 0, x > 0.]

104. The function arcsinh x is the inverse function of sinhx.

(a) Use a computer algebra system to find a formula for
the derivative of arcsinh x.

(b) Derive the formula by hand by differentiating both
sides of the equation

sinh(arcsinh x) = x.

[Hint: Use the identity cosh2 x− sinh2 x = 1.]

105. The function arccosh x, for x ≥ 0, is the inverse function
of cosh x, for x ≥ 0.

(a) Use a computer algebra system to find the derivative
of arccosh x.

(b) Derive the formula by hand by differentiating both
sides of the equation

cosh(arccosh x) = x, x ≥ 1.

[Hint: Use the identity cosh2 x− sinh2 x = 1.]

106. Consider the family of functions

f(x) =

√
a+ x√
a+

√
x
, x ≥ 0, for positive a.

(a) Using a computer algebra system, find the local
maxima and minima of f .

(b) On one set of axes, graph this function for several
values of a. How does varying a affect the shape of
the graph? Explain your answer in terms of the an-
swer to part (a).

(c) Use your computer algebra system to find the inflec-
tion points of f when a = 2.

107. (a) Use a computer algebra system to find the derivative
of

y = arctan

(√
1− cosx

1 + cosx

)
.

(b) Graph the derivative. Does the graph agree with the
answer you got in part (a)? Explain using the identity
cos(x) = cos2(x/2)− sin2(x/2).

108. In 1696, the first calculus textbook was published by the
Marquis de l’Hopital. The following problem is a simpli-
fied version of a problem from this text.

In Figure 4.122, two ropes are attached to the ceil-
ing at points

√
3 meters apart. The rope on the left is 1

meter long and has a pulley attached at its end. The rope
on the right is 3 meters long; it passes through the pul-
ley and has a weight tied to its end. When the weight is
released, the ropes and pulley arrange themselves so that
the distance from the weight to the ceiling is maximized.

(a) Show that the maximum distance occurs when the
weight is exactly halfway between the the points
where the ropes are attached to the ceiling. [Hint:
Write the vertical distance from the weight to the
ceiling in terms of its horizontal distance to the point
at which the left rope is tied to the ceiling. A com-
puter algebra system will be useful.]

(b) Does the weight always end up halfway between the
ceiling anchor points no matter how long the left-
hand rope is? Explain.

�

�

1m

�� √
3m

Figure 4.122
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PROJECTS FOR CHAPTER FOUR

1. Medical Case Study: Impact of Asthma on Breathing13

Asthma is a common breathing disease in which inflammation in the airways of the lungs
causes episodes of shortness of breath, coughing, and chest tightness. Patients with asthma
often have wheezing, an abnormal sound heard on exhalation due to turbulent airflow. Turbulent
airflow is caused by swelling, mucus secretion, and constriction of muscle in the walls of the
airways, shrinking the radius of the air passages leading to increased resistance to airflow and
making it harder for patients to exhale.

An important breathing test for asthma is called spirometry. In this test, a patient takes in as
deep a breath as he or she can, and then exhales as rapidly, forcefully, and for as long as possible
through a tube connected to an analyzer. The analyzer measures a number of parameters and
generates two graphs.

(a) Figure 4.123 is a volume-time curve for an asthma-free patient, showing the volume of air
exhaled, V , as a function of time, t, since the test began.14

(i) What is the physical interpretation of the slope of the volume-time curve?
(ii) The volume VC shown on the volume-time graph is called the (forced) vital capacity

(FVC or simply VC). Describe the physical meaning of VC.
(b) Figure 4.124 is the flow-volume curve for the same patient.15 The flow-volume curve shows

the flow rate, dV/dt, of air as a function of V , the volume of air exhaled.
(i) What is the physical interpretation of the slope of the flow-volume curve?

(ii) Describe how the slope of the flow-volume curve changes as V increases from 0 to
5.5 liters. Explain what this means for the patient’s breath.

(iii) Sketch the slope of the flow-volume curve.
(iv) What is the volume of air that has been exhaled when the flow rate is a maximum, and

what is that maximal rate, the peak expiratory flow? Explain how this maximal rate is
identified on the flow-volume curve and how the volume at which the maximal rate
occurs is identified on the slope curve in part (b)(iii).

(c) How do you imagine the volume-time curve and the flow-volume curve would be different
for a patient with acute asthma? Draw curves to illustrate your thinking.

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6 V C

t, sec

V , liters

Figure 4.123: Volume-time curve

1 2 3 4 5 6

2
4
6
8

10
12

V , liters

dV/dt, liters/sec

Figure 4.124: Flow-volume curve

2. Building a Greenhouse
Your parents are going to knock out the bottom of the entire length of the south wall of

their house and turn it into a greenhouse by replacing the bottom portion of the wall with a
huge sloped piece of glass (which is expensive). They have already decided they are going to
spend a certain fixed amount. The triangular ends of the greenhouse will be made of various
materials they already have lying around.16

13From David E. Sloane, M.D.
14Image based on www.aafp.org/afp/2004/0301/p1107.html, accessed July 9, 2011.
15Image from http://www.aafp.org/afp/2004/0301/p1107.html, accessed July 9, 2011.
16Adapted from M. Cohen, E. Gaughan, A. Knoebel, D. Kurtz, D. Pengelley, Student Research Projects in Calculus

(Washington DC: Mathematical Association of America, 1992).
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The floor space in the greenhouse is only considered usable if they can both stand up in
it, so part of it will be unusable. They want to choose the dimensions of the greenhouse to get
the most usable floor space. What should the dimensions of the greenhouse be and how much
usable space will your parents get?

3. Fitting a Line to Data

(a) The line which best fits the data points (x1, y1), (x2, y2) . . . (xn, yn) is the one which min-
imizes the sum of the squares of the vertical distances from the points to the line. These are
the distances marked in Figure 4.125. Find the best fitting line of the form y = mx for the
points (2, 3.5), (3, 6.8), (5, 9.1).

(x2, y2)

�

�

(x3, y3)

�
�

(x1, y1)

�

�

y = mx

x

y

Figure 4.125

(b) A cone with height and radius both equal to r has volume, V , proportional to r3; that is,
V = kr3 for some constant k. A lab experiment is done to measure the volume of several
cones; the results are in the following table. Using the method of part (a), determine the
best value of k. [Note: Since the volumes were determined experimentally, the values may
not be accurate. Assume that the radii were measured accurately.]

Radius (cm) 2 5 7 8

Volume (cm3) 8.7 140.3 355.8 539.2

(c) Using the method of part (a), show that the best fitting line of the form y = mx for the
points (x1, y1), (x2, y2) . . . (xn, yn) has

m =
x1y1 + x2y2 + · · ·+ xnyn

x2
1 + x2

2 + · · ·+ x2
n

.

4. Firebreaks
The summer of 2000 was devastating for forests in the western US: over 3.5 million acres of
trees were lost to fires, making this the worst fire season in 30 years. This project studies a
fire management technique called firebreaks, which reduce the damage done by forest fires. A
firebreak is a strip where trees have been removed in a forest so that a fire started on one side of
the strip will not spread to the other side. Having many firebreaks helps confine a fire to a small
area. On the other hand, having too many firebreaks involves removing large swaths of trees.17

(a) A forest in the shape of a 50 km by 50 km square has firebreaks in rectangular strips 50 km
by 0.01 km. The trees between two firebreaks are called a stand of trees. All firebreaks in
this forest are parallel to each other and to one edge of the forest, with the first firebreak at
the edge of the forest. The firebreaks are evenly spaced throughout the forest. (For example,
Figure 4.126 shows four firebreaks.) The total area lost in the case of a fire is the area of
the stand of trees in which the fire started plus the area of all the firebreaks.

17Adapted from D. Quinney and R. Harding, Calculus Connections (New York: John Wiley & Sons, 1996).
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Stands
of trees

Firebreaks

�

�

�

	

�




�

�
�� 50 km

�

�

50 km

Figure 4.126

(i) Find the number of firebreaks that minimizes the total area lost to the forest in the case
of a fire.

(ii) If a firebreak is 50 km by b km, find the optimal number of firebreaks as a function of b.
If the width, b, of a firebreak is quadrupled, how does the optimal number of firebreaks
change?

(b) Now suppose firebreaks are arranged in two equally spaced sets of parallel lines, as shown
in Figure 4.127. The forest is a 50 km by 50 km square, and each firebreak is a rectangular
strip 50 km by 0.01 km. Find the number of firebreaks in each direction that minimizes the
total area lost to the forest in the case of a fire.

�� 50 km

�

�

50 km

Firebreaks

Firebreaks

� �  �

�

�

�

	

Figure 4.127
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5.1 HOW DO WE MEASURE DISTANCE TRAVELED?

For positive constant velocities, we can find the distance a moving object travels using the formula

Distance = Velocity × Time.

In this section we see how to estimate the distance when the velocity is not a constant.

A Thought Experiment: How Far Did the Car Go?

Velocity Data Every Two Seconds

A car is moving with increasing velocity. Table 5.1 shows the velocity every two seconds:

Table 5.1 Velocity of car every two seconds

Time (sec) 0 2 4 6 8 10

Velocity (ft/sec) 20 30 38 44 48 50

How far has the car traveled? Since we don’t know how fast the car is moving at every moment,
we can’t calculate the distance exactly, but we can make an estimate. The velocity is increasing, so
the car is going at least 20 ft/sec for the first two seconds. Since Distance = Velocity × Time, the
car goes at least 20 · 2 = 40 feet during the first two seconds. Likewise, it goes at least 30 · 2 = 60

feet during the next two seconds, and so on. During the ten-second period it goes at least

20 · 2 + 30 · 2 + 38 · 2 + 44 · 2 + 48 · 2 = 360 feet.

Thus, 360 feet is an underestimate of the total distance traveled during the ten seconds.
To get an overestimate, we can reason this way: During the first two seconds, the car’s velocity

is at most 30 ft/sec, so it moved at most 30 · 2 = 60 feet. In the next two seconds it moved at most
38 · 2 = 76 feet, and so on. Therefore, over the ten-second period it moved at most

30 · 2 + 38 · 2 + 44 · 2 + 48 · 2 + 50 · 2 = 420 feet.

Therefore,
360 feet ≤ Total distance traveled ≤ 420 feet.

There is a difference of 60 feet between the upper and lower estimates.

Velocity Data Every One Second

What if we want a more accurate estimate? Then we make more frequent velocity measurements,
say every second, as in Table 5.2.

As before, we get a lower estimate for each second by using the velocity at the beginning of that
second. During the first second the velocity is at least 20 ft/sec, so the car travels at least 20 · 1 = 20

feet. During the next second the car moves at least 26 feet, and so on. We have

New lower estimate = 20 · 1 + 26 · 1 + 30 · 1 + 34 · 1 + 38 · 1

+ 41 · 1 + 44 · 1 + 46 · 1 + 48 · 1 + 49 · 1

= 376 feet.

Table 5.2 Velocity of car every second

Time (sec) 0 1 2 3 4 5 6 7 8 9 10

Velocity (ft/sec) 20 26 30 34 38 41 44 46 48 49 50
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Notice that this lower estimate is greater than the old lower estimate of 360 feet.
We get a new upper estimate by considering the velocity at the end of each second. During the

first second the velocity is at most 26 ft/sec, so the car moves at most 26 · 1 = 26 feet; in the next
second it moves at most 30 feet, and so on.

New upper estimate = 26 · 1 + 30 · 1 + 34 · 1 + 38 · 1 + 41 · 1

+ 44 · 1 + 46 · 1 + 48 · 1 + 49 · 1 + 50 · 1

= 406 feet.

This is less than the old upper estimate of 420 feet. Now we know that

376 feet ≤ Total distance traveled ≤ 406 feet.

The difference between upper and lower estimates is now 30 feet, half of what it was before. By
halving the interval of measurement, we have halved the difference between the upper and lower
estimates.

Visualizing Distance on the Velocity Graph: Two-Second Data

We can represent both upper and lower estimates on a graph of the velocity. The graph also shows
how changing the time interval between velocity measurements changes the accuracy of our esti-
mates.

The velocity can be graphed by plotting the two-second data in Table 5.1 and drawing a curve
through the data points. (See Figure 5.1.) The area of the first dark rectangle is 20 ·2 = 40, the lower
estimate of the distance moved during the first two seconds. The area of the second dark rectangle is
30 · 2 = 60, the lower estimate for the distance moved in the next two seconds. The total area of the
dark rectangles represents the lower estimate for the total distance moved during the ten seconds.

If the dark and light rectangles are considered together, the first area is 30 · 2 = 60, the upper
estimate for the distance moved in the first two seconds. The second area is 38 · 2 = 76, the upper
estimate for the next two seconds. The upper estimate for the total distance is represented by the
sum of the areas of the dark and light rectangles. Therefore, the area of the light rectangles alone
represents the difference between the two estimates.

To visualize the difference between the two estimates, look at Figure 5.1 and imagine the light
rectangles all pushed to the right and stacked on top of each other. This gives a rectangle of width 2
and height 30. The height, 30, is the difference between the initial and final values of the velocity:
30 = 50− 20. The width, 2, is the time interval between velocity measurements.

2 4 6 8 10

10

20

30

40

50

time

velocity

�

�

30 (= 50− 20)

Difference
between
estimates

Overestimate
of distance

(area of dark and
light rectangles)

Underestimate
of distance

(area of dark
rectangles)

�� 2

Figure 5.1: Velocity measured every 2 seconds
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Figure 5.2: Velocity measured every second

Visualizing Distance on the Velocity Graph: One-Second Data

Figure 5.2 shows the velocities measured every second. The area of the dark rectangles again rep-
resents the lower estimate, and the area of the dark and light rectangles together represent the upper
estimate. As before, the difference between the two estimates is represented by the area of the light
rectangles. This difference can be calculated by stacking the light rectangles vertically, giving a
rectangle of the same height as before but of half the width. Its area is therefore half what it was
before. Again, the height of this stack is 50− 20 = 30, but its width is now 1.

Example 1 What would be the difference between the upper and lower estimates if the velocity were given
every tenth of a second? Every hundredth of a second? Every thousandth of a second?

Solution Every tenth of a second: Difference between estimates = (50− 20)(1/10) = 3 feet.
Every hundredth of a second: Difference between estimates = (50− 20)(1/100) = 0.3 feet.
Every thousandth of a second: Difference between estimates = (50− 20)(1/1000) = 0.03 feet.

Example 2 How frequently must the velocity be recorded in order to estimate the total distance traveled to
within 0.1 feet?

Solution The difference between the velocity at the beginning and end of the observation period is 50−20 =

30. If the time between successive measurements is Δt, then the difference between the upper and
lower estimates is (30)Δt. We want

(30)Δt < 0.1,

or

Δt <
0.1

30
= 0.0033.

So if the measurements are made less than 0.0033 seconds apart, the distance estimate is accurate
to within 0.1 feet.

Visualizing Distance on the Velocity Graph: Area Under Curve
As we make more frequent velocity measurements, the rectangles used to estimate the distance trav-
eled fit the curve more closely. See Figures 5.3 and 5.4. In the limit, as the number of subdivisions
increases, we see that the distance traveled is given by the area between the velocity curve and the
horizontal axis. See Figure 5.5. In general:

If the velocity is positive, the total distance traveled is the area under the velocity curve.
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Figure 5.3: Velocity measured every
1/2 second
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Figure 5.4: Velocity measured every
1/4 second
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Figure 5.5: Distance traveled is area
under curve

Example 3 With time t in seconds, the velocity of a bicycle, in feet per second, is given by v(t) = 5t. How far
does the bicycle travel in 3 seconds?

Solution The velocity is linear. See Figure 5.6. The distance traveled is the area between the line v(t) = 5t
and the t-axis. Since this region is a triangle of height 15 and base 3,

Distance traveled = Area of triangle =
1

2
· 15 · 3 = 22.5 feet.

3

15

v(t) = 5t

time, t (sec)

velocity (ft/sec)

Figure 5.6: Shaded area represents distance traveled

Negative Velocity and Change in Position

In the thought experiment, the velocity is positive and our sums represent distance traveled. What if
the velocity is sometimes negative?

Example 4 A particle moves along the y-axis with velocity 30 cm/sec for 5 seconds and velocity−10 cm/sec for
the next 5 seconds. Positive velocity indicates upward motion; negative velocity represents down-
ward motion. What is represented by the sum

30 · 5 + (−10) · 5?

Solution The first term in the sum represents an upward motion of 30 ·5 = 150 centimeters. The second term
represents a motion of (−10) · 5 = −50 centimeters, that is, 50 centimeters downward. Thus, the
sum represents a change in position of 150− 50 = 100 centimeters upward.

Figure 5.7 shows velocity versus time. The area of the rectangle above the t-axis represents
upward distance, while the area of the rectangle below the t-axis represents downward distance.

5

10

−10

30

� Area = 150 Upward motion

�
Area = 50 Downward motion

t (sec)

v (cm/sec)

Figure 5.7: Difference in areas gives change in position
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In general, if the velocity can be negative as well as positive, the limit of the sums represents
change in position, rather than distance traveled.

Left and Right Sums
We now write the estimates for the distance traveled by the car in new notation. Let v = f(t) denote
any nonnegative velocity function. We want to find the distance traveled between times t = a and
t = b. We take measurements of f(t) at equally spaced times t0, t1, t2, . . . , tn, with time t0 = a
and time tn = b. The time interval between any two consecutive measurements is

Δt =
b− a

n
,

where Δt means the change, or increment, in t.
During the first time interval, from t0 and t1, the velocity can be approximated by f(t0), so the

distance traveled is approximately
f(t0)Δt.

During the second time interval, the velocity is about f(t1), so the distance traveled is about

f(t1)Δt.

Continuing in this way and adding all the estimates, we get an estimate for the total distance traveled.
In the last interval, the velocity is approximately f(tn−1), so the last term is f(tn−1)Δt:

Total distance traveled

between t = a and t = b
≈ f(t0)Δt+ f(t1)Δt+ f(t2)Δt+ · · ·+ f(tn−1)Δt.

This is called a left-hand sum because we used the value of velocity from the left end of each time
interval. It is represented by the sum of the areas of the rectangles in Figure 5.8.

We can also calculate a right-hand sum by using the value of the velocity at the right end of
each time interval. In that case the estimate for the first interval is f(t1)Δt, for the second interval
it is f(t2)Δt, and so on. The estimate for the last interval is now f(tn)Δt, so

Total distance traveled

between t = a and t = b
≈ f(t1)Δt+ f(t2)Δt+ f(t3)Δt+ · · ·+ f(tn)Δt.

The right-hand sum is represented by the area of the rectangles in Figure 5.9.
If f is an increasing function, as in Figures 5.8 and 5.9, the left-hand sum is an underestimate

and the right-hand sum is an overestimate of the total distance traveled. If f is decreasing, as in
Figure 5.10, then the roles of the two sums are reversed.

a = t0 t1 t2 tn−1 tn = b
t

v

· · ·

v = f(t) �

�

f(tn−1)

�

�
f(t0)

��Δt

Figure 5.8: Left-hand sums

a = t0 t1 t2 tn−1 tn = b
t

v

· · ·

v = f(t)

�

�

f(tn)

�

�

f(t1)

��Δt

Figure 5.9: Right-hand sums
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v = f(t)

v

a = t0 t1 t2 · · · tn = b
t
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estimates

�

�
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��Δt

��Δt

�

�

f(a)

�

�

f(b)

Figure 5.10: Left and right sums if f is decreasing

Accuracy of Estimates

For either increasing or decreasing velocity functions, the exact value of the distance traveled lies
somewhere between the two estimates. Thus, the accuracy of our estimate depends on how close
these two sums are. For a function which is increasing throughout or decreasing throughout the
interval [a, b]:∣∣∣∣∣ Difference between

upper and lower estimates

∣∣∣∣∣ =
∣∣∣∣∣ Difference between

f(a) and f(b)

∣∣∣∣∣ ·Δt = |f(b)− f(a)| ·Δt.

(Absolute values make the differences nonnegative.) In Figure 5.10, the area of the light rectangles
is the difference between estimates. By making the time interval, Δt, between measurements small
enough, we can make this difference between lower and upper estimates as small as we like.

Exercises and Problems for Section 5.1
Exercises

1. Figure 5.11 shows the velocity of a car for 0 ≤ t ≤ 12
and the rectangles used to estimate of the distance trav-
eled.

(a) Do the rectangles represent a left or a right sum?
(b) Do the rectangles lead to an upper or a lower esti-

mate?
(c) What is the value of n?
(d) What is the value of Δt?
(e) Give an approximate value for the estimate.

120

4

t

Figure 5.11
2. The velocity v(t) in Table 5.3 is increasing, 0 ≤ t ≤ 12.

(a) Find an upper estimate for the total distance traveled
using

(i) n = 4 (ii) n = 2

(b) Which of the two answers in part (a) is more accu-
rate? Why?

(c) Find a lower estimate of the total distance traveled
using n = 4.

Table 5.3

t 0 3 6 9 12

v(t) 34 37 38 40 45

3. The velocity v(t) in Table 5.4 is decreasing, 2 ≤ t ≤ 12.
Using n = 5 subdivisions to approximate the total dis-
tance traveled, find

(a) An upper estimate (b) A lower estimate

Table 5.4

t 2 4 6 8 10 12

v(t) 44 42 41 40 37 35
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4. A car comes to a stop five seconds after the driver applies
the brakes. While the brakes are on, the velocities in the
table are recorded.

(a) Give lower and upper estimates of the distance the
car traveled after the brakes were applied.

(b) On a sketch of velocity against time, show the lower
and upper estimates of part (a).

(c) Find the difference between the estimates. Explain
how this difference can be visualized on the graph in
part (b).

Time since brakes applied (sec) 0 1 2 3 4 5

Velocity (ft/sec) 88 60 40 25 10 0

5. Figure 5.12 shows the velocity, v, of an object (in me-
ters/sec). Estimate the total distance the object traveled
between t = 0 and t = 6.

1 2 3 4 5 6

10

20

30

40

t (sec)

v (m/sec)

Figure 5.12

6. At time, t, in seconds, your velocity, v, in meters/second,
is given by

v(t) = 1 + t2 for 0 ≤ t ≤ 6.

Use Δt = 2 to estimate the distance traveled during this
time. Find the upper and lower estimates, and then aver-
age the two.

7. Figure 5.13 shows the velocity of a particle, in cm/sec,
along a number line for time −3 ≤ t ≤ 3.

(a) Describe the motion in words: Is the particle chang-
ing direction or always moving in the same direc-
tion? Is the particle speeding up or slowing down?

(b) Make over and underestimates of the distance trav-
eled for −3 ≤ t ≤ 3.

−4 −3 −2 −1 0 1 2 3 4

1

2

4

t

Figure 5.13

8. For time, t, in hours, 0 ≤ t ≤ 1, a bug is crawling at a
velocity, v, in meters/hour given by

v =
1

1 + t
.

Use Δt = 0.2 to estimate the distance that the bug crawls
during this hour. Find an overestimate and an underesti-
mate. Then average the two to get a new estimate.

Exercises 9–12 show the velocity, in cm/sec, of a particle mov-
ing along a number line. (Positive velocities represent move-
ment to the right; negative velocities to the left.) Compute the
change in position between times t = 0 and t = 5 seconds.

9.

3 5

2

−3

v(t)

t

10.

5

10

v(t)

t

11.

5

−3
v(t)

t

12.

4

5

−2

8

v(t)

t

13. Use the expressions for left and right sums on page 276
and Table 5.5.

(a) If n = 4, what is Δt? What are t0, t1, t2, t3, t4?
What are f(t0), f(t1), f(t2), f(t3), f(t4)?

(b) Find the left and right sums using n = 4.
(c) If n = 2, what is Δt? What are t0, t1, t2? What are

f(t0), f(t1), f(t2)?
(d) Find the left and right sums using n = 2.

Table 5.5

t 15 17 19 21 23

f(t) 10 13 18 20 30

14. Use the expressions for left and right sums on page 276
and Table 5.6.

(a) If n = 4, what is Δt? What are t0, t1, t2, t3, t4?
What are f(t0), f(t1), f(t2), f(t3), f(t4)?

(b) Find the left and right sums using n = 4.
(c) If n = 2, what is Δt? What are t0, t1, t2? What are

f(t0), f(t1), f(t2)?
(d) Find the left and right sums using n = 2.

Table 5.6

t 0 4 8 12 16

f(t) 25 23 22 20 17
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Problems

15. Roger runs a marathon. His friend Jeff rides behind him
on a bicycle and clocks his speed every 15 minutes.
Roger starts out strong, but after an hour and a half he
is so exhausted that he has to stop. Jeff’s data follow:

Time since start (min) 0 15 30 45 60 75 90

Speed (mph) 12 11 10 10 8 7 0

(a) Assuming that Roger’s speed is never increasing,
give upper and lower estimates for the distance
Roger ran during the first half hour.

(b) Give upper and lower estimates for the distance
Roger ran in total during the entire hour and a half.

(c) How often would Jeff have needed to measure
Roger’s speed in order to find lower and upper esti-
mates within 0.1 mile of the actual distance he ran?

16. The velocity of a particle moving along the x-axis is
given by f(t) = 6 − 2t cm/sec. Use a graph of f(t)
to find the exact change in position of the particle from
time t = 0 to t = 4 seconds.

In Problems 17–20, find the difference between the upper and
lower estimates of the distance traveled at velocity f(t) on the
interval a ≤ t ≤ b for n subdivisions.

17. f(t) = 5t+ 8, a = 1, b = 3, n = 100

18. f(t) = 25− t2, a = 1, b = 4, n = 500

19. f(t) = sin t, a = 0, b = π/2, n = 100

20. f(t) = e−t2/2, a = 0, b = 2, n = 20

21. A baseball thrown directly upward at 96 ft/sec has veloc-
ity v(t) = 96− 32t ft/sec at time t seconds.

(a) Graph the velocity from t = 0 to t = 6.
(b) When does the baseball reach the peak of its flight?

How high does it go?
(c) How high is the baseball at time t = 5?

22. Figure 5.14 gives your velocity during a trip starting from
home. Positive velocities take you away from home and
negative velocities take you toward home. Where are you
at the end of the 5 hours? When are you farthest from
home? How far away are you at that time?

1 2 3 4 5

−20

−10

10

20

30

40

t (hours)

v (km/hr)

Figure 5.14

23. When an aircraft attempts to climb as rapidly as possi-
ble, its climb rate decreases with altitude. (This occurs
because the air is less dense at higher altitudes.) The ta-
ble shows performance data for a single-engine aircraft.

Altitude (1000 ft) 0 1 2 3 4 5

Climb rate (ft/min) 925 875 830 780 730 685

Altitude (1000 ft) 6 7 8 9 10

Climb rate (ft/min) 635 585 535 490 440

(a) Calculate upper and lower estimates for the time re-
quired for this aircraft to climb from sea level to
10,000 ft.

(b) If climb rate data were available in increments of
500 ft, what would be the difference between a lower
and upper estimate of climb time based on 20 subdi-
visions?

24. A bicyclist is pedaling along a straight road for one hour
with a velocity v shown in Figure 5.15. She starts out five
kilometers from the lake and positive velocities take her
toward the lake. [Note: The vertical lines on the graph are
at 10 minute (1/6 hour) intervals.]
(a) Does the cyclist ever turn around? If so, at what

time(s)?
(b) When is she going the fastest? How fast is she going

then? Toward the lake or away?
(c) When is she closest to the lake? Approximately how

close to the lake does she get?
(d) When is she farthest from the lake? Approximately

how far from the lake is she then?

10 20 30 40 50 60

−25

−20

−15

−10

−5

0

5

10

t(minutes)

v (km/hr)

Figure 5.15
25. Two cars travel in the same direction along a straight

road. Figure 5.16 shows the velocity, v, of each car at
time t. Car B starts 2 hours after car A and car B reaches
a maximum velocity of 50 km/hr.

(a) For approximately how long does each car travel?
(b) Estimate car A’s maximum velocity.
(c) Approximately how far does each car travel?

Car A

Car B

t (hr)

v (km/hr)

Figure 5.16
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26. Two cars start at the same time and travel in the same
direction along a straight road. Figure 5.17 gives the ve-
locity, v, of each car as a function of time, t. Which car:

(a) Attains the larger maximum velocity?
(b) Stops first?
(c) Travels farther?

Car A

Car B

t (hr)

v (km/hr)

Figure 5.17

27. A car initially going 50 ft/sec brakes at a constant rate
(constant negative acceleration), coming to a stop in 5
seconds.

(a) Graph the velocity from t = 0 to t = 5.
(b) How far does the car travel?
(c) How far does the car travel if its initial velocity is

doubled, but it brakes at the same constant rate?

28. A woman drives 10 miles, accelerating uniformly from
rest to 60 mph. Graph her velocity versus time. How long
does it take for her to reach 60 mph?

29. An object has zero initial velocity and a constant accel-
eration of 32 ft/sec2. Find a formula for its velocity as a

function of time. Use left and right sums with Δt = 1
to find upper and lower bounds on the distance that the
object travels in four seconds. Find the precise distance
using the area under the curve.

Problems 30–31 concern hybrid cars such as the Toyota Prius
that are powered by a gas-engine, electric-motor combination,
but can also function in Electric-Vehicle (EV) only mode. Fig-
ure 5.18 shows the velocity, v, of a 2010 Prius Plug-in Hy-
brid Prototype operating in normal hybrid mode and EV-only
mode, respectively, while accelerating from a stoplight.1

5 15 25

40

80 Normal hybrid

EV-only

t (sec)

v (mph)

Figure 5.18

30. Could the car travel half a mile in EV-only mode during
the first 25 seconds of movement?

31. Assume two identical cars, one running in normal hybrid
mode and one running in EV-only mode, accelerate to-
gether in a straight path from a stoplight. Approximately
how far apart are the cars after 15 seconds?

Strengthen Your Understanding

In Problems 32–33, explain what is wrong with the statement.

32. If a car accelerates from 0 to 50 ft/sec in 10 seconds, then
it travels 250 ft.

33. For any acceleration, you can estimate the total distance
traveled by a car in 1 second to within 0.1 feet by record-
ing its velocity every 0.1 second.

In Problems 34–35, give an example of:

34. A velocity function f and an interval [a, b] such that the
distance denoted by the right-hand sum for f on [a, b] is
less than the distance denoted by the left-hand sum, no
matter what the number of subdivisions.

35. A velocity f(t) and an interval [a, b] such that at least
100 subdivisions are needed in order for the difference
between the upper and lower estimates to be less than or
equal to 0.1.

Are the statements in Problems 36–38 true or false? Give an
explanation for your answer.

36. For an increasing velocity function on a fixed time in-
terval, the left-hand sum with a given number of subdi-
visions is always less than the corresponding right-hand
sum.

37. For a decreasing velocity function on a fixed time inter-
val, the difference between the left-hand sum and right-
hand sum is halved when the number of subdivisions is
doubled.

38. For a given velocity function on a given interval, the dif-
ference between the left-hand sum and right-hand sum
gets smaller as the number of subdivisions gets larger.

39. A bicyclist starts from home and rides back and forth
along a straight east/west highway. Her velocity is given

1www.motortrend.com/, accessed May 2011.
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in Figure 5.19 (positive velocities indicate travel toward
the east, negative toward the west).

(a) On what time intervals is she stopped?
(b) How far from home is she the first time she stops,

and in what direction?
(c) At what time does she bike past her house?
(d) If she maintains her velocity at t = 11, how long

will it take her to get back home?

2 4 6 8 10 12 14

−30

30

t (minutes)

v (ft/sec)

Figure 5.19

5.2 THE DEFINITE INTEGRAL

In Section 5.1, we saw how distance traveled can be approximated by a sum of areas of rectangles.
We also saw how the approximation improves as the width of the rectangles gets smaller. In this
section, we construct these sums for any function f , whether or not it represents a velocity.

Sigma Notation

Suppose f(t) is a continuous function for a ≤ t ≤ b. We divide the interval from a to b into n equal
subdivisions, and we call the width of an individual subdivision Δt, so

Δt =
b− a

n
.

Let t0, t1, t2, . . . , tn be endpoints of the subdivisions. Both the left-hand and right-hand sums can
be written more compactly using sigma, or summation, notation. The symbol

∑
is a capital sigma,

or Greek letter “S.” We write

Right-hand sum = f(t1)Δt+ f(t2)Δt+ · · ·+ f(tn)Δt =

n∑
i=1

f(ti)Δt.

The
∑

tells us to add terms of the form f(ti)Δt. The “i = 1” at the base of the sigma sign tells us
to start at i = 1, and the “n” at the top tells us to stop at i = n.

In the left-hand sum we start at i = 0 and stop at i = n− 1, so we write

Left-hand sum = f(t0)Δt+ f(t1)Δt+ · · ·+ f(tn−1)Δt =

n−1∑
i=0

f(ti)Δt.

Taking the Limit to Obtain the Definite Integral
Now we take the limit of these sums as n goes to infinity. If f is continuous for a ≤ t ≤ b, the
limits of the left- and right-hand sums exist and are equal. The definite integral is the limit of these
sums. A formal definition of the definite integral is given in the online supplement to the text at
www.wiley.com/college/hughes-hallett.
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Suppose f is continuous for a ≤ t ≤ b. The definite integral of f from a to b, written∫ b

a

f(t) dt,

is the limit of the left-hand or right-hand sums with n subdivisions of a ≤ t ≤ b as n gets
arbitrarily large. In other words,

∫ b

a

f(t) dt = lim
n→∞

(Left-hand sum) = lim
n→∞

(
n−1∑
i=0

f(ti)Δt

)

and ∫ b

a

f(t) dt = lim
n→∞

(Right-hand sum) = lim
n→∞

(
n∑

i=1

f(ti)Δt

)
.

Each of these sums is called a Riemann sum, f is called the integrand, and a and b are called
the limits of integration.

The “
∫

” notation comes from an old-fashioned “S,” which stands for “sum” in the same way
that
∑

does. The “dt” in the integral comes from the factor Δt. Notice that the limits on the
∑

symbol are 0 and n−1 for the left-hand sum, and 1 and n for the right-hand sum, whereas the limits
on the

∫
sign are a and b.

Computing a Definite Integral

In practice, we often approximate definite integrals numerically using a calculator or computer.
They use programs which compute sums for larger and larger values of n, and eventually give a
value for the integral. Some (but not all) definite integrals can be computed exactly. However, any
definite integral can be approximated numerically.

In the next example, we see how numerical approximation works. For each value of n, we
show an over- and an under-estimate for the integral

∫ 2
1 (1/t) dt. As we increase the value of n, the

over- and under-estimates get closer together, trapping the value of the integral between them. By
increasing the value of n sufficiently, we can calculate the integral to any desired accuracy.

Example 1 Calculate the left-hand and right-hand sums with n = 2 for
∫ 2

1

1

t
dt. What is the relation between

the left- and right-hand sums for n = 10 and n = 250 and the integral?

Solution Here a = 1 and b = 2, so for n = 2, Δt = (2 − 1)/2 = 0.5. Therefore, t0 = 1, t1 = 1.5 and
t2 = 2. (See Figure 5.20.) We have

Left-hand sum = f(1)Δt+ f(1.5)Δt = 1(0.5) +
1

1.5
(0.5) = 0.8333,

Right-hand sum = f(1.5)Δt+ f(2)Δt =
1

1.5
(0.5) +

1

2
(0.5) = 0.5833.

In Figure 5.20 we see that the left-hand sum is bigger than the area under the curve and the right-
hand sum is smaller. So the area under the curve f(t) = 1/t from t = 1 to t = 2 is between
them:

0.5833 <

∫ 2

1

1

t
dt < 0.8333.

Since 1/t is decreasing, when n = 10 in Figure 5.21 we again see that the left-hand sum is larger
than the area under the curve, and the right-hand sum smaller. A calculator or computer gives

0.6688 <

∫ 2

1

1

t
dt < 0.7188.
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t

f(t) =
1

t

1 1.5 2

Figure 5.20: Approximating
∫ 2

1

1
t
dt

with n = 2

t

f(t) =
1

t

1 1.5 2

Figure 5.21: Approximating
∫ 2

1

1
t
dt

with n = 10

1 1.5 2

f(t) =
1

t

t

Figure 5.22: Shaded area is exact value
of
∫ 2

1
1
t
dt

The left- and right-hand sums trap the exact value of the integral between them. As the subdivisions
become finer, the left- and right-hand sums get closer together.

When n = 250, a calculator or computer gives

0.6921 <

∫ 2

1

1

t
dt < 0.6941.

So, to two decimal places, we can say that∫ 2

1

1

t
dt ≈ 0.69.

The exact value is known to be
∫ 2

1

1

t
dt = ln 2 = 0.693147 . . .. See Figure 5.22.

The Definite Integral as an Area
If f(x) is positive we can interpret each term f(x0)Δx, f(x1)Δx, . . . in a left- or right-hand Rie-
mann sum as the area of a rectangle. See Figure 5.23. As the width Δx of the rectangles approaches
zero, the rectangles fit the curve of the graph more exactly, and the sum of their areas gets closer
and closer to the area under the curve shaded in Figure 5.24. This suggests that:

When f (x) ≥ 0 and a < b:

Area under graph of f and above x-axis
between a and b

=

∫ b

a

f(x) dx.

a b
x

f(x)

��

Δx

Figure 5.23: Area of rectangles
approximating the area under the curve

a b
x

f(x)
Area =

∫ b

a
f(x) dx



Figure 5.24: The definite integral
∫ b

a
f(x) dx



284 Chapter Five KEY CONCEPT: THE DEFINITE INTEGRAL

Example 2 Consider the integral
∫ 1

−1

√
1− x2 dx.

(a) Interpret the integral as an area, and find its exact value.
(b) Estimate the integral using a calculator or computer. Compare your answer to the exact value.

Solution (a) The integral is the area under the graph of y =
√
1− x2 between −1 and 1. See Figure 5.25.

Rewriting this equation as x2 + y2 = 1, we see that the graph is a semicircle of radius 1 and
area π/2.

(b) A calculator gives the value of the integral as 1.5707963 . . . .

x

y

−1 1

Area =
∫ 1

−1

√
1− x2 dx�

Figure 5.25: Area interpretation of
∫ 1

−1

√
1− x2 dx

When f (x) Is Not Positive

We have assumed in drawing Figure 5.24 that the graph of f(x) lies above the x-axis. If the graph
lies below the x-axis, then each value of f(x) is negative, so each f(x)Δx is negative, and the area
gets counted negatively. In that case, the definite integral is the negative of the area.

When f (x) is positive for some x values and negative for others, and a < b:∫ b

a

f(x) dx is the sum of areas above the x-axis, counted positively, and areas below the

x-axis, counted negatively.

Example 3 How does the definite integral
∫ 1

−1

(x2 − 1) dx relate to the area between the parabola y = x2 − 1

and the x-axis?

Solution A calculator gives
∫ 1
−1

(x2−1) dx = −1.33. Since the parabola lies below the axis between x = −1

and x = 1 (see Figure 5.26), the area between the parabola and the x-axis is approximately 1.33.

−1 1

−1

x

y
y = x2 − 1

Area = 1.33 and∫ 1

−1
(x2 − 1) dx = −1.33

�

Figure 5.26: Integral
∫ 1

−1
(x2 − 1) dx is negative of shaded

area

−1

1

y

√
π

√
2π

x

y = sin(x2)

A1 = 0.89

A2 = 0.46

�

�

Figure 5.27: Integral
∫ √

2π

0
sin(x2) dx = A1 − A2



5.2 THE DEFINITE INTEGRAL 285

Example 4 Interpret the definite integral
∫ √

2π

0

sin(x2
) dx in terms of areas.

Solution The integral is the area above the x-axis, A1, minus the area below the x-axis, A2. See Figure 5.27.
Estimating the integral with a calculator gives∫ √

2π

0

sin(x2
) dx = 0.43.

The graph of y = sin(x2) crosses the x-axis where x2 = π, that is, at x =
√
π. The next crossing is

at x =
√
2π. Breaking the integral into two parts and calculating each one separately gives∫ √

π

0

sin(x2
) dx = 0.89 and

∫ √
2π

√
π

sin(x2
) dx = −0.46.

So A1 = 0.89 and A2 = 0.46. Then, as we would expect,∫ √
2π

0

sin(x2
) dx = A1 −A2 = 0.89− 0.46 = 0.43.

More General Riemann Sums
Left- and right-hand sums are special cases of Riemann sums. For a general Riemann sum we
allow subdivisions to have different lengths. Also, instead of evaluating f only at the left or right
endpoint of each subdivision, we allow it to be evaluated anywhere in the subdivision. Thus, a
general Riemann sum has the form

n∑
i=1

Value of f(t) at some point in ith subdivision × Length of ith subdivision.

(See Figure 5.28.) As before, we let t0, t1, . . . , tn be the endpoints of the subdivisions, so the length
of the ith subdivision is Δti = ti − ti−1. For each i we choose a point ci in the ith subinterval at
which to evaluate f , leading to the following definition:

A general Riemann sum for f on the interval [a, b] is a sum of the form

n∑
i=1

f(ci)Δti,

where a = t0<t1< · · ·<tn= b, and, for i = 1, . . . , n, Δti = ti − ti−1, and ti−1 ≤ ci ≤ ti.

If f is continuous, we can make a general Riemann sum as close as we like to the value of
the definite integral by making the interval lengths small enough. Thus, in approximating definite
integrals or in proving theorems about them, we can use general Riemann sums rather than left- or
right-hand sums. Generalized Riemann sums are especially useful in establishing properties of the
definite integral; see www.wiley.com/college/hughes-hallett.

a ti ci ti+1 b

f(t)

��Δti

�

�

f(ci)

t

Figure 5.28: A general Riemann sum approximating
∫ b

a
f(t) dt
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Exercises and Problems for Section 5.2
Exercises

In Exercises 1–2, rectangles have been drawn to approximate∫ 6

0
g(x) dx.

(a) Do the rectangles represent a left or a right sum?
(b) Do the rectangles lead to an upper or a lower estimate?
(c) What is the value of n?
(d) What is the value of Δx?

1.

6

g(x)

x

2.

6

g(x)

x

3. Figure 5.29 shows a Riemann sum approximation with n

subdivisions to
∫ b

a
f(x) dx.

(a) Is it a left- or right-hand approximation? Would the
other one be larger or smaller?

(b) What are a, b, n and Δx?

20
x

Figure 5.29

4. Using Figure 5.30, draw rectangles representing each of
the following Riemann sums for the function f on the
interval 0 ≤ t ≤ 8. Calculate the value of each sum.

(a) Left-hand sum with Δt = 4
(b) Right-hand sum with Δt = 4
(c) Left-hand sum with Δt = 2
(d) Right-hand sum with Δt = 2

2 4 6 8

4
8

12
16
20
24
28
32

f(t)

t

Figure 5.30

In Exercises 5–10, use a calculator or a computer to find the
value of the definite integral.

5.

∫ 4

1

(x2 + x) dx 6.

∫ 3

0

2xdx

7.

∫ 1

−1

e−x2

dx 8.

∫ 3

0

ln(y2 + 1) dy

9.

∫ 1

0

sin(t2)dt 10.

∫ 4

3

√
ez + z dz

11. Use the table to estimate
∫ 40

0
f(x)dx. What values of n

and Δx did you use?

x 0 10 20 30 40

f(x) 350 410 435 450 460

12. Use the table to estimate
∫ 12

0
f(x) dx.

x 0 3 6 9 12

f(x) 32 22 15 11 9

13. Use the table to estimate
∫ 15

0
f(x) dx.

x 0 3 6 9 12 15

f(x) 50 48 44 36 24 8

14. Write out the terms of the right-hand sum with n = 5

that could be used to approximate

∫ 7

3

1

1 + x
dx. Do not

evaluate the terms or the sum.

15. Use Figure 5.31 to estimate
∫ 20

0
f(x) dx.

4 8 12 16 20

1

2

3

4

5

f(x)

x

Figure 5.31
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16. Use Figure 5.32 to estimate
∫ 15

−10
f(x)dx.

−10 0 10

10

20

30

x

f(x)

Figure 5.32

17. Using Figure 5.33, estimate
∫ 5

−3
f(x)dx.

−3 −1 2 4

5

−20

−10

10

x

f(x)

Figure 5.33

Problems

18. The graph of f(t) is in Figure 5.34. Which of the fol-
lowing four numbers could be an estimate of

∫ 1

0
f(t)dt

accurate to two decimal places? Explain your choice.

I. −98.35 II. 71.84 III. 100.12 IV. 93.47

0.5 1.0

20

40

60

80

100 f(t)

t

Figure 5.34

19. (a) What is the area between the graph of f(x) in Fig-
ure 5.35 and the x-axis, between x = 0 and x = 5?

(b) What is
∫ 5

0
f(x) dx?

3

5

�

Area = 7

�

Area = 6

x

f(x)

Figure 5.35

20. Find the total area between y = 4 − x2 and the x-axis
for 0 ≤ x ≤ 3.

21. (a) Find the total area between f(x) = x3 − x and the
x-axis for 0 ≤ x ≤ 3.

(b) Find

∫ 3

0

f(x)dx.

(c) Are the answers to parts (a) and (b) the same? Ex-
plain.

In Problems 22–28, find the area of the regions between the
curve and the horizontal axis

22. Under y = 6x3 − 2 for 5 ≤ x ≤ 10.

23. Under the curve y = cos t for 0 ≤ t ≤ π/2.

24. Under y = ln x for 1 ≤ x ≤ 4.

25. Under y = 2 cos(t/10) for 1 ≤ t ≤ 2.

26. Under the curve y = cos
√
x for 0 ≤ x ≤ 2.

27. Under the curve y = 7− x2 and above the x-axis.

28. Above the curve y = x4 − 8 and below the x-axis.

29. Use Figure 5.36 to find the values of

(a)
∫ b

a
f(x) dx (b)

∫ c

b
f(x) dx

(c)
∫ c

a
f(x) dx (d)

∫ c

a
|f(x)| dx

a b c

f(x)

�

Area = 13

�
Area = 2

x

Figure 5.36

30. Given
∫ 0

−2
f(x)dx = 4 and Figure 5.37, estimate:

(a)
∫ 2

0
f(x)dx (b)

∫ 2

−2
f(x)dx

(c) The total shaded area.

−2 2
−2

2

f(x)

x

Figure 5.37
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31. (a) Using Figure 5.38, find
∫ 0

−3
f(x) dx.

(b) If the area of the shaded region is A, estimate∫ 4

−3
f(x) dx.

−4 −3 −2 −1 1 2 3

4

5

−1

1

x

f(x)

Figure 5.38

32. Use Figure 5.39 to find the values of

(a)
∫ 2

0
f(x) dx (b)

∫ 7

3
f(x) dx

(c)
∫ 7

2
f(x) dx (d)

∫ 8

5
f(x) dx

2 4 6 8 10
−2

−1

1

2
f(x)

x

Figure 5.39: Graph consists of a semicircle and
line segments

33. (a) Graph f(x) = x(x+ 2)(x− 1).
(b) Find the total area between the graph and the x-axis

between x = −2 and x = 1.
(c) Find

∫ 1

−2
f(x) dx and interpret it in terms of areas.

34. Compute the definite integral
∫ 4

0
cos

√
xdx and interpret

the result in terms of areas.

35. Without computation, decide if
∫ 2π

0
e−x sin x dx is posi-

tive or negative. [Hint: Sketch e−x sin x.]

36. Estimate
∫ 1

0
e−x2

dx using n = 5 rectangles to form a

(a) Left-hand sum (b) Right-hand sum

37. (a) On a sketch of y = lnx, represent the left Riemann
sum with n = 2 approximating

∫ 2

1
ln xdx. Write

out the terms in the sum, but do not evaluate it.
(b) On another sketch, represent the right Riemann sum

with n = 2 approximating
∫ 2

1
ln xdx. Write out the

terms in the sum, but do not evaluate it.
(c) Which sum is an overestimate? Which sum is an un-

derestimate?

38. (a) Draw the rectangles that give the left-hand sum ap-
proximation to

∫ π

0
sin xdx with n = 2.

(b) Repeat part (a) for
∫ 0

−π
sin x dx.

(c) From your answers to parts (a) and (b), what is
the value of the left-hand sum approximation to∫ π

−π
sin xdx with n = 4?

39. (a) Use a calculator or computer to find
∫ 6

0
(x2 +1) dx.

Represent this value as the area under a curve.
(b) Estimate

∫ 6

0
(x2 + 1) dx using a left-hand sum with

n = 3. Represent this sum graphically on a sketch
of f(x) = x2 + 1. Is this sum an overestimate or
underestimate of the true value found in part (a)?

(c) Estimate
∫ 6

0
(x2+1) dx using a right-hand sum with

n = 3. Represent this sum on your sketch. Is this
sum an overestimate or underestimate?

40. (a) Graph f(x) =
{
1− x 0 ≤ x ≤ 1
x− 1 1 < x ≤ 2.

(b) Find

∫ 2

0

f(x) dx.

(c) Calculate the 4-term left Riemann sum approxima-
tion to the definite integral. How does the approxi-
mation compare to the exact value?

41. Estimate
∫ 2

1
x2 dx using left- and right-hand sums with

four subdivisions. How far from the true value of the in-
tegral could your estimate be?

42. Without computing the sums, find the difference between
the right- and left-hand Riemann sums if we use n = 500

subintervals to approximate
∫ 1

−1
(2x3 + 4) dx.

43. Sketch the graph of a function f (you do not need to give
a formula for f ) on an interval [a, b] with the property
that with n = 2 subdivisions,∫ b

a

f(x) dx < Left-hand sum < Right-hand sum.

44. Write a few sentences in support of or in opposition to
the following statement:

“If a left-hand sum underestimates a definite integral
by a certain amount, then the corresponding right-hand
sum will overestimate the integral by the same amount.”

45. Consider the integral
∫ 2

1
(1/t) dt in Example 1. By divid-

ing the interval 1 ≤ t ≤ 2 into 10 equal parts, we can
show that

0.1
(

1

1.1
+

1

1.2
+ . . .+

1

2

)
≤
∫ 2

1

1

t
dt

and ∫ 2

1

1

t
dt ≤ 0.1

(
1

1
+

1

1.1
+ . . .+

1

1.9

)
.

(a) Now divide the interval 1 ≤ t ≤ 2 into n equal parts
to show that

n∑
r=1

1

n+ r
<

∫ 2

1

1

t
dt <

n−1∑
r=0

1

n+ r
.

(b) Show that the difference between the upper and
lower sums in part (a) is 1/(2n).

(c) The exact value of
∫ 2

1
(1/t) dt is ln 2. How large

should n be to approximate ln 2 with an error of at
most 5 · 10−6, using one of the sums in part (a)?
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Strengthen Your Understanding

In Problems 46–47, explain what is wrong with the statement.

46. For any function,
∫ 3

1
f(x) dx is the area between the the

graph of f and the x-axis on 1 ≤ x ≤ 3.

47. The left-hand sum with 10 subdivisions for the integral∫ 2

1
sin(x) dx is

0.1 (sin(1) + sin(1.1) + · · ·+ sin(2)) .

In Problems 48–49, give an example of:

48. A function f and an interval [a, b] such that
∫ b

a
f(x) dx

is negative.

49. A function f such that
∫ 3

1
f(x) dx <

∫ 2

1
f(x) dx.

In Problems 50–52 decide whether the statement is true or
false. Justify your answer.

50. On the interval a ≤ t ≤ b, the integral of the velocity is
the total distance traveled from t = a to t = b.

51. A 4-term left-hand Riemann sum approximation cannot
give the exact value of a definite integral.

52. If f(x) is decreasing and g(x) is increasing, then∫ b

a
f(x) dx �=

∫ b

a
g(x)dx.

In Problems 53–55, is the statement true for all continuous
functions f(x) and g(x)? Explain your answer.

53.
∫ 2

0
f(x) dx ≤

∫ 3

0
f(x) dx.

54.
∫ 2

0
f(x) dx =

∫ 2

0
f(t) dt.

55. If
∫ 6

2
f(x) dx ≤

∫ 6

2
g(x)dx, then f(x) ≤ g(x) for

2 ≤ x ≤ 6.

In Problems 56–57, graph a continuous function f(x) ≥ 0 on
[0, 10] with the given properties.

56. The maximum value taken on by f(x) for 0 ≤ x ≤ 10

is 1. In addition
∫ 10

0
f(x) dx = 5.

57. The maximum value taken on by f(x) for 0 ≤ x ≤ 10

is 5. In addition
∫ 10

0
f(x) dx = 1.

5.3 THE FUNDAMENTAL THEOREM AND INTERPRETATIONS

The Notation and Units for the Definite Integral
Just as the Leibniz notation dy/dx for the derivative reminds us that the derivative is the limit of a
ratio of differences, the notation for the definite integral helps us recall the meaning of the integral.
The symbol ∫ b

a

f(x) dx

reminds us that an integral is a limit of sums of terms of the form “f(x) times a small difference
of x.” Officially, dx is not a separate entity, but a part of the whole integral symbol. Just as one
thinks of d/dx as a single symbol meaning “the derivative with respect to x of. . . ,” one can think
of
∫ b
a
. . . dx as a single symbol meaning “the integral of . . . with respect to x.”

However, many scientists and mathematicians informally think of dx as an “infinitesimally”
small bit of x multiplied by f(x). This viewpoint is often the key to interpreting the meaning of a
definite integral. For example, if f(t) is the velocity of a moving particle at time t, then f(t) dt may
by thought of informally as velocity × time, giving the distance traveled by the particle during a
small bit of time dt. The integral

∫ b
a f(t) dt may then be thought of as the sum of all these small

distances, giving us the net change in position of the particle between t = a and t = b. The notation
for the integral suggests units for the value of the integral. Since the terms being added up are
products of the form “f(x) times a difference in x,” the unit of measurement for

∫ b
a
f(x) dx is

the product of the units for f(x) and the units for x. For example, if f(t) is velocity measured in
meters/second and t is time measured in seconds, then∫ b

a

f(t) dt

has units of (meters/sec)×(sec) = meters. This is what we expect, since the value of this integral
represents change in position.
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As another example, graph y = f(x) with the same units of measurement of length along the
x- and y-axes, say cm. Then f(x) and x are measured in the same units, so∫ b

a

f(x) dx

is measured in square units of cm × cm = cm2. Again, this is what we would expect since in this
context the integral represents an area.

The Fundamental Theorem of Calculus
We have seen that change in position can be calculated as the limit of Riemann sums of the velocity
function v = f(t). Thus, change in position is given by the definite integral

∫ b
a
f(t) dt. If we let

F (t) denote the position function, then the change in position can also be written as F (b) − F (a).
Thus we have: ∫ b

a

f(t) dt =
Change in position from

t = a to t = b
= F (b)− F (a)

We also know that the position F and velocity f are related using derivatives: F ′(t) = f(t).
Thus, we have uncovered a connection between the integral and derivative, which is so important
it is called the Fundamental Theorem of Calculus. It applies to any function F with a continuous
derivative f = F ′.

Theorem 5.1: The Fundamental Theorem of Calculus2

If f is continuous on the interval [a, b] and f(t) = F ′(t), then∫ b

a

f(t) dt = F (b)− F (a).

To understand the Fundamental Theorem of Calculus, think of f(t) = F ′(t) as the rate of
change of the quantity F (t). To calculate the total change in F (t) between times t = a and t = b,
we divide the interval a ≤ t ≤ b into n subintervals, each of length Δt. For each small interval, we
estimate the change in F (t), written ΔF , and add these. In each subinterval we assume the rate of
change of F (t) is approximately constant, so that we can say

ΔF ≈ Rate of change of F × Time elapsed.

For the first subinterval, from t0 to t1, the rate of change of F (t) is approximately F ′(t0), so

ΔF ≈ F ′
(t0)Δt.

Similarly, for the second interval
ΔF ≈ F ′

(t1)Δt.

Summing over all the subintervals, we get

Total change in F (t)

between t = a and t = b
=

n−1∑
i=0

ΔF ≈

n−1∑
i=0

F ′
(ti)Δt.

We have approximated the change in F (t) as a left-hand sum.
However, the total change in F (t) between the times t = a and t = b is simply F (b) − F (a).

Taking the limit as n goes to infinity converts the Riemann sum to a definite integral and suggests
the following interpretation of the Fundamental Theorem of Calculus:3

2This result is sometimes called the First Fundamental Theorem of Calculus, to distinguish it from the Second Funda-
mental Theorem of Calculus discussed in Section 6.4.

3We could equally well have used a right-hand sum, since the definite integral is their common limit.



5.3 THE FUNDAMENTAL THEOREM AND INTERPRETATIONS 291

F (b)− F (a) =
Total change in F (t)

between t = a and t = b
=

∫ b

a

F ′
(t) dt.

In words, the definite integral of a rate of change gives the total change.

This argument does not, however, constitute a proof of the Fundamental Theorem. The errors
in the various approximations must be investigated using the definition of limit. A proof is given in
Section 6.4 where we learn how to construct antiderivatives using the Second Fundamental Theorem
of Calculus.

Example 1 If F ′(t) = f(t) and f(t) is velocity in miles/hour, with t in hours, what are the units of
∫ b
a
f(t) dt

and F (b)− F (a)?

Solution Since the units of f(t) are miles/hour and the units of t are hours, the units of
∫ b
a f(t) dt are

(miles/hour) × hours = miles. Since F measures change in position, the units of F (b) − F (a)

are miles. As expected, the units of
∫ b
a
f(t) dt and F (b)− F (a) are the same.

The Definite Integral of a Rate of Change: Applications of the Fundamental Theorem
Many applications are based on the Fundamental Theorem, which tells us that the definite integral
of a rate of change gives the total change.

Example 2 Let F (t) represent a bacteria population which is 5 million at time t = 0. After t hours, the popu-
lation is growing at an instantaneous rate of 2t million bacteria per hour. Estimate the total increase
in the bacteria population during the first hour, and the population at t = 1.

Solution Since the rate at which the population is growing is F ′(t) = 2t, we have

Change in population = F (1)− F (0) =

∫ 1

0

2
t dt.

Using a calculator to evaluate the integral,

Change in population =

∫ 1

0

2
t dt = 1.44 million bacteria.

Since F (0) = 5, the population at t = 1 is given by

Population = F (1) = F (0) +

∫ 1

0

2
t dt = 5 + 1.44 = 6.44million.

The following example shows how representing a quantity as a definite integral, and thereby as
an area, can be helpful even if we don’t evaluate the integral.

Example 3 Two cars start from rest at a traffic light and accelerate for several minutes. Figure 5.40 shows their
velocities as a function of time.

(a) Which car is ahead after one minute? (b) Which car is ahead after two minutes?
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1 2

3000

t (min)

v (ft/min)

Car 1

Car 2

Figure 5.40: Velocities of two cars in Example 3.
Which is ahead when?

Solution (a) For the first minute car 1 goes faster than car 2, and therefore car 1 must be ahead at the end of
one minute.

(b) At the end of two minutes the situation is less clear, since car 1 was going faster for the first
minute and car 2 for the second. However, if v = f(t) is the velocity of a car after t minutes,
then we know that

Distance traveled in two minutes =

∫ 2

0

f(t) dt,

since the integral of velocity is distance traveled. This definite integral may also be interpreted
as the area under the graph of f between 0 and 2. Since the area representing the distance
traveled by car 2 is clearly larger than the area for car 1 (see Figure 5.40), we know that car 2
has traveled farther than car 1.

Example 4 Biological activity in water is reflected in the rate at which carbon dioxide, CO2, is added or re-
moved. Plants take CO2 out of the water during the day for photosynthesis and put CO2 into the
water at night. Animals put CO2 into the water all the time as they breathe. Figure 5.41 shows the
rate of change of the CO2 level in a pond.4 At dawn, there were 2.600 mmol of CO2 per liter of
water.

(a) At what time was the CO2 level lowest? Highest?
(b) Estimate how much CO2 enters the pond during the night (t = 12 to t = 24).
(c) Estimate the CO2 level at dusk (twelve hours after dawn).
(d) Does the CO2 level appear to be approximately in equilibrium?

t (hours)

6 12 18 24
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

rate
(mmol/liter per hour)

Time (hours past dawn)

Figure 5.41: Rate at which CO2 enters a pond over a 24-hour period

4Data from R. J. Beyers, The Pattern of Photosynthesis and Respiration in Laboratory Microsystems (Mem. 1st. Ital.
Idrobiol., 1965).
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Solution Let f(t) be the rate at which CO2 is entering the water at time t and let F (t) be the concentration
of CO2 in the water at time t, so F ′(t) = f(t).

(a) From Figure 5.41, we see f(t) is negative for 0 ≤ t ≤ 12, so the CO2 level is decreasing during
this interval (daytime). Since f(t) is positive for 12 < t < 24, the CO2 level is increasing
during this interval (night). The CO2 is lowest at t = 12 (dusk) and highest at t = 0 and t = 24

(dawn).
(b) We want to calculate the total change in the CO2 level in the pond, F (24) − F (12). By the

Fundamental Theorem of Calculus,

F (24)− F (12) =

∫ 24

12

f(t) dt.

We use values of f(t) from the graph (displayed in Table 5.7) to construct a left Riemann sum
approximation to this integral with n = 6, Δt = 2:∫ 24

12

f(t) dt ≈ f(12) · 2 + f(14) · 2 + f(16) · 2 + · · ·+ f(22) · 2

≈ (0.000)2 + (0.045)2 + (0.035)2 + · · ·+ (0.012)2 = 0.278.

Thus, between t = 12 and t = 24,

Change in CO2 level = F (24)− F (12) =

∫ 24

12

f(t) dt ≈ 0.278 mmol/liter.

(c) To find the CO2 level at t = 12, we use the Fundamental Theorem to estimate the change in
CO2 level during the day:

F (12)− F (0) =

∫ 12

0

f(t) dt

Using a left Riemann sum as in part (b), we have

F (12)− F (0) =

∫ 12

0

f(t) dt ≈ −0.328.

Since initially there were F (0) = 2.600 mmol/liter, we have

F (12) = F (0)− 0.328 = 2.272 mmol/liter.

(d) The amount of CO2 removed during the day is represented by the area of the region below the
t-axis; the amount of CO2 added during the night is represented by the area above the t-axis.
These areas look approximately equal, so the CO2 level is approximately in equilibrium.

Using Riemann sums to estimate these areas, we find that about 0.278 mmol/l of CO2 was
released into the pond during the night and about 0.328 mmol/l of CO2 was absorbed from the
pond during the day. These quantities are sufficiently close that the difference could be due to
measurement error, or to errors from the Riemann sum approximation.

Table 5.7 Rate, f(t), at which CO2 is entering or leaving water (read from Figure 5.41)

t f(t) t f(t) t f(t) t f(t) t f(t) t f(t)

0 0.000 4 −0.039 8 −0.026 12 0.000 16 0.035 20 0.020

2 −0.044 6 −0.035 10 −0.020 14 0.045 18 0.027 22 0.012
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Calculating Definite Integrals: Computational Use of the Fundamental Theorem
The Fundamental Theorem of Calculus owes its name to its central role in linking rates of change
(derivatives) to total change. However, the Fundamental Theorem also provides an exact way of
computing certain definite integrals.

Example 5 Compute
∫ 3

1

2x dx by two different methods.

Solution Using left- and right-hand sums, we can approximate this integral as accurately as we want. With
n = 100, for example, the left-sum is 7.96 and the right sum is 8.04. Using n = 500 we learn

7.992 <

∫ 3

1

2x dx < 8.008.

The Fundamental Theorem, on the other hand, allows us to compute the integral exactly. We take
f(x) = 2x. We know that if F (x) = x2, then F ′(x) = 2x. So we use f(x) = 2x and F (x) = x2

and obtain ∫ 3

1

2x dx = F (3)− F (1) = 3
2 − 1

2
= 8.

Notice that to use the Fundamental Theorem to calculate a definite integral, we need to know
the antiderivative, F . Chapter 6 discusses how antiderivatives are computed.

Exercises and Problems for Section 5.3
Exercises

1. If f(t) is measured in dollars per year and t is measured

in years, what are the units of
∫ b

a
f(t) dt?

2. If f(t) is measured in meters/second2 and t is measured

in seconds, what are the units of
∫ b

a
f(t) dt?

3. If f(x) is measured in pounds and x is measured in feet,

what are the units of
∫ b

a
f(x) dx?

In Exercises 4–7, explain in words what the integral represents
and give units.

4.
∫ 3

1
v(t) dt, where v(t) is velocity in meters/sec and t is

time in seconds.

5.
∫ 6

0
a(t)dt, where a(t) is acceleration in km/hr2 and t is

time in hours.

6.
∫ 2011

2005
f(t) dt, where f(t) is the rate at which the world’s

population is growing in year t, in billion people per
year.

7.
∫ 5

0
s(x)dx, where s(x) is rate of change of salinity (salt

concentration) in gm/liter per cm in sea water, and where
x is depth below the surface of the water in cm.

8. For the two cars in Example 3, page 291, estimate:

(a) The distances moved by car 1 and car 2 during the
first minute.

(b) The time at which the two cars have gone the same
distance.

In Exercises 9–14, let f(t) = F ′(t). Write the integral∫ b

a
f(t) dt and evaluate it using the Fundamental Theorem of

Calculus.

9. F (t) = t2; a = 1, b = 3

10. F (t) = 3t2 + 4t; a = 2, b = 5

11. F (t) = ln t; a = 1, b = 5

12. F (t) = sin t; a = 0, b = π/2

13. F (t) = 7 · 4t; a = 2, b = 3

14. F (t) = tan t; a = 0, b = π

Problems

15. (a) Differentiate x3 + x.
(b) Use the Fundamental Theorem of Calculus to find∫ 2

0

(3x2 + 1) dx.

16. (a) What is the derivative of sin t?
(b) The velocity of a particle at time t is v(t) = cos t.

Use the Fundamental Theorem of Calculus to find
the total distance traveled by the particle between
t = 0 and t = π/2.
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17. (a) If F (t) = 1
2
sin2 t, find F ′(t).

(b) Find

∫ 0.4

0.2

sin t cos t dt two ways:

(i) Numerically.

(ii) Using the Fundamental Theorem of Calculus.

18. (a) If F (x) = ex
2

, find F ′(x).

(b) Find

∫ 1

0

2xex
2

dx two ways:

(i) Numerically.

(ii) Using the Fundamental Theorem of Calculus.

19. Pollution is removed from a lake on day t at a rate of
f(t) kg/day.

(a) Explain the meaning of the statement f(12) = 500.
(b) If

∫ 15

5
f(t) dt = 4000, give the units of the 5, the

15, and the 4000.
(c) Give the meaning of

∫ 15

5
f(t) dt = 4000.

20. Oil leaks out of a tanker at a rate of r = f(t) gallons per
minute, where t is in minutes. Write a definite integral
expressing the total quantity of oil which leaks out of the
tanker in the first hour.

21. Water is leaking out of a tank at a rate of R(t) gal-
lons/hour, where t is measured in hours.

(a) Write a definite integral that expresses the total
amount of water that leaks out in the first two hours.

(b) In Figure 5.42, shade the region whose area repre-
sents the total amount of water that leaks out in the
first two hours.

(c) Give an upper and lower estimate of the total amount
of water that leaks out in the first two hours.

1 2

2

1

t

R(t)

Figure 5.42

22. As coal deposits are depleted, it becomes necessary to
strip-mine larger areas for each ton of coal. Figure 5.43
shows the number of acres of land per million tons of coal
that will be defaced during strip-mining as a function of
the number of million tons removed, starting from the
present day.

(a) Estimate the total number of acres defaced in ex-
tracting the next 4 million tons of coal (measured
from the present day). Draw four rectangles under
the curve, and compute their area.

(b) Re-estimate the number of acres defaced using rect-
angles above the curve.

(c) Use your answers to parts (a) and (b) to get a better
estimate of the actual number of acres defaced.

1 2 3 4 5

1

2

3

4

0.2

million tons of
coal extracted
(measured
from present
day)

acres defaced
per million tons

Figure 5.43

23. The rate at which the world’s oil is consumed (in billions
of barrels per year) is given by r = f(t), where t is in
years and t = 0 is the start of 2004.

(a) Write a definite integral representing the total quan-
tity of oil consumed between the start of 2004 and
the start of 2009.

(b) Between 2004 and 2009, the rate was modeled by
r = 32e0.05t. Using a left-hand sum with five subdi-
visions, find an approximate value for the total quan-
tity of oil consumed between the start of 2004 and
the start of 2009.

(c) Interpret each of the five terms in the sum from
part (b) in terms of oil consumption.

24. A bungee jumper leaps off the starting platform at time
t = 0 and rebounds once during the first 5 seconds.
With velocity measured downward, for t in seconds and
0 ≤ t ≤ 5, the jumper’s velocity is approximated5 by
v(t) = −4t2 + 16t meters/sec.

(a) How many meters does the jumper travel during the
first five seconds?

(b) Where is the jumper relative to the starting position
at the end of the five seconds?

(c) What does
∫ 5

0
v(t) dt represent in terms of the

jump?

25. An old rowboat has sprung a leak. Water is flowing into
the boat at a rate, r(t), given in the table.

(a) Compute upper and lower estimates for the volume
of water that has flowed into the boat during the 15
minutes.

(b) Draw a graph to illustrate the lower estimate.

t minutes 0 5 10 15

r(t) liters/min 12 20 24 16

5Based on www.itforus.oeiizk.waw.pl/tresc/activ//modules/bj.pdf. Accessed Feb 12, 2012.
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26. Annual coal production in the US (in billion tons per
year) is given in the table.6 Estimate the total amount
of coal produced in the US between 1997 and 2009. If
r = f(t) is the rate of coal production t years since
1997, write an integral to represent the 1997–2009 coal
production.

Year 1997 1999 2001 2003 2005 2007 2009

Rate 1.090 1.094 1.121 1.072 1.132 1.147 1.073

27. The amount of waste a company produces, W , in tons per
week, is approximated by W = 3.75e−0.008t , where t is
in weeks since January 1, 2005. Waste removal for the
company costs $15/ton. How much does the company
pay for waste removal during the year 2005?

28. A two-day environmental cleanup started at 9 am on the
first day. The number of workers fluctuated as shown in
Figure 5.44. If the workers were paid $10 per hour, how
much was the total personnel cost of the cleanup?

8 16 24 32 40 48

10

20

30

40

50

hours

workers

Figure 5.44

29. Suppose in Problem 28 that the workers were paid $10
per hour for work during the time period 9 am to 5 pm
and were paid $15 per hour for work during the rest of the
day. What would the total personnel costs of the cleanup
have been under these conditions?

30. A warehouse charges its customers $5 per day for ev-
ery 10 cubic feet of space used for storage. Figure 5.45
records the storage used by one company over a month.
How much will the company have to pay?

10 20 30

10,000

20,000

30,000

days

cubic feet

Figure 5.45

31. A cup of coffee at 90◦C is put into a 20◦C room when
t = 0. The coffee’s temperature is changing at a rate of
r(t) = −7e−0.1t ◦C per minute, with t in minutes. Esti-
mate the coffee’s temperature when t = 10.

32. Water is pumped out of a holding tank at a rate of
5 − 5e−0.12t liters/minute, where t is in minutes since
the pump is started. If the holding tank contains 1000
liters of water when the pump is started, how much water
does it hold one hour later?

Problems 33–34 concern the graph of f ′ in Figure 5.46.

1 2 3 4
x

f ′(x)

Figure 5.46: Graph of f ′, not f

33. Which is greater, f(0) or f(1)?

34. List the following in increasing order:
f(4) − f(2)

2
, f(3) − f(2), f(4) − f(3).

35. A force F parallel to the x-axis is given by the graph in
Figure 5.47. Estimate the work, W , done by the force,
where W =

∫ 16

0
F (x) dx.

4 8 10

14 16

−2

−1

1

2

x (meter)

force (newton)

F

Figure 5.47

36. Let f(1) = 7, f ′(t) = e−t2 . Use left- and right-hand
sums of 5 rectangles each to estimate f(2).

37. The graph of a continuous function f is given in Fig-
ure 5.48. Rank the following integrals in ascending nu-
merical order. Explain your reasons.

(i)
∫ 2

0
f(x) dx (ii)

∫ 1

0
f(x) dx

(iii)
∫ 2

0
(f(x))1/2 dx (iv)

∫ 2

0
(f(x))2 dx.

0 1 2

100

x

f(x)

Figure 5.48

6http://www.eia.doe.gov/cneaf/coal/page/special/tbl1.html. Accessed May 2011.
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38. The graphs in Figure 5.49 represent the velocity, v, of a
particle moving along the x-axis for time 0 ≤ t ≤ 5.
The vertical scales of all graphs are the same. Identify
the graph showing which particle:

(a) Has a constant acceleration.
(b) Ends up farthest to the left of where it started.
(c) Ends up the farthest from its starting point.
(d) Experiences the greatest initial acceleration.
(e) Has the greatest average velocity.
(f) Has the greatest average acceleration.

5
t

v(I)

t

v

5

(II)

t

v

5

(III)

t

v

5

(IV)

t

v

5

(V)

Figure 5.49

39. A car speeds up at a constant rate from 10 to 70 mph
over a period of half an hour. Its fuel efficiency (in miles
per gallon) increases with speed; values are in the table.
Make lower and upper estimates of the quantity of fuel
used during the half hour.

Speed (mph) 10 20 30 40 50 60 70

Fuel efficiency (mpg) 15 18 21 23 24 25 26

In Problems 40–41, oil is pumped from a well at a rate of
r(t) barrels per day. Assume that t is in days, r′(t) < 0 and
t0 > 0.

40. What does the value of
∫ t0

0
r(t) dt tells us about the oil

well?

41. Rank in order from least to greatest:∫ 2t0

0

r(t) dt,

∫ 2t0

t0

r(t) dt,

∫ 3t0

2t0

r(t) dt.

42. Height velocity graphs are used by endocrinologists to
follow the progress of children with growth deficiencies.
Figure 5.50 shows the height velocity curves of an aver-
age boy and an average girl between ages 3 and 18.

(a) Which curve is for girls and which is for boys? Ex-
plain how you can tell.

(b) About how much does the average boy grow be-
tween ages 3 and 10?

(c) The growth spurt associated with adolescence and
the onset of puberty occurs between ages 12 and 15
for the average boy and between ages 10 and 12.5
for the average girl. Estimate the height gained by
each average child during this growth spurt.

(d) When fully grown, about how much taller is the av-
erage man than the average woman? (The average
boy and girl are about the same height at age 3.)

2 4 6 8 10 12 14 16 18

2

4

6

8

10

x (years)

y (cm/yr)

Figure 5.50

In Problems 43–45, evaluate the expressions using Table 5.8.
Give exact values if possible; otherwise, make the best possi-
ble estimates using left-hand Riemann sums.

Table 5.8

t 0.0 0.1 0.2 0.3 0.4 0.5

f(t) 0.3 0.2 0.2 0.3 0.4 0.5

g(t) 2.0 2.9 5.1 5.1 3.9 0.8

43.

∫ 0.5

0

f(t) dt 44.

∫ 0.5

0.2

g′(t) dt

45.

∫ 0.3

0

g (f(t)) dt
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In Problems 46–48, let C(n) be a city’s cost, in millions of
dollars, for plowing the roads, when n inches of snow have
fallen. Let c(n) = C′(n). Evaluate the expressions and inter-
pret your answers in terms of the cost of plowing snow, given

c′(n) < 0,

∫ 15

0

c(n) dn = 7.5, c(15) = 0.7,

c(24) = 0.4, C(15) = 8, C(24) = 13.

46.

∫ 24

15

c(n) dn 47. C(0)

48. c(15) +

∫ 24

15

c′(n) dn

Problems 49–51 refer to a May 2, 2010, article:7

“The crisis began around 10 am yesterday when a
10-foot wide pipe in Weston sprang a leak, which

worsened throughout the afternoon and eventually
cut off Greater Boston from the Quabbin Reservoir,
where most of its water supply is stored. . . Before
water was shut off to the ruptured pipe [at 6:40 pm],
brown water had been roaring from a massive crater
[at a rate of] 8 million gallons an hour rushing into
the nearby Charles River.”

Let r(t) be the rate in gallons/hr that water flowed from the
pipe t hours after it sprang its leak.

49. Which is larger:

∫ 2

0

r(t) dt or

∫ 4

2

r(t) dt?

50. Which is larger:

∫ 4

0

r(t) dt or 4r(4)?

51. Give a reasonable overestimate of

∫ 8

0

r(t) dt.

Strengthen Your Understanding

In Problems 52–53, explain what is wrong with the statement.

52. If f(t) represents the rate, in lbs per year, at which a dog
gains weight t years after it is born, then

∫ 4

0
f(t)dt rep-

resents the weight of the dog when the dog is four years
old.

53. If f(x) =
√
x the Fundamental Theorem of Calculus

states that
∫ 9

4

√
xdx =

√
9−√

4.

In Problems 54–55, give an example of:

54. A function f(x) and limits of integration a and b such

that
∫ b

a
f(x) dx = e4 − e2.

55. The graph of a velocity function of a car that travels 200
miles in 4 hours.

56. True or False? The units for an integral of a function f(x)
are the same as the units for f(x).

5.4 THEOREMS ABOUT DEFINITE INTEGRALS

Properties of the Definite Integral

For the definite integral
∫ b
a f(x) dx, we have so far only considered the case a < b. We now allow

a ≥ b. We still set x0 = a, xn = b, and Δx = (b − a)/n. As before, we have
∫ b
a
f(x)dx =

limn→∞

∑n
i=1 f(xi)Δx.

Theorem 5.2: Properties of Limits of Integration

If a, b, and c are any numbers and f is a continuous function, then

1.
∫ a

b

f(x) dx = −

∫ b

a

f(x) dx.

2.
∫ c

a

f(x) dx +

∫ b

c

f(x) dx =

∫ b

a

f(x) dx.

In words:
1. The integral from b to a is the negative of the integral from a to b.

2. The integral from a to c plus the integral from c to b is the integral from a to b.

7“A catastrophic rupture hits region’s water system,” The Boston Globe, May 2, 2010.
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By interpreting the integrals as areas, we can justify these results for f ≥ 0. In fact, they are
true for all functions for which the integrals make sense.

Why is
∫
a

b
f(x) dx = −

∫
b

a
f(x) dx?

By definition, both integrals are approximated by sums of the form
∑

f(xi)Δx. The only difference

in the sums for
∫ a
b f(x) dx and

∫ b
a f(x) dx is that in the first Δx = (a − b)/n = −(b− a)/n and

in the second Δx = (b − a)/n. Since everything else about the sums is the same, we must have∫ a
b
f(x) dx = −

∫ b
a
f(x) dx.

Why is
∫
c

a
f(x) dx +

∫
b

c
f(x) dx =

∫
b

a
f(x) dx?

Suppose a < c < b. Figure 5.51 suggests that
∫ c
a
f(x) dx+

∫ b
c
f(x) dx =

∫ b
a
f(x) dx since the area

under f from a to c plus the area under f from c to b together make up the whole area under f from
a to b.

This property holds for all numbers a, b, and c, not just those satisfying a < c < b. (See
Figure 5.52.) For example, the area under f from 3 to 6 is equal to the area from 3 to 8 minus the
area from 6 to 8, so∫ 6

3

f(x) dx =

∫ 8

3

f(x) dx−

∫ 8

6

f(x) dx =

∫ 8

3

f(x) dx +

∫ 6

8

f(x) dx.

a c b
x

f(x)

Figure 5.51: Additivity of the definite
integral (a < c < b)

a b c
x

f(x)

Figure 5.52: Additivity of the definite
integral (a < b < c)

Example 1 Given that
∫ 1.25
0 cos(x2) dx = 0.98 and

∫ 1
0 cos(x2) dx = 0.90, what are the values of the following

integrals? (See Figure 5.53.)

(a)
∫ 1.25

1

cos(x2
) dx (b)

∫ 1

−1

cos(x2
) dx (c)

∫ −1

1.25

cos(x2
) dx

−1 1

−1.25 1.25

−1

1

x

� �

Figure 5.53: Graph of f(x) = cos(x2)

Solution (a) Since, by the additivity property,∫ 1.25

0

cos(x2
) dx =

∫ 1

0

cos(x2
) dx +

∫ 1.25

1

cos(x2
) dx,

we get

0.98 = 0.90 +

∫ 1.25

1

cos(x2
) dx,

so ∫ 1.25

1

cos(x2
) dx = 0.08.
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(b) By the additivity property, we have

∫ 1

−1

cos(x2
) dx =

∫ 0

−1

cos(x2
) dx +

∫ 1

0

cos(x2
) dx.

By the symmetry of cos(x2) about the y-axis,

∫ 0

−1

cos(x2
) dx =

∫ 1

0

cos(x2
) dx = 0.90.

So ∫ 1

−1

cos(x2
) dx = 0.90 + 0.90 = 1.80.

(c) Using both properties in Theorem 5.2, we have

∫ −1

1.25

cos(x2
) dx = −

∫ 1.25

−1

cos(x2
) dx = −

(∫ 0

−1

cos(x2
) dx+

∫ 1.25

0

cos(x2
) dx

)
= −(0.90 + 0.98) = −1.88.

Theorem 5.3: Properties of Sums and Constant Multiples of the Integrand

Let f and g be continuous functions and let c be a constant.

1.
∫ b

a

(f(x)± g(x)) dx =

∫ b

a

f(x) dx ±

∫ b

a

g(x) dx.

2.
∫ b

a

cf(x) dx = c

∫ b

a

f(x) dx.

In words:
1. The integral of the sum (or difference) of two functions is the sum (or difference) of their

integrals.

2. The integral of a constant times a function is that constant times the integral of the func-
tion.

Why Do These Properties Hold?

Both can be visualized by thinking of the definite integral as the limit of a sum of areas of rectangles.
For property 1, suppose that f and g are positive on the interval [a, b] so that the area under

f(x)+g(x) is approximated by the sum of the areas of rectangles like the one shaded in Figure 5.54.
The area of this rectangle is

(f(xi) + g(xi))Δx = f(xi)Δx+ g(xi)Δx.

Since f(xi)Δx is the area of a rectangle under the graph of f , and g(xi)Δx is the area of a rectangle
under the graph of g, the area under f(x) + g(x) is the sum of the areas under f(x) and g(x). For
property 2, notice that multiplying a function by c stretches or shrinks the graph in the vertical
direction by a factor of c. Thus, it stretches or shrinks the height of each approximating rectangle
by c, and hence multiplies the area by c.
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a b
� �
Δx

x

f(x) + g(x)

f(x)�

�

f(xi)

�

�

g(xi)

Figure 5.54: Area =
∫ b

a
[f(x) + g(x)]dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx

Example 2 Evaluate the definite integral
∫ 2

0

(1 + 3x) dx exactly.

Solution We can break this integral up as follows:∫ 2

0

(1 + 3x) dx =

∫ 2

0

1 dx +

∫ 2

0

3x dx =

∫ 2

0

1 dx + 3

∫ 2

0

x dx.

From Figures 5.55 and 5.56 and the area interpretation of the integral, we see that∫ 2

0

1 dx =
Area of

rectangle
= 2 and

∫ 2

0

x dx =
Area of

triangle
=

1

2
· 2 · 2 = 2.

Therefore, ∫ 2

0

(1 + 3x) dx =

∫ 2

0

1 dx+ 3

∫ 2

0

x dx = 2 + 3 · 2 = 8.

2

1

2

x

y

∫ 2

0

1 dx = 2

y = 1

Figure 5.55: Area representing
∫ 2

0
1 dx

y = x

∫ 2

0

x dx = 2

2

2

x

y

Figure 5.56: Area representing
∫ 2

0
x dx

Area Between Curves
Theorem 5.3 enables us to find the area of a region between curves. We have the following result:

If the graph of f(x) lies above the graph of g(x) for a ≤ x ≤ b, then

Area between f and g

for a ≤ x ≤ b
=

∫ b

a

(f(x)− g(x)) dx.
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Example 3 Find the area of the shaded region in Figure 5.57.

f(x) = −x2 + 4x− 1

g(x) = x2 − 4x+ 5

x

Figure 5.57: Area between two parabolas

Solution The curves cross where

x2 − 4x+ 5 = −x2
+ 4x− 1

2x2 − 8x+ 6 = 0

2(x− 1)(x− 3) = 0

x = 1, 3.

Since f(x) = −x2+4x−1 is above g(x) = x2−4x+5 for x between 1 and 3, we find the shaded
area by subtraction:

Area =

∫ 3

1

f(x) dx−

∫ 3

1

g(x) dx =

∫ 3

1

(f(x)− g(x)) dx

=

∫ 3

1

((−x2
+ 4x− 1)− (x2 − 4x+ 5)) dx

=

∫ 3

1

(−2x2
+ 8x− 6) dx = 2.667.

Using Symmetry to Evaluate Integrals
Symmetry can be useful in evaluating definite integrals. An even function is symmetric about the
y-axis. An odd function is symmetric about the origin. Figures 5.58 and 5.59 suggest the following
results:

If f is even, then
∫ a

−a

f(x) dx = 2

∫ a

0

f(x) dx. If g is odd, then
∫ a

−a

g(x) dx = 0.

−a a

f(x)

x

Figure 5.58: For an even function,∫ a

−a
f(x) dx = 2

∫ a

0
f(x) dx

−a

a

g(x)

x

Figure 5.59: For an odd function,∫ a

−a
g(x)dx = 0

Example 4 Given that
∫ π
0
sin t dt = 2, find (a)

∫ π

−π

sin t dt (b)
∫ π

−π

| sin t| dt

Solution Graphs of sin t and | sin t| are in Figures 5.60 and 5.61.

(a) Since sin t is an odd function ∫ π

−π

sin t dt = 0.
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(b) Since | sin t| is an even function∫ π

−π

| sin t| dt = 2

∫ π

0

| sin t| dt = 4.

−π

π

−1

1

t

y

Figure 5.60

−π π

−1

1

t

y

Figure 5.61

Comparing Integrals
Suppose we have constants m and M such that m ≤ f(x) ≤ M for a ≤ x ≤ b. We say f is
bounded above by M and bounded below by m. Then the graph of f lies between the horizontal
lines y = m and y = M . So the definite integral lies between m(b − a) and M(b − a). See
Figure 5.62.

Suppose f(x) ≤ g(x) for a ≤ x ≤ b, as in Figure 5.63. Then the definite integral of f is less
than or equal to the definite integral of g. This leads us to the following results:

a b

M

m

f(x)

y

x

Figure 5.62: The area under the graph of f
lies between the areas of the rectangles

a b
x

Total
shaded
area

=

∫ b

a

g(x)dx

Dark
shaded
area

=

∫ b

a

f(x) dx

g(x)

f(x)

Figure 5.63: If f(x) ≤ g(x) then
∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx

Theorem 5.4: Comparison of Definite Integrals

Let f and g be continuous functions.

1. If m ≤ f(x) ≤ M for a ≤ x ≤ b, then m(b− a) ≤

∫ b

a

f(x) dx ≤ M(b− a).

2. If f(x) ≤ g(x) for a ≤ x ≤ b, then
∫ b

a

f(x) dx ≤

∫ b

a

g(x) dx.

Example 5 Explain why
∫ √

π

0

sin(x2
) dx ≤

√
π.

Solution Since sin (x2) ≤ 1 for all x (see Figure 5.64), part 2 of Theorem 5.4 gives∫ √
π

0

sin(x2
) dx ≤

∫ √
π

0

1 dx =
√
π.
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√
π

−1

1

x

y

y = sin(x2)

Figure 5.64: Graph showing that
∫ √

π

0
sin(x2) dx <

√
π

The Definite Integral as an Average
We know how to find the average of n numbers: Add them and divide by n. But how do we find the
average value of a continuously varying function? Let us consider an example. Suppose f(t) is the
temperature at time t, measured in hours since midnight, and that we want to calculate the average
temperature over a 24-hour period. One way to start is to average the temperatures at n equally
spaced times, t1, t2, . . . , tn, during the day.

Average temperature ≈
f(t1) + f(t2) + · · ·+ f(tn)

n
.

The larger we make n, the better the approximation. We can rewrite this expression as a Riemann
sum over the interval 0 ≤ t ≤ 24 if we use the fact that Δt = 24/n, so n = 24/Δt:

Average temperature ≈
f(t1) + f(t2) + · · ·+ f(tn)

24/Δt

=
f(t1)Δt+ f(t2)Δt+ · · ·+ f(tn)Δt

24

=
1

24

n∑
i=1

f(ti)Δt.

As n → ∞, the Riemann sum tends toward an integral, and 1/24 of the sum also approximates the
average temperature better. It makes sense, then, to write

Average temperature = lim
n→∞

1

24

n∑
i=1

f(ti)Δt =
1

24

∫ 24

0

f(t) dt.

We have found a way of expressing the average temperature over an interval in terms of an integral.
Generalizing for any function f , if a < b, we define

Average value of f

from a to b
=

1

b− a

∫ b

a

f(x) dx.

How to Visualize the Average on a Graph

The definition of average value tells us that

(Average value of f ) · (b− a) =

∫ b

a

f(x) dx.

Let’s interpret the integral as the area under the graph of f. Then the average value of f is the height
of a rectangle whose base is (b − a) and whose area is the same as the area under the graph of f.
(See Figure 5.65.)
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a b
x

f(x)

Area under curve =
Area of rectangle

�� b− a

�

�

Average
value
of f

Figure 5.65: Area and average value

Example 6 Suppose that C(t) represents the daily cost of heating your house, measured in dollars per day,

where t is time measured in days and t = 0 corresponds to January 1, 2008. Interpret
∫ 90

0

C(t) dt

and
1

90− 0

∫ 90

0

C(t) dt.

Solution The units for the integral
∫ 90

0

C(t) dt are (dollars/day) × (days) = dollars. The integral represents

the total cost in dollars to heat your house for the first 90 days of 2008, namely the months of
January, February, and March. The second expression is measured in (1/days)(dollars) or dollars
per day, the same units as C(t). It represents the average cost per day to heat your house during the
first 90 days of 2008.

Example 7 In the year 2000, the population of Nevada was modeled by the function

P = f(t) = 2.020(1.036)t,

where P is in millions of people and t is in years since 2000. Use this function to predict the average
population of Nevada between the years 2000 and 2020.

Solution We want the average value of f(t) between t = 0 and t = 20. This is given by

Average population =
1

20− 0

∫ 20

0

f(t) dt =
1

20
(58.748) = 2.937.

We used a calculator to evaluate the integral. The average population of Nevada between 2000 and
2020 is predicted to be about 2.9 million people.

Exercises and Problems for Section 5.4
Exercises

In Exercises 1–6, find the integral, given that
∫ b

a
f(x) dx = 8,∫ b

a
(f(x))2 dx = 12,

∫ b

a
g(t)dt = 2, and

∫ b

a
(g(t))2 dt = 3.

1.
∫ b

a
(f(x) + g(x))dx 2.

∫ b

a
cf(z) dz

3.
∫ b

a

(
(f(x))2 − (g(x))2

)
dx

4.
∫ b

a
(f(x))2 dx− (

∫ b

a
f(x) dx)2

5.
∫ b

a

(
c1g(x) + (c2f(x))

2
)
dx

6.
∫ b+5

a+5
f(x− 5) dx

In Exercises 7–10, find the average value of the function over
the given interval.

7. g(t) = 1 + t over [0, 2] 8. g(t) = et over [0, 10]

9. f(x) = 2 over [a, b] 10. f(x)=4x+7 over [1,3]
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11. (a) Using Figure 5.66, find
∫ 6

1
f(x) dx.

(b) What is the average value of f on [1, 6]?

1 2 3 4 5 6

1

2

3
f(x)

x

Figure 5.66

12. How do the units for the average value of f relate to the
units for f(x) and the units for x?

Find the area of the regions in Exercises 13–20.

13. Under y = ex and above y = 1 for 0 ≤ x ≤ 2.

14. Under y = 5 ln(2x) and above y = 3 for 3 ≤ x ≤ 5.

15. Between y = x2 and y = x3 for 0 ≤ x ≤ 1.

16. Between y = x1/2 and y = x1/3 for 0 ≤ x ≤ 1.

17. Between y = sin x+ 2 and y = 0.5 for 6 ≤ x ≤ 10.

18. Between y = cos t and y = sin t for 0 ≤ t ≤ π.

19. Between y = e−x and y = 4(x− x2).

20. Between y = e−x and y = ln x for 1 ≤ x ≤ 2.

Problems

21. (a) Let
∫ 3

0
f(x)dx = 6. What is the average value of

f(x) on the interval x = 0 to x = 3?
(b) If f(x) is even, what is

∫ 3

−3
f(x)dx? What is the

average value of f(x) on the interval x = −3 to
x = 3?

(c) If f(x) is odd, what is
∫ 3

−3
f(x)dx? What is the

average value of f(x) on the interval x = −3 to
x = 3?

22. Using Figure 5.67, write
∫ 3

0
f(x) dx in terms of∫ 1

−1
f(x) dx and

∫ 3

1
f(x) dx.

−2 0 2 4

8

x

f(x)

Figure 5.67

23. (a) Assume a ≤ b. Use geometry to construct a formula
in terms of a and b for∫ b

a

1 dx.

(b) Use the result of part (a) to find:

(i)
∫ 5

2
1 dx (ii)

∫ 8

−3
1 dx (iii)

∫ 3

1
23 dx

24. If
∫ 5

2
(2f(x) + 3) dx = 17, find

∫ 5

2
f(x) dx.

25. The value, V , of a Tiffany lamp, worth $225 in 1975, in-
creases at 15% per year. Its value in dollars t years after
1975 is given by

V = 225(1.15)t.

Find the average value of the lamp over the period 1975–
2010.

26. (a) Assume that 0 ≤ a ≤ b. Use geometry to construct
a formula in terms of a and b for∫ b

a

x dx.

(b) Use the result of part (a) to find:

(i)
∫ 5

2
x dx (ii)

∫ 8

−3
x dx (iii)

∫ 3

1
5x dx

27. If f(x) is odd and
∫ 3

−2
f(x) dx = 30, find

∫ 3

2
f(x) dx.

28. If f(x) is even and
∫ 2

−2
(f(x) − 3) dx = 8, find∫ 2

0
f(x) dx.

29. Without any computation, find

∫ π/4

−π/4

x3 cosx2 dx.

30. If the average value of f on the interval 2 ≤ x ≤ 5 is 4,
find
∫ 5

2
(3f(x) + 2) dx.

31. Suppose
∫ 3

1
3x2 dx = 26 and

∫ 3

1
2x dx = 8. What is∫ 3

1
(x2 − x) dx?

32. Figure 5.68 shows the rate, f(x), in thousands of al-
gae per hour, at which a population of algae is growing,
where x is in hours.

(a) Estimate the average value of the rate over the inter-
val x = −1 to x = 3.

(b) Estimate the total change in the population over the
interval x = −3 to x = 3.

−3 3

3

−3

f(x)

x

Figure 5.68
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33. (a) Using Figure 5.69, estimate
∫ 3

−3
f(x) dx.

(b) Which of the following average values of f(x) is
larger?

(i) Between x = −3 and x = 3

(ii) Between x = 0 and x = 3

−4

4

−4

4

f(x)
x

Figure 5.69

34. A bar of metal is cooling from 1000◦C to room temper-
ature, 20◦C. The temperature, H , of the bar t minutes
after it starts cooling is given, in ◦C, by

H = 20 + 980e−0.1t.

(a) Find the temperature of the bar at the end of one
hour.

(b) Find the average value of the temperature over the
first hour.

(c) Is your answer to part (b) greater or smaller than the
average of the temperatures at the beginning and the
end of the hour? Explain this in terms of the concav-
ity of the graph of H .

35. In 2010, the population of Mexico8 was growing at 1.1%
a year. Assuming that this growth rate continues into the
future and that t is in years since 2010, the Mexican pop-
ulation, P , in millions, is given by

P = 112(1.011)t .

(a) Predict the average population of Mexico between
2010 and 2050.

(b) Find the average of the population in 2010 and the
predicted population in 2050.

(c) Explain, in terms of the concavity of the graph of P ,
why your answer to part (b) is larger or smaller than
your answer to part (a).

36. (a) Using a graph, decide if the area under y = e−x2/2

between 0 and 1 is more or less than 1.
(b) Find the area.

37. Without computation, show that 2 ≤
∫ 2

0

√
1 + x3 dx ≤ 6.

38. Without calculating the integral, explain why the follow-
ing statements are false.

(a)

∫
−1

−2

ex
2

dx = −3 (b)

∫ 1

−1

∣∣∣∣ cos(x+ 2)

1 + tan2 x

∣∣∣∣ dx = 0

For Problems 39–42, mark the quantity on a copy of the graph
of f in Figure 5.70.

a b
x

f(x)

Figure 5.70

39. A length representing f(b)− f(a).

40. A slope representing
f(b)− f(a)

b− a
.

41. An area representing F (b)− F (a), where F ′ = f .

42. A length roughly approximating

F (b)− F (a)

b− a
, where F ′ = f.

43. Using the graph of f in Figure 5.71, arrange the follow-
ing quantities in increasing order, from least to greatest.

(i)
∫ 1

0
f(x) dx (ii)

∫ 2

1
f(x) dx

(iii)
∫ 2

0
f(x) dx (iv)

∫ 3

2
f(x) dx

(v) −
∫ 2

1
f(x) dx (vi) The number 0

(vii) The number 20 (viii) The number −10

1 2 3

−10

10 f(x)

x

Figure 5.71

44. (a) Using Figures 5.72 and 5.73, find the average value
on 0 ≤ x ≤ 2 of

(i) f(x) (ii) g(x) (iii) f(x)·g(x)
(b) Is the following statement true? Explain your an-

swer.

Average(f) · Average(g) = Average(f · g)

1 2

1 f(x)

x

Figure 5.72

1 2

1 g(x)

x

Figure 5.73

8http://www.indexmundi.com/mexico/population growth rate.html. Accessed April 29, 2011.
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45. (a) Without computing any integrals, explain why the
average value of f(x) = sin x on [0, π] must be be-
tween 0.5 and 1.

(b) Compute this average.

46. Figure 5.74 shows the standard normal distribution from
statistics, which is given by

1√
2π

e−x2/2.

Statistics books often contain tables such as the follow-
ing, which show the area under the curve from 0 to b for
various values of b.

� Area = 1
√

2π

∫ b

0
e−x2/2 dx

0 b
x

Figure 5.74

b 1
√

2π

∫ b

0
e−x2/2 dx

1 0.3413

2 0.4772

3 0.4987

4 0.5000

Use the information given in the table and the symmetry
of the curve about the y-axis to find:

(a)
1√
2π

∫ 3

1

e−x2/2 dx (b)
1√
2π

∫ 3

−2

e−x2/2 dx

In Problems 47–48, evaluate the expression, if possible,
or say what additional information is needed, given that∫ 4

−4
g(x)dx = 12.

47.

∫ 4

0

g(x) dx 48.

∫ 4

−4

g(−x)dx

In Problems 49–52, evaluate the expression if possible, or say
what extra information is needed, given

∫ 7

0
f(x) dx = 25.

49.

√∫ 7

0

f(x) dx 50.

∫ 3.5

0

f(x) dx

51.

∫ 5

−2

f(x+ 2) dx 52.

∫ 7

0

(f(x) + 2) dx

53. (a) Sketch a graph of f(x) = sin(x2) and mark on it
the points x =

√
π,

√
2π,

√
3π,

√
4π.

(b) Use your graph to decide which of the four numbers∫ √

nπ

0

sin(x2) dx n = 1, 2, 3, 4

is largest. Which is smallest? How many of the num-
bers are positive?

For Problems 54–56, assuming F ′ = f , mark the quantity on
a copy of Figure 5.75.

a b
x

F (x)

Figure 5.75

54. A slope representing f(a).

55. A length representing

∫ b

a

f(x) dx.

56. A slope representing
1

b− a

∫ b

a

f(x) dx.

57. In Chapter 2, the average velocity over the time interval
a ≤ t ≤ b was defined to be (s(b) − s(a))/(b − a),
where s(t) is the position function. Use the Fundamental
Theorem of Calculus to show that the average value of
the velocity function v(t), on the interval a ≤ t ≤ b, is
also (s(b)− s(a))/(b− a).

Strengthen Your Understanding

In Problems 58–60, explain what is wrong with the statement.

58. If f(x) is a continuous function on [a, b] such that∫ b

a
f(x)dx ≥ 0, then f(x) ≥ 0 for all x in [a, b].

59. If f(x) is a continuous function on the interval [a, b], then∫ b

a
(5 + 3f(x)) dx = 5 + 3

∫ b

a
f(x) dx.

60. If f(t) is the population of fish in a lake on day t, then
the average population over a 6-month period is given by

1

6

∫ 6

0

f(t) dt.
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In Problems 61–63, give an example of:

61. A continuous function f(x) on the interval [0, 1] such
that
∫ 1

0
2f(x) dx <

∫ 1

0
f(x) dx.

62. A continuous function f(x) on the interval [0, 4] such
that
∫ 4

0
f(x) dx = 0, but f(x) is not equal to 0 every-

where on [0, 4].

63. An expression involving a definite integral that can be
interpreted as the average speed for a car over a 5-hour
journey.

In Problems 64–78, are the statements true for all continuous
functions f(x) and g(x)? Give an explanation for your an-
swer.

64. If
∫ 2

0
(f(x) + g(x)) dx = 10 and

∫ 2

0
f(x) dx = 3, then∫ 2

0
g(x)dx = 7.

65. If
∫ 2

0
(f(x) + g(x)) dx = 10, then

∫ 2

0
f(x) dx = 3 and∫ 2

0
g(x)dx = 7.

66. If
∫ 2

0
f(x) dx = 6, then

∫ 4

0
f(x) dx = 12.

67. If
∫ 2

0
f(x) dx = 6 and g(x) = 2f(x),

then
∫ 2

0
g(x)dx = 12.

68. If
∫ 2

0
f(x) dx = 6 and h(x) = f(5x),

then
∫ 2

0
h(x) dx = 30.

69. If a = b, then
∫ b

a
f(x) dx = 0.

70. If a �= b, then
∫ b

a
f(x) dx �= 0.

71.
∫ 2

1
f(x) dx+

∫ 3

2
g(x)dx =

∫ 3

1
(f(x) + g(x)) dx.

72.
∫ 1

−1
f(x) dx = 2

∫ 1

0
f(x) dx.

73. If f(x) ≤ g(x) on the interval [a, b], then the average
value of f is less than or equal to the average value of g
on the interval [a, b].

74. The average value of f on the interval [0, 10] is the av-
erage of the average value of f on [0, 5] and the average
value of f on [5, 10].

75. If a < c < d < b, then the average value of f on the
interval [c, d] is less than the average value of f on the
interval [a, b].

76. Suppose that A is the average value of f on the inter-
val [1, 4] and B is the average value of f on the inter-
val [4, 9]. Then the average value of f on [1, 9] is the
weighted average (3/8)A + (5/8)B.

77. On the interval [a, b], the average value of f(x)+g(x) is
the average value of f(x) plus the average value of g(x).

78. The average value of the product, f(x)g(x), of two func-
tions on an interval equals the product of the average val-
ues of f(x) and g(x) on the interval.

79. Which of the following statements follow directly from
the rule∫ b

a

(f(x) + g(x))dx =

∫ b

a

f(x) dx+

∫ b

a

g(x)dx?

(a) If
∫ b

a
(f(x)+ g(x))dx = 5+7, then

∫ b

a
f(x) dx =

5 and
∫ b

a
g(x)dx = 7.

(b) If
∫ b

a
f(x) dx =

∫ b

a
g(x)dx = 7, then

∫ b

a
(f(x) +

g(x)) dx = 14.

(c) If h(x) = f(x)+g(x), then
∫ b

a
(h(x)−g(x))dx =∫ b

a
h(x) dx−

∫ b

a
g(x)dx.

CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• Definite integral as limit of right or left sums

• Fundamental Theorem of Calculus

• Interpretations of the definite integral
Area, total change from rate of change, change in posi-
tion given velocity, (b− a)· average value.

• Properties of the definite integral

Properties involving integrand, properties involving lim-
its, comparison between integrals.

• Working with the definite integral
Estimate definite integral from graph, table of values, or
formula. Units of the definite integral.

• Theorems about definite integrals

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER FIVE

Exercises

1. A car comes to a stop six seconds after the driver ap-
plies the brakes. While the brakes are on, the velocities
recorded are in Table 5.9.

Table 5.9

Time since brakes applied (sec) 0 2 4 6

Velocity (ft/sec) 88 45 16 0

(a) Give lower and upper estimates for the distance the
car traveled after the brakes were applied.

(b) On a sketch of velocity against time, show the lower
and upper estimates of part (a).

2. A student is speeding down Route 11 in his fancy red
Porsche when his radar system warns him of an obsta-
cle 400 feet ahead. He immediately applies the brakes,
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starts to slow down, and spots a skunk in the road directly
ahead of him. The “black box” in the Porsche records the
car’s speed every two seconds, producing the following
table. The speed decreases throughout the 10 seconds it
takes to stop, although not necessarily at a constant rate.

Time since brakes applied (sec) 0 2 4 6 8 10

Speed (ft/sec) 100 80 50 25 10 0

(a) What is your best estimate of the total distance the
student’s car traveled before coming to rest?

(b) Which one of the following statements can you jus-
tify from the information given?

(i) The car stopped before getting to the skunk.

(ii) The “black box” data is inconclusive. The
skunk may or may not have been hit.

(iii) The skunk was hit by the car.

3. Use Figure 5.76 to estimate
∫ 3

0
f(x) dx.

1 2 3

4

8

12

16

f(x)

x

Figure 5.76

−10 0 10 20

100

200

300

x

f(x)

Figure 5.77

4. Use Figure 5.77 to estimate
∫ 20

−15
f(x) dx.

5. Using the table, estimate
∫ 100

0
f(t) dt.

t 0 20 40 60 80 100

f(t) 1.2 2.8 4.0 4.7 5.1 5.2

6. A village wishes to measure the quantity of water that
is piped to a factory during a typical morning. A gauge
on the water line gives the flow rate (in cubic meters per
hour) at any instant. The flow rate is about 100 m3/hr at
6 am and increases steadily to about 280 m3/hr at 9 am.

(a) Using only this information, give your best estimate
of the total volume of water used by the factory be-
tween 6 am and 9 am.

(b) How often should the flow rate gauge be read to ob-
tain an estimate of this volume to within 6 m3?

7. You jump out of an airplane. Before your parachute
opens you fall faster and faster, but your acceleration de-
creases as you fall because of air resistance. The table
gives your acceleration, a (in m/sec2), after t seconds.

t 0 1 2 3 4 5

a 9.81 8.03 6.53 5.38 4.41 3.61

(a) Give upper and lower estimates of your speed at
t = 5.

(b) Get a new estimate by taking the average of your
upper and lower estimates. What does the concavity
of the graph of acceleration tell you about your new
estimate?

In Exercises 8–9, let f(t) = F ′(t). Write the integral∫ b

a
f(t) dt and evaluate it using the Fundamental Theorem of

Calculus.

8. F (t) = t4, a = −1, b = 1

9. F (t) = 3t4 − 5t3 + 5t; a = −2, b = 1

Find the area of the regions in Exercises 10–16.

10. Between the parabola y = 4− x2 and the x-axis.

11. Between y = x2 − 9 and the x-axis.

12. Under one arch of y = sin x and above the x-axis.

13. Between the line y = 1 and one arch of y = sin θ.

14. Between y = −x2 +5x− 4 and the x-axis, 0 ≤ x ≤ 3.

15. Between y = cos x+ 7 and y = ln(x− 3), 5 ≤ x ≤ 7.

16. Above the curve y = −ex + e2(x−1) and below the x-
axis, for x ≥ 0.

Problems

17. Find
∫ 1

−1
|x| dx geometrically.

18. A car accelerates smoothly from 0 to 60 mph in 10 sec-
onds with the velocity given in Figure 5.78. Estimate how
far the car travels during the 10-second period.

5 10

20

40

60

t (sec)

v (mph)

Figure 5.78

19. A car going 80 ft/sec (about 55 mph) brakes to a stop in
8 seconds. Its velocity is recorded every 2 seconds and is
given in the following table.

(a) Give your best estimate of the distance traveled by
the car during the 8 seconds.

(b) To estimate the distance traveled accurate to within
20 feet, how often should you record the velocity?

t (seconds) 0 2 4 6 8

v(t) (ft/sec) 80 52 28 10 0



REVIEW EXERCISES AND PROBLEMS FOR CHAPTER FIVE 311

20. Using the graph of 2 + cosx, for 0 ≤ x ≤ 4π, list the
following quantities in increasing order: the value of the
integral

∫ 4π

0
(2+cosx) dx, the left sum with n = 2 sub-

divisions, and the right sum with n = 2 subdivisions.

21. Your velocity is v(t) = sin(t2) mph for t in hours,
0 ≤ t ≤ 1.1. Find the distance traveled during this time.

22. Your velocity is v(t) = ln(t2+1) ft/sec for t in seconds,
0 ≤ t ≤ 3. Find the distance traveled during this time.

23. The following table gives the emissions, E, of nitrogen
oxides in millions of metric tons per year in the US.9 Let
t be the number of years since 1970 and E = f(t).

(a) What are the units and meaning of
∫ 30

0
f(t)dt?

(b) Estimate
∫ 30

0
f(t)dt.

Year 1970 1975 1980 1985 1990 1995 2000

E 26.9 26.4 27.1 25.8 25.5 25.0 22.6

24. After a spill of radioactive iodine, measurements showed
the ambient radiation levels at the site of the spill to be
four times the maximum acceptable limit. The level of
radiation from an iodine source decreases according to
the formula

R(t) = R0e
−0.004t

where R is the radiation level (in millirems/hour) at time
t in hours and R0 is the initial radiation level (at t = 0).

(a) How long will it take for the site to reach an accept-
able level of radiation?

(b) How much total radiation (in millirems) will have
been emitted by that time, assuming the maximum
acceptable limit is 0.6 millirems/hour?

25. Coal gas is produced at a gasworks. Pollutants in the gas
are removed by scrubbers, which become less and less
efficient as time goes on. The following measurements,
made at the start of each month, show the rate at which
pollutants are escaping (in tons/month) in the gas:

Time (months) 0 1 2 3 4 5 6

Rate pollutants escape 5 7 8 10 13 16 20

(a) Make an overestimate and an underestimate of the
total quantity of pollutants that escape during the
first month.

(b) Make an overestimate and an underestimate of the
total quantity of pollutants that escape during the six
months.

(c) How often would measurements have to be made to
find overestimates and underestimates which differ
by less than 1 ton from the exact quantity of pollu-
tants that escaped during the first six months?

26. Figure 5.79 shows the rate of change of the quantity of
water in a water tower, in liters per day, during the month
of April. If the tower had 12,000 liters of water in it on
April 1, estimate the quantity of water in the tower on
April 30.

6 12 18 24 30

−100

−50

0

50

100

150

t (days)

rate (liters/day)

Figure 5.79

27. For the function f in Figure 5.80, write an expression
involving one or more definite integrals of f that denote:

(a) The average value of f for 0 ≤ x ≤ 5.
(b) The average value of |f | for 0 ≤ x ≤ 5.

−2 2 5
x

f(x)

Figure 5.80

28. For the even function f in Figure 5.80, consider the av-
erage value of f over the following intervals:

I. 0 ≤ x ≤ 1 II. 0 ≤ x ≤ 2

III. 0 ≤ x ≤ 5 IV. −2 ≤ x ≤ 2

(a) For which interval is the average value of f least?
(b) For which interval is the average value of f greatest?
(c) For which pair of intervals are the average values

equal?

29. (a) Suppose f ′(x) = sin(x2) and f(0) = 2. Use a
graph of f ′(x) to decide which is larger:

(i) f(0) or f(1) (ii) f(2) or f(2.5)

(b) Estimate f(b) for b = 0, 1, 2, 3.

30. (a) If F (t) = t(ln t)− t, find F ′(t).

(b) Find

∫ 12

10

ln t dt two ways:

(i) Numerically.

(ii) Using the Fundamental Theorem of Calculus.

9The World Almanac and Book of Facts 2005, p. 177 (New York: World Almanac Books).
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31. Statisticians sometimes use values of the function

F (b) =

∫ b

0

e−x2

dx.

(a) What is F (0)?
(b) Does the value of F increase or decrease as b in-

creases? (Assume b ≥ 0.)
(c) Find F (1), F (2), and F (3).

In Problems 32–35, find
∫ 5

2
f(x) dx.

32. f(x) is odd and
∫ 5

−2
f(x) dx = 8

33. f(x) is even,
∫ 2

−2
f(x) dx = 6, and

∫ 5

−5
f(x) dx = 14

34.
∫ 5

2
(3f(x) + 4) dx = 18

35.
∫ 4

2
2f(x) dx = 8 and

∫ 4

5
f(x) dx = 1

36. Without any computation, find the values of

(a)

∫ 2

−2

sin x dx, (b)

∫ π

−π

x113 dx.

37. Suppose f is periodic, its graph repeating every p units.
Given that

∫ p

0
f(x) dx > 0, evaluate and simplify∫ 2p

0

f(x) dx+

∫ 5p

p

f(x) dx∫ 7p

5p

f(x) dx

.

38. The function f is even (that is, its graph is symmetric
about the y-axis). Use this fact to evaluate and simplify∫ r

−r
f(x) dx+

∫ r

0
f(x) dx∫ 0

−r

f(x) dx

, for r > 0.

[Hint: Use the area interpretation of the integral.]

39. (a) Use Figure 5.81 to explain why
∫ 3

−3
xe−x2

dx = 0.
(b) Find the left-hand sum approximation with n = 3

to
∫ 3

0
xe−x2

dx. Give your answer to four decimal
places.

(c) Repeat part (b) for
∫ 0

−3
xe−x2

dx.
(d) Do your answers to parts (b) and (c) add to 0? Ex-

plain.

−3 3

xe−x2

x

Figure 5.81

40. Two trains travel along parallel tracks. The velocity, v, of
the trains as functions of time t are shown in Figure 5.82.

(a) Describe in words the trips taken by each train.
(b) Estimate the ratio of the following quantities for

Train A to Train B:

(i) Maximum velocity (ii) Time traveled
(iii) Distance traveled

Train A

Train B

t (hr)

v (km/hr)

Figure 5.82

41. Worldwide, wind energy generating capacity, W
megawatts, t years after 2000, can be modeled10 by W =
21,000e0.22t .

(a) What was wind energy generating capacity in 2000?
in 2010?

(b) What annual continuous percent increase is indi-
cated by the model?

(c) Estimate average wind energy generating capacity
between 2000 and 2010.

In Problems 42–45, let r(t) be the rate, in kg/sec, at which a
spaceship burns fuel at time t sec. Assume that r(t) > 0 and
r′(t) < 0 for 0 ≤ t ≤ T , where T is the time at which all
the fuel has burned. Let Th be the time at which half the fuel
has burned and Q be the initial amount of fuel in kg. State
which of the following two expressions is larger, or that they
are equal, or that there is not enough information to decide.

42.

∫ T

0

r(t) dt and Q

43.

∫ 0.5T

0

r(t) dt and

∫ T

0.5T

r(t) dt

44.

∫ T/3

0

r(t) dt and Q/3

45.

∫ T
h

0

r(t) dt and

∫ 0.5T

0

r(t) dt

46. Use the property
∫ a

b
f(x) dx = −

∫ b

a
f(x) dx to show

that
∫ a

a
f(x) dx = 0.

47. The average value of y = v(x) equals 4 for 1 ≤ x ≤ 6,
and equals 5 for 6 ≤ x ≤ 8. What is the average value
of v(x) for 1 ≤ x ≤ 8?

10Global Wind Energy Council - Global Trends, www.gwec.net, accessed October 2010.
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48. (a) For any continuous function f , is∫ 2

1
f(x) dx+

∫ 3

2
f(x) dx =

∫ 3

1
f(x) dx?

(b) For any function f , add the left-hand sum approx-
imation with 10 subdivisions to

∫ 2

1
f(x) dx to the

left-hand sum approximation with 10 subdivisions to∫ 3

2
f(x) dx. Do you get the left-sum approximations

with 10 subdivisions to
∫ 3

1
f(x) dx? If not, interpret

the result as a different Riemann Sum.

49. Using Figure 5.83, list the following integrals in increas-
ing order (from smallest to largest). Which integrals are
negative, which are positive? Give reasons.

I.
∫ b

a
f(x) dx II.

∫ c

a
f(x) dx III.

∫ e

a
f(x) dx

IV.
∫ e

b
f(x) dx V.

∫ c

b
f(x) dx

a b c e

f(x)

x

Figure 5.83

In Problems 50–52, the function F (t) gives the thickness,
in inches, of ice on a roof t hours after midnight, where
f(t) = F ′(t), f(2) = 0.5, F (7) = 4, F (9) = 5, and∫ 3.5

2

f ′(t) dt = 0.75 and

∫ 7

4

f(t) dt = 1.5.

Evaluate the expressions and explain what your answers tell
you about the ice on the roof.

50.

∫ 9

7

f(t) dt 51. F (4) 52. F ′(3.5)

53. For the even function f graphed in Figure 5.84:

(a) Suppose you know
∫ 2

0
f(x) dx. What is∫ 2

−2
f(x) dx?

(b) Suppose you know
∫ 5

0
f(x) dx and

∫ 5

2
f(x) dx.

What is
∫ 2

0
f(x) dx?

(c) Suppose you know
∫ 5

−2
f(x) dx and

∫ 2

−2
f(x) dx.

What is
∫ 5

0
f(x) dx?

−2 2 5
x

f(x)

Figure 5.84

54. For the even function f graphed in Figure 5.84:

(a) Suppose you know
∫ 2

−2
f(x) dx and

∫ 5

0
f(x) dx.

What is
∫ 5

2
f(x) dx?

(b) Suppose you know
∫ 5

−2
f(x) dx and

∫ 0

−2
f(x) dx.

What is
∫ 5

2
f(x) dx?

(c) Suppose you know
∫ 5

2
f(x) dx and

∫ 5

−2
f(x) dx.

What is
∫ 2

0
f(x) dx?

55. A mouse moves back and forth in a straight tunnel, at-
tracted to bits of cheddar cheese alternately introduced to
and removed from the ends (right and left) of the tun-
nel. The graph of the mouse’s velocity, v, is given in
Figure 5.85, with positive velocity corresponding to mo-
tion toward the right end. Assuming that the mouse starts
(t = 0) at the center of the tunnel, use the graph to esti-
mate the time(s) at which:

(a) The mouse changes direction.
(b) The mouse is moving most rapidly to the right; to

the left.
(c) The mouse is farthest to the right of center; farthest

to the left.
(d) The mouse’s speed (i.e., the magnitude of its veloc-

ity) is decreasing.
(e) The mouse is at the center of the tunnel.

30

20

10

0

−10

−20

−30

v (cm/sec)

t (sec)
405 353015 20 2510

Figure 5.85
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Problems 56–57 concern hybrid cars such as the Toyota Prius
that are powered by a gas-engine, electric-motor combination,
but can also function in Electric-Vehicle (EV) only mode,
without power from the engine. Figure 5.8611 shows the ve-
locity, v, of a 2010 Prius Plug-in Hybrid Prototype operating
in normal hybrid mode and EV-only mode, respectively, while
accelerating from a stoplight.

5 15 25

40

80 Normal hybrid

EV-only

t (sec)

v (mph)

Figure 5.86

56. About how far, in feet, does the 2010 Prius Prototype
travel in EV-only mode during the first 15 seconds of
movement?

57. Assume two identical cars, one running in normal hybrid
mode and one running in EV-only mode, accelerate to-
gether in a straight path from a stoplight. Approximately
how far apart are the cars after 5 seconds?

58. The Montgolfier brothers (Joseph and Etienne) were
eighteenth-century pioneers in the field of hot-air bal-
looning. Had they had the appropriate instruments, they
might have left us a record, like that shown in Fig-
ure 5.87, of one of their early experiments. The graph
shows their vertical velocity, v, with upward as positive.

(a) Over what intervals was the acceleration positive?
Negative?

(b) What was the greatest altitude achieved, and at what
time?

(c) At what time was the upward acceleration greatest?
(d) At what time was the deceleration greatest?
(e) What might have happened during this flight to ex-

plain the answer to part (d)?
(f) This particular flight ended on top of a hill. How do

you know that it did, and what was the height of the
hill above the starting point?

10 20 30 40 50 60

−10

−20

0

10

20

t (min)

v (ft/min)

Figure 5.87

59. The Glen Canyon Dam at the top of the Grand Canyon
prevents natural flooding. In 1996, scientists decided an
artificial flood was necessary to restore the environmen-
tal balance. Water was released through the dam at a con-
trolled rate12 shown in Figure 5.88. The figure also shows
the rate of flow of the last natural flood in 1957.

(a) At what rate was water passing through the dam in
1996 before the artificial flood?

(b) At what rate was water passing down the river in the
pre-flood season in 1957?

(c) Estimate the maximum rates of discharge for the
1996 and 1957 floods.

(d) Approximately how long did the 1996 flood last?
How long did the 1957 flood last?

(e) Estimate how much additional water passed down
the river in 1996 as a result of the artificial flood.

(f) Estimate how much additional water passed down
the river in 1957 as a result of the flood.

March April May June July August

500

1000

1500

2000

2500

3000

3500

4000
Natural flood (1957)

Controlled flood
(1996)

rate of
discharge (m3/s)

Figure 5.88

60. Using Figure 5.89, list from least to greatest,

(a) f ′(1).
(b) The average value of f(x) on 0 ≤ x ≤ a.
(c) The average value of the rate of change of f(x), for

0 ≤ x ≤ a.
(d)
∫ a

0
f(x) dx.

1 2a

1

x

f(x)

Figure 5.89

11www.motortrend.com/. Retrieved May 2011.
12Adapted from M. Collier, R. Webb, E. Andrews, “Experimental Flooding in Grand Canyon,” Scientific American (Jan-

uary 1997).
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In Problems 61–64, let f(x) = F ′(x) where, for all x,

f ′(x) > 0 and f ′′(x) < 0.

Explain whether the expression gives the exact value of
f(3.1), an underestimate of f(3.1), or an overestimate of
f(3.1), or if there is not enough information to decide.

61. f(3) + 0.1f ′(3) 62. f(3) +

∫ 3.1

3

f ′(t) dt

63.
F (3.11) − F (3.1)

0.01

64. f(3) +

n∑
i=1

f ′ (xi)Δx, where n > 0,Δx =

0.1/n, x0 = 3, xn = 3.1, with x0, x1, . . . , xn evenly
spaced.

65. The number of days a cold-blooded organism, such as
an insect, takes to mature depends on the surrounding
temperature, H . Each organism has a minimum temper-
ature Hmin below which no development takes place.13

For an interval of time, Δt, on which the temperature is
constant, the increase in maturity of the organism can be
measured by the number of degree-days, ΔS, where t is
in days and

ΔS = (H −Hmin)Δt.

(a) If H varies with time, so H = f(t), write an inte-
gral that represents the total number of degree-days,
S, required if development to maturity takes T days.

(b) An organism which has Hmin = 15◦C requires 125
degree-days to develop to maturity. Estimate the de-
velopment time if the temperature, H◦C, at time t
days is in Table 5.10.

Table 5.10

t 1 2 3 4 5 6 7 8 9 10 11 12

H 20 22 27 28 27 31 29 30 28 25 24 26

66. Let θ(x) be the angle of the tangent line at x of the graph
of f with the horizontal, as in Figure 5.90. Show that

(a) tan θ = f ′(x)

(b) 1 + (f ′(x))2 =
1

cos2 θ

(c)
dθ

dx
= cos2 θ

d

dx
(tan θ) =

f ′′(x)

1 + (f ′(x))2

(d) θ(b)− θ(a) =

∫ b

a

f ′′(x)

1 + (f ′(x))2
dx

x

θ(x)

y = f(x)

Figure 5.90

CAS Challenge Problems

67. Consider the definite integral
∫ 1

0
x4dx.

(a) Write an expression for a right-hand Riemann sum
approximation for this integral using n subdivisions.
Express each xi, i = 1,2,. . . ,n, in terms of i.

(b) Use a computer algebra system to obtain a formula
for the sum you wrote in part (a) in terms of n.

(c) Take the limit of this expression for the sum as
n → ∞, thereby finding the exact value of this inte-
gral.

68. Repeat Problem 67, using the definite integral
∫ 1

0
x5dx.

For Problems 69–71, you will write a Riemann sum approxi-
mating a definite integral and use a computer algebra system
to find a formula for the Riemann sum. By evaluating the limit
of this sum as the number of subdivisions approaches infinity,
you will obtain the definite integral.

69. (a) Using summation notation, write the left-hand Rie-

mann sum with n subdivisions for
∫ 2

1
t dt.

(b) Use a computer algebra system to find a formula for
the Riemann sum.

(c) Evaluate the limit of the sum as n approaches infin-
ity.

(d) Calculate directly the area under the graph of y = t
between t = 1 and t = 2, and compare it with your
answer to part (c).

70. (a) Using summation notation, write the left-hand Rie-
mann sum with n subdivisions for

∫ 2

1
t2 dt.

(b) Use a computer algebra system to find a formula for
the Riemann sum.

(c) Evaluate the limit of the sum as n approaches infin-
ity.

(d) What is the area under the graph of y = t2 between
t = 1 and t = 2?

71. (a) Using summation notation, write the right-hand Rie-
mann sum with n subdivisions for

∫ π

0
sin xdx.

13Information from http://www.ento.vt.edu/˜sharov/PopEcol/popecol.html (Accessed Nov. 18, 2003).
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(b) Use a computer algebra system to find a formula for
the Riemann sum. [Note: Not all computer algebra
systems can evaluate this sum.]

(c) Use a computer algebra system to evaluate the limit
of the sum as n approaches infinity.

(d) Confirm your answer to part (c) by calculating the
definite integral with the computer algebra system.

In Problems 72–73:

(a) Use a computer algebra system to compute the given def-
inite integral.

(b) From your answer to part (a) and the Fundamental Theo-
rem of Calculus, guess a function whose derivative is the
integrand. Check your guess using the computer algebra
system.

[Hint: Make sure that the constants a, b, and c do not have
previously assigned values in your computer algebra system.]

72.

∫ b

a

sin(cx) dx

73.

∫ c

a

x

1 + bx2
dx, b > 0

PROJECTS FOR CHAPTER FIVE

1. Medical Case Study: Cardiac Cycle14

Physiologists who study the heart measure and plot quantities that reflect many aspects of
cardiac function. One of the most famous plots is the pressure-volume loop, which shows the
blood pressure versus the volume of blood in the left ventricle (LV). Both pressure and volume
change during the cardiac cycle, the periodic relaxation and contraction of the heart, reflected
in the lub-dub sounds of a heartbeat.

The LV is a hollow chamber with walls made of muscle. The LV pumps blood from the
heart to all the organs of the body. When the LV contracts, a phase of the cardiac cycle called
systole, the walls move in and blood is expelled from the heart and flows out to the organs.
When the LV relaxes, a phase called diastole, its walls move out and it fills up with new blood,
ready to be pumped out with the next LV contraction.

The cardiac cycle for the LV can be simplified into four phases. Points on the pressure-
volume loop in Figure 5.91 represent the pressure and volume at different times during the
cycle, and the arrows show the direction of change. When the LV has just finished contracting
(so systole ends, and diastole begins), the volume of blood is at a minimum (D1). In Phase 1,
isometric relaxation, the LV relaxes, causing a drop in the LV pressure, while the volume stays
the same, as no new blood can flow into the LV yet. At D2, isometric relaxation ends and Phase
2 begins: the LV starts to fill up with new blood, causing an increase in LV volume and a small
increase in pressure. At S1, diastole ends and the muscular walls of the LV start to contract,
initiating systole. In Phase 3, isometric contraction pressure rises rapidly, but no blood is ejected
yet, so LV volume remains constant. Phase 4 starts at S2, and blood is rapidly expelled from
the LV, so the volume decreases, and there is a mild decrease in pressure. This brings the cycle
back to D1 as systole ends and diastole is ready to begin again.

(a) For each of the four phases of the cardiac cycle, decide whether the work done by the LV
wall on the blood is positive, negative, or zero.

(b) Using the units of pressure and volume, find the units of area of regions in the pressure-
volume plane.

(c) Suppose Phases 2 and 4 are the graphs of two functions, g(V ) and f(V ), respectively.
Explain why the integral represents the work done by the LV wall on the blood in each
phase.

(i) Phase 4,
∫ b
a
f(V ) dV

(ii) Phase 2, −
∫ b
a g(V ) dV

(d) Express the area enclosed by the pressure-volume loop as an integral. Using part (c), give
the physical meaning of this area.

14From David E. Sloane, M.D.
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a b

Phase 1

Phase 3

Phase 4

Phase 2

D1

S2

D2

S1

f(V )

g(V )

Left ventrical volume, V (cm3)

Left ventrical pressure (nt/cm2)

Figure 5.91: Pressure-volume loop

2. The Car and the Truck
A car starts at noon and travels along a straight road with the velocity shown in Figure 5.92. A
truck starts at 1 pm from the same place and travels along the same road at a constant velocity
of 50 mph.

(a) How far away is the car when the truck starts?
(b) How fast is the distance between the car and the truck increasing or decreasing at 3 pm?

What is the practical significance (in terms of the distance between the car and the truck)
of the fact that the car’s velocity is maximized at about 2 pm?

(c) During the period when the car is ahead of the truck, when is the distance between them
greatest, and what is that greatest distance?

(d) When does the truck overtake the car, and how far have both traveled then?
(e) Suppose the truck starts at noon. (Everything else remains the same.) Sketch a new graph

showing the velocities of both car and truck against time.
(f) How many times do the two graphs in part (e) intersect? What does each intersection mean

in terms of the distance between the two?

1 2 3 4 5 6 7 8 9 10

20

40

60

80

time since
noon (hours)

velocity (mph)

Figure 5.92: Velocity of car starting at noon

3. An Orbiting Satellite
A NASA satellite orbits the earth every 90 minutes. During an orbit, the satellite’s electric power
comes either from solar array wings, when these are illuminated by the sun, or from batteries.
The batteries discharge whenever the satellite uses more electricity than the solar array can
provide or whenever the satellite is in the shadow of the earth (where the solar array cannot be
used). If the batteries are overused, however, they can be damaged.15

15Adapted from Amy C. R. Gerson, “Electrical Engineering: Space Systems,” in She Does Math! Real Life Problems from
Women on the Job, ed. Marla Parker, p. 61 (Washington, DC: Mathematical Association of America, 1995).
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You are to determine whether the batteries could be damaged in either of the following op-
erations. You are told that the battery capacity is 50 ampere-hours. If the total battery discharge
does not exceed 40% of battery capacity, the batteries will not be damaged.

(a) Operation 1 is performed by the satellite while orbiting the earth. At the beginning of a
given 90-minute orbit, the satellite performs a 15-minute maneuver which requires more
current than the solar array can deliver, causing the batteries to discharge. The maneuver
causes a sinusoidally varying battery discharge of period 30 minutes with a maximum dis-
charge of ten amperes at 7.5 minutes. For the next 45 minutes the solar array meets the total
satellite current demand, and the batteries do not discharge. During the last 30 minutes, the
satellite is in the shadow of the earth and the batteries supply the total current demand of
30 amperes.

(i) The battery current in amperes is a function of time. Plot the function, showing the
current in amperes as a function of time for the 90-minute orbit. Write a formula (or
formulas) for the battery current function.

(ii) Calculate the total battery discharge (in units of ampere-hours) for the 90-minute orbit
for Operation 1.

(iii) What is your recommendation regarding the advisability of Operation 1?

(b) Operation 2 is simulated at NASA’s laboratory in Houston. The following graph was pro-
duced by the laboratory simulation of the current demands on the battery during the 90-
minute orbit required for Operation 2.

15 30 45 60 75 90

10

20

30

t, time (minutes)

battery current (amperes)

Figure 5.93: Battery discharge simulation graph for Operation 2

(i) Calculate the total battery discharge (in units of ampere-hours) for the 90-minute orbit
for Operation 2.

(ii) What is your recommendation regarding the advisability of Operation 2?
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6.1 ANTIDERIVATIVES GRAPHICALLY AND NUMERICALLY

The Family of Antiderivatives
If the derivative of F is f , we call F an antiderivative of f . For example, since the derivative of x2

is 2x, we say that
x2 is an antiderivative of 2x.

Notice that 2x has many antiderivatives, since x2 +1, x2 +2, and x2 +3, all have derivative 2x. In
fact, if C is any constant, we have

d

dx
(x2

+ C) = 2x+ 0 = 2x,

so any function of the form x2 + C is an antiderivative of 2x. The function f(x) = 2x has a family
of antiderivatives.

Let us look at another example. If v is the velocity of a car and s is its position, then v = ds/dt
and s is an antiderivative of v. As before, s+C is an antiderivative of v for any constant C. In terms
of the car, adding C to s is equivalent to adding C to the odometer reading. Adding a constant to
the odometer reading simply means measuring distance from a different point, which does not alter
the car’s velocity.

Visualizing Antiderivatives Using Slopes
Suppose we have the graph of f ′, and we want to sketch an approximate graph of f . We are looking
for the graph of f whose slope at any point is equal to the value of f ′ there. Where f ′ is above
the x-axis, f is increasing; where f ′ is below the x-axis, f is decreasing. If f ′ is increasing, f is
concave up; if f ′ is decreasing, f is concave down.

Example 1 The graph of f ′ is given in Figure 6.1. Sketch a graph of f in the cases when f(0) = 0 and f(0) = 1.

1 2 3 4 5

1

x0

f ′(x)

Figure 6.1: Graph of f ′

1 2 3 4 5

2

3

4

x

f(0) = 1

f(0) = 0

f(x)

f(x)

Figure 6.2: Two different f ’s which
have the same derivative f ′

Solution For 0 ≤ x ≤ 2, the function f has a constant slope of 1, so the graph of f is a straight line. For
2 ≤ x ≤ 4, the function f is increasing but more and more slowly; it has a maximum at x = 4 and
decreases thereafter. (See Figure 6.2.) The solutions with f(0) = 0 and f(0) = 1 start at different
points on the vertical axis but have the same shape.

Example 2 Sketch a graph of the antiderivative F of f(x) = e−x2

satisfying F (0) = 0.

Solution The graph of f(x) = e−x2

is shown in Figure 6.3. The slope of the antiderivative F (x) is given
by f(x). Since f(x) is always positive, the antiderivative F (x) is always increasing. Since f(x) is
increasing for negative x, we know that F (x) is concave up for negative x. Since f(x) is decreasing
for positive x, we know that F (x) is concave down for positive x. Since f(x) → 0 as x → ±∞,
the graph of F (x) levels off at both ends. See Figure 6.4.
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−2 −1 1 2

1

x

f(x) = e−x2

Figure 6.3: Graph of f(x) = e−x2

F (x)
x

Figure 6.4: An antiderivative F (x) of

f(x) = e−x2

Example 3 For the function f ′ given in Figure 6.5, sketch a graph of three antiderivative functions f , one with
f(0) = 0, one with f(0) = 1, and one with f(0) = 2.

1 2 3 4

−2

2

x0

f ′(x)

Figure 6.5: Slope function, f ′

f(x)

f(x)

f(x)

1 2 3 4
−1

f(0) = 0

f(0) = 1

f(0) = 2

3

x

Figure 6.6: Antiderivatives f

Solution To graph f , start at the point on the vertical axis specified by the initial condition and move with
slope given by the value of f ′ in Figure 6.5. Different initial conditions lead to different graphs for
f , but for a given x-value they all have the same slope (because the value of f ′ is the same for each).
Thus, the different f curves are obtained from one another by a vertical shift. See Figure 6.6.

• Where f ′ is positive (1 < x < 3), we see f is increasing; where f ′ is negative (0 < x < 1 or
3 < x < 4), we see f is decreasing.

• Where f ′ is increasing (0 < x < 2), we see f is concave up; where f ′ is decreasing
(2 < x < 4), we see f is concave down.

• Where f ′ = 0, we see f has a local maximum at x = 3 and a local minimum at x = 1.
• Where f ′ has a maximum (x = 2), we see f has a point of inflection.

Computing Values of an Antiderivative Using Definite Integrals
A graph of f ′ shows where f is increasing and where f is decreasing. We can calculate the actual
value of the function f using the Fundamental Theorem of Calculus (Theorem 5.1 on page 290): If
f ′ is continuous, then ∫ b

a

f ′
(x) dx = f(b)− f(a).

If we know f(a), we can estimate f(b) by computing the definite integral using area or Riemann
sums.

Example 4 Figure 6.7 is the graph of the derivative f ′(x) of a function f(x). It is given that f(0) = 100. Sketch
the graph of f(x), showing all critical points and inflection points of f and giving their coordinates.

10 20 30

−10

10

20

x

f ′(x)

Figure 6.7: Graph of derivative
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Solution The critical points of f occur at x = 0, x = 20, and x = 30, where f ′(x) = 0. The inflection points
of f occur at x = 10 and x = 25, where f ′(x) has a maximum or minimum. To find the coordinates
of the critical points and inflection points of f , we evaluate f(x) for x = 0, 10, 20, 25, 30. Using the
Fundamental Theorem, we can express the values of f(x) in terms of definite integrals. We evaluate
the definite integrals using the areas of triangular regions under the graph of f ′(x), remembering
that areas below the x-axis are subtracted. (See Figure 6.8.)

10 20 30

−10

10

20

x

f ′(x)

Shaded area
=
∫ 10

0
f ′(x) dx

Figure 6.8: Finding f(10) = f(0) +
∫ 10

0
f ′(x) dx

0 10 20 30

100

200

300

x

�

�


�

�

Critical point (0, 100)

f(x)

Inflection point
(10, 200)

Critical point
(20, 300) Inflection point

(25, 275)

Critical point
(30, 250)

Figure 6.9: Graph of f(x)

Since f(0) = 100, the Fundamental Theorem gives us the following values of f , which are marked
in Figure 6.9.

f(10) = f(0) +

∫ 10

0

f ′
(x) dx = 100 + (Shaded area in Figure 6.8) = 100 +

1

2
(10)(20) = 200,

f(20) = f(10) +

∫ 20

10

f ′
(x) dx = 200 +

1

2
(10)(20) = 300,

f(25) = f(20) +

∫ 25

20

f ′
(x) dx = 300−

1

2
(5)(10) = 275,

f(30) = f(25) +

∫ 30

25

f ′
(x) dx = 275−

1

2
(5)(10) = 250.

Example 5 Suppose F ′(t) = t cos t and F (0) = 2. Find F (b) at the points b = 0, 0.1, 0.2, . . ., 1.0.

Solution We apply the Fundamental Theorem with f(t) = t cos t and a = 0 to get values for F (b):

F (b)− F (0) =

∫ b

0

F ′
(t) dt =

∫ b

0

t cos t dt.

Since F (0) = 2, we have

F (b) = 2 +

∫ b

0

t cos t dt.

Calculating the definite integral
∫ b
0
t cos t dt numerically for b = 0, 0.1, 0.2, . . . , 1.0 gives the values

for F in Table 6.1:

Table 6.1 Approximate values for F

b 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F (b) 2.000 2.005 2.020 2.044 2.077 2.117 2.164 2.216 2.271 2.327 2.382

Notice that F (b) appears to be increasing between b = 0 and b = 1. This could have been
predicted from the fact that t cos t, the derivative of F (t), is positive for t between 0 and 1.
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Exercises and Problems for Section 6.1
Exercises

1. Fill in the blanks in the following statements, assuming
that F (x) is an antiderivative of f(x):

(a) If f(x) is positive over an interval, then F (x) is
over the interval.

(b) If f(x) is increasing over an interval, then F (x) is
over the interval.

2. Use Figure 6.10 and the fact that P = 0 when t = 0 to
find values of P when t = 1, 2, 3, 4 and 5.

1 2 3 4 5

−1

1

t

dP/dt

Figure 6.10

3. Use Figure 6.11 and the fact that P = 2 when t = 0 to
find values of P when t = 1, 2, 3, 4 and 5.

1 2 3 4 5

−1

1

t

dP/dt

Figure 6.11

In Exercises 4–11, sketch two functions F such that F ′ = f .
In one case let F (0) = 0 and in the other, let F (0) = 1.

4.

1

−1

1 f(x)

x

5.

1

−1

1

f(x)

x

6.

1

−1

1

f(x)

x

7.
f(x)

1
x

1

−1

8.

1
x

f(x)
1

−1

9.
f(x)

1
x

1

−1

10.
f(x)

1
x

1

−1

11.

1

−1

1

f(x)

x

Problems

12. Let F (x) be an antiderivative of f(x).

(a) If
∫ 5

2
f(x) dx = 4 and F (5) = 10, find F (2).

(b) If
∫ 100

0
f(x) dx = 0, what is the relationship be-

tween F (100) and F (0)?

13. Estimate f(x) for x = 2, 4, 6, using the given values of
f ′(x) and the fact that f(0) = 100.

x 0 2 4 6

f ′(x) 10 18 23 25

14. Estimate f(x) for x = 2, 4, 6, using the given values of
f ′(x) and the fact that f(0) = 50.

x 0 2 4 6

f ′(x) 17 15 10 2

15. A particle moves back and forth along the x-axis. Fig-
ure 6.12 approximates the velocity of the particle as a
function of time. Positive velocities represent movement
to the right and negative velocities represent movement
to the left. The particle starts at the point x = 5. Graph
the distance of the particle from the origin, with distance
measured in kilometers and time in hours.

1 2 3 4 5 6

−10

10

t (hr)

v (km/hr)

Figure 6.12
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16. Assume f ′ is given by the graph in Figure 6.13. Suppose
f is continuous and that f(0) = 0.

(a) Find f(3) and f(7).
(b) Find all x with f(x) = 0.
(c) Sketch a graph of f over the interval 0 ≤ x ≤ 7.

1 2 3 4 5 6 7

−2

−1

1

2

x

f ′(x)

Figure 6.13

17. The graph of dy/dt against t is in Figure 6.14. The
three shaded regions each have area 2. If y = 0 when
t = 0, draw the graph of y as a function of t, labeling
the known y-values, maxima and minima, and inflection
points. Mark t1, t2, . . . ,t5 on the t axis.1

t1

t2

t3 t4 t5
t

dy/dt

Figure 6.14

18. Repeat Problem 17 for the graph of dy/dt given in Fig-
ure 6.15. (Each of the three shaded regions has area 2.)

t1 t2 t3

t4 t5

dy/dt

t

Figure 6.15

19. Using Figure 6.16, sketch a graph of an antiderivative
G(t) of g(t) satisfying G(0) = 5. Label each critical
point of G(t) with its coordinates.

� Area = 16

�

Area = 8

�

Area = 2
g(t)

1 2 3 4 5
t

Figure 6.16

20. Using the graph of g′ in Figure 6.17 and the fact that
g(0) = 50, sketch the graph of g(x). Give the coordi-
nates of all critical points and inflection points of g.

15 40

−10

(10,−20)

(20, 10)

g′(x)

x

Figure 6.17

21. Figure 6.18 shows the rate of change of the concentration
of adrenaline, in micrograms per milliliter per minute, in
a person’s body. Sketch a graph of the concentration of
adrenaline, in micrograms per milliliter, in the body as a
function of time, in minutes.

1 2 3 4 5 6 7 8
t (minutes)

rate of change of adrenaline
concentration (μg/ml/min)

Figure 6.18

22. Urologists are physicians who specialize in the health of
the bladder. In a common diagnostic test, urologists mon-
itor the emptying of the bladder using a device that pro-
duces two graphs. In one of the graphs the flow rate (in
milliliters per second) is measured as a function of time
(in seconds). In the other graph, the volume emptied from
the bladder is measured (in milliliters) as a function of
time (in seconds). See Figure 6.19.

(a) Which graph is the flow rate and which is the vol-
ume?

(b) Which one of these graphs is an antiderivative of the
other?

5 10 15 20 25 30
seconds

(I)

5 10 15 20 25 30
seconds

(II)

Figure 6.19

1From Calculus: The Analysis of Functions, by Peter D. Taylor (Toronto: Wall & Emerson, Inc., 1992).
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In Problems 23–26, sketch two functions F with F ′(x) =
f(x). In one, let F (0) = 0; in the other, let F (0) = 1. Mark
x1, x2, and x3 on the x-axis of your graph. Identify local max-
ima, minima, and inflection points of F (x).

23.

x
x1 x2 x3

f(x)

24.

x1 x2 x3

f(x)

x

25.

x1 x2 x3

x

f(x)
26.

x1

x2 x3

f(x)

x

27. Use a graph of f(x) = 2 sin(x2) to determine where an
antiderivative, F , of this function reaches its maximum
on 0 ≤ x ≤ 3. If F (1) = 5, find the maximum value
attained by F .

28. Two functions, f(x) and g(x), are shown in Figure 6.20.
Let F and G be antiderivatives of f and g, respectively.
On the same axes, sketch graphs of the antiderivatives
F (x) and G(x) satisfying F (0) = 0 and G(0) = 0.
Compare F and G, including a discussion of zeros and
x- and y-coordinates of critical points.

f(x)

g(x)

x
1 2 3 4

Figure 6.20

29. The graph in Figure 6.21 records the spillage rate at a
toxic waste treatment plant over the 50 minutes it took to
plug the leak.

(a) Complete the table for the total quantity spilled in
liters in time t minutes since the spill started.

Time t (min) 0 10 20 30 40 50

Quantity (liters) 0

(b) Graph the total quantity leaked against time for the
entire fifty minutes. Label axes and include units.

10 20 30 40 50

10

20

time (min)

leak rate
(liters/sec)

Figure 6.21

30. The Quabbin Reservoir in the western part of Mas-
sachusetts provides most of Boston’s water. The graph
in Figure 6.22 represents the flow of water in and out of
the Quabbin Reservoir throughout 2007.

(a) Sketch a graph of the quantity of water in the reser-
voir, as a function of time.

(b) When, in the course of 2007, was the quantity of wa-
ter in the reservoir largest? Smallest? Mark and label
these points on the graph you drew in part (a).

(c) When was the quantity of water increasing most
rapidly? Decreasing most rapidly? Mark and label
these times on both graphs.

(d) By July 2008 the quantity of water in the reservoir
was about the same as in January 2007. Draw plau-
sible graphs for the flow into and the flow out of the
reservoir for the first half of 2008.

Jan (2007) April July Oct Jan (2008)

rate of flow
(millions of gallons/day)

Outflow

Inflow

Figure 6.22
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Strengthen Your Understanding

In Problems 31–32, explain what is wrong with the statement.

31. Let F (x) be an antiderivative of f(x). If f(x) is every-
where increasing, then F (x) ≥ 0.

32. If F (x) and G(x) are both antiderivatives of f(x), then
H(x) = F (x) +G(x) must also be an antiderivative of
f(x).

In Problems 33–34, give an example of:

33. A graph of a function f(x) such that
∫ 2

0
f(x) dx = 0.

34. A graph of a function f(x) whose antiderivative is in-
creasing everywhere.

Are the statements in Problems 35–36 true or false? Give an
explanation for your answer.

35. A function f(x) has at most one derivative.

36. If f(t) is a linear function with positive slope, then an
antiderivative, F , is a linear function.

6.2 CONSTRUCTING ANTIDERIVATIVES ANALYTICALLY

What Is an Antiderivative of f(x) = 0?

A function whose derivative is zero everywhere on an interval must have a horizontal tangent line at
every point of its graph, and the only way this can happen is if the function is constant. Alternatively,
if we think of the derivative as a velocity, and if the velocity is always zero, then the object is
standing still; the position function is constant. A rigorous proof of this result using the definition
of the derivative is surprisingly subtle. (See the Constant Function Theorem on page 177.)

If F ′
(x) = 0 on an interval, then F (x) = C on this interval, for some constant C.

What Is the Most General Antiderivative of f ?

We know that if a function f has an antiderivative F , then it has a family of antiderivatives of the
form F (x) + C, where C is any constant. You might wonder if there are any others. To decide,
suppose that we have two functions F and G with F ′ = f and G′ = f : that is, F and G are both
antiderivatives of the same function f . Since F ′ = G′ we have (G−F )′ = 0. But this means that we
must have G−F = C, so G(x) = F (x) +C, where C is a constant. Thus, any two antiderivatives
of the same function differ only by a constant.

If F and G are both antiderivatives of f on an interval, then G(x) = F (x) + C.

The Indefinite Integral

All antiderivatives of f(x) are of the form F (x) + C. We introduce a notation for the general an-
tiderivative that looks like the definite integral without the limits and is called the indefinite integral:∫

f(x) dx = F (x) + C.

It is important to understand the difference between∫ b

a

f(x) dx and
∫

f(x) dx.

The first is a number and the second is a family of functions. The word “integration” is frequently
used for the process of finding the antiderivative as well as of finding the definite integral. The
context usually makes clear which is intended.
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What Is an Antiderivative of f(x) = k?

If k is a constant, the derivative of kx is k, so we have

An antiderivative of k is kx.

Using the indefinite integral notation, we have

If k is constant,∫
k dx = kx+ C.

Finding Antiderivatives
Finding antiderivatives of functions is like taking square roots of numbers: if we pick a number at
random, such as 7 or 493, we may have trouble finding its square root without a calculator. But if
we happen to pick a number such as 25 or 64, which we know is a perfect square, then we can find
its square root exactly. Similarly, if we pick a function which we recognize as a derivative, then we
can find its antiderivative easily.

For example, to find an antiderivative of f(x) = x, notice that 2x is the derivative of x2; this
tells us that x2 is an antiderivative of 2x. If we divide by 2, then we guess that

An antiderivative of x is
x2

2
.

To check this statement, take the derivative of x2/2:

d

dx

(
x2

2

)
=

1

2
·
d

dx
x2

=
1

2
· 2x = x.

What about an antiderivative of x2? The derivative of x3 is 3x2, so the derivative of x3/3 is
3x2/3 = x2. Thus,

An antiderivative of x2 is
x3

3
.

The pattern looks like

An antiderivative of xn is
xn+1

n+ 1
.

(We assume n �= −1, or we would have x0/0, which does not make sense.) It is easy to check this
formula by differentiation:

d

dx

(
xn+1

n+ 1

)
=

(n+ 1)xn

n+ 1
= xn.

In indefinite integral notation, we have shown that

∫
xn dx =

xn+1

n+ 1
+ C, n �= −1.
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What about when n = −1? In other words, what is an antiderivative of 1/x? Fortunately, we
know a function whose derivative is 1/x, namely, the natural logarithm. Thus, since

d

dx
(ln x) =

1

x
,

we know that ∫
1

x
dx = lnx+ C, for x > 0.

If x < 0, then lnx is not defined, so it can’t be an antiderivative of 1/x. In this case, we can try
ln(−x):

d

dx
ln(−x) = (−1)

1

−x
=

1

x
so ∫

1

x
dx = ln(−x) + C, for x < 0.

This means lnx is an antiderivative of 1/x if x > 0, and ln(−x) is an antiderivative of 1/x if x < 0.
Since |x| = x when x > 0 and |x| = −x when x < 0, we can collapse these two formulas into:

An antiderivative of
1

x
is ln |x|.

Therefore ∫
1

x
dx = ln |x|+ C.

Since the exponential function is its own derivative, it is also its own antiderivative; thus

∫
ex dx = ex + C.

Also, antiderivatives of the sine and cosine are easy to guess. Since

d

dx
sinx = cosx and

d

dx
cosx = − sinx,

we get ∫
cosx dx = sinx+ C and

∫
sinx dx = − cosx+ C.

Example 1 Find
∫
(3x+ x2

) dx.

Solution We know that x2/2 is an antiderivative of x and that x3/3 is an antiderivative of x2, so we expect∫
(3x+ x2

) dx = 3

(
x2

2

)
+

x3

3
+ C.

You should always check your antiderivatives by differentiation—it’s easy to do. Here

d

dx

(
3

2
x2

+
x3

3
+ C

)
=

3

2
· 2x+

3x2

3
= 3x+ x2.

The preceding example illustrates that the sum and constant multiplication rules of differentia-
tion work in reverse:
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Theorem 6.1: Properties of Antiderivatives: Sums and Constant Multiples

In indefinite integral notation,

1.
∫

(f(x)± g(x)) dx =

∫
f(x) dx ±

∫
g(x) dx

2.
∫

cf(x) dx = c

∫
f(x) dx.

In words,
1. An antiderivative of the sum (or difference) of two functions is the sum (or difference)

of their antiderivatives.

2. An antiderivative of a constant times a function is the constant times an antiderivative of
the function.

These properties are analogous to the properties for definite integrals given on page 300 in
Section 5.4, even though definite integrals are numbers and antiderivatives are functions.

Example 2 Find
∫
(sinx+ 3 cosx) dx.

Solution We break the antiderivative into two terms:∫
(sin x+ 3 cosx) dx =

∫
sinx dx + 3

∫
cosx dx = − cosx+ 3 sinx+ C.

Check by differentiating:

d

dx
(− cosx+ 3 sinx+ C) = sinx+ 3 cosx.

Using Antiderivatives to Compute Definite Integrals
As we saw in Section 5.3, the Fundamental Theorem of Calculus gives us a way of calculating

definite integrals. Denoting F (b) − F (a) by F (x)
∣∣b
a
, the theorem says that if F ′ = f and f is

continuous, then ∫ b

a

f(x) dx = F (x)

∣∣∣∣b
a

= F (b)− F (a).

To find
∫ b
a f(x) dx, we first find F , and then calculate F (b) − F (a). This method of computing

definite integrals gives an exact answer. However, the method only works in situations where we
can find the antiderivative F (x). This is not always easy; for example, none of the functions we
have encountered so far is an antiderivative of sin(x2).

Example 3 Compute
∫ 2

1

3x2 dx using the Fundamental Theorem.

Solution Since F (x) = x3 is an antiderivative of f(x) = 3x2,∫ 2

1

3x2 dx = F (x)

∣∣∣∣2
1

= F (2)− F (1),

gives ∫ 2

1

3x2 dx = x3

∣∣∣∣2
1

= 2
3 − 1

3
= 7.
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Notice in this example we used the antiderivative x3, but x3+C works just as well because the
constant C cancels out:∫ 2

1

3x2 dx = (x3
+ C)

∣∣∣∣2
1

= (2
3
+ C)− (1

3
+ C) = 7.

Example 4 Compute
∫ π/4

0

1

cos2 θ
dθ exactly.

Solution We use the Fundamental Theorem. Since F (θ) = tan θ is an antiderivative of f(θ) = 1/ cos2 θ, we
get ∫ π/4

0

1

cos2 θ
dθ = tan θ

∣∣∣∣π/4
0

= tan

(π
4

)
− tan(0) = 1.

Exercises and Problems for Section 6.2
Exercises

In Exercises 1–16, find an antiderivative.

1. f(x) = 5 2. f(t) = 5t

3. f(x) = x2 4. g(t) = t2 + t

5. g(z) =
√
z 6. h(z) =

1

z

7. r(t) =
1

t2
8. h(t) = cos t

9. g(z) =
1

z3
10. q(y) = y4 +

1

y

11. f(z) = ez 12. g(t) = sin t

13. f(t) = 2t2 + 3t3 + 4t4 14. p(t) = t3 − t2

2
− t

15. f(t) =
t2 + 1

t
16. f(x) = 5x−√

x

In Exercises 17–28, find the general antiderivative.

17. f(t) = 6t 18. h(x) = x3 − x

19. f(x) = x2 − 4x+ 7 20. g(t) =
√
t

21. r(t) = t3 + 5t− 1 22. f(z) = z + ez

23. g(x) = sin x+ cos x 24. h(x) = 4x3 − 7

25. p(t) =
1√
t

26. p(t) = 2 + sin t

27. g(x) =
5

x3
28. h(t) =

7

cos2 t

In Exercises 29–36, find an antiderivative F (x) with F ′(x) =
f(x) and F (0) = 0. Is there only one possible solution?

29. f(x) = 3 30. f(x) = 2x

31. f(x) = −7x 32. f(x) = 2+4x+5x2

33. f(x) =
1

4
x 34. f(x) = x2

35. f(x) =
√
x 36. f(x) = sin x

In Exercises 37–50, find the indefinite integrals.

37.

∫
(5x+ 7) dx 38.

∫ (
4t+

1

t

)
dt

39.

∫
(2 + cos t) dt 40.

∫
7ex dx

41.

∫
(3ex + 2 sin x) dx 42.

∫
(4ex − 3 sin x) dx

43.

∫ (
5x2 + 2

√
x
)
dx 44.

∫
(x+ 3)2 dx

45.

∫
8√
x
dx 46.

∫ (
3

t
− 2

t2

)
dt

47.

∫
(ex + 5) dx 48.

∫
t3(t2 + 1) dt

49.

∫ (√
x3 − 2

x

)
dx 50.

∫ (
x+ 1

x

)
dx
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In Exercises 51–60, evaluate the definite integrals exactly [as
in ln(3π)], using the Fundamental Theorem, and numerically
[ln(3π) ≈ 2.243]:

51.

∫ 3

0

(x2 + 4x+ 3) dx 52.

∫ 3

1

1

t
dt

53.

∫ π/4

0

sin xdx 54.

∫ 1

0

2ex dx

55.

∫ 2

0

3ex dx 56.

∫ 5

2

(x3 − πx2) dx

57.

∫ 1

0

sin θ dθ 58.

∫ 2

1

1 + y2

y
dy

59.

∫ 2

0

(
x3

3
+ 2x

)
dx 60.

∫ π/4

0

(sin t+ cos t) dt

Problems

61. Water is pumped into a cylindrical tank, standing verti-
cally, at a decreasing rate given at time t minutes by

r(t) = 120− 6t ft3/min for 0 ≤ t ≤ 10.

The tank has radius 5 ft and is empty when t = 0. Find
the depth of water in the tank at t = 4.

62. A car moves along a straight line with velocity, in
feet/second, given by

v(t) = 6− 2t for t ≥ 0.

(a) Describe the car’s motion in words. (When is it mov-
ing forward, backward, and so on?)

(b) The car’s position is measured from its starting
point. When is it farthest forward? Backward?

(c) Find s, the car’s position measured from its starting
point, as a function of time.

63. A helicopter rotor slows down at a constant rate from 350
revs/min to 260 revs/min in 1.5 minutes.

(a) Find the angular acceleration during this time inter-
val. What are the units of this acceleration?

(b) Assuming the angular acceleration remains constant,
how long does it take for the rotor to stop? (Mea-
sure time from the moment when speed was 350
revs/min.)

(c) How many revolutions does the rotor make between
the time the angular speed was 350 revs/min and
stopping?

64. In drilling an oil well, the total cost, C, consists of fixed
costs (independent of the depth of the well) and marginal
costs, which depend on depth; drilling becomes more ex-
pensive, per meter, deeper into the earth. Suppose the
fixed costs are 1,000,000 riyals (the riyal is the unit of
currency of Saudi Arabia), and the marginal costs are

C′(x) = 4000 + 10x riyals/meter,

where x is the depth in meters. Find the total cost of
drilling a well x meters deep.

65. Use the Fundamental Theorem to find the area under
f(x) = x2 between x = 0 and x = 3.

66. Find the exact area of the region bounded by the x-axis
and the graph of y = x3 − x.

67. Calculate the exact area above the graph of y = 1
2

(
3
π
x
)2

and below the graph of y = cos x. The curves intersect
at x = ±π/3.

68. Find the exact area of the shaded region in Figure 6.23
between y = 3x2 − 3 and the x-axis.

1 3
x

y = 3x2 − 3

Figure 6.23

69. (a) Find the exact area between f(x) = x3−7x2+10x,
the x-axis, x = 0, and x = 5.

(b) Find
∫ 5

0
(x3 − 7x2 + 10x) dx exactly and interpret

this integral in terms of areas.

70. Find the exact area between the curve y = ex − 2 and
the x-axis for 0 ≤ x ≤ 2.

71. Find the exact area between the curves y = x2 and
y = 2− x2.

72. Find the exact area between the x-axis and the graph of
f(x) = (x− 1)(x− 2)(x− 3).

73. Consider the area between the curve y = ex − 2 and the
x-axis, between x = 0 and x = c for c > 0. Find the
value of c making the area above the axis equal to the
area below the axis.

74. The area under 1/
√
x on the interval 1 ≤ x ≤ b is equal

to 6. Find the value of b using the Fundamental Theorem.

75. Find the exact positive value of c which makes the area
under the graph of y = c(1 − x2) and above the x-axis
equal to 1.
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76. Sketch the parabola y = x(x − π) and the curve y =
sin x, showing their points of intersection. Find the exact
area between the two graphs.

77. Find the exact average value of f(x) =
√
x on the in-

terval 0 ≤ x ≤ 9. Illustrate your answer on a graph of
f(x) =

√
x.

In Problems 78–79, evaluate the integral using f(x) = 4x−3.

78.

∫ 3

1

f
(
x−1
)
dx 79.

∫ 3

1

f ′ (x) dx

80. If An is the area between the curves y = x and y = xn,
show that An → 1

2
as n → ∞ and explain this result

graphically.

81. (a) Explain why you can rewrite xx as xx = ex lnx for
x > 0.

(b) Use your answer to part (a) to find
d

dx
(xx).

(c) Find

∫
xx(1 + lnx)dx.

(d) Find

∫ 2

1

xx(1 + lnx)dx exactly using part (c).

Check your answer numerically.

82. (a) What is the average value of f(t) = sin t over
0 ≤ t ≤ 2π? Why is this a reasonable answer?

(b) Find the average of f(t) = sin t over 0 ≤ t ≤ π.

83. The origin and the point (a, a) are at opposite corners of
a square. Calculate the ratio of the areas of the two parts
into which the curve

√
x+

√
y =

√
a divides the square.

Strengthen Your Understanding

In Problems 84–85, explain what is wrong with the statement.

84.

∫
3x2 + 1

2x
dx =

x3 + x

x2
+ C

85. For all n,

∫
xn dx =

xn+1

n+ 1
+ C.

In Problems 86–87, give an example of:

86. Two different functions F (x) and G(x) that have the
same derivative.

87. A function f(x) whose antiderivative F (x) has a graph
which is a line with negative slope.

Are the statements in Problems 88–96 true or false? Give an
explanation for your answer.

88. An antiderivative of 3
√
x+ 1 is 2(x+ 1)3/2.

89. An antiderivative of 3x2 is x3 + π.

90. An antiderivative of 1/x is ln |x|+ ln 2.

91. An antiderivative of e−x2

is −e−x2

/2x.

92.
∫
f(x) dx = (1/x)

∫
xf(x) dx.

93. If F (x) is an antiderivative of f(x) and G(x) = F (x)+
2, then G(x) is an antiderivative of f(x).

94. If F (x) and G(x) are two antiderivatives of f(x) for
−∞ < x < ∞ and F (5) > G(5), then F (10) >
G(10).

95. If F (x) is an antiderivative of f(x) and G(x) is an an-
tiderivative of g(x), then F (x) ·G(x) is an antiderivative
of f(x) · g(x).

96. If F (x) and G(x) are both antiderivatives of f(x) on an
interval, then F (x)−G(x) is a constant function.

6.3 DIFFERENTIAL EQUATIONS AND MOTION

An equation of the form
dy

dx
= f(x)

is an example of a differential equation. Finding the general solution to the differential equation
means finding the general antiderivative y = F (x) +C with F ′(x) = f(x). Chapter 11 gives more
details.

Example 1 Find and graph the general solution of the differential equation

dy

dx
= 2x.

Solution We are asking for a function whose derivative is 2x. One antiderivative of 2x is

y = x2.
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The general solution is therefore

y = x2
+ C,

where C is any constant. Figure 6.24 shows several curves in this family.

−4 −2 2 4
−4

5

10

15

20

C = −4

C = 0
C = 2

C = 4

x

y

Figure 6.24: Solution curves of
dy/dx = 2x

How Can We Pick One Solution to the Differential Equation
dy

dx

= f(x) ?

Picking one antiderivative is equivalent to selecting a value of C. To do this, we need an extra
piece of information, usually that the solution curve passes through a particular point (x0, y0). The
differential equation plus the extra condition

dy

dx
= f(x), y(x0) = y0

is called an initial value problem. (The initial condition y(x0) = y0 is shorthand for y = y0 when
x = x0.) An initial value problem usually has a unique solution, called the particular solution.

Example 2 Find the solution of the initial value problem

dy

dx
= 2x, y(3) = 5.

Solution We have already seen that the general solution to the differential equation is y = x2+C. The initial
condition allows us to determine the constant C. Substituting y(3) = 5 gives

5 = y(3) = 3
2
+ C,

so C is given by

C = −4.

Thus, the (unique) solution is

y = x2 − 4

Figure 6.24 shows this particular solution, marked C = −4.



334 Chapter Six CONSTRUCTING ANTIDERIVATIVES

Equations of Motion
We now use differential equations to analyze the motion of an object falling freely under the influ-
ence of gravity. It has been known since Galileo’s time that an object moving under the influence of
gravity (ignoring air resistance) has constant acceleration, g. In the most frequently used units, its
value is approximately

g = 9.8 m/sec
2
, or g = 32 ft/sec

2
.

Thus, if v is the upward velocity and t is the time, we have the differential equation

dv

dt
= −g.

The negative sign represents the fact that positive velocity is measured upward, whereas gravity acts
downward.

Example 3 A stone is dropped from a 100-foot-high building. Find, as functions of time, its position and veloc-
ity. When does it hit the ground, and how fast is it going at that time?

Solution Suppose t is measured in seconds from the time when the stone was dropped. If we measure dis-
tance, s, in feet above the ground, then the velocity, v, is in ft/sec upward, and the acceleration due
to gravity is 32 ft/sec2 downward, so we have the differential equation

dv

dt
= −32.

From what we know about antiderivatives, the general solution is

v = −32t+ C,

where C is some constant. Since v = C when t = 0, the constant C represents the initial velocity,
v0. The fact that the stone is dropped rather than thrown tells us that the initial velocity is zero, so
the initial condition is v0 = 0. Substituting gives

0 = −32(0) + C so C = 0.

Thus,

v = −32t.

But now we can write a second differential equation:

v =
ds

dt
= −32t.

The general solution is
s = −16t2 +K,

where K is another constant.
Since the stone starts at the top of the building, we have the initial condition s = 100 when

t = 0. Substituting gives

100 = −16(0
2
) +K, so K = 100,

and therefore
s = −16t2 + 100.

Thus, we have found both v and s as functions of time.
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The stone hits the ground when s = 0, so we must solve

0 = −16t2 + 100

giving t2 = 100/16 or t = ±10/4 = ±2.5 sec. Since t must be positive, t = 2.5 sec. At that time,
v = −32(2.5) = −80 ft/sec. (The velocity is negative because we are considering moving up as
positive and down as negative.) After the stone hits the ground, the differential equation no longer
applies.

Example 4 An object is thrown vertically upward with a speed of 10 m/sec from a height of 2 meters above the
ground. Find the highest point it reaches and the time when it hits the ground.

Solution We must find the position as a function of time. In this example, the velocity is in m/sec, so we use
g = 9.8 m/sec2. Measuring distance in meters upward from the ground, we have the differential
equation

dv

dt
= −9.8.

As before, v is a function whose derivative is constant, so

v = −9.8t+ C.

Since the initial velocity is 10 m/sec upward, we know that v = 10 when t = 0. Substituting gives

10 = −9.8(0) + C so C = 10.

Thus,
v = −9.8t+ 10.

To find s, we use

v =
ds

dt
= −9.8t+ 10

and look for a function that has −9.8t+ 10 as its derivative. The general solution is

s = −4.9t2 + 10t+K,

where K is any constant. To find K , we use the fact that the object starts at a height of 2 meters
above the ground, so s = 2 when t = 0. Substituting gives

2 = −4.9(0)2 + 10(0) +K, so K = 2,

and therefore
s = −4.9t2 + 10t+ 2.

The object reaches its highest point when the velocity is 0, so at that time

v = −9.8t+ 10 = 0.

This occurs when

t =
10

9.8
≈ 1.02 sec.

When t = 1.02 seconds,

s = −4.9(1.02)2 + 10(1.02) + 2 ≈ 7.10 meters.

So the maximum height reached is 7.10 meters. The object reaches the ground when s = 0:

0 = −4.9t2 + 10t+ 2.

Solving this using the quadratic formula gives

t ≈ −0.18 and t ≈ 2.22 sec.

Since the time at which the object hits the ground must be positive, t ≈ 2.22 seconds.



336 Chapter Six CONSTRUCTING ANTIDERIVATIVES

History of the Equations of Motion
The problem of a body moving freely under the influence of gravity near the surface of the earth
intrigued mathematicians and philosophers from Greek times onward and was finally solved by
Galileo and Newton. The question to be answered was: How do the velocity and the position of the
body vary with time? We define s to be the position, or height, of the body above a fixed point (often
ground level), v is the velocity of the body measured upward, and a is the acceleration. The velocity
and position at time t = 0 are represented by v0 and s0 respectively. We assume that the acceleration
of the body is a constant, −g (the negative sign means that the acceleration is downward), so

dv

dt
= a = −g.

Problem 35 asks you to show that the motion satisfies

v = −gt+ v0,

s = −
g

2
t2 + v0t+ s0.

Our derivation of the formulas for the velocity and the position of the body hides an al-
most 2000-year struggle to understand the mechanics of falling bodies, from Aristotle’s Physics
to Galileo’s Dialogues Concerning Two New Sciences.

Though it is an oversimplification of his ideas, we can say that Aristotle’s conception of mo-
tion was primarily in terms of change of position. This seems entirely reasonable; it is what we
commonly observe, and this view dominated discussions of motion for centuries. But it misses a
subtlety that was brought to light by Descartes, Galileo, and, with a different emphasis, by Newton.
That subtlety is now usually referred to as the principle of inertia.

This principle holds that a body traveling undisturbed at constant velocity in a straight line
will continue in this motion indefinitely. Stated another way, it says that one cannot distinguish in
any absolute sense (that is, by performing an experiment), between being at rest and moving with
constant velocity in a straight line. If you are reading this book in a closed room and have no external
reference points, there is no experiment that will tell you, one way or the other, whether you are at
rest or whether you, the room, and everything in it are moving with constant velocity in a straight
line. Therefore, as Newton saw, an understanding of motion should be based on change of velocity
rather than change of position. Since acceleration is the rate of change of velocity, it is acceleration
that must play a central role in the description of motion.

Newton placed a new emphasis on the importance of forces. Newton’s laws of motion do not
say what a force is, they say how it acts. His first law is the principle of inertia, which says what
happens in the absence of a force—there is no change in velocity. His second law says that a force
acts to produce a change in velocity, that is, an acceleration. It states that F = ma, where m is the
mass of the object, F is the net force, and a is the acceleration produced by this force.

Galileo demonstrated that a body falling under the influence of gravity does so with constant
acceleration. Assuming we can neglect air resistance, this constant acceleration is independent of
the mass of the body. This last fact was the outcome of Galileo’s famous observation around 1600

that a heavy ball and a light ball dropped off the Leaning Tower of Pisa hit the ground at the same
time. Whether or not he actually performed this experiment, Galileo presented a very clear thought
experiment in the Dialogues to prove the same point. (This point was counter to Aristotle’s more
common-sense notion that the heavier ball would reach the ground first.) Galileo showed that the
mass of the object did not appear as a variable in the equation of motion. Thus, the same constant-
acceleration equation applies to all bodies falling under the influence of gravity.

Nearly a hundred years after Galileo’s experiment, Newton formulated his laws of motion and
gravity, which gave a theoretical explanation of Galileo’s experimental observation that the accel-
eration due to gravity is independent of the mass of the body. According to Newton, acceleration is
caused by force, and in the case of falling bodies, that force is the force of gravity.
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Exercises and Problems for Section 6.3
Exercises

1. Show that y = xe−x + 2 is a solution of the initial value
problem

dy

dx
= (1− x)e−x, y(0) = 2.

2. Show that y = sin(2t), for 0 ≤ t < π/4, is a solution to
the initial value problem

dy

dt
= 2
√

1− y2, y(0) = 0.

In Exercises 3–8, find the general solution to the differential
equation.

3.
dy

dx
= 2x 4.

dy

dt
= t2

5.
dy

dx
= x3 + 5x4 6.

dy

dt
= et

7.
dy

dx
= cos x 8.

dy

dx
=

1

x
, where x > 0

In Exercises 9–12, find the solution of the initial value prob-
lem.

9.
dy

dx
= 3x2, y(0) = 5

10.
dy

dx
= x5 + x6, y(1) = 2

11.
dy

dx
= ex, y(0) = 7

12.
dy

dx
= sin x, y(0) = 3

Problems

13. A rock is thrown downward with velocity 10 ft/sec from
a bridge 100 ft above the water. How fast is the rock go-
ing when it hits the water?

14. A water balloon launched from the roof of a building
at time t = 0 has vertical velocity v(t) = −32t + 40
feet/sec at time t seconds, with v > 0 corresponding to
upward motion.

(a) If the roof of the building is 30 feet above the
ground, find an expression for the height of the water
balloon above the ground at time t.

(b) What is the average velocity of the balloon between
t = 1.5 and t = 3 seconds?

(c) A 6-foot person is standing on the ground. How fast
is the water balloon falling when it strikes the person
on the top of the head?

15. A car starts from rest at time t = 0 and accelerates at
−0.6t+4 meters/sec2 for 0 ≤ t ≤ 12. How long does it
take for the car to go 100 meters?

16. Ice is forming on a pond at a rate given by

dy

dt
= k

√
t,

where y is the thickness of the ice in inches at time t
measured in hours since the ice started forming, and k is
a positive constant. Find y as a function of t.

17. A revenue R(p) is obtained by a farmer from selling
grain at price p dollars/unit. The marginal revenue is
given by R′(p) = 25− 2p.

(a) Find R(p). Assume the revenue is zero when the
price is zero.

(b) For what prices does the revenue increase as the
price increases? For what prices does the revenue
decrease as price increases?

18. A firm’s marginal cost function is MC = 3q2 + 6q + 9.

(a) Write a differential equation for the total cost, C(q).
(b) Find the total cost function if the fixed costs are 400.

19. A tomato is thrown upward from a bridge 25 m above the
ground at 40 m/sec.

(a) Give formulas for the acceleration, velocity, and
height of the tomato at time t.

(b) How high does the tomato go, and when does it
reach its highest point?

(c) How long is it in the air?

20. A car going 80 ft/sec (about 55 mph) brakes to a stop in
five seconds. Assume the deceleration is constant.

(a) Graph the velocity against time, t, for 0 ≤ t ≤ 5
seconds.

(b) Represent, as an area on the graph, the total distance
traveled from the time the brakes are applied until
the car comes to a stop.

(c) Find this area and hence the distance traveled.
(d) Now find the total distance traveled using antidiffer-

entiation.
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21. An object is shot vertically upward from the ground with
an initial velocity of 160 ft/sec.

(a) At what rate is the velocity decreasing? Give units.
(b) Explain why the graph of velocity of the object

against time (with upward positive) is a line.
(c) Using the starting velocity and your answer to

part (b), find the time at which the object reaches
the highest point.

(d) Use your answer to part (c) to decide when the ob-
ject hits the ground.

(e) Graph the velocity against time. Mark on the graph
when the object reaches its highest point and when
it lands.

(f) Find the maximum height reached by the object by
considering an area on the graph.

(g) Now express velocity as a function of time, and find
the greatest height by antidifferentiation.

22. A stone thrown upward from the top of a 320-foot cliff at
128 ft/sec eventually falls to the beach below.

(a) How long does the stone take to reach its highest
point?

(b) What is its maximum height?
(c) How long before the stone hits the beach?
(d) What is the velocity of the stone on impact?

23. A 727 jet needs to attain a speed of 200 mph to take off.
If it can accelerate from 0 to 200 mph in 30 seconds,
how long must the runway be? (Assume constant accel-
eration.)

24. A cat, walking along the window ledge of a New York
apartment, knocks off a flower pot, which falls to the
street 200 feet below. How fast is the flower pot travel-
ing when it hits the street? (Give your answer in ft/sec
and in mph, given that 1 ft/sec = 15/22 mph.)

25. An Acura NSX going at 70 mph stops in 157 feet. Find
the acceleration, assuming it is constant.

26. (a) Find the general solution of the differential equation
dy/dx = 2x+ 1.

(b) Sketch a graph of at least three solutions.
(c) Find the solution satisfying y(1) = 5. Graph this

solution with the others from part (b).

27. (a) Find and graph the general solution of the differen-
tial equation

dy

dx
= sin x+ 2.

(b) Find the solution of the initial value problem

dy

dx
= sin x+ 2, y(3) = 5.

28. On the moon, the acceleration due to gravity is about
1.6 m/sec2 (compared to g ≈ 9.8 m/sec2 on earth). If
you drop a rock on the moon (with initial velocity 0),
find formulas for:

(a) Its velocity, v(t), at time t.
(b) The distance, s(t), it falls in time t.

29. (a) Imagine throwing a rock straight up in the air. What
is its initial velocity if the rock reaches a maximum
height of 100 feet above its starting point?

(b) Now imagine being transplanted to the moon and
throwing a moon rock vertically upward with the
same velocity as in part (a). How high will it go?
(On the moon, g = 5 ft/sec2.)

30. An object is dropped from a 400-foot tower. When does
it hit the ground and how fast is it going at the time of the
impact?

31. The object in Problem 30 falls off the same 400-foot
tower. What would the acceleration due to gravity have
to be to make it reach the ground in half the time?

32. A ball that is dropped from a window hits the ground in
five seconds. How high is the window? (Give your an-
swer in feet.)

33. On the moon the acceleration due to gravity is 5 ft/sec2.
An astronaut jumps into the air with an initial upward ve-
locity of 10 ft/sec. How high does he go? How long is the
astronaut off the ground?

34. A particle of mass, m, acted on by a force, F , moves in
a straight line. Its acceleration, a, is given by Newton’s
Law:

F = ma.

The work, W , done by a constant force when the particle
moves through a displacement, d, is

W = Fd.

The velocity, v, of the particle as a function of time, t, is
given in Figure 6.25. What is the sign of the work done
during each of the time intervals: [0, t1], [t1, t2], [t2, t3],
[t3, t4],[t2, t4]?

t1 t2 t3 t4
t

v

Figure 6.25

35. Assume the acceleration of a moving body is −g and its
initial velocity and position are v0 and s0 respectively.
Find velocity, v, and position, s, as a function of t.

36. Galileo was the first person to show that the distance trav-
eled by a body falling from rest is proportional to the
square of the time it has traveled, and independent of the
mass of the body. Derive this result from the fact that the
acceleration due to gravity is a constant.
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37. While attempting to understand the motion of bodies un-
der gravity, Galileo stated that:

The time in which any space is traversed by a
body starting at rest and uniformly accelerated
is equal to the time in which that same space
would be traversed by the same body moving
at a uniform speed whose value is the mean of
the highest velocity and the velocity just before
acceleration began.

(a) Write Galileo’s statement in symbols, defining all
the symbols you use.

(b) Check Galileo’s statement for a body dropped off a
100-foot building accelerating from rest under grav-
ity until it hits the ground.

(c) Show why Galileo’s statement is true in general.

38. Newton’s law of gravity says that the gravitational force
between two bodies is attractive and given by

F =
GMm

r2
,

where G is the gravitational constant, m and M are the
masses of the two bodies, and r is the distance between
them. This is the famous inverse square law. For a falling
body, we take M to be the mass of the earth and r to be
the distance from the body to the center of the earth. So,
actually, r changes as the body falls, but for anything we
can easily observe (say, a ball dropped from the Tower of

Pisa), it won’t change significantly over the course of the
motion. Hence, as an approximation, it is reasonable to
assume that the force is constant. According to Newton’s
second law, acceleration is caused by a force and

Force = Mass × Acceleration.

(a) Find the differential equation for the position, s of a
moving body as a function of time.

(b) Explain how the differential equation shows the ac-
celeration of the body is independent of its mass.

39. In his Dialogues Concerning Two New Sciences, Galileo
wrote:

The distances traversed during equal intervals
of time by a body falling from rest stand to one
another in the same ratio as the odd numbers
beginning with unity.

Assume, as is now believed, that s = −(gt2)/2, where s
is the total distance traveled in time t, and g is the accel-
eration due to gravity.

(a) How far does a falling body travel in the first second
(between t = 0 and t = 1)? During the second sec-
ond (between t = 1 and t = 2)? The third second?
The fourth second?

(b) What do your answers tell you about the truth of
Galileo’s statement?

Strengthen Your Understanding

In Problems 40–43, explain what is wrong with the statement.

40. A rock dropped from a 400-foot cliff takes twice as long
to hit the ground as it would if it were dropped from a
200-foot cliff.

41. The function y = cos(t2) is a solution to the initial value
problem

dy

dt
= − sin(t2), y(0) = 1.

42. Two solutions to a differential equation dy/dx = f(x)
have graphs which cross at the initial value.

43. A differential equation cannot have a constant solution.

In Problems 44–45, give an example of:

44. Two different solutions to the differential equation

dy

dt
= t+ 3.

45. A differential equation that has solution y = cos (5x).

Are the statements in Problems 46–54 true or false? Give an
explanation for your answer.

46. If F (x) is an antiderivative of f(x), then y = F (x) is a
solution to the differential equation dy/dx = f(x).

47. If y = F (x) is a solution to the differential equation
dy/dx = f(x), then F (x) is an antiderivative of f(x).

48. If an object has constant nonzero acceleration, then the
position of the object as a function of time is a quadratic
polynomial.

49. In an initial value problem for the differential equation
dy/dx = f(x), the value of y at x = 0 is always speci-
fied.

50. If f(x) is positive for all x, then there is a solution of
the differential equation dy/dx = f(x) where y(x) is
positive for all x.

51. If f(x) > 0 for all x then every solution of the differen-
tial equation dy/dx = f(x) is an increasing function.

52. If two solutions of a differential equation dy/dx = f(x)
have different values at x = 3 then they have different
values at every x.

53. If the function y = f(x) is a solution of the differ-
ential equation dy/dx = sin x/x, then the function
y = f(x) + 5 is also a solution.

54. There is only one solution y(t) to the initial value prob-
lem dy/dt = 3t2, y(1) = π.
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6.4 SECOND FUNDAMENTAL THEOREM OF CALCULUS

Suppose f is an elementary function, that is, a combination of constants, powers of x, sinx, cosx,
ex, and lnx. Then we have to be lucky to find an antiderivative F which is also an elementary
function. But if we can’t find F as an elementary function, how can we be sure that F exists at all?
In this section we use the definite integral to construct antiderivatives.

Construction of Antiderivatives Using the Definite Integral

Consider the function f(x) = e−x2

. We would like to find a way of calculating values of its an-
tiderivative, F , which is not an elementary function. However, assuming F exists, we know from
the Fundamental Theorem of Calculus that

F (b)− F (a) =

∫ b

a

e−t2 dt.

Setting a = 0 and replacing b by x, we have

F (x)− F (0) =

∫ x

0

e−t2 dt.

Suppose we want the antiderivative that satisfies F (0) = 0. Then we get

F (x) =

∫ x

0

e−t2 dt.

This is a formula for F . For any value of x, there is a unique value for F (x), so F is a function. For
any fixed x, we can calculate F (x) numerically. For example,

F (2) =

∫ 2

0

e−t2 dt = 0.88208 . . . .

Notice that our expression for F is not an elementary function; we have created a new function
using the definite integral. The next theorem says that this method of constructing antiderivatives
works in general. This means that if we define F by

F (x) =

∫ x

a

f(t) dt,

then F must be an antiderivative of f .

Theorem 6.2: Construction Theorem for Antiderivatives

(Second Fundamental Theorem of Calculus) If f is a continuous function on an interval,
and if a is any number in that interval, then the function F defined on the interval as follows
is an antiderivative of f :

F (x) =

∫ x

a

f(t) dt.

Proof Our task is to show that F , defined by this integral, is an antiderivative of f . We want to show that
F ′(x) = f(x). By the definition of the derivative,

F ′
(x) = lim

h→0

F (x+ h)− F (x)

h
.

To gain some geometric insight, let’s suppose f is positive and h is positive. Then we can visualize

F (x) =

∫ x

a

f(t) dt and F (x+ h) =

∫ x+h

a

f(t) dt
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as areas, which leads to representing

F (x+ h)− F (x) =

∫ x+h

x

f(t) dt

as a difference of two areas. From Figure 6.26, we see that F (x+ h)− F (x) is roughly the area of
a rectangle of height f(x) and width h (shaded darker in Figure 6.26), so we have

F (x+ h)− F (x) ≈ f(x)h,

hence
F (x+ h)− F (x)

h
≈ f(x).

More precisely, we can use Theorem 5.4 on comparing integrals on page 303 to conclude that

mh ≤

∫ x+h

x

f(t) dt ≤ Mh,

where m is the greatest lower bound for f on the interval from x to x+ h and M is the least upper
bound on that interval. (See Figure 6.27.) Hence

mh ≤ F (x+ h)− F (x) ≤ Mh,

so

m ≤
F (x+ h)− F (x)

h
≤ M.

Since f is continuous, both m and M approach f(x) as h approaches zero. Thus

f(x) ≤ lim
h→0

F (x+ h)− F (x)

h
≤ f(x).

a x x+ h

f
Area = F (x)

Area = F (x+ h)− F (x)
≈ f(x)h

�

�

f(x)
� �

Figure 6.26: F (x+ h) − F (x) is area of roughly rectangular
region

a x x+ h

f
Area = F (x)

M
m

�

�

f(x)

�

Figure 6.27: Upper and lower bounds
for F (x+ h)− F (x)

Thus both inequalities must actually be equalities, so we have the result we want:

f(x) = lim
h→0

F (x+ h)− F (x)

h
= F ′

(x).

Relationship Between the Construction Theorem and the Fundamental Theorem of Calculus

If F is constructed as in Theorem 6.2, then we have just shown that F ′ = f . Suppose G is any other
antiderivative of f , so G′ = f , and therefore F ′ = G′. Since the derivative of F − G is zero, the
Constant Function Theorem on page 177 tells us that F −G is a constant, so F (x) = G(x) + C.

Since we know F (a) = 0 (by the definition of F ), we can write∫ b

a

f(t) dt = F (b) = F (b)− F (a) = (G(b) + C)− (G(a) + C) = G(b)−G(a).
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This result, that the definite integral
∫ b
a f(t) dt can be evaluated using any antiderivative of f , is

the (First) Fundamental Theorem of Calculus. Thus, we have shown that the First Fundamental
Theorem of Calculus can be obtained from the Construction Theorem (the Second Fundamental
Theorem of Calculus).

Using the Construction Theorem for Antiderivatives
The construction theorem enables us to write down antiderivatives of functions that do not have
elementary antiderivatives. For example, an antiderivative of (sinx)/x is

F (x) =

∫ x

0

sin t

t
dt.

Notice that F is a function; we can calculate its values to any degree of accuracy.2 This function
already has a name: it is called the sine-integral, and it is denoted Si(x).

Example 1 Construct a table of values of Si(x) for x = 0, 1, 2, 3.

Solution Using numerical methods, we calculate the values of Si(x) =
∫ x
0
(sin t)/t dt given in Table 6.2.

Since the integrand is undefined at t = 0, we took the lower limit as 0.00001 instead of 0.

Table 6.2 A table of values of Si(x)

x 0 1 2 3

Si(x) 0 0.95 1.61 1.85

The reason the sine-integral has a name is that some scientists and engineers use it all the
time (for example, in optics). For them, it is just another common function like sine or cosine. Its
derivative is given by

d

dx
Si(x) =

sinx

x
.

Example 2 Find the derivative of xSi(x).

Solution Using the product rule,

d

dx
(xSi(x)) =

(
d

dx
x

)
Si(x) + x

(
d

dx
Si(x)

)
= 1 · Si(x) + x

sinx

x
= Si(x) + sinx.

Exercises and Problems for Section 6.4
Exercises

1. For x = 0, 0.5, 1.0, 1.5, and 2.0, make a table of values
for I(x) =

∫ x

0

√
t4 + 1 dt.

2. Assume that F ′(t) = sin t cos t and F (0) = 1. Find
F (b) for b = 0, 0.5, 1, 1.5, 2, 2.5, and 3.

3. (a) Continue the table of values for Si(x) =∫ x

0
(sin t/t) dt on page 342 for x = 4 and x = 5.

(b) Why is Si(x) decreasing between x = 4 and x = 5?

In Exercises 4–6, write an expression for the function, f(x),
with the given properties.

4. f ′(x) = sin(x2) and f(0) = 7

5. f ′(x) = (sin x)/x and f(1) = 5

6. f ′(x) = Si(x) and f(0) = 2

2You may notice that the integrand, (sin t)/t, is undefined at t = 0; such improper integrals are treated in more detail in
Chapter 7.
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In Exercises 7–10, let F (x) =
∫ x

0
f(t) dt. Graph F (x) as a

function of x.

7.

t

f(t) 8.

f(t)

t

9.

t

f(t) 10.

t

f(t)

Find the derivatives in Exercises 11–16.

11.
d

dx

∫ x

0

cos(t2) dt 12.
d

dt

∫ t

4

sin(
√
x) dx

13.
d

dx

∫ x

1

(1 + t)200 dt 14.
d

dx

∫ x

2

ln(t2 + 1) dt

15.
d

dx

∫ x

0.5

arctan(t2) dt 16.
d

dx

[
Si(x2)

]

Problems

17. Find intervals where the graph of F (x) =
∫ x

0
e−t2 dt is

concave up and concave down.

18. Use properties of the function f(x) = xe−x to deter-
mine the number of values x that make F (x) = 0, given
F (x) =

∫ x

1
f(t) dt.

For Problems 19–21, let F (x) =
∫ x

0
sin(t2) dt.

19. Approximate F (x) for x = 0, 0.5, 1, 1.5, 2, 2.5.

20. Using a graph of F ′(x), decide where F (x) is increasing
and where F (x) is decreasing for 0 ≤ x ≤ 2.5.

21. Does F (x) have a maximum value for 0 ≤ x ≤ 2.5? If
so, at what value of x does it occur, and approximately
what is that maximum value?

22. Use Figure 6.28 to sketch a graph of F (x) =
∫ x

0
f(t) dt.

Label the points x1, x2, x3.

x1 x2 x3

f(x)
x

Figure 6.28

23. The graph of the derivative F ′ of some function F is
given in Figure 6.29. If F (20) = 150, estimate the max-
imum value attained by F .

20 40

60

−10

10

20

x

F ′(x)

Figure 6.29

24. Let g(x) =
∫ x

0
f(t) dt. Using Figure 6.30, find

(a) g(0) (b) g′(1)

(c) The interval where g is concave up.
(d) The value of x where g takes its maximum on the

interval 0 ≤ x ≤ 8.

2 4 6 8

−2

−1

1
2

3

t

f(t)

Figure 6.30

25. Let F (x) =
∫ x

0
sin(2t) dt.

(a) Evaluate F (π).
(b) Draw a sketch to explain geometrically why the an-

swer to part (a) is correct.
(c) For what values of x is F (x) positive? negative?

26. Let F (x) =
∫ x

2
(1/ln t) dt for x ≥ 2.

(a) Find F ′(x).
(b) Is F increasing or decreasing? What can you say

about the concavity of its graph?
(c) Sketch a graph of F (x).

27. Let R(x) =

∫ x

0

√
1 + t2 dt

(a) Evaluate R(0) and determine if R is an even or an
odd function.

(b) Is R increasing or decreasing?
(c) What can you say about concavity?
(d) Sketch a graph of R(x).
(e) Show that limx→∞(R(x)/x2) exists and find its

value.
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28. Suppose that f(x) is a continuous function and∫ b

a
f(t) dt = 0 for all a and b.

(a) Show that F (x) =
∫ x

a
f(t) dt = 0 for all x.

(b) Show that f(x) = 0 for all x.

In Problems 29–30, find the value of the function with the
given properties.

29. F (1), where F ′(x) = e−x2

and F (0) = 2

30. G(−1), where G′(x) = cos(x2) and G(0) = −3

In Problems 31–34, estimate the value of each expression,
given w(t) =

∫ t

0
q(x) dx and v(t) =

∫ t

0
q′(x) dx. Table 6.3

gives values for q(x), a function with negative first and second
derivatives. Are your answers under- or overestimates?

Table 6.3

x 0.0 0.1 0.2 0.3 0.4 0.5

q(x) 5.3 5.2 4.9 4.5 3.9 3.1

31. w(0.4) 32. v(0.4)

33. w′(0.4) 34. v′(0.4)

In Problems 35–38, use the chain rule to calculate the deriva-
tive.

35.
d

dx

∫ x2

0

ln(1 + t2) dt 36.
d

dt

∫ sin t

1

cos(x2) dx

37.
d

dt

∫ 4

2t

sin(
√
x) dx 38.

d

dx

∫ x2

−x2

et
2

dt

In Problems 39–42, find the given quantities. The error func-
tion, erf(x), is defined by

erf(x) =
2√
π

∫ x

0

e−t2 dt.

39.
d

dx
(x erf(x)) 40.

d

dx
(erf(

√
x))

41.
d

dx

(∫ x3

0
e−t2 dt

)
42.

d

dx

(∫ x3

x
e−t2 dt

)

Strengthen Your Understanding

In Problems 43–45, explain what is wrong with the statement.

43.
d

dx

∫ 5

0

t2 dt = x2.

44. F (x) =

∫ x

−2

t2 dt has a local minimum at x = 0.

45. For the function f(x) shown in Figure 6.31, F (x) =∫ x

0
f(t) dt has a local minimum at x = 2.

−1 1 2 3

f(x)

x

Figure 6.31:

In Problems 46–47, give an example of:

46. A function, F (x), constructed using the Second Funda-
mental Theorem of Calculus such that F is a nondecreas-
ing function and F (0) = 0.

47. A function G(x), constructed using the Second Funda-
mental Theorem of Calculus such that G is concave up
and G(7) = 0.

Are the statements in Problems 48–53 true or false? Give an
explanation for your answer.

48. Every continuous function has an antiderivative.

49.
∫ x

0
sin(t2) dt is an antiderivative of sin(x2).

50. If F (x) =
∫ x

0
f(t) dt, then F (5)− F (3) =

∫ 5

3
f(t)dt.

51. If F (x) =
∫ x

0
f(t) dt, then F (x) must be increasing.

52. If F (x) =
∫ x

0
f(t) dt and G(x) =

∫ x

2
f(t) dt, then

F (x) = G(x) + C.

53. If F (x) =
∫ x

0
f(t) dt and G(x) =

∫ x

0
g(t) dt, then

F (x) +G(x) =
∫ x

0
(f(t) + g(t))dt.
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CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• Constructing antiderivatives
Graphically, numerically, analytically.

• The family of antiderivatives
The indefinite integral.

• Differential equations

Initial value problems, uniform motion.

• Construction theorem (Second Fundamental Theo-
rem of Calculus)
Constructing antiderivatives using definite integrals.

• Equations of motion

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER SIX

Exercises

1. The graph of a derivative f ′(x) is shown in Figure 6.32.
Fill in the table of values for f(x) given that f(0) = 2.

x 0 1 2 3 4 5 6

f(x) 2

1 2 3 4 5 6

−1

1

x

f ′(x)

Figure 6.32: Graph of f ′, not f

2. Figure 6.33 shows f . If F ′ = f and F (0) = 0, find F (b)
for b = 1, 2, 3, 4, 5, 6.

1 2 3 4 5 6

−1

1

t

f(t)

Figure 6.33

In Exercises 3–4, graph F (x) such that F ′(x) = f(x) and
F (0) = 0.

3.

1 2

1

2

x

f(x) 4.

1 2

1

2

x

f(x)

5. (a) Using Figure 6.34, estimate
∫ 7

0
f(x)dx.

(b) If F is an antiderivative of the same function f and
F (0) = 25, estimate F (7).

1 2 3 4 5 6 7

−8

−6

−4

−2

2

4

x

f(x)

Figure 6.34

In Exercises 6–27, find the indefinite integrals.

6.

∫
5x dx 7.

∫
x3 dx

8.

∫
sin θ dθ 9.

∫
(x3 − 2) dx

10.

∫ (
t2 +

1

t2

)
dt 11.

∫
4

t2
dt

12.

∫
(x2 + 5x+ 8) dx 13.

∫
4
√
w dw

14.

∫
(4t+ 7) dt 15.

∫
cos θ dθ

16.

∫ (
t
√
t+

1

t
√
t

)
dt 17.

∫ (
x+

1√
x

)
dx

18.

∫
(π + x11) dx 19.

∫ (
3 cos t+ 3

√
t
)
dt

20.

∫ (
y2 − 1

y

)2

dy 21.

∫
1

cos2 x
dx

22.

∫ (
2

x
+ π sin x

)
dx 23.

∫ (
x2 + x+ 1

x

)
dx

24.

∫
5ez dz 25.

∫
2x dx

26.

∫
(3 cosx−7 sin x) dx 27.

∫
(2ex − 8 cos x) dx
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In Exercises 28–29, evaluate the definite integral exactly [as
in ln(3π)], using the Fundamental Theorem, and numerically
[ln(3π) ≈ 2.243]:

28.

∫
−1

−3

2

r3
dr 29.

∫ π/2

−π/2

2 cosφdφ

For Exercises 30–35, find an antiderivative F (x) with
F ′(x) = f(x) and F (0) = 4.

30. f(x) = x2 31. f(x) = x3 + 6x2 − 4

32. f(x) =
√
x 33. f(x) = ex

34. f(x) = sin x 35. f(x) = cosx

36. Use the fact that (xx)′ = xx(1 + ln x) to evaluate ex-

actly:

∫ 3

1

xx(1 + ln x) dx.

37. Show that y = x + sin x − π satisfies the initial value
problem

dy

dx
= 1 + cos x, y(π) = 0.

38. Show that y = xn + A is a solution of the differential
equation y′ = nxn−1 for any value of A.

In Exercises 39–42, find the general solution of the differential
equation.

39.
dy

dx
= x3 + 5 40.

dy

dx
= 8x+

1

x

41.
dW

dt
= 4

√
t 42.

dr

dp
= 3 sin p

In Exercises 43–46, find the solution of the initial value prob-
lem.

43.
dy

dx
= 6x2 + 4x, y(2) = 10

44.
dP

dt
= 10et, P (0) = 25

45.
ds

dt
= −32t + 100, s = 50 when t = 0

46.
dq

dz
= 2 + sin z, q = 5 when z = 0

Find the derivatives in Exercises 47–48.

47.
d

dt

∫ π

t

cos(z3) dz 48.
d

dx

∫ 1

x

ln t dt

Problems

49. Use Figure 6.35 and the fact that F (2) = 3 to sketch the
graph of F (x). Label the values of at least four points.

1 2 3 4 5 6 7 8
x

F ′(x)

�

Area = 2

�

Area = 7

�

Area = 4

Figure 6.35

50. The vertical velocity of a cork bobbing up and down on
the waves in the sea is given by Figure 6.36. Upward is
considered positive. Describe the motion of the cork at
each of the labeled points. At which point(s), if any, is
the acceleration zero? Sketch a graph of the height of the
cork above the sea floor as a function of time.

time

velocity

B

A

C

D

Figure 6.36

In Problems 51–52, a graph of f is given. Let F ′(x) = f(x).

(a) What are the x-coordinates of the critical points of
F (x)?

(b) Which critical points are local maxima, which are local
minima, and which are neither?

(c) Sketch a possible graph of F (x).

51.

1 2 3 4

f(x)

x

52.

−1 1 2 3

f(x)

x
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53. The graph of f ′′ is given in Figure 6.37. Draw graphs of
f and f ′, assuming both go through the origin, and use
them to decide at which of the labeled x-values:

(a) f(x) is greatest.
(b) f(x) is least.
(c) f ′(x) is greatest.
(d) f ′(x) is least.
(e) f ′′(x) is greatest.
(f) f ′′(x) is least.

x1 x2

x3 x4 x5
x

f ′′(x)

Figure 6.37: Graph of f ′′

54. Assume f ′ is given by the graph in Figure 6.38. Suppose
f is continuous and that f(3) = 0.

(a) Sketch a graph of f .
(b) Find f(0) and f(7).
(c) Find

∫ 7

0
f ′(x) dx in two different ways.

1 2 3 4 5 6 7

−2

−1

1

2

x

f ′(x)

Figure 6.38

55. Use the Fundamental Theorem to find the area under
f(x) = x2 between x = 1 and x = 4.

56. Calculate the exact area between the x-axis and the graph
of y = 7− 8x+ x2.

57. Find the exact area below the curve y = x3(1 − x) and
above the x-axis.

58. Find the exact area enclosed by the curve y = x2(1−x)2

and the x-axis.

59. Find the exact area between the curves y = x2 and
x = y2.

60. Calculate the exact area above the graph of y = sin θ and
below the graph of y = cos θ for 0 ≤ θ ≤ π/4.

61. Find the exact area between f(θ) = sin θ and g(θ) =
cos θ for 0 ≤ θ ≤ 2π.

62. Find the exact value of the area between the graphs of
y = cos x and y = ex for 0 ≤ x ≤ 1.

63. Find the exact value of the area between the graphs of
y = sinh x, y = cosh x, for −1 ≤ x ≤ 1.

64. Use the Fundamental Theorem to determine the value of
b if the area under the graph of f(x) = 8x between
x = 1 and x = b is equal to 192. Assume b > 1.

65. Find the exact positive value of c if the area between the
graph of y = x2 − c2 and the x-axis is 36.

66. Use the Fundamental Theorem to find the average value
of f(x) = x2 + 1 on the interval x = 0 to x = 10.
Illustrate your answer on a graph of f(x).

67. The average value of the function v(x) = 6/x2 on the
interval [1, c] is equal to 1. Find the value of c.

In Problems 68–70, evaluate the expression using f(x) =
5
√
x.

68.

∫ 4

1

f−1(x) dx 69.

∫ 4

1

(f(x))−1 dx

70.

(∫ 4

1

f(x) dx

)−1

In Problems 71–72, evaluate and simplify the expressions

given that f(t) =

∫ t

0

tx2 dx.

71. f(2) 72. f(n)

Calculate the derivatives in Problems 73–76.

73.
d

dx

∫ x3

2

sin(t2) dt 74.
d

dx

∫ 3

cos x

et
2

dt

75.
d

dx

∫ x

−x

e−t4 dt 76.
d

dt

∫ t3

et

√
1 + x2 dx

77. A store has an inventory of Q units of a product at time
t = 0. The store sells the product at the steady rate of
Q/A units per week, and it exhausts the inventory in A
weeks.

(a) Find a formula f(t) for the amount of product in in-
ventory at time t. Graph f(t).

(b) Find the average inventory level during the period
0 ≤ t ≤ A. Explain why your answer is reasonable.
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78. For 0 ≤ t ≤ 10 seconds, a car moves along a straight
line with velocity

v(t) = 2 + 10t ft/sec.

(a) Graph v(t) and find the total distance the car has
traveled between t = 0 and t = 10 seconds using
the formula for the area of a trapezoid.

(b) Find the function s(t) that gives the position of the
car as a function of time. Explain the meaning of any
new constants.

(c) Use your function s(t) to find the total distance trav-
eled by the car between t = 0 and t = 10 seconds.
Compare with your answer in part (a).

(d) Explain how your answers to parts (a) and (c) relate
to the Fundamental Theorem of Calculus.

79. For a function f , you are given the graph of the derivative
f ′ in Figure 6.39 and that f(0) = 50.

(a) On the interval 0 ≤ t ≤ 5, at what value of t does
f appear to reach its maximum value? Its minimum
value?

(b) Estimate these maximum and minimum values.
(c) Estimate f(5) − f(0).

1 2 3 4 5

5

10

−5

−10

t
f ′(t)

Figure 6.39

80. The acceleration, a, of a particle as a function of time is
shown in Figure 6.40. Sketch graphs of velocity and po-
sition against time. The particle starts at rest at the origin.

1 2 3 4 5 6 7
t (time)

a

Figure 6.40

81. The angular speed of a car engine increases from 1100
revs/min to 2500 revs/min in 6 sec.

(a) Assuming that it is constant, find the angular accel-
eration in revs/min2.

(b) How many revolutions does the engine make in this
time?

82. Figure 6.41 is a graph of

f(x) =
{−x+ 1, for 0 ≤ x ≤ 1;
x− 1, for 1 < x ≤ 2.

(a) Find a function F such that F ′ = f and F (1) = 1.
(b) Use geometry to show the area under the graph of f

above the x-axis between x = 0 and x = 2 is equal
to F (2)− F (0).

(c) Use parts (a) and (b) to check the Fundamental The-
orem of Calculus.

1 2

1

x

f(x)

Figure 6.41

83. If a car goes from 0 to 80 mph in six seconds with con-
stant acceleration, what is that acceleration?

84. A car going at 30 ft/sec decelerates at a constant 5 ft/sec2.

(a) Draw up a table showing the velocity of the car every
half second. When does the car come to rest?

(b) Using your table, find left and right sums which esti-
mate the total distance traveled before the car comes
to rest. Which is an overestimate, and which is an
underestimate?

(c) Sketch a graph of velocity against time. On the
graph, show an area representing the distance trav-
eled before the car comes to rest. Use the graph to
calculate this distance.

(d) Now find a formula for the velocity of the car as a
function of time, and then find the total distance trav-
eled by antidifferentiation. What is the relationship
between your answer to parts (c) and (d) and your
estimates in part (b)?

85. An object is thrown vertically upward with a velocity of
80 ft/sec.

(a) Make a table showing its velocity every second.
(b) When does it reach its highest point? When does it

hit the ground?
(c) Using your table, write left and right sums which

under- and overestimate the height the object attains.
(d) Use antidifferentiation to find the greatest height it

reaches.

86. If A(r) represents the area of a circle of radius r and
C(r) represents its circumference, it can be shown that
A′(r) = C(r). Use the fact that C(r) = 2πr to obtain
the formula for A(r).

87. If V (r) represents the volume of a sphere of radius r
and S(r) represents its surface area, it can be shown that
V ′(r) = S(r). Use the fact that S(r) = 4πr2 to obtain
the formula for V (r).
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88. A car, initially moving at 60 mph, has a constant de-
celeration and stops in a distance of 200 feet. What is
its deceleration? (Give your answer in ft/sec2. Note that
1 mph = 22/15 ft/sec.)

89. The birth rate, B, in births per hour, of a bacteria popu-
lation is given in Figure 6.42. The curve marked D gives
the death rate, in deaths per hour, of the same population.

(a) Explain what the shape of each of these graphs tells
you about the population.

(b) Use the graphs to find the time at which the net rate
of increase of the population is at a maximum.

(c) At time t = 0 the population has size N . Sketch the
graph of the total number born by time t. Also sketch
the graph of the number alive at time t. Estimate the
time at which the population is a maximum.

5 10 15 20
time (hours)

bacteria/hour

B
D

Figure 6.42

90. Water flows at a constant rate into the left side of the W-
shaped container in Figure 6.43. Sketch a graph of the
height, H , of the water in the left side of the container as
a function of time, t. The container starts empty.

Figure 6.43

In Problems 91–92, the quantity, N(t) in kg, of pollutant that
has leeched from a toxic waste site after t days, is given by

N(t) =

∫ t

0

r(x) dx, where r(x) > 0, r′(x) < 0.

91. If there is enough information to decide, determine
whether N(t) is an increasing or a decreasing function
and whether its graph concave up or concave down.

92. Rank in order from least to greatest:

N(20), N(10), N(20)−N(10), N(15)−N(5).

93. Let f(x) have one zero, at x = 3, and suppose f ′(x) < 0
for all x and that∫ 3

0

f(t) dt = −
∫ 5

3

f(t) dt.

Define F (x) =

∫ x

0

f(t) dt and G(x) =

∫ x

1

F (t) dt.

(a) Find the zeros and critical points of F .
(b) Find the zeros and critical points of G.

94. Let P (x) =

∫ x

0

arctan(t2) dt.

(a) Evaluate P (0) and determine if P is an even or an
odd function.

(b) Is P increasing or decreasing?
(c) What can you say about concavity?
(d) Sketch a graph of P (x).

CAS Challenge Problems

95. (a) Set up a right-hand Riemann sum for
∫ b

a
x3dx using

n subdivisions. What is Δx? Express each xi, for
i = 1,2,. . . ,n, in terms of i.

(b) Use a computer algebra system to find an expression
for the Riemann sum in part (a); then find the limit
of this expression as n → ∞.

(c) Simplify the final expression and compare the result
to that obtained using the Fundamental Theorem of
Calculus.

96. (a) Use a computer algebra system to find
∫
e2x dx,∫

e3x dx, and
∫
e3x+5 dx.

(b) Using your answers to part (a), conjecture a formula
for
∫
eax+b dx, where a and b are constants.

(c) Check your formula by differentiation. Explain
which differentiation rules you are using.

97. (a) Use a computer algebra system to find
∫
sin(3x) dx,

∫
sin(4x) dx, and

∫
sin(3x− 2) dx.

(b) Using your answers to part (a), conjecture a formula
for
∫
sin(ax+ b) dx, where a and b are constants.

(c) Check your formula by differentiation. Explain
which differentiation rules you are using.

98. (a) Use a computer algebra system to find∫
x− 2

x− 1
dx,

∫
x− 3

x− 1
dx, and

∫
x− 1

x− 2
dx.

(b) If a and b are constants, use your answers to part (a)
to conjecture a formula for∫

x− a

x− b
dx.

(c) Check your formula by differentiation. Explain
which rules of differentiation you are using.
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99. (a) Use a computer algebra system to find∫
1

(x− 1)(x− 3)
dx,

∫
1

(x− 1)(x− 4)
dx

and ∫
1

(x− 1)(x+ 3)
dx.

(b) If a and b are constants, use your answers to part (a)
to conjecture a formula for∫

1

(x− a)(x− b)
dx.

(c) Check your formula by differentiation. Explain
which rules of differentiation you are using.

PROJECTS FOR CHAPTER SIX

1. Distribution of Resources
Whether a resource is distributed evenly among members of a population is often an im-

portant political or economic question. How can we measure this? How can we decide if the
distribution of wealth in this country is becoming more or less equitable over time? How can
we measure which country has the most equitable income distribution? This problem describes
a way of making such measurements. Suppose the resource is distributed evenly. Then any
20% of the population will have 20% of the resource. Similarly, any 30% will have 30% of
the resource and so on. If, however, the resource is not distributed evenly, the poorest p% of
the population (in terms of this resource) will not have p% of the goods. Suppose F (x) rep-
resents the fraction of the resource owned by the poorest fraction x of the population. Thus
F (0.4) = 0.1 means that the poorest 40% of the population owns 10% of the resource.

(a) What would F be if the resource were distributed evenly?
(b) What must be true of any such F ? What must F (0) and F (1) equal? Is F increasing or

decreasing? Is the graph of F concave up or concave down?
(c) Gini’s index of inequality, G, is one way to measure how evenly the resource is distributed.

It is defined by

G = 2

∫ 1

0

(x− F (x)) dx.

Show graphically what G represents.

2. Yield from an Apple Orchard
Figure 6.44 is a graph of the annual yield, y(t), in bushels per year, from an orchard t years

after planting. The trees take about 10 years to get established, but for the next 20 years they
give a substantial yield. After about 30 years, however, age and disease start to take their toll,
and the annual yield falls off.3

(a) Represent on a sketch of Figure 6.44 the total yield, F (M), up to M years, with 0 ≤ M ≤

60. Write an expression for F (M) in terms of y(t).
(b) Sketch a graph of F (M) against M for 0 ≤ M ≤ 60.
(c) Write an expression for the average annual yield, a(M), up to M years.
(d) When should the orchard be cut down and replanted? Assume that we want to maximize

average revenue per year, and that fruit prices remain constant, so that this is achieved by
maximizing average annual yield. Use the graph of y(t) to estimate the time at which the
average annual yield is a maximum. Explain your answer geometrically and symbolically.

3From Peter D. Taylor, Calculus: The Analysis of Functions (Toronto: Wall & Emerson, Inc., 1992).
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500

t (time in years)

y (annual yield)

Figure 6.44

3. Slope Fields
Suppose we want to sketch the antiderivative,F , of the function f . To get an accurate graph

of F , we must be careful about making F have the right slope at every point. The slope of F at
any point (x, y) on its graph should be f(x), since F ′(x) = f(x). We arrange this as follows:
at the point (x, y) in the plane, draw a small line segment with slope f(x). Do this at many
points. We call such a diagram a slope field. If f(x) = x, we get the slope field in Figure 6.45.

x

Figure 6.45: Slope field of
f(x) = x

x

Figure 6.46: Slope field of
f(x) = e−x2

Notice how the lines in Figure 6.45 seem to be arranged in a parabolic pattern. This is
because the general antiderivative of x is x2/2 + C, so the lines are all the tangent lines to the
family of parabolas y = x2/2 + C. This suggests a way of finding antiderivatives graphically
even if we can’t write down a formula for them: plot the slopes, and see if they suggest the
graph of an antiderivative. For example, if you do this with f(x) = e−x2

, which is one of the
functions that does not have an elementary antiderivative, you get Figure 6.46.

You can see the ghost of the graph of a function lurking behind the slopes in Figure 6.46;
in fact there is a whole stack of them. If you move across the plane in the direction suggested by
the slope field at every point, you will trace out a curve. The slope field is tangent to the curve
everywhere, so this is the graph of an antiderivative of e−x2

.

(a) (i) Sketch a graph of f(t) =
sin t

t
.

(ii) What does your graph tell you about the behavior of

Si(x) =

∫ x

0

sin(t)

t
dt

for x > 0? Is Si(x) always increasing or always decreasing? Does Si(x) cross the
x-axis for x > 0?

(iii) By drawing the slope field for f(t) =
sin t

t
, decide whether lim

x→∞
Si(x) exists.
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(b) (i) Use your calculator or computer to sketch a graph of y = xsin x for 0 < x ≤ 20.

(ii) Using your answer to part (i), sketch by hand a graph of the function F , where

F (x) =

∫ x

0

tsin t dt.

(iii) Use a slope field program to check your answer to part (ii).
(c) Let F (x) be the antiderivative of sin(x2) satisfying F (0) = 0.

(i) Describe any general features of the graph of F that you can deduce by looking at the
graph of sin(x2) in Figure 6.47.

(ii) By drawing a slope field (using a calculator or computer), sketch a graph of F . Does
F ever cross the x-axis in the region x > 0? Does lim

x→∞
F (x) exist?

x

y y = sin
(
x2
)

Figure 6.47
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7.1 INTEGRATION BY SUBSTITUTION

In Chapter 3, we learned rules to differentiate any function obtained by combining constants, powers
of x, sinx, cosx, ex, and lnx, using addition, multiplication, division, or composition of functions.
Such functions are called elementary.

In this chapter, we introduce several methods of antidifferentiation. However, there is a great
difference between looking for derivatives and looking for antiderivatives. Every elementary func-
tion has elementary derivatives, but most elementary functions—such as

√
x3 + 1, (sinx)/x, and

e−x2

—do not have elementary antiderivatives.
All commonly occurring antiderivatives can be found with a computer algebra system (CAS).

However, just as it is useful to be able to calculate 3 + 4 without a calculator, we usually calculate
some antiderivatives by hand.

The Guess-and-Check Method
A good strategy for finding simple antiderivatives is to guess an answer (using knowledge of differ-
entiation rules) and then check the answer by differentiating it. If we get the expected result, then
we’re done; otherwise, we revise the guess and check again.

The method of guess-and-check is useful in reversing the chain rule. According to the chain
rule,

d

dx
(f(g(x))) = f ′︸︷︷︸

Derivative of outside↗

(

Inside︷︸︸︷
g(x)) · g′(x)︸ ︷︷ ︸

↖Derivative of inside

.

Thus, any function which is the result of applying the chain rule is the product of two factors:
the “derivative of the outside” and the “derivative of the inside.” If a function has this form, its
antiderivative is f(g(x)).

Example 1 Find
∫

3x2
cos(x3

) dx.

Solution The function 3x2 cos(x3) looks like the result of applying the chain rule: there is an “inside” func-
tion x3 and its derivative 3x2 appears as a factor. Since the outside function is a cosine which has a
sine as an antiderivative, we guess sin(x3) for the antiderivative. Differentiating to check gives

d

dx
(sin(x3

)) = cos(x3
) · (3x2

).

Since this is what we began with, we know that∫
3x2

cos(x3
) dx = sin(x3

) + C.

The basic idea of this method is to try to find an inside function whose derivative appears as a
factor. This works even when the derivative is missing a constant factor, as in the next example.

Example 2 Find
∫

x3
√
x4 + 5 dx.

Solution Here the inside function is x4 + 5, and its derivative appears as a factor, with the exception of a
missing 4. Thus, the integrand we have is more or less of the form

g′(x)
√

g(x),

with g(x) = x4 + 5. Since x3/2/(3/2) is an antiderivative of the outside function
√
x, we might

guess that an antiderivative is
(g(x))3/2

3/2
=

(x4 + 5)3/2

3/2
.
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Let’s check and see:

d

dx

(
(x4 + 5)3/2

3/2

)
=

3

2

(x4 + 5)1/2

3/2
· 4x3

= 4x3
(x4

+ 5)
1/2,

so
(x4 + 5)3/2

3/2
is too big by a factor of 4. The correct antiderivative is

1

4

(x4 + 5)3/2

3/2
=

1

6
(x4

+ 5)
3/2.

Thus ∫
x3
√
x4 + 5 dx =

1

6
(x4

+ 5)
3/2

+ C.

As a final check:

d

dx

(
1

6
(x4

+ 5)
3/2

)
=

1

6
·
3

2
(x4

+ 5)
1/2 · 4x3

= x3
(x4

+ 5)
1/2.

As we see in the preceding example, antidifferentiating a function often involves “correcting
for” constant factors: if differentiation produces an extra factor of 2, antidifferentiation will require
a factor of 1

2 .

The Method of Substitution
When the integrand is complicated, it helps to formalize this guess-and-check method as follows:

To Make a Substitution

Let w be the “inside function” and dw = w′
(x) dx =

dw

dx
dx.

Let’s redo the first example using a substitution.

Example 3 Find
∫

3x2
cos(x3

) dx.

Solution As before, we look for an inside function whose derivative appears—in this case x3. We let w = x3.
Then dw = w′(x) dx = 3x2 dx. The original integrand can now be completely rewritten in terms of
the new variable w:∫

3x2
cos(x3

) dx =

∫
cos (x3

)︸︷︷︸
w

· 3x2 dx︸ ︷︷ ︸
dw

=

∫
cosw dw = sinw + C = sin(x3

) + C.

By changing the variable to w, we can simplify the integrand. We now have cosw, which can
be antidifferentiated more easily. The final step, after antidifferentiating, is to convert back to the
original variable, x.

Why Does Substitution Work?

The substitution method makes it look as if we can treat dw and dx as separate entities, even cancel-
ing them in the equation dw = (dw/dx)dx. Let’s see why this works. Suppose we have an integral
of the form

∫
f(g(x))g′(x) dx, where g(x) is the inside function and f(x) is the outside function.

If F is an antiderivative of f , then F ′ = f , and by the chain rule d
dx(F (g(x))) = f(g(x))g′(x).

Therefore, ∫
f(g(x))g′(x) dx = F (g(x)) + C.
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Now write w = g(x) and dw/dx = g′(x) on both sides of this equation:∫
f(w)

dw

dx
dx = F (w) + C.

On the other hand, knowing that F ′ = f tells us that∫
f(w) dw = F (w) + C.

Thus, the following two integrals are equal:∫
f(w)

dw

dx
dx =

∫
f(w) dw.

Substituting w for the inside function and writing dw = w′(x)dx leaves the indefinite integral
unchanged.

Let’s revisit the second example that we did by guess-and-check.

Example 4 Find
∫

x3
√
x4 + 5 dx.

Solution The inside function is x4 + 5, with derivative 4x3. The integrand has a factor of x3, and since the
only thing missing is a constant factor, we try

w = x4
+ 5.

Then
dw = w′

(x) dx = 4x3 dx,

giving
1

4
dw = x3 dx.

Thus,∫
x3
√
x4 + 5 dx =

∫
√
w

1

4
dw =

1

4

∫
w1/2 dw =

1

4
·
w3/2

3/2
+ C =

1

6
(x4

+ 5)
3/2

+ C.

Once again, we get the same result as with guess-and-check.

Warning

We saw in the preceding example that we can apply the substitution method when a constant
factor is missing from the derivative of the inside function. However, we may not be able
to use substitution if anything other than a constant factor is missing. For example, setting
w = x4 + 5 to find ∫

x2
√
x4 + 5 dx

does us no good because x2 dx is not a constant multiple of dw = 4x3 dx. Substitution works
if the integrand contains the derivative of the inside function, to within a constant factor.

Some people prefer the substitution method over guess-and-check since it is more systematic,
but both methods achieve the same result. For simple problems, guess-and-check can be faster.

Example 5 Find
∫

ecos θ sin θ dθ.

Solution We let w = cos θ since its derivative is − sin θ and there is a factor of sin θ in the integrand. This
gives

dw = w′
(θ) dθ = − sin θ dθ,
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so
−dw = sin θ dθ.

Thus ∫
ecos θ sin θ dθ =

∫
ew (−dw) = (−1)

∫
ew dw = −ew + C = −ecos θ + C.

Example 6 Find
∫

et

1 + et
dt.

Solution Observing that the derivative of 1 + et is et, we see w = 1+ et is a good choice. Then dw = et dt,
so that∫

et

1 + et
dt =

∫
1

1 + et
et dt =

∫
1

w
dw = ln |w| + C

= ln |1 + et|+ C

= ln(1 + et) + C. (Since (1 + et) is always positive.)

Since the numerator is et dt, we might also have tried w = et. This substitution leads to the integral∫
(1/(1 + w))dw, which is better than the original integral but requires another substitution, u =

1 + w, to finish. There are often several different ways of doing an integral by substitution.

Notice the pattern in the previous example: having a function in the denominator and its deriva-
tive in the numerator leads to a natural logarithm. The next example follows the same pattern.

Example 7 Find
∫

tan θ dθ.

Solution Recall that tan θ = (sin θ)/(cos θ). If w = cos θ, then dw = − sin θ dθ, so∫
tan θ dθ =

∫
sin θ

cos θ
dθ =

∫
−dw

w
= − ln |w|+ C = − ln | cos θ|+ C.

One way to think of integration is in terms of standard forms, whose antiderivatives are known.
Substitution is useful for putting a complicated integral in a standard form.

Example 8 Give a substitution w and constants k, n so that the following integral has the form
∫
kwn dw:∫

ex cos3(ex) sin(ex) dx.

Solution We notice that one of the factors in the integrand is (cos(ex))3, so if we let w = cos(ex), this factor
is w3. Then dw = (− sin(ex))ex dx, so∫

ex cos3(ex) sin(ex) dx =

∫
cos

3
(ex)(sin(ex))ex dx =

∫
w3

(−dw).

Therefore, we choose w = cos(ex) and then k = −1, n = 3.
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Definite Integrals by Substitution

Example 9 Compute
∫ 2

0

xex
2

dx.

Solution To evaluate this definite integral using the Fundamental Theorem of Calculus, we first need to find
an antiderivative of f(x) = xex

2

. The inside function is x2, so we let w = x2. Then dw = 2x dx,
so 1

2 dw = xdx. Thus,∫
xex

2

dx =

∫
ew

1

2
dw =

1

2
ew + C =

1

2
ex

2

+ C.

Now we find the definite integral∫ 2

0

xex
2

dx =
1

2
ex

2

∣∣∣∣2
0

=
1

2
(e4 − e0) =

1

2
(e4 − 1).

There is another way to look at the same problem. After we established that∫
xex

2

dx =
1

2
ew + C,

our next two steps were to replace w by x2, and then x by 2 and 0. We could have directly replaced
the original limits of integration, x = 0 and x = 2, by the corresponding w limits. Since w = x2,
the w limits are w = 02 = 0 (when x = 0) and w = 22 = 4 (when x = 2), so we get∫ x=2

x=0

xex
2

dx =
1

2

∫ w=4

w=0

ew dw =
1

2
ew
∣∣∣∣4
0

=
1

2

(
e4 − e0

)
=

1

2
(e4 − 1).

As we would expect, both methods give the same answer.

To Use Substitution to Find Definite Integrals

Either
• Compute the indefinite integral, expressing an antiderivative in terms of the original vari-

able, and then evaluate the result at the original limits,
or
• Convert the original limits to new limits in terms of the new variable and do not convert

the antiderivative back to the original variable.

Example 10 Evaluate
∫ π/4

0

tan3 θ

cos2 θ
dθ.

Solution To use substitution, we must decide what w should be. There are two possible inside functions,
tan θ and cos θ. Now

d

dθ
(tan θ) =

1

cos2 θ
and

d

dθ
(cos θ) = − sin θ,

and since the integral contains a factor of 1/ cos2 θ but not of sin θ, we try w = tan θ. Then
dw = (1/ cos2 θ)dθ. When θ = 0, w = tan 0 = 0, and when θ = π/4, w = tan(π/4) = 1,
so ∫ π/4

0

tan3 θ

cos2 θ
dθ =

∫ π/4

0

(tan θ)3 ·
1

cos2 θ
dθ =

∫ 1

0

w3 dw =
1

4
w4

∣∣∣∣1
0

=
1

4
.

Example 11 Evaluate
∫ 3

1

dx

5− x
.
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Solution Let w = 5− x, so dw = −dx. When x = 1, w = 4, and when x = 3, w = 2, so∫ 3

1

dx

5− x
=

∫ 2

4

−dw

w
= − ln |w|

∣∣∣∣2
4

= − (ln 2− ln 4) = ln

(
4

2

)
= ln 2 = 0.693.

Notice that we write the limit w = 4 at the bottom, even though it is larger than w = 2, because
w = 4 corresponds to the lower limit x = 1.

More Complex Substitutions
In the examples of substitution presented so far, we guessed an expression for w and hoped to find
dw (or some constant multiple of it) in the integrand. What if we are not so lucky? It turns out that it
often works to let w be some messy expression contained inside, say, a cosine or under a root, even
if we cannot see immediately how such a substitution helps.

Example 12 Find
∫ √

1 +
√
x dx.

Solution This time, the derivative of the inside function is nowhere to be seen. Nevertheless, we tryw = 1 +
√
x.

Then w − 1 =
√
x, so (w − 1)2 = x. Therefore 2(w − 1) dw = dx. We have∫ √
1 +

√
x dx =

∫
√
w 2(w − 1) dw = 2

∫
w1/2

(w − 1) dw

= 2

∫
(w3/2 − w1/2

) dw = 2

(
2

5
w5/2 −

2

3
w3/2

)
+ C

= 2

(
2

5
(1 +

√
x)5/2 −

2

3
(1 +

√
x)3/2

)
+ C.

Notice that the substitution in the preceding example again converts the inside of the messiest
function into something simple. In addition, since the derivative of the inside function is not waiting
for us, we have to solve for x so that we can get dx entirely in terms of w and dw.

Example 13 Find
∫
(x+ 7)

3
√
3− 2xdx.

Solution Here, instead of the derivative of the inside function (which is −2), we have the factor (x + 7).
However, substitutingw = 3−2x turns out to help anyway. Then dw = −2 dx, so (−1/2) dw = dx.
Now we must convert everything to w, including x + 7. If w = 3 − 2x, then 2x = 3 − w, so
x = 3/2− w/2, and therefore we can write x+ 7 in terms of w. Thus∫

(x+ 7)
3
√
3− 2x dx =

∫ (
3

2
−

w

2
+ 7

)
3
√
w

(
−
1

2

)
dw

= −
1

2

∫ (
17

2
−

w

2

)
w1/3 dw

= −
1

4

∫
(17− w)w1/3 dw

= −
1

4

∫
(17w1/3 − w4/3

) dw

= −
1

4

(
17

w4/3

4/3
−

w7/3

7/3

)
+ C

= −
1

4

(
51

4
(3 − 2x)4/3 −

3

7
(3 − 2x)7/3

)
+ C.

Looking back over the solution, the reason this substitution works is that it converts 3
√
3− 2x,

the messiest part of the integrand, to 3
√
w, which can be combined with the other factor and then

integrated.
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Exercises and Problems for Section 7.1
Exercises

1. Use substitution to express each of the following inte-
grals as a multiple of

∫ b

a
(1/w) dw for some a and b.

Then evaluate the integrals.

(a)

∫ 1

0

x

1 + x2
dx (b)

∫ π/4

0

sin x

cos x
dx

2. (a) Find the derivatives of sin(x2 +1) and sin(x3 +1).
(b) Use your answer to part (a) to find antiderivatives of:

(i) x cos(x2 + 1) (ii) x2 cos(x3 + 1)

(c) Find the general antiderivatives of:

(i) x sin(x2 + 1) (ii) x2 sin(x3 + 1)

Find the integrals in Exercises 3–48. Check your answers by
differentiation.

3.

∫
e3x dx 4.

∫
tet

2

dt

5.

∫
e−x dx 6.

∫
25e−0.2t dt

7.

∫
sin(2x) dx 8.

∫
t cos(t2) dt

9.

∫
sin(3− t) dt 10.

∫
xe−x2

dx

11.

∫
(r + 1)3 dr 12.

∫
y(y2 + 5)8 dy

13.

∫
x2(1 + 2x3)2 dx 14.

∫
t2(t3 − 3)10 dt

15.

∫
x(x2 + 3)2 dx 16.

∫
x(x2 − 4)7/2 dx

17.

∫
y2(1 + y)2 dy 18.

∫
(2t− 7)73 dt

19.

∫
x2ex

3+1 dx 20.

∫
dy

y + 5

21.

∫
1√
4− x

dx 22.

∫
(x2 + 3)2 dx

23.

∫
sin θ(cos θ + 5)7 dθ 24.

∫ √
cos 3t sin 3t dt

25.

∫
sin6 θ cos θ dθ 26.

∫
sin3 α cosαdα

27.

∫
sin6(5θ) cos(5θ) dθ 28.

∫
tan(2x) dx

29.

∫
(ln z)2

z
dz 30.

∫
et + 1

et + t
dt

31.

∫
(t+ 1)2

t2
dt 32.

∫
y

y2 + 4
dy

33.

∫
dx

1 + 2x2
34.

∫
dx√

1− 4x2

35.

∫
cos

√
x√

x
dx 36.

∫
e
√

y

√
y
dy

37.

∫
1 + ex√
x+ ex

dx 38.

∫
ex

2 + ex
dx

39.

∫
x+ 1

x2 + 2x+ 19
dx 40.

∫
t

1 + 3t2
dt

41.

∫
ex − e−x

ex + e−x
dx 42.

∫
x cos(x2)√
sin(x2)

dx

43.

∫
sinh 3t dt 44.

∫
cosh x dx

45.

∫
cosh(2w + 1) dw 46.

∫
(sinh z)ecosh z dz

47.

∫
cosh2 x sinhx dx 48.

∫
x cosh x2 dx

For the functions in Exercises 49–56, find the general an-
tiderivative. Check your answers by differentiation.

49. p(t) = πt3 + 4t 50. f(x) = sin 3x

51. f(x) = 2x cos(x2) 52. r(t) = 12t2 cos(t3)

53. f(x) = sin(2− 5x) 54. f(x) = esinx cosx

55. f(x) =
x

x2 + 1
56. f(x) =

1

3 cos2(2x)

For Exercises 57–64, use the Fundamental Theorem to calcu-
late the definite integrals.

57.

∫ π

0

cos(x+ π) dx 58.

∫ 1/2

0

cos(πx)dx

59.

∫ π/2

0

e− cos θ sin θ dθ 60.

∫ 2

1

2xex
2

dx

61.

∫ 4

1

e
√

x

√
x

dx 62.

∫ e−2

−1

1

t+ 2
dt

63.

∫ 4

1

cos
√
x√

x
dx 64.

∫ 2

0

x

(1 + x2)2
dx
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For Exercises 65–70, evaluate the definite integrals. Whenever
possible, use the Fundamental Theorem of Calculus, perhaps
after a substitution. Otherwise, use numerical methods.

65.

∫ 3

−1

(x3 + 5x) dx 66.

∫ 1

−1

1

1 + y2
dy

67.

∫ 3

1

1

x
dx 68.

∫ 3

1

dt

(t+ 7)2

69.

∫ 2

−1

√
x+ 2 dx 70.

∫ 2

1

sin t

t
dt

Find the integrals in Exercises 71–78.

71.

∫
y
√

y + 1 dy 72.

∫
z(z + 1)1/3 dz

73.

∫
t2 + t√
t+ 1

dt 74.

∫
dx

2 + 2
√
x

75.

∫
x2

√
x− 2 dx 76.

∫
(z + 2)

√
1− z dz

77.

∫
t√
t+ 1

dt 78.

∫
3x− 2√
2x+ 1

dx

Problems

In Problems 79–82, show the two integrals are equal using a
substitution.

79.

∫ π/3

0

3 sin2(3x) dx =

∫ π

0

sin2(y) dy

80.

∫ 2

1

2 ln(s2 + 1) ds =

∫ 4

1

ln(t+ 1)√
t

dt

81.

∫ e

1

(lnw)3 dw =

∫ 1

0

z3ez dz

82.

∫ π

0

x cos(π − x) dx =

∫ π

0

(π − t) cos t dt

83. Using the substitution w = x2, find a function g(w) such

that
∫ √

b
√

a
dx =

∫ b

a
g(w) dw for all 0 < a < b.

84. Using the substitution w = ex, find a function g(w) such

that
∫ b

a
e−xdx =

∫ eb

ea
g(w)dw for all a < b.

In Problems 85–89, explain why the two antiderivatives are re-
ally, despite their apparent dissimilarity, different expressions
of the same problem. You do not need to evaluate the integrals.

85.

∫
ex dx

1 + e2x
and

∫
cosx dx

1 + sin2 x

86.

∫
lnx

x
dx and

∫
xdx

87.

∫
esinx cos xdx and

∫
earcsin x

√
1− x2

dx

88.

∫
(sin x)3 cosxdx and

∫
(x3 + 1)3x2 dx

89.

∫ √
x+ 1 dx and

∫ √
1 +

√
x√

x
dx

In Problems 90–96, evaluate the integral. Your answer should
not contain f , which is a differentiable function with the fol-
lowing values:

x 0 1 π/2 e 3

f(x) 5 7 8 10 11

f ′(x) 2 4 6 9 12

90.

∫ 1

0

f ′(x) sin f(x) dx 91.

∫ 3

1

f ′(x)ef(x) dx

92.

∫ 3

1

f ′(x)

f(x)
dx 93.

∫ 1

0

exf ′(ex) dx

94.

∫ e

1

f ′(lnx)

x
dx 95.

∫ 1

0

f ′(x)(f(x))2 dx

96.

∫ π/2

0

sin x · f ′(cosx) dx

In Problems 97–100, find an expression for the integral which
contains g but no integral sign.

97.

∫
g′(x)(g(x))4 dx 98.

∫
g′(x)eg(x) dx

99.

∫
g′(x) sin g(x)dx 100.

∫
g′(x)
√

1 + g(x) dx

In Problems 101–103, find a substitution w and constants k, n
so that the integral has the form

∫
kwn dw.

101.

∫
x2
√

1− 4x3 dx 102.

∫
cos t

sin t
dt

103.

∫
2x dx

(x2 − 3)2

In Problems 104–106, find constants k, n, w0, w1 so the the
integral has the form

∫ w1

w0
kwn dw.

104.

∫ 5

1

3x dx√
5x2 + 7

, w = 5x2 + 7

105.

∫ 5

0

2x dx

2x + 3
, w = 2x + 3

106.

∫ π/4

π/12

sin7(2x) cos(2x) dx, w = sin 2x
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In Problems 107–111, find a substitution w and a constant k
so that the integral has the form

∫
kew dw.

107.

∫
xe−x2

dx 108.

∫
esinφ cosφdφ

109.

∫ √
erdr 110.

∫
z2 dz

e−z3

111.

∫
e2te3t−4 dt

In Problems 112–113, find a substitution w and constants
a, b, A so that the integral has the form

∫ b

a
Aew dw.

112.

∫ 7

3

e2t−3 dt 113.

∫ 1

0

ecos(πt) sin(πt)dt

114. Integrate:

(a)

∫
1√
x
dx (b)

∫
1√
x+ 1

dx

(c)

∫
1√
x+ 1

dx

115. If appropriate, evaluate the following integrals by substi-
tution. If substitution is not appropriate, say so, and do
not evaluate.

(a)

∫
x sin(x2) dx (b)

∫
x2 sin xdx

(c)

∫
x2

1 + x2
dx (d)

∫
x

(1 + x2)2
dx

(e)

∫
x3ex

2

dx (f)

∫
sin x

2 + cos x
dx

In Problems 116–122, find the exact area.

116. Under f(x) = xex
2

between x = 0 and x = 2.

117. Under f(x) = 1/(x+ 1) between x = 0 and x = 2.

118. Under f(x) = sinh(x/2) between x = 0 and x = 2.

119. Under f(θ) = (eθ+1)3 for 0 ≤ θ ≤ 2.

120. Between et and et+1 for 0 ≤ t ≤ 2.

121. Between y = ex, y = 3, and the y-axis.

122. Under one arch of the curve V (t) = V0 sin(ωt), where
V0 > 0 and ω > 0.

123. Find the exact average value of f(x) = 1/(x + 1) on
the interval x = 0 to x = 2. Sketch a graph showing the
function and the average value.

124. Let g(x) = f(2x). Show that the average value of f on
the interval [0, 2b] is the same as the average value of g
on the interval [0, b].

125. Suppose
∫ 2

0
g(t) dt = 5. Calculate the following:

(a)

∫ 4

0

g(t/2) dt (b)

∫ 2

0

g(2− t) dt

126. Suppose
∫ 1

0
f(t) dt = 3. Calculate the following:

(a)

∫ 0.5

0

f(2t) dt (b)

∫ 1

0

f(1− t) dt

(c)

∫ 1.5

1

f(3− 2t) dt

127. (a) Calculate exactly:
∫ π

−π
cos2 θ sin θ dθ.

(b) Calculate the exact area under the curve
y = cos2 θ sin θ between θ = 0 and θ = π.

128. Find
∫
4x(x2 + 1) dx using two methods:

(a) Do the multiplication first, and then antidifferentiate.
(b) Use the substitution w = x2 + 1.
(c) Explain how the expressions from parts (a) and (b)

are different. Are they both correct?

129. (a) Find
∫
sin θ cos θ dθ.

(b) You probably solved part (a) by making the substi-
tution w = sin θ or w = cos θ. (If not, go back and
do it that way.) Now find

∫
sin θ cos θ dθ by making

the other substitution.
(c) There is yet another way of finding this integral

which involves the trigonometric identities

sin(2θ) = 2 sin θ cos θ

cos(2θ) = cos2 θ − sin2 θ.

Find
∫
sin θ cos θ dθ using one of these identities

and then the substitution w = 2θ.
(d) You should now have three different expressions for

the indefinite integral
∫
sin θ cos θ dθ. Are they re-

ally different? Are they all correct? Explain.

For Problems 130–131, find a substitution w and constants
a, b, k so that the integral has the form

∫ b

a
kf(w) dw.

130.

∫ 9

1

f
(
6x

√
x
)√

x dx

131.

∫ 5

2

f
(
ln
(
x2 + 1

))
x dx

x2 + 1

132. Find the solution of the initial value problem

y′ = tan x+ 1, y(0) = 1.

133. Let Im,n =
∫ 1

0
xm(1− x)ndx for constant m,n. Show

that Im,n = In,m.

134. Let f(t) be the velocity in meters/second of a car at time
t in seconds. Give an integral for the change of position
of the car

(a) For the time interval 0 ≤ t ≤ 60.
(b) In terms of T in minutes, for the same time interval.
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135. Over the past fifty years the carbon dioxide level in the
atmosphere has increased. Carbon dioxide is believed to
drive temperature, so predictions of future carbon diox-
ide levels are important. If C(t) is carbon dioxide level in
parts per million (ppm) and t is time in years since 1950,
three possible models are:1

I C′(t) = 1.3
II C′(t) = 0.5 + 0.03t

III C′(t) = 0.5e0.02t

(a) Given that the carbon dioxide level was 311 ppm in
1950, find C(t) for each model.

(b) Find the carbon dioxide level in 2020 predicted by
each model.

136. Let f(t) be the rate of flow, in cubic meters per hour, of a
flooding river at time t in hours. Give an integral for the
total flow of the river

(a) Over the 3-day period 0 ≤ t ≤ 72.
(b) In terms of time T in days over the same 3-day pe-

riod.

137. With t in years since 2000, the population, P , of the
world in billions can be modeled by P = 6.1e0.012t .

(a) What does this model predict for the world popula-
tion in 2010? In 2020?

(b) Use the Fundamental Theorem to predict the average
population of the world between 2000 and 2010.

138. Oil is leaking out of a ruptured tanker at the rate of
r(t) = 50e−0.02t thousand liters per minute.

(a) At what rate, in liters per minute, is oil leaking out
at t = 0? At t = 60?

(b) How many liters leak out during the first hour?

139. Throughout much of the 20th century, the yearly con-
sumption of electricity in the US increased exponen-
tially at a continuous rate of 7% per year. Assume this
trend continues and that the electrical energy consumed
in 1900 was 1.4 million megawatt-hours.

(a) Write an expression for yearly electricity consump-
tion as a function of time, t, in years since 1900.

(b) Find the average yearly electrical consumption
throughout the 20th century.

(c) During what year was electrical consumption closest
to the average for the century?

(d) Without doing the calculation for part (c), how could
you have predicted which half of the century the an-
swer would be in?

140. An electric current, I(t), flowing out of a capacitor, de-
cays according to I(t) = I0e

−t, where t is time. Find
the charge, Q(t), remaining in the capacitor at time t.
The initial charge is Q0 and Q(t) is related to I(t) by

Q′(t) = −I(t).

141. If we assume that wind resistance is proportional to ve-
locity, then the downward velocity, v, of a body of mass
m falling vertically is given by

v =
mg

k

(
1− e−kt/m

)
,

where g is the acceleration due to gravity and k is a con-
stant. Find the height, h, above the surface of the earth as
a function of time. Assume the body starts at height h0.

142. If we assume that wind resistance is proportional to the
square of velocity, then the downward velocity, v, of a
falling body is given by

v =
√

g

k

(
et
√

gk − e−t
√

gk

et
√

gk + e−t
√

gk

)
.

Use the substitution w = et
√

gk + e−t
√

gk to find the
height, h, of the body above the surface of the earth as a
function of time. Assume the body starts at a height h0.

143. (a) Between 2000 and 2010, ACME Widgets sold wid-
gets at a continuous rate of R = R0e

0.125t widgets
per year, where t is time in years since January 1,
2000. Suppose they were selling widgets at a rate
of 1000 per year on January 1, 2000. How many
widgets did they sell between 2000 and 2010? How
many did they sell if the rate on January 1, 2000 was
1,000,000 widgets per year?

(b) In the first case (1000 widgets per year on January
1, 2000), how long did it take for half the widgets
in the ten-year period to be sold? In the second case
(1,000,000 widgets per year on January 1, 2000),
when had half the widgets in the ten-year period
been sold?

(c) In 2010, ACME advertised that half the widgets it
had sold in the previous ten years were still in use.
Based on your answer to part (b), how long must a
widget last in order to justify this claim?

144. The rate at which water is flowing into a tank is r(t) gal-
lons/minute, with t in minutes.

(a) Write an expression approximating the amount of
water entering the tank during the interval from time
t to time t+Δt, where Δt is small.

(b) Write a Riemann sum approximating the total
amount of water entering the tank between t = 0 and
t = 5. Write an exact expression for this amount.

(c) By how much has the amount of water in the tank
changed between t = 0 and t = 5 if r(t) =
20e0.02t?

(d) If r(t) is as in part (c), and if the tank contains 3000
gallons initially, find a formula for Q(t), the amount
of water in the tank at time t.

1Based on data from www.esrl.noaa.gov/gmd/ccgg.
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Strengthen Your Understanding

In Problems 145–147, explain what is wrong with the state-
ment.

145.
∫
(f(x))2 dx = (f(x))3/3 + C .

146.
∫
cos(x2) dx = sin(x2)/(2x) + C.

147.
∫ π/2

0
cos(3x) dx = (1/3)

∫ π/2

0
cosw dw.

In Problems 148–149, give an example of:

148. A possible f(θ) so that the following integral can be in-
tegrated by substitution:∫

f(θ)ecos θ dθ.

149. An indefinite integral involving sin(x3 − 3x) that can be
evaluated by substitution.

In Problems 150–152, decide whether the statements are true
or false. Give an explanation for your answer.

150.
∫
f ′(x) cos(f(x)) dx = sin(f(x)) + C.

151.
∫
(1/f(x)) dx = ln |f(x)|+ C.

152.
∫
t sin(5− t2) dt can be evaluated using substitution.

7.2 INTEGRATION BY PARTS

The method of substitution reverses the chain rule. Now we introduce integration by parts, which is
based on the product rule.

Example 1 Find
∫

xex dx.

Solution We are looking for a function whose derivative is xex. The product rule might lead us to guess xex,
because we know that the derivative has two terms, one of which is xex:

d

dx
(xex) =

d

dx
(x)ex + x

d

dx
(ex) = ex + xex.

Of course, our guess is wrong because of the extra ex. But we can adjust our guess by subtracting
ex; this leads us to try xex − ex. Let’s check it:

d

dx
(xex − ex) =

d

dx
(xex)−

d

dx
(ex) = ex + xex − ex = xex.

It works, so
∫

xex dx = xex − ex + C.

Example 2 Find
∫

θ cos θ dθ.

Solution We guess the antiderivative is θ sin θ and use the product rule to check:

d

dθ
(θ sin θ) =

d(θ)

dθ
sin θ + θ

d

dθ
(sin θ) = sin θ + θ cos θ.

To correct for the extra sin θ term, we must subtract from our original guess something whose
derivative is sin θ. Since d

dθ (cos θ) = − sin θ, we try:

d

dθ
(θ sin θ + cos θ) =

d

dθ
(θ sin θ) +

d

dθ
(cos θ) = sin θ + θ cos θ − sin θ = θ cos θ.

Thus,
∫

θ cos θ dθ = θ sin θ + cos θ + C .

The General Formula for Integration by Parts
We can formalize the process illustrated in the last two examples in the following way. We begin
with the product rule:

d

dx
(uv) = u′v + uv′
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where u and v are functions of x with derivatives u′ and v′, respectively. We rewrite this as:

uv′ =
d

dx
(uv)− u′v

and then integrate both sides:∫
uv′ dx =

∫
d

dx
(uv) dx−

∫
u′v dx.

Since an antiderivative of
d

dx
(uv) is just uv, we get the following formula:

Integration by Parts

∫
uv′ dx = uv −

∫
u′v dx.

This formula is useful when the integrand can be viewed as a product and when the integral on
the right-hand side is simpler than that on the left. In effect, we were using integration by parts in
the previous two examples. In Example 1, we let xex = (x) · (ex) = uv′, and choose u = x and
v′ = ex. Thus, u′ = 1 and v = ex, so∫

(x)︸︷︷︸
u

(ex)︸︷︷︸
v′

dx = (x)︸︷︷︸
u

(ex)︸︷︷︸
v

−

∫
(1)︸︷︷︸
u′

(ex)︸︷︷︸
v

dx = xex − ex + C.

So uv represents our first guess, and
∫
u′v dx represents the correction to our guess.

Notice what would have happened if, instead of v = ex, we took v = ex + C1. Then∫
xex dx = x(ex + C1)−

∫
(ex + C1) dx

= xex + C1x− ex − C1x+ C

= xex − ex + C,

as before. Thus, it is not necessary to include an arbitrary constant in the antiderivative for v; any
antiderivative will do.

What would have happened if we had picked u and v′ the other way around? If u = ex and
v′ = x, then u′ = ex and v = x2/2. The formula for integration by parts then gives∫

xex dx =
x2

2
ex −

∫
x2

2
· ex dx,

which is true but not helpful since the integral on the right is worse than the one on the left. To use
this method, we must choose u and v′ to make the integral on the right easier to find than the integral
on the left.

How to Choose u and v
′

• Whatever you let v′ be, you need to be able to find v.

• It helps if u′ is simpler than u (or at least no more complicated than u).

• It helps if v is simpler than v′ (or at least no more complicated than v′).

If we pick v′ = x in Example 1, then v = x2/2, which is certainly “worse” than v′.
There are some examples which don’t look like good candidates for integration by parts because

they don’t appear to involve products, but for which the method works well. Such examples often
involve lnx or the inverse trigonometric functions. Here is one:
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Example 3 Find
∫ 3

2

lnxdx.

Solution This does not look like a product unless we write lnx = (1)(lnx). Then we might say u = 1 so
u′ = 0, which certainly makes things simpler. But if v′ = lnx, what is v? If we knew, we would
not need integration by parts. Let’s try the other way: if u = lnx, u′ = 1/x and if v′ = 1, v = x, so

∫ 3

2

(lnx)︸ ︷︷ ︸
u

(1)︸︷︷︸
v′

dx = (ln x)︸ ︷︷ ︸
u

(x)︸︷︷︸
v

∣∣∣∣3
2

−

∫ 3

2

(
1

x

)
︸ ︷︷ ︸

u′

· (x)︸︷︷︸
v

dx

= x ln x

∣∣∣∣3
2

−

∫ 3

2

1 dx = (x ln x− x)

∣∣∣∣3
2

= 3 ln 3− 3− 2 ln 2 + 2 = 3 ln 3− 2 ln 2− 1.

Notice that when doing a definite integral by parts, we must remember to put the limits of
integration (here 2 and 3) on the uv term (in this case x ln x) as well as on the integral

∫
u′v dx.

Example 4 Find
∫

x6
lnxdx.

Solution View x6 lnx as uv′ where u = lnx and v′ = x6. Then v = 1
7x

7 and u′ = 1/x, so integration by
parts gives us: ∫

x6
lnxdx =

∫
(lnx)x6 dx = (lnx)

(
1

7
x7

)
−

∫
1

7
x7 ·

1

x
dx

=
1

7
x7

lnx−
1

7

∫
x6 dx

=
1

7
x7

lnx−
1

49
x7

+ C.

In Example 4 we did not choose v′ = lnx, because it is not immediately clear what v would
be. In fact, we used integration by parts in Example 3 to find the antiderivative of lnx. Also, using
u = lnx, as we have done, gives u′ = 1/x, which can be considered simpler than u = lnx. This
shows that u does not have to be the first factor in the integrand (here x6).

Example 5 Find
∫

x2
sin 4x dx.

Solution If we let v′ = sin 4x, then v = − 1
4 cos 4x, which is no worse than v′. Also letting u = x2, we get

u′ = 2x, which is simpler than u = x2. Using integration by parts:∫
x2

sin 4x dx = x2

(
−
1

4
cos 4x

)
−

∫
2x

(
−
1

4
cos 4x

)
dx

= −
1

4
x2

cos 4x+
1

2

∫
x cos 4x dx.
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The trouble is we still have to grapple with
∫
x cos 4xdx. This can be done by using integration by

parts again with a new u and v, namely u = x and v′ = cos 4x:∫
x cos 4xdx = x

(
1

4
sin 4x

)
−

∫
1 ·

1

4
sin 4x dx

=
1

4
x sin 4x−

1

4
·

(
−
1

4
cos 4x

)
+ C

=
1

4
x sin 4x+

1

16
cos 4x+ C.

Thus, ∫
x2

sin 4xdx = −
1

4
x2

cos 4x+
1

2

∫
x cos 4x dx

= −
1

4
x2

cos 4x+
1

2

(
1

4
x sin 4x+

1

16
cos 4x+ C

)
= −

1

4
x2

cos 4x+
1

8
x sin 4x+

1

32
cos 4x+ C.

Notice that, in this example, each time we used integration by parts, the exponent of x went down
by 1. In addition, when the arbitrary constant C is multiplied by 1

2 , it is still represented by C.

Example 6 Find
∫

cos
2 θ dθ.

Solution Using integration by parts with u = cos θ, v′ = cos θ gives u′ = − sin θ, v = sin θ, so we get∫
cos

2 θ dθ = cos θ sin θ +

∫
sin

2 θ dθ.

Substituting sin
2 θ = 1− cos2 θ leads to∫

cos
2 θ dθ = cos θ sin θ +

∫
(1 − cos

2 θ) dθ

= cos θ sin θ +

∫
1 dθ −

∫
cos

2 θ dθ.

Looking at the right side, we see that the original integral has reappeared. If we move it to the left,
we get

2

∫
cos

2 θ dθ = cos θ sin θ +

∫
1 dθ = cos θ sin θ + θ + C.

Dividing by 2 gives ∫
cos

2 θ dθ =
1

2
cos θ sin θ +

1

2
θ + C.

Problem 53 asks you to do this integral by another method.

The previous example illustrates a useful technique: Use integration by parts to transform the
integral into an expression containing another copy of the same integral, possibly multiplied by a
coefficient, then solve for the original integral.

Example 7 Use integration by parts twice to find
∫

e2x sin(3x) dx.

Solution Using integration by parts with u = e2x and v′ = sin(3x) gives u′ = 2e2x, v = − 1
3 cos(3x), so we

get ∫
e2x sin(3x) dx = −

1

3
e2x cos(3x) +

2

3

∫
e2x cos(3x) dx.
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On the right side we have an integral similar to the original one, with the sine replaced by a cosine.
Using integration by parts on that integral in the same way gives∫

e2x cos(3x) dx =
1

3
e2x sin(3x)−

2

3

∫
e2x sin(3x) dx.

Substituting this into the expression we obtained for the original integral gives∫
e2x sin(3x) dx = −

1

3
e2x cos(3x) +

2

3

(
1

3
e2x sin(3x)−

2

3

∫
e2x sin(3x) dx

)

= −
1

3
e2x cos(3x) +

2

9
e2x sin(3x)−

4

9

∫
e2x sin(3x) dx.

The right side now has a copy of the original integral, multiplied by −4/9. Moving it to the left, we
get (

1 +
4

9

)∫
e2x sin(3x) dx = −

1

3
e2x cos(3x) +

2

9
e2x sin(3x).

Dividing through by the coefficient on the left, (1+4/9) = 13/9 and adding a constant of integration
C, we get ∫

e2x sin(3x) dx =
9

13

(
−
1

3
e2x cos(3x) +

2

9
e2x sin(3x)

)
+ C

=
1

13
e2x (2 sin(3x)− 3 cos(3x)) + C.

Example 8 Use a computer algebra system to investigate
∫
sin(x2) dx.

Solution It can be shown that sin(x2) has no elementary antiderivative. A computer algebra system gives
an antiderivative involving a non-elementary function, the Fresnel Integral, which you may not
recognize.

Exercises and Problems for Section 7.2
Exercises

1. Use integration by parts to express
∫
x2exdx in terms of

(a)

∫
x3exdx (b)

∫
xexdx

2. Write arctan x = 1 · arctan x to find
∫
arctan x dx.

Find the integrals in Exercises 3–32.

3.

∫
t sin t dt 4.

∫
t2 sin t dt

5.

∫
te5t dt 6.

∫
t2e5t dt

7.

∫
pe−0.1p dp 8.

∫
(z + 1)e2z dz

9.

∫
x ln xdx 10.

∫
x3 ln xdx

11.

∫
q5 ln 5q dq 12.

∫
θ2 cos 3θ dθ

13.

∫
sin2 θ dθ 14.

∫
cos2(3α+ 1) dα

15.

∫
(ln t)2 dt 16.

∫
ln(x2) dx

17.

∫
y
√

y + 3 dy 18.

∫
(t+ 2)

√
2 + 3t dt

19.

∫
(θ+1) sin(θ+1) dθ 20.

∫
z

ez
dz

21.

∫
ln x

x2
dx 22.

∫
y√
5− y

dy

23.

∫
t+ 7√
5− t

dt 24.

∫
x(lnx)4 dx
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25.

∫
r(ln r)2 dr 26.

∫
arcsinw dw

27.

∫
arctan 7z dz 28.

∫
x arctan x2 dx

29.

∫
x3ex

2

dx 30.

∫
x5 cos x3 dx

31.

∫
x sinh x dx 32.

∫
(x− 1) cosh x dx

Evaluate the integrals in Exercises 33–40 both exactly [e.g.
ln(3π)] and numerically [e.g. ln(3π) ≈ 2.243].

33.

∫ 5

1

ln t dt 34.

∫ 5

3

x cos xdx

35.

∫ 10

0

ze−z dz 36.

∫ 3

1

t ln t dt

37.

∫ 1

0

arctan y dy 38.

∫ 5

0

ln(1 + t) dt

39.

∫ 1

0

arcsin z dz 40.

∫ 1

0

u arcsin u2 du

41. For each of the following integrals, indicate whether in-
tegration by substitution or integration by parts is more
appropriate. Do not evaluate the integrals.

(a)

∫
x sin xdx (b)

∫
x2

1 + x3
dx

(c)

∫
xex

2

dx (d)

∫
x2 cos(x3) dx

(e)

∫
1√

3x+ 1
dx (f)

∫
x2 sin xdx

(g)

∫
ln x dx

42. Find
∫ 2

1
lnx dx numerically. Find

∫ 2

1
ln x dx using an-

tiderivatives. Check that your answers agree.

Problems

In Problems 43–45, using properties of ln, find a substitution
w and constant k so that the integral has the form

∫
k lnw dw.

43.

∫
ln
(
(5− 3x)2

)
dx 44.

∫
ln

(
1√

4− 5x

)
dx

45.

∫
ln
(
(ln x)3

)
x

dx

In Problems 46–51, find the exact area.

46. Under y = te−t for 0 ≤ t ≤ 2.

47. Under f(z) = arctan z for 0 ≤ z ≤ 2.

48. Under f(y) = arcsin y for 0 ≤ y ≤ 1.

49. Between y = ln x and y = ln(x2) for 1 ≤ x ≤ 2.

50. Between f(t) = ln(t2 − 1) and g(t) = ln(t − 1) for
2 ≤ t ≤ 3.

51. Under the first arch of f(x) = x sin x.

52. In Exercise 13, you evaluated
∫
sin2 θ dθ using inte-

gration by parts. (If you did not do it by parts, do so
now!) Redo this integral using the identity sin2 θ =
(1 − cos 2θ)/2. Explain any differences in the form of
the answer obtained by the two methods.

53. Compute
∫
cos2 θ dθ in two different ways and explain

any differences in the form of your answers. (The identity
cos2 θ = (1 + cos 2θ)/2 may be useful.)

54. Use integration by parts twice to find
∫
ex sin x dx.

55. Use integration by parts twice to find
∫
eθ cos θ dθ.

56. Use the results from Problems 54 and 55 and integration
by parts to find

∫
xex sin xdx.

57. Use the results from Problems 54 and 55 and integration
by parts to find

∫
θeθ cos θ dθ.

58. If f is a twice differentiable function, find∫
f ′′(x) ln xdx+

∫
f(x)

x2
dx

(Your answer should contain f , but no integrals.)

59. If f is a twice differentiable function, find
∫
xf ′′(x) dx.

(Your answer should contain f , but no integrals.)

60. Use the table with f(x) = F ′(x) to find

∫ 5

0

xf ′(x) dx.

x 0 1 2 3 4 5

f(x) 2 −5 −6 −1 10 27

F (x) 10 8 2 −2 2 20

In Problems 61–64, derive the given formulas.

61.

∫
xnex dx = xnex − n

∫
xn−1ex dx

62.

∫
xn cos ax dx =

1

a
xn sin ax − n

a

∫
xn−1 sin ax dx

63.

∫
xn sin ax dx = −1

a
xn cos ax+

n

a

∫
xn−1 cos ax dx

64.

∫
cosn x dx =

1

n
cosn−1 x sin x+

n− 1

n

∫
cosn−2 x dx

65. Integrating eax sin bx by parts twice gives∫
eax sin bx dx = eax(A sin bx+B cos bx) + C.

(a) Find the constants A and B in terms of a and b.
[Hint: Don’t actually perform the integration.]

(b) Evaluate
∫
eax cos bx dx by modifying the method

in part (a). [Again, do not perform the integration.]
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66. Estimate
∫ 10

0
f(x)g′(x) dx if f(x) = x2 and g has the

values in the following table.

x 0 2 4 6 8 10

g(x) 2.3 3.1 4.1 5.5 5.9 6.1

67. Let f be a function with f(0) = 6, f(1) = 5, and
f ′(1) = 2. Evaluate the integral

∫ 1

0
xf ′′(x) dx.

68. Given h(x) = f(x)
√
x and g′(x) = f(x)/

√
x, rewrite

in terms of h(x) and g(x):∫
f ′(x)

√
xdx.

Your answer should not include integrals, f(x), h′(x), or
g′(x).

69. Given that f(7) = 0 and
∫ 7

0
f(x) dx = 5, evaluate∫ 7

0

xf ′(x) dx.

70. Let F (a) be the area under the graph of y = x2e−x be-
tween x = 0 and x = a, for a > 0.

(a) Find a formula for F (a).
(b) Is F an increasing or decreasing function?
(c) Is F concave up or concave down for 0 < a < 2?

71. The concentration, C, in ng/ml, of a drug in the blood
as a function of the time, t, in hours since the drug was
administered is given by C = 15te−0.2t. The area under
the concentration curve is a measure of the overall effect
of the drug on the body, called the bioavailability. Find
the bioavailability of the drug between t = 0 and t = 3.

72. The voltage, V , in an electric circuit is given as a function
of time, t, by

V = V0 cos(ωt+ φ).

Each of the positive constants, V0, ω, φ is increased
(while the other two are held constant). What is the ef-
fect of each increase on the following quantities:

(a) The maximum value of V ?

(b) The maximum value of dV/dt?
(c) The average value of V 2 over one period of V ?

73. During a surge in the demand for electricity, the rate, r,
at which energy is used can be approximated by

r = te−at,

where t is the time in hours and a is a positive constant.

(a) Find the total energy, E, used in the first T hours.
Give your answer as a function of a.

(b) What happens to E as T → ∞?

74. Given h(x) = f(x) ln |x| and g′(x) =
f(x)

x
, rewrite∫

f ′(x) ln |x| dx. in terms of h(x) and g(x).

75. The error function, erf(x), is defined by

erf(x) =
2√
π

∫ x

0

e−t2 dt.

(a) Let u = erf(x). Use integration by parts to write∫
erf(x) dx = uv −

∫
v u′ dx. Give u′ and v′.

(b) Evaluate the integral

∫
v u′ dx from part (a) by

making a substitution w. Give the values of w and
dw.

(c) Use your answers to parts (a) and (b) to find∫
erf(x) dx. Your answer may involve erf(x).

76. The Eulerian logarithmic integral Li(x) is defined2 as

Li(x) =

∫ x

2

1

ln t
dt. Letting u = Li(x) and v = ln x,

use integration by parts to evaluate

∫
Li(x)x−1 dx.

Your answer will involve Li(x).

Strengthen Your Understanding

In Problems 77–79, explain what is wrong with the statement.

77. To integrate
∫
t ln t dt by parts, use u = t, v′ = ln t.

78. The integral
∫
arctan x dx cannot be evaluated using in-

tegration by parts since the integrand is not a product of
two functions.

79. Using integration by parts, we can show that∫
f(x) dx = xf ′(x)−

∫
xf ′(x) dx.

In Problems 80–82, give an example of:

80. An integral using only powers of θ and sin θ which can
be evaluated using integration by parts twice.

81. An integral that requires three applications of integration
by parts.

82. An integral of the form
∫
f(x)g(x)dx that can be eval-

uated using integration by parts either with u = f(x) or
with u = g(x).

2http://en.wikipedia.org/wiki/Logarithmic integral function#Offset logarithmic integral, accessed February 17, 2011.
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In Problems 83–85, decide whether the statements are true or
false. Give an explanation for your answer.

83.
∫
t sin(5− t) dt can be evaluated by parts.

84. The integral
∫
t2e3−t dt can be done by parts.

85. When integrating by parts, it does not matter which factor
we choose for u.

7.3 TABLES OF INTEGRALS

Today, many integrals are done using a CAS. Traditionally, the antiderivatives of commonly used
functions were compiled in a table, such as the one in the back of this book. Other tables include
CRC Standard Mathematical Tables (Boca Raton, Fl: CRC Press). The key to using these tables
is being able to recognize the general class of function that you are trying to integrate, so you can
know in what section of the table to look.
Warning: This section involves long division of polynomials and completing the square. You may
want to review these topics!

Using the Table of Integrals
Part I of the table inside the back cover gives the antiderivatives of the basic functions xn, ax,

lnx, sinx, cosx, and tanx. (The antiderivative for lnx is found using integration by parts and is a
special case of the more general formula III-13.) Most of these are already familiar.

Part II of the table contains antiderivatives of functions involving products of ex, sinx, and
cosx. All of these antiderivatives were obtained using integration by parts.

Example 1 Find
∫

sin 7z sin 3z dz.

Solution Since the integrand is the product of two sines, we should use II-10 in the table,∫
sin 7z sin 3z dz = −

1

40
(7 cos 7z sin 3z − 3 cos 3z sin 7z) + C.

Part III of the table contains antiderivatives for products of a polynomial and ex, sinx, or
cosx. It also has an antiderivative for xn lnx, which can easily be used to find the antiderivatives of
the product of a general polynomial and lnx. Each reduction formula is used repeatedly to reduce
the degree of the polynomial until a zero-degree polynomial is obtained.

Example 2 Find
∫
(x5

+ 2x3 − 8)e3x dx.

Solution Since p(x) = x5 + 2x3 − 8 is a polynomial multiplied by e3x, this is of the form in III-14. Now
p′(x) = 5x4 + 6x2 and p′′(x) = 20x3 + 12x, and so on, giving∫

(x5
+ 2x3 − 8)e3x dx = e3x

(
1

3
(x5

+ 2x3 − 8)−
1

9
(5x4

+ 6x2
) +

1

27
(20x3

+ 12x)

−
1

81
(60x2

+ 12) +
1

243
(120x)−

1

729
· 120

)
+ C.

Here we have the successive derivatives of the original polynomial x5 + 2x3 − 8, occurring with
alternating signs and multiplied by successive powers of 1/3.

Part IV of the table contains reduction formulas for the antiderivatives of cosn x and sin
n x,

which can be obtained by integration by parts. When n is a positive integer, formulas IV-17 and
IV-18 can be used repeatedly to reduce the power n until it is 0 or 1.
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Example 3 Find
∫

sin
6 θ dθ.

Solution Use IV-17 repeatedly: ∫
sin

6 θ dθ = −
1

6
sin

5 θ cos θ +
5

6

∫
sin

4 θ dθ∫
sin

4 θ dθ = −
1

4
sin

3 θ cos θ +
3

4

∫
sin

2 θ dθ∫
sin

2 θ dθ = −
1

2
sin θ cos θ +

1

2

∫
1 dθ.

Calculate
∫
sin

2 θ dθ first, and use this to find
∫
sin

4 θ dθ; then calculate
∫
sin

6 θ dθ. Putting this all
together, we get∫

sin
6 θ dθ = −

1

6
sin

5 θ cos θ −
5

24
sin

3 θ cos θ −
15

48
sin θ cos θ +

15

48
θ + C.

The last item in Part IV of the table is not a formula: it is advice on how to antidifferenti-
ate products of integer powers of sinx and cosx. There are various techniques to choose from,
depending on the nature (odd or even, positive or negative) of the exponents.

Example 4 Find
∫

cos
3 t sin4 t dt.

Solution Here the exponent of cos t is odd, so IV-23 recommends making the substitution w = sin t. Then
dw = cos t dt. To make this work, we’ll have to separate off one of the cosines to be part of
dw. Also, the remaining even power of cos t can be rewritten in terms of sin t by using cos2 t =

1− sin
2 t = 1− w2, so that∫

cos
3 t sin4 t dt =

∫
cos

2 t sin4 t cos t dt

=

∫
(1− w2

)w4 dw =

∫
(w4 − w6

) dw

=
1

5
w5 −

1

7
w7

+ C =
1

5
sin

5 t−
1

7
sin

7 t+ C.

Example 5 Find
∫

cos
2 x sin4 x dx.

Solution In this example, both exponents are even. The advice given in IV-23 is to convert to all sines or all
cosines. We’ll convert to all sines by substituting cos2 x = 1 − sin

2 x, and then we’ll multiply out
the integrand:∫

cos
2 x sin4 x dx =

∫
(1− sin

2 x) sin4 x dx =

∫
sin

4 x dx −

∫
sin

6 x dx.

In Example 3 we found
∫
sin

4 x dx and
∫
sin

6 x dx. Put them together to get∫
cos

2 x sin4 x dx = −
1

4
sin

3 x cosx−
3

8
sinx cosx+

3

8
x

−

(
−
1

6
sin

5 x cos x−
5

24
sin

3 x cos x−
15

48
sinx cosx+

15

48
x

)
+ C

=
1

6
sin

5 x cos x−
1

24
sin

3 x cos x−
3

48
sinx cosx+

3

48
x+ C.
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The last two parts of the table are concerned with quadratic functions: Part V has expressions
with quadratic denominators; Part VI contains square roots of quadratics. The quadratics that ap-
pear in these formulas are of the form x2±a2 or a2−x2, or in factored form (x−a)(x−b), where a
and b are different constants. Quadratics can be converted to these forms by factoring or completing
the square.

Preparing to Use the Table: Transforming the Integrand
To use the integral table, we often need to manipulate or reshape integrands to fit entries in the
table. The manipulations that tend to be useful are factoring, long division, completing the square,
and substitution.

Using Factoring

Example 6 Find
∫

3x+ 7

x2 + 6x+ 8
dx.

Solution In this case we factor the denominator to get it into a form in the table:

x2
+ 6x+ 8 = (x+ 2)(x+ 4).

Now in V-27 we let a = −2, b = −4, c = 3, and d = 7, to obtain∫
3x+ 7

x2 + 6x+ 8
dx =

1

2
(ln |x+ 2| − (−5) ln |x+ 4|) + C.

Long Division

Example 7 Find
∫

x2

x2 + 4
dx.

Solution A good rule of thumb when integrating a rational function whose numerator has a degree greater
than or equal to that of the denominator is to start by doing long division. This results in a polynomial
plus a simpler rational function as a remainder. Performing long division here, we obtain:

x2

x2 + 4
= 1−

4

x2 + 4
.

Then, by V-24 with a = 2, we obtain:∫
x2

x2 + 4
dx =

∫
1 dx− 4

∫
1

x2 + 4
dx = x− 4 ·

1

2
arctan

x

2
+ C.

Completing the Square to Rewrite the Quadratic in the Form w
2 + a

2

Example 8 Find
∫

1

x2 + 6x+ 14
dx.

Solution By completing the square, we can get this integrand into a form in the table:

x2
+ 6x+ 14 = (x2

+ 6x+ 9)− 9 + 14

= (x + 3)
2
+ 5.

Let w = x+ 3. Then dw = dx and so the substitution gives∫
1

x2 + 6x+ 14
dx =

∫
1

w2 + 5
dw =

1
√
5
arctan

w
√
5
+ C =

1
√
5
arctan

x+ 3
√
5

+ C,

where the antidifferentiation uses V-24 with a2 = 5.
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Substitution

Getting an integrand into the right form to use a table of integrals involves substitution and a variety
of algebraic techniques.

Example 9 Find
∫

et sin(5t+ 7) dt.

Solution This looks similar to II-8. To make the correspondence more complete, let’s try the substitution
w = 5t+ 7. Then dw = 5 dt, so dt = 1

5 dw. Also, t = (w − 7)/5. Then the integral becomes∫
et sin(5t+ 7) dt =

∫
e(w−7)/5

sinw
dw

5

=
e−7/5

5

∫
ew/5

sinw dw. (Since e(w−7)/5 = ew/5e−7/5 and e−7/5 is a constant)

Now we can use II-8 with a = 1
5 and b = 1 to write∫

ew/5
sinw dw =

1

(15 )
2 + 12

ew/5

(
sinw

5
− cosw

)
+ C,

so ∫
et sin(5t+ 7) dt =

e−7/5

5

(
25

26
e(5t+7)/5

(
sin(5t+ 7)

5
− cos(5t+ 7)

))
+ C

=
5et

26

(
sin(5t+ 7)

5
− cos(5t+ 7)

)
+ C.

Example 10 Find a substitution w and constants k, n so that the following integral has the form
∫
kwn lnw dw,

found in III-15: ∫
ln(x+ 1) + ln(x − 1)

√
x2 − 1

x dx

Solution First we use properties of ln to simplify the integral:∫
ln(x+ 1) + ln(x− 1)

√
x2 − 1

x dx =

∫
ln((x+ 1)(x− 1))

√
x2 − 1

x dx =

∫
ln(x2 − 1)
√
x2 − 1

x dx.

Let w = x2 − 1, dw = 2x dx, so that x dx = (1/2) dw. Then∫
ln(x2 − 1)
√
x2 − 1

x dx =

∫
w−1/2

lnw
1

2
dw =

∫
1

2
w−1/2

lnw dw,

so k = 1/2, n = −1/2.

Exercises and Problems for Section 7.3
Exercises

For Exercises 1–40, antidifferentiate using the table of inte-
grals. You may need to transform the integrand first.

1.

∫
x5 lnx dx 2.

∫
e−3θ cos θ dθ

3.

∫
x3 sin 5xdx. 4.

∫
(x2 + 3) ln x dx.

5.

∫
(x3 + 5)2 dx. 6.

∫
sinw cos4 wdw

7.

∫
sin4 x dx 8.

∫
x3e2x dx

9.

∫
x2e3x dx 10.

∫
x2ex

3

dx

11.

∫
x4e3x dx 12.

∫
u5 ln(5u) du

13.

∫
1

3 + y2
dy 14.

∫
dx

9x2 + 16
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15.

∫
dx√

25− 16x2
16.

∫
dx√

9x2 + 25

17.

∫
sin 3θ cos 5θ dθ 18.

∫
sin 3θ sin 5θ dθ

19.

∫
1

cos3 x
dx 20.

∫
t2 + 1

t2 − 1
dt

21.

∫
e5x sin 3xdx 22.

∫
cos 2y cos 7y dy

23.

∫
y2 sin 2y dy 24.

∫
x3 sin x2 dx

25.

∫
1

cos4 7x
dx 26.

∫
1

sin3 3θ
dθ

27.

∫
1

sin2 2θ
dθ 28.

∫
1

cos5 x
dx.

29.

∫
1

x2 + 4x+ 3
dx 30.

∫
1

x2 + 4x+ 4
dx

31.

∫
dz

z(z − 3)
32.

∫
dy

4− y2

33.

∫
1

1 + (z + 2)2
dz 34.

∫
1

y2 + 4y + 5
dy

35.

∫
sin3 x dx 36.

∫
tan4 xdx

37.

∫
sinh3 x cosh2 x dx 38.

∫
sinh2 x cosh3 x dx

39.

∫
sin3 3θ cos2 3θ dθ 40.

∫
ze2z

2

cos(2z2) dz

For Exercises 41–50, evaluate the definite integrals. Whenever
possible, use the Fundamental Theorem of Calculus, perhaps
after a substitution. Otherwise, use numerical methods.

41.

∫ π/12

0

sin(3α) dα 42.

∫ π

−π

sin 5x cos 6xdx

43.

∫ 2

1

(x− 2x3) ln xdx 44.

∫ 1

0

√
3− x2 dx

45.

∫ 1

0

1

x2 + 2x+ 1
dx 46.

∫ 1

0

dx

x2 + 2x+ 5

47.

∫ 1/
√

2

0

x√
1− x4

dx 48.

∫ 1

0

(x+ 2)

(x+ 2)2 + 1
dx

49.

∫ π/3

π/4

dx

sin3 x
50.

∫
−1

−3

dx√
x2 + 6x+ 10

Problems

In Problems 51–52, using properties of ln, find a substitution
w and constants k, n so that the integral has the form∫

kwn lnw dw.

51.

∫
(2x+ 1)3 ln(2x+ 1) dx

52.

∫
(2x+ 1)3 ln

1√
2x+ 1

dx

In Problems 53–55, find constants a, b, c,m, n so that the inte-
gral is in one of the following forms from a table of integrals.3

Give the form (i)–(iii) you use.

(i)

∫
dx

ax2 + bx+ c
(ii)

∫
mx+ n

ax2 + bx+ c
dx

(iii)

∫
dx

(ax2 + bx+ c)n
, n > 0

53.

∫
dx

5− x

4
− x2

6

54.

∫
dx

2x+
5

7 + 3x

55.

∫
dx

(x2 − 5x+ 6)3(x2 − 4x+ 4)2(x2 − 6x+ 9)2

In Problems 56–57, find constants a, b, λ so that the integral
has the form found in some tables of integrals:4∫

e2λx

aeλx + b
dx.

56.

∫
e6x

4 + e3x+1
dx 57.

∫
e8x

4e4x + 5e6x
dx

58. According to a table of integrals,5∫
x2ebx dx = ebx

(
x2

b
− 2x

b2
+

2

b3

)
+ C.

(a) Find a substitution w and constant k so that the inte-
gral
∫
x5ebx

2

dx can be rewritten in the form∫
kw2ebw dw.

(b) Evaluate the integral in terms of x. Your answer may
involve the constant b.

59. Show that for all integers m and n, with m �= ±n,∫ π

−π
sinmθ sinnθ dθ = 0.

60. Show that for all integers m and n, with m �= ±n,∫ π

−π
cosmθ cosnθ dθ = 0.

3http://en.wikipedia.org/wiki/List of integrals of rational functions, page accessed February 24, 2010.
4http://en.wikipedia.org/wiki/List of integrals of exponential functions, page accessed May 5, 2010.
5http://en.wikipedia.org/wiki/List of integrals of exponential functions, page accessed February 17, 2011.
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61. The voltage, V , in an electrical outlet is given as a func-
tion of time, t, by the function V = V0 cos (120πt),
where V is in volts and t is in seconds, and V0 is a posi-
tive constant representing the maximum voltage.

(a) What is the average value of the voltage over 1 sec-
ond?

(b) Engineers do not use the average voltage. They
use the root mean square voltage defined by V =√

average of (V 2). Find V in terms of V0. (Take the
average over 1 second.)

(c) The standard voltage in an American house is 110
volts, meaning that V = 110. What is V0?

62. For some constants A and B, the rate of production,
R(t), of oil in a new oil well is modeled by:

R(t) = A+Be−t sin(2πt)

where t is the time in years, A is the equilibrium rate, and
B is the “variability” coefficient.

(a) Find the total amount of oil produced in the first N
years of operation. (Take N to be an integer.)

(b) Find the average amount of oil produced per year
over the first N years (where N is an integer).

(c) From your answer to part (b), find the average
amount of oil produced per year as N → ∞.

(d) Looking at the function R(t), explain how you
might have predicted your answer to part (c) with-
out doing any calculations.

(e) Do you think it is reasonable to expect this model to
hold over a very long period? Why or why not?

Strengthen Your Understanding

In Problems 63–67, explain what is wrong with the statement.

63. The table of integrals cannot be used to find

∫
dt

7− t2
.

64. If a > 0, then
∫
1/(x2 + 4x + a) dx always involves

arctan.

65. By Formula II-8 of the table with a = 1, b = 1,∫
ex sin x dx =

1

2
ex(sin x− cosx) + C.

Therefore∫
e2x+1 sin(2x+ 1) dx =

1

2
e2x+1(sin(2x+ 1)− cos(2x+ 1)) + C.

66. The integral
∫
sin x cosx dx with a = 1, b = 1 is unde-

fined according to Table Formula II-12 since, for a �= b,∫
sin(ax) cos(bx) dx =

1

b2 − a2
(b sin(ax) sin(bx) + a cos(ax) cos(bx)) + C.

67. The table can be used to evaluate
∫
sin x/x dx .

In Problems 68–69, give an example of:

68. An indefinite integral involving a square root that can be
evaluated by first completing a square.

69. An indefinite integral involving sin x that can be evalu-
ated with a reduction formula

In Problems 70–73, decide whether the statements are true or
false. Give an explanation for your answer.

70.
∫
sin7 θ cos6 θ dθ can be written as a polynomial with

cos θ as the variable.

71.
∫
1/(x2 + 4x+ 5) dx involves a natural logarithm.

72.
∫
1/(x2 + 4x− 5) dx involves an arctangent.

73.
∫
x−1((lnx)2+(ln x)3) dx is a polynomial with ln x as

the variable.

7.4 ALGEBRAIC IDENTITIES AND TRIGONOMETRIC SUBSTITUTIONS

Although not all functions have elementary antiderivatives, many do. In this section we introduce
two powerful methods of integration which show that large classes of functions have elementary an-
tiderivatives. The first is the method of partial fractions, which depends on an algebraic identity, and
allows us to integrate rational functions. The second is the method of trigonometric substitutions,
which allows us to handle expressions involving the square root of a quadratic polynomial. Some of
the formulas in the table of integrals can be derived using the techniques of this section.

Method of Partial Fractions
The integral of some rational functions can be obtained by splitting the integrand into partial frac-
tions. For example, to find ∫

1

(x− 2)(x− 5)
dx,
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the integrand is split into partial fractions with denominators (x− 2) and (x− 5). We write

1

(x− 2)(x− 5)
=

A

x− 2
+

B

x− 5
,

where A and B are constants that need to be found. Multiplying by (x−2)(x−5) gives the identity

1 = A(x− 5) +B(x − 2)

so
1 = (A+B)x− 5A− 2B.

Since this equation holds for all x, the constant terms on both sides must be equal.6 Similarly, the
coefficients of x on both sides must be equal. So

−5A− 2B = 1

A+B = 0.

Solving these equations gives A = −1/3, B = 1/3. Thus,

1

(x− 2)(x− 5)
=

−1/3

x− 2
+

1/3

x− 5
.

(Check the answer by writing the right-hand side over the common denominator (x− 2)(x− 5).)

Example 1 Use partial fractions to integrate
∫

1

(x − 2)(x− 5)
dx.

Solution We split the integrand into partial fractions, each of which can be integrated:∫
1

(x− 2)(x− 5)
dx =

∫ (
−1/3

x− 2
+

1/3

x− 5

)
dx = −

1

3
ln |x− 2|+

1

3
ln |x− 5|+ C.

You can check that using formula V-26 in the integral table gives the same result.

This method can be used to derive formulas V-26 and V-27 in the integral table. A similar
method works whenever the denominator of the integrand factors into distinct linear factors and the
numerator has degree less than the denominator.

Example 2 Find
∫

x+ 2

x2 + x
dx.

Solution We factor the denominator and split the integrand into partial fractions:

x+ 2

x2 + x
=

x+ 2

x(x + 1)
=

A

x
+

B

x+ 1
.

Multiplying by x(x+ 1) gives the identity

x+ 2 = A(x + 1) +Bx

= (A+B)x+ A.

Equating constant terms and coefficients of x gives A = 2 and A + B = 1, so B = −1. Then we
split the integrand into two parts and integrate:∫

x+ 2

x2 + x
dx =

∫ (
2

x
−

1

x+ 1

)
dx = 2 ln |x| − ln |x+ 1|+ C.

The next example illustrates what to do if there is a repeated factor in the denominator.

Example 3 Calculate
∫

10x− 2x2

(x − 1)2(x+ 3)
dx using partial fractions of the form

A

x− 1
,

B

(x− 1)2
,

C

x+ 3
.

6We have not shown that the equation holds for x = 2 and x = 5, but these values do not affect the argument.
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Solution We are given that the squared factor, (x− 1)2, leads to partial fractions of the form:

10x− 2x2

(x− 1)2(x+ 3)
=

A

x− 1
+

B

(x − 1)2
+

C

x+ 3
.

Multiplying through by (x− 1)2(x+ 3) gives

10x− 2x2
= A(x − 1)(x+ 3) +B(x+ 3) + C(x− 1)

2

= (A+ C)x2
+ (2A+B − 2C)x− 3A+ 3B + C.

Equating the coefficients of x2 and x and the constant terms, we get the simultaneous equations:

A+ C = −2

2A+B − 2C = 10

−3A+ 3B + C = 0.

Solving gives A = 1, B = 2, C = −3. Thus, we obtain three integrals which can be evaluated:∫
10x− 2x2

(x− 1)2(x+ 3)
dx =

∫ (
1

x− 1
+

2

(x− 1)2
−

3

x+ 3

)
dx

= ln |x− 1| −
2

(x− 1)
− 3 ln |x+ 3|+K.

For the second integral, we use the fact that
∫
2/(x−1)2dx = 2

∫
(x−1)−2dx = −2(x−1)−1+K .

If there is a quadratic in the denominator which cannot be factored, we need an expression of
the form Ax+B in the numerator, as the next example shows.

Example 4 Find
∫

2x2 − x− 1

(x2 + 1)(x− 2)
dx using partial fractions of the form

Ax+B

x2 + 1
and

C

x− 2
.

Solution We are given that the quadratic denominator, (x2 + 1), which cannot be factored further, has a
numerator of the form Ax +B, so we have

2x2 − x− 1

(x2 + 1)(x− 2)
=

Ax +B

x2 + 1
+

C

x− 2
.

Multiplying by (x2 + 1)(x− 2) gives

2x2 − x− 1 = (Ax+B)(x − 2) + C(x2
+ 1)

= (A+ C)x2
+ (B − 2A)x+ C − 2B.

Equating the coefficients of x2 and x and the constant terms gives the simultaneous equations

A+ C = 2

B − 2A = −1

C − 2B = −1.

Solving gives A = B = C = 1, so we rewrite the integral as follows:∫
2x2 − x− 1

(x2 + 1)(x− 2)
dx =

∫ (
x+ 1

x2 + 1
+

1

x− 2

)
dx.
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This identity is useful provided we can perform the integration on the right-hand side. The first
integral can be done if it is split into two; the second integral is similar to those in the previous
examples. We have∫

2x2 − x− 1

(x2 + 1)(x− 2)
dx =

∫
x

x2 + 1
dx+

∫
1

x2 + 1
dx+

∫
1

x− 2
dx.

To calculate
∫
(x/(x2 + 1)) dx, substitute w = x2 + 1, or guess and check. The final result is∫

2x2 − x− 1

(x2 + 1)(x− 2)
dx =

1

2
ln |x2

+ 1|+ arctanx+ ln |x− 2|+K.

The next example shows what to do if the numerator has degree larger than the denominator.

Example 5 Calculate
∫

x3 − 7x2 + 10x+ 1

x2 − 7x+ 10
dx using long division before integrating.

Solution The degree of the numerator is greater than the degree of the denominator, so we divide first:

x3 − 7x2 + 10x+ 1

x2 − 7x+ 10
=

x(x2 − 7x+ 10) + 1

x2 − 7x+ 10
= x+

1

x2 − 7x+ 10
.

The remainder, in this case 1/(x2 − 7x + 10), is a rational function on which we try to use partial
fractions. We have

1

x2 − 7x+ 10
=

1

(x− 2)(x− 5)

so in this case we use the result of Example 1 to obtain∫
x3 − 7x2 + 10x+ 1

x2 − 7x+ 10
dx =

∫ (
x+

1

(x − 2)(x− 5)

)
dx =

x2

2
−
1

3
ln |x−2|+

1

3
ln |x−5|+C.

Many, though not all, rational functions can be integrated by the strategy suggested by the
previous examples.

Strategy for Integrating a Rational Function, P (x)
Q(x)

• If degree of P (x) ≥ degree of Q(x), try long division and the method of partial fractions
on the remainder.

• If Q(x) is the product of distinct linear factors, use partial fractions of the form

A

(x − c)
.

• If Q(x) contains a repeated linear factor, (x− c)n, use partial fractions of the form

A1

(x− c)
+

A2

(x− c)2
+ · · ·+

An

(x − c)n
.

• If Q(x) contains an unfactorable quadratic q(x), try a partial fraction of the form

Ax+B

q(x)
.
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To use this method, we must be able to integrate each partial fraction. We can integrate terms
of the form A/(x− c)n using the power rule (if n > 1) and logarithms (if n = 1). Next we see how
to integrate terms of the form (Ax +B)/q(x), where q(x) is an unfactorable quadratic.

Trigonometric Substitutions
Section 7.1 showed how substitutions could be used to transform complex integrands. Now we see
how substitution of sin θ or tan θ can be used for integrands involving square roots of quadratics or
unfactorable quadratics.

Sine Substitutions

Substitutions involving sin θ make use of the Pythagorean identity, cos2 θ + sin
2 θ = 1, to simplify

an integrand involving
√
a2 − x2.

Example 6 Find
∫

1
√
1− x2

dx using the substitution x = sin θ.

Solution If x = sin θ, then dx = cos θ dθ, and substitution converts 1− x2 to a perfect square:∫
1

√
1− x2

dx =

∫
1√

1− sin
2 θ

cos θ dθ =

∫
cos θ

√
cos2 θ

dθ.

Now either
√
cos2 θ = cos θ or

√
cos2 θ = − cos θ depending on the values taken by θ. If we choose

−π/2 ≤ θ ≤ π/2, then cos θ ≥ 0, so
√
cos2 θ = cos θ. Then∫

cos θ
√
cos2 θ

dθ =

∫
cos θ

cos θ
dθ =

∫
1 dθ = θ + C = arcsinx+ C.

The last step uses the fact that θ = arcsinx if x = sin θ and −π/2 ≤ θ ≤ π/2.

From now on, when we substitute sin θ, we assume that the interval −π/2 ≤ θ ≤ π/2 has been
chosen. Notice that the previous example is the case a = 1 of VI-28 in the table of integrals. The
next example illustrates how to choose the substitution when a �= 1.

Example 7 Use a trigonometric substitution to find
∫

1
√
4− x2

dx.

Solution This time we choose x = 2 sin θ, with −π/2 ≤ θ ≤ π/2, so that 4− x2 becomes a perfect square:√
4− x2 =

√
4− 4 sin

2 θ = 2

√
1− sin

2 θ = 2
√
cos2 θ = 2 cos θ.

Then dx = 2 cos θ dθ, so substitution gives∫
1

√
4− x2

dx =

∫
1

2 cos θ
2 cos θ dθ =

∫
1 dθ = θ + C = arcsin

(x
2

)
+ C.

The general rule for choosing a sine substitution is:

To simplify
√
a2 − x2, for constant a, try x = a sin θ, with −π/2 ≤ θ ≤ π/2.

Notice
√
a2 − x2 is only defined on the interval [−a, a]. Assuming that the domain of the

integrand is [−a, a], the substitution x = a sin θ, with −π/2 ≤ θ ≤ π/2, is valid for all x in the
domain, because its range is [−a, a] and it has an inverse θ = arcsin(x/a) on [−a, a].
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Example 8 Find the area of the ellipse 4x2 + y2 = 9.

Solution Solving for y shows that y =
√
9− 4x2 gives the upper half of the ellipse. From Figure 7.1, we see

that

Area = 4

∫ 3/2

0

√
9− 4x2 dx.

To decide which trigonometric substitution to use, we write the integrand as

√
9− 4x2 = 2

√
9

4
− x2 = 2

√(
3

2

)2

− x2.

This suggests that we should choose x = (3/2) sin θ, so that dx = (3/2) cos θ dθ and

√
9− 4x2 = 2

√(
3

2

)2

−

(
3

2

)2

sin
2 θ = 2

(
3

2

)√
1− sin

2 θ = 3 cos θ.

When x = 0, θ = 0, and when x = 3/2, θ = π/2, so

4

∫ 3/2

0

√
9− 4x2 dx = 4

∫ π/2

0

3 cos θ

(
3

2

)
cos θ dθ = 18

∫ π/2

0

cos
2 θ dθ.

Using Example 6 on page 367 or table of integrals IV-18, we find∫
cos

2 θ dθ =
1

2
cos θ sin θ +

1

2
θ + C.

So we have

Area = 4

∫ 3/2

0

√
9− 4x2 dx =

18

2
(cos θ sin θ + θ)

∣∣∣∣π/2
0

= 9

(
0 +

π

2

)
=

9π

2
.

− 3
2

3
2

y =
√
9− 4x2

y = −√
9− 4x2

x

y

Figure 7.1: The ellipse 4x2 + y2 = 9

In Example 8, we did not return to the original variable x after making the substitution because
we had also converted the limits of the definite integral. However, if we are calculating an indefinite
integral, we have to return to the original variable. In the next example, we see how a triangle
representing the substitution can be useful.

Example 9 Find the indefinite integral
∫ √

9− 4x2 dx corresponding to Example 8.

Solution From Example 8, we know if x = (3/2) sin θ, then∫ √
9− 4x2 dx =

1

2
cos θ sin θ +

1

2
θ + C.

To rewrite the antiderivative in terms of the original variable x, we use the fact that sin θ = 2x/3
to write θ = arcsin(2x/3). To express cos θ in terms of x, we draw the right triangle in Figure 7.2
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with opposite side 2x and hypotenuse 3, so sin θ = 2x/3. Then we use the Pythagorean Theorem
to see that cos θ =

√
9− 4x2/3, so∫ √

9− 4x2 dx =
1

2
cos θ sin θ +

1

2
θ + C

=
1

2
·
2x

3
·

√
9− 4x2

3
+

1

2
arcsin

2x

3
+ C =

x
√
9− 4x2

9
+

1

2
arcsin

2x

3
+ C.

√
9− 4x2

2x
3

θ

Figure 7.2: Triangle with sin θ = 2x/3

Tangent Substitutions

Integrals involving a2+x2 may be simplified by a substitution involving tan θ and the trigonometric
identities tan θ = sin θ/ cos θ and cos2 θ + sin

2 θ = 1.

Example 10 Find
∫

1

x2 + 9
dx using the substitution x = 3 tan θ.

Solution If x = 3 tan θ, then dx = (3/ cos2 θ) dθ, so∫
1

x2 + 9
dx =

∫ (
1

9 tan2 θ + 9

)(
3

cos2 θ

)
dθ =

1

3

∫
1(

sin2 θ
cos2 θ + 1

)
cos2 θ

dθ

=
1

3

∫
1

sin
2 θ + cos2 θ

dθ =
1

3

∫
1 dθ =

1

3
θ + C =

1

3
arctan

(x
3

)
+ C.

To simplify a2 + x2 or
√
a2 + x2, for constant a, try x = a tan θ, with −π/2 < θ < π/2.

Note that a2 + x2 and
√
a2 + x2 are defined on (−∞,∞). Assuming that the domain of the

integrand is (−∞,∞), the substitution x = a tan θ, with −π/2 < θ < π/2, is valid for all x in the
domain, because its range is (−∞,∞) and it has an inverse θ = arctan(x/a) on (−∞,∞).

Example 11 Use a tangent substitution to show that the following two integrals are equal:∫ 1

0

√
1 + x2 dx =

∫ π/4

0

1

cos3 θ
dθ.

What area do these integrals represent?

Solution We put x = tan θ, with −π/2 < θ < π/2, so that dx = (1/ cos2 θ) dθ, and

√
1 + x2 =

√
1 +

sin
2 θ

cos2 θ
=

√
cos2 θ + sin

2 θ

cos2 θ
=

1

cos θ
.

When x = 0, θ = 0, and when x = 1, θ = π/4, so∫ 1

0

√
1 + x2 dx =

∫ π/4

0

(
1

cos θ

)(
1

cos2 θ

)
dθ =

∫ π/4

0

1

cos3 θ
dθ.
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1

y =
√
1 + x2

y = −√
1 + x2

x

y

Figure 7.3: The hyperbola y2 − x2 = 1

The integral
∫ 1
0

√
1 + x2 dx represents the area under the hyperbola y2 − x2 = 1 in Figure 7.3.

Completing the Square to Use a Trigonometric Substitution

To make a trigonometric substitution, we may first need to complete the square.

Example 12 Find
∫

3
√
2x− x2

dx.

Solution To use a sine or tangent substitution, the expression under the square root sign should be in the form
a2 + x2 or a2 − x2. Completing the square, we get

2x− x2
= 1− (x− 1)

2.

This suggests we substitute x− 1 = sin θ, or x = sin θ + 1. Then dx = cos θ dθ, and∫
3

√
2x− x2

dx =

∫
3√

1− (x − 1)2
dx =

∫
3√

1− sin
2 θ

cos θ dθ

=

∫
3

cos θ
cos θ dθ =

∫
3 dθ = 3θ + C.

Since x− 1 = sin θ, we have θ = arcsin(x− 1), so∫
3

√
2x− x2

dx = 3 arcsin(x− 1) + C.

Example 13 Find
∫

1

x2 + x+ 1
dx.

Solution Completing the square, we get

x2
+ x+ 1 =

(
x+

1

2

)2

+
3

4
=

(
x+

1

2

)2

+

(√
3

2

)2

.

This suggests we substitute x + 1/2 = (
√
3/2) tan θ, or x = −1/2 + (

√
3/2) tan θ. Then dx =

(
√
3/2)(1/ cos2 θ) dθ, so∫

1

x2 + x+ 1
dx =

∫ (
1

(x + 1
2 )

2 + 3
4

)(√
3

2

1

cos2 θ

)
dθ

=

√
3

2

∫ (
1

3
4 tan

2 θ + 3
4

)(
1

cos2 θ

)
dθ =

2
√
3

∫
1

(tan2 θ + 1) cos2 θ
dθ

=
2
√
3

∫
1

sin
2 θ + cos2 θ

dθ =
2
√
3

∫
1 dθ =

2
√
3
θ + C.
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Since x+ 1/2 = (
√
3/2) tan θ, we have θ = arctan((2/

√
3)x+ 1/

√
3), so∫

1

x2 + x+ 1
dx =

2
√
3
arctan

(
2
√
3
x+

1
√
3

)
+ C.

Alternatively, using a computer algebra system gives7

2 tan
−1

(
2x+ 1
√
3

)
√
3

,

essentially the same as we obtained by hand. You can check either answer by differentiation.

Exercises and Problems for Section 7.4
Exercises

Split the functions in Exercises 1–7 into partial fractions.

1.
x+ 1

6x+ x2
2.

20

25− x2

3.
1

w4 − w3
4.

2y

y3 − y2 + y − 1

5.
8

y3 − 4y
6.

2(1 + s)

s(s2 + 3s + 2)

7.
2

s4 − 1

In Exercises 8–14, find the antiderivative of the function in the
given exercise.

8. Exercise 1 9. Exercise 2

10. Exercise 3 11. Exercise 4

12. Exercise 5 13. Exercise 6

14. Exercise 7

In Exercises 15–19, evaluate the integral.

15.

∫
3x2 − 8x+ 1

x3 − 4x2 + x+ 6
dx; use

A

x− 2
+

B

x+ 1
+

C

x− 3
.

16.

∫
dx

x3 − x2
; use

A

x
+

B

x2
+

C

x− 1
.

17.

∫
10x+ 2

x3 − 5x2 + x− 5
dx; use

A

x− 5
+

Bx+ C

x2 + 1
.

18.

∫
x4 + 12x3 + 15x2 + 25x+ 11

x3 + 12x2 + 11x
dx;

use division and
A

x
+

B

x+ 1
+

C

x+ 11
.

19.

∫
x4 + 3x3 + 2x2 + 1

x2 + 3x+ 2
dx; use division.

In Exercises 20–22, use the substitution to find the integral.

20.

∫
1√

9− 4x2
dx, x =

3

2
sin t

21.

∫
1√

4x− 3− x2
dx, x = sin t+ 2

22.

∫
1

x2 + 4x+ 5
dx, x = tan t− 2

23. Which of the following integrals are best done by a
trigonometric substitution, and what substitution?

(a)

∫ √
9− x2 dx (b)

∫
x
√

9− x2 dx

24. Give a substitution (not necessarily trigonometric) which
could be used to compute the following integrals:

(a)

∫
x√

x2 + 10
dx (b)

∫
1√

x2 + 10
dx

Problems

25. Find a value of k and a substitution w such that∫
12x− 2

(3x+ 2)(x− 1)
dx = k

∫
dw

w
.

26. Find values of A and B such that∫
12x− 2

(3x+ 2)(x− 1)
dx =

∫
Adx

3x+ 2
+

∫
B dx

x− 1
.

7wolframalpha.com, January 11, 2011.
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27. Write the integral

∫
2x+ 9

(3x+ 5)(4− 5x)
dx in the form∫

cx+ d

(x− a)(x− b)
dx. Give the values of a, b, c, d. You

need not evaluate the integral.

28. Write the integral

∫
dx√

12− 4x2
in the form∫

k dx√
a2 − x2

. Give the values of the positive constants

a and k. You need not evaluate the integral.

29. Using the fact that e2x = (ex)2, write the integral∫ ln 7

0

2ex + 1

e2x − 4ex + 3
· ex dx

in the form ∫ s

r

(
A

w − 3
+

B

w − 1

)
dw.

State the values of A,B,w, dw, r, s. (Note that r and s
are values of w, not x.) You need not evaluate the inte-
gral.

30. (a) Evaluate

∫
3x+ 6

x2 + 3x
dx by partial fractions.

(b) Show that your answer to part (a) agrees with the
answer you get by using the integral tables.

Complete the square and give a substitution (not necessarily
trigonometric) which could be used to compute the integrals
in Problems 31–38.

31.

∫
1

x2 + 2x+ 2
dx 32.

∫
1

x2 + 6x+ 25
dx

33.

∫
dy

y2 + 3y + 3
34.

∫
x+ 1

x2 + 2x+ 2
dx

35.

∫
4√

2z − z2
dz 36.

∫
z − 1√
2z − z2

dz

37.

∫
(t+ 2) sin(t2 + 4t+ 7) dt

38.

∫
(2− θ) cos(θ2 − 4θ)dθ

Calculate the integrals in Problems 39–54.

39.

∫
1

(x− 5)(x− 3)
dx 40.

∫
1

(x+ 2)(x+ 3)
dx

41.

∫
1

(x+ 7)(x− 2)
dx 42.

∫
x

x2 − 3x+ 2
dx

43.

∫
dz

z2 + z
44.

∫
dx

x2 + 5x+ 4

45.

∫
dP

3P − 3P 2
46.

∫
3x+ 1

x2 − 3x+ 2
dx

47.

∫
y + 2

2y2 + 3y + 1
dy 48.

∫
x+ 1

x3 + x
dx

49.

∫
x− 2

x2 + x4
dx 50.

∫
y2

25 + y2
dy

51.

∫
dz

(4− z2)3/2
52.

∫
10

(s+ 2)(s2 + 1)
ds

53.

∫
1

x2 + 4x+ 13
dx 54.

∫
ex dx

(ex − 1)(ex + 2)

In Problems 55–64, evaluate the indefinite integral, using a
trigonometric substitution and a triangle to express the answer
in terms of x. Assume −π/2 ≤ θ ≤ π/2.

55.

∫
1

x2
√
1 + x2

dx 56.

∫
x2

√
9− x2

dx

57.

∫ √
1− 4x2

x2
dx 58.

∫ √
25− 9x2

x
dx

59.

∫
1

x
√
9− 4x2

dx 60.

∫
1

x
√
1 + 16x2

dx

61.

∫
1

x2
√
4− x2

dx 62.

∫
1

(25 + 4x2)3/2
dx

63.

∫
1

(16− x2)3/2
dx 64.

∫
x2

(1 + 9x2)3/2
dx

Find the exact area of the regions in Problems 65–70.

65. Bounded by y = 3x/((x − 1)(x − 4)), y = 0, x = 2,
x = 3.

66. Bounded by y = (3x2 + x)/((x2 + 1)(x+ 1)),
y = 0, x = 0, x = 1.

67. Bounded by y = x2/
√
1− x2, y = 0, x = 0, x = 1/2.

68. Bounded by y = x3/
√
4− x2, y = 0, x = 0, x =

√
2.

69. Bounded by y = 1/
√
x2 + 9, y = 0, x = 0, x = 3.

70. Bounded by y = 1/(x
√
x2 + 9),

y = 0, x =
√
3, x = 3.

Calculate the integrals in Problems 71–73 by partial fractions
and then by using the indicated substitution. Show that the
results you get are the same.

71.

∫
dx

1− x2
; substitution x = sin θ.

72.

∫
2x

x2 − 1
dx; substitution w = x2 − 1.
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73.

∫
3x2 + 1

x3 + x
dx; substitution w = x3 + x.

74. (a) Show

∫
1

sin2 θ
dθ = − 1

tan θ
+ C.

(b) Calculate

∫
dy

y2
√

5− y2
.

Solve Problems 75–77 without using integral tables.

75. Calculate the integral

∫
1

(x− a)(x− b)
dx for

(a) a �= b (b) a = b

76. Calculate the integral

∫
x

(x− a)(x− b)
dx for

(a) a �= b (b) a = b

77. Calculate the integral

∫
1

x2 − a
dx for

(a) a > 0 (b) a = 0 (c) a < 0

78. A rumor is spread in a school. For 0 < a < 1 and b > 0,
the time t at which a fraction p of the school population
has heard the rumor is given by

t(p) =

∫ p

a

b

x(1− x)
dx.

(a) Evaluate the integral to find an explicit formula for
t(p). Write your answer so it has only one ln term.

(b) At time t = 0 one percent of the school population
(p = 0.01) has heard the rumor. What is a?

(c) At time t = 1 half the school population (p = 0.5)
has heard the rumor. What is b?

(d) At what time has 90% of the school population
(p = 0.9) heard the rumor?

79. The Law of Mass Action tells us that the time, T , taken
by a chemical to create a quantity x0 of the product (in
molecules) is given by

T =

∫ x0

0

k dx

(a− x)(b− x)

where a and b are initial quantities of the two ingredients
used to make the product, and k is a positive constant.
Suppose 0 < a < b.

(a) Find the time taken to make a quantity x0 = a/2 of
the product.

(b) What happens to T as x0 → a?

80. The moment-generating function, m(t), which gives use-
ful information about the normal distribution of statistics,
is defined by

m(t) =

∫
∞

−∞

etx
e−x2/2

√
2π

dx.

Find a formula for m(t). [Hint: Complete the square and

use the fact that
∫

∞

−∞
e−x2/2 dx =

√
2π.]

Strengthen Your Understanding

In Problems 81–82, explain what is wrong with the statement.

81. To integrate ∫
1

(x− 1)2(x− 2)
dx

using a partial fraction decomposition, let

1

(x− 1)2(x− 2)
=

A

(x− 1)2
+

B

x− 2
.

82. Use the substitution x = 2 sin θ to integrate the follow-
ing integral: ∫

1

(x2 + 4)3/2
dx.

In Problems 83–86, give an example of:

83. A rational function whose antiderivative is not a rational
function.

84. An integral whose evaluation requires factoring a cubic.

85. A linear polynomial P (x) and a quadratic polynomial
Q(x) such that the rational function P (x)/Q(x) does
not have a partial fraction decomposition of the form

P (x)

Q(x)
=

A

x− r
+

B

x− s

for some constants A, B, r, and s.

86. An integral that can be made easier to evaluate by using
the trigonometric substitution x = 3

2
sin θ.

In Problems 87–88, decide whether the statements are true or
false. Give an explanation for your answer.

87. The integral

∫
1√

9− t2
dt can be made easier to evalu-

ate by using the substitution t = 3 tan θ.

88. To calculate

∫
1

x3 + x2
dx, we can split the integrand

into ∫ (
A

x
+

B

x2
+

C

x+ 1

)
dx

For Problems 89–90, which technique is useful in evaluating
the integral?

(a) Integration by parts (b) Partial fractions
(c) Long division (d) Completing the square
(e) A trig substitution (f) Other substitutions

89.

∫
x2

√
1− x2

dx 90.

∫
x2

1− x2
dx
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7.5 NUMERICAL METHODS FOR DEFINITE INTEGRALS

Many functions do not have elementary antiderivatives. To evaluate the definite integrals of such
functions, we cannot use the Fundamental Theorem; we must use numerical methods. We know
how to approximate a definite integral numerically using left- and right-hand Riemann sums; in this
section, we introduce more accurate methods.

The Midpoint Rule
In the left- and right-hand Riemann sums, the heights of the rectangles are found using the left-hand
or right-hand endpoints, respectively, of the subintervals. For the midpoint rule, we use the midpoint
of each of the subintervals.

For example, in approximating
∫ 2
1
f(x) dx by a Riemann sum with two subdivisions, we first

divide the interval 1 ≤ x ≤ 2 into two pieces. The midpoint of the first subinterval is 1.25 and
the midpoint of the second is 1.75. The heights of the two rectangles are f(1.25) and f(1.75),
respectively. (See Figure 7.4.) The Riemann sum is

f(1.25)0.5 + f(1.75)0.5.

Figure 7.4 shows that evaluating f at the midpoint of each subdivision often gives a better approxi-
mation to the area under the curve than evaluating f at either end.

x
1 1.25 1.75 2

�

�

f(1.25)

�

�

f(1.75)

��0.5

��0.5 f(x)

Figure 7.4: Midpoint rule with two subdivisions

Thus, we have three ways of estimating an integral using a Riemann sum:

1. The left rule uses the left endpoint of each subinterval.

2. The right rule uses the right endpoint of each subinterval.

3. The midpoint rule uses the midpoint of each subinterval.

We write LEFT(n), RIGHT(n), and MID(n) to denote the results obtained by using these
rules with n subdivisions.

Example 1 For
∫ 2

1

1

x
dx, compute LEFT(2), RIGHT(2) and MID(2), and compare your answers with the

exact value of the integral.

Solution For n = 2 subdivisions of the interval [1, 2], we use Δx = 0.5. Then, to four decimal places,

LEFT(2) = f(1)(0.5) + f(1.5)(0.5) =
1

1
(0.5) +

1

1.5
(0.5) = 0.8333

RIGHT(2) = f(1.5)(0.5) + f(2)(0.5) =
1

1.5
(0.5) +

1

2
(0.5) = 0.5833

MID(2) = f(1.25)(0.5) + f(1.75)(0.5) =
1

1.25
(0.5) +

1

1.75
(0.5) = 0.6857.
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1 2
x

f(x) = 1
x

(a)

Left rule

�

Right rule

�

1 2
x

f(x) = 1
x

Midpoint rule

�

(b)

1 2
x

f(x) = 1
x

(c)

Trapezoid rule

�

Figure 7.5: Left, right, midpoint, and trapezoid approximations to
∫ 2

1
1
x
dx

All three Riemann sums in this example are approximating∫ 2

1

1

x
dx = lnx

∣∣∣∣2
1

= ln 2− ln 1 = ln 2 = 0.6931.

With only two subdivisions, the left and right rules give quite poor approximations but the midpoint
rule is already fairly close to the exact answer. Figures 7.5(a) and (b) show that the midpoint rule
is more accurate than the left and right rules because the error to the left of the midpoint tends to
cancel the error to the right of the midpoint.

The Trapezoid Rule
We have just seen how the midpoint rule can have the effect of balancing out the errors of the left
and right rules. Another way of balancing these errors is to average the results from the left and
right rules. This approximation is called the trapezoid rule:

TRAP(n) =
LEFT(n) + RIGHT(n)

2
.

The trapezoid rule averages the values of f at the left and right endpoints of each subinterval and
multiplies byΔx. This is the same as approximating the area under the graph of f in each subinterval
by a trapezoid (see Figure 7.6).

x0 x1

f(x0) f(x1)

Area = f(x0)+f(x1)
2

Δx

f(x)

�

x

� �Δx

Figure 7.6: Area used in the trapezoid rule

Example 2 For
∫ 2

1

1

x
dx, compare the trapezoid rule with two subdivisions with the left, right, and midpoint

rules.

Solution In the previous example we got LEFT(2) = 0.8333 and RIGHT(2) = 0.5833. The trapezoid rule
is the average of these, so TRAP(2) = 0.7083. (See Figure 7.5(c).) The exact value of the integral
is 0.6931, so the trapezoid rule is better than the left or right rules. The midpoint rule is still the best,
however, since MID(2) = 0.6857.
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Is the Approximation an Over- or Underestimate?
It is useful to know when a rule is producing an overestimate and when it is producing an underes-
timate. In Chapter 5 we saw that if the integrand is increasing, the left rule underestimates and the
right rule overestimates the integral. If the integrand is decreasing, the roles reverse. Now we see
how concavity relates to the errors in the trapezoid and midpoint rules.

The Trapezoid Rule

If the graph of the function is concave down on [a, b], then each trapezoid lies below the graph and
the trapezoid rule underestimates. If the graph is concave up on [a, b], the trapezoid rule overesti-
mates. (See Figure 7.7.)

f concave down:
Trapezoid underestimates

f concave up:
Trapezoid overestimates

Figure 7.7: Error in the trapezoid rule

The Midpoint Rule
To understand the relationship between the midpoint rule and concavity, take a rectangle whose top
intersects the curve at the midpoint of a subinterval. Draw a tangent to the curve at the midpoint;
this gives a trapezoid. See Figure 7.8. (This is not the same trapezoid as in the trapezoid rule.)
The midpoint rectangle and the new trapezoid have the same area, because the shaded triangles in
Figure 7.8 are congruent. Hence, if the graph of the function is concave down, the midpoint rule
overestimates; if the graph is concave up, the midpoint rule underestimates. (See Figure 7.9.)

If the graph of f is concave down on [a, b], then

TRAP(n) ≤

∫ b

a

f(x) dx ≤ MID(n).

If the graph of f is concave up on [a, b], then

MID(n) ≤

∫ b

a

f(x) dx ≤ TRAP(n).

Figure 7.8: Midpoint rectangle and
trapezoid with same area

f concave down:
Midpoint overestimates

f concave up:
Midpoint underestimates

Figure 7.9: Error in the midpoint rule

When we compute an approximation, we are always concerned about the error, namely the
difference between the exact answer and the approximation. We usually do not know the exact
error; if we did, we would also know the exact answer. We take

Error = Actual value − Approximate value.
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The errors for some methods are much smaller than those for others. In general, the midpoint and
trapezoid rules are more accurate than the left or right rules. Comparing the errors in the midpoint
and trapezoid rules suggests an even better method, called Simpson’s rule.

Error in Left and Right Rules

We work with the example
∫ 2
1 (1/x) dx because we know the exact value of this integral (ln 2) and

we can investigate the behavior of the errors.
Let us see what happens to the error in the left and right rules as we increase n. The results

are in Table 7.1. A positive error indicates that the Riemann sum is less than the exact value, ln 2.
Notice that the errors for the left and right rules have opposite signs but are approximately equal in
magnitude. (See Figure 7.10.) This leads us to want to average the left and right rules; this average
is the trapezoid rule.

Table 7.1 Errors for the left and right rule
approximation to

∫ 2
1

1
x dx = ln 2 ≈ 0.6931471806

n
Error in
left rule

Error in
right rule

2 −0.1402 0.1098

10 −0.0256 0.0244

50 −0.0050 0.0050

250 −0.0010 0.0010

Right rule
underestimate

� Left rule
overestimate

�

f(x) = 1
x

Figure 7.10: Errors in left and right sums

There is another pattern to the errors in Table 7.1. If we compute the ratio of the errors in
Table 7.2, we see that the error8 in both the left and right rules decreases by a factor of about 5 as n
increases by a factor of 5.

There is nothing special about the number 5; the same holds for any factor. To get one extra
digit of accuracy in any calculation, we must make the error 1/10 as big, so we must increase n by
a factor of 10. In fact, for the left or right rules, each extra digit of accuracy requires about 10 times
the work.

Table 7.2 Ratio of the errors as n increases for
∫ 2
1

1
x dx

Ratio of errors
in left rule

Ratio of errors
in right rule

Error(2)
/

Error(10) 5.47 4.51

Error(10)
/

Error(50) 5.10 4.90

Error(50)
/

Error(250) 5.02 4.98

Error in Trapezoid and Midpoint Rules
Table 7.3 shows that the trapezoid and midpoint rules generally produce better approximations to∫ 2
1
(1/x) dx than the left and right rules.

Again there is a pattern to the errors. For each n, the midpoint rule is noticeably better than the
trapezoid rule; the error for the midpoint rule, in absolute value, seems to be about half the error of
the trapezoid rule. To see why, compare the shaded areas in Figure 7.11. Also, notice in Table 7.3
that the errors for the two rules have opposite signs; this is due to concavity.

8The values in Table 7.1 are rounded to 4 decimal places; those in Table 7.2 were computed using more decimal places
and then rounded.
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Table 7.3 The errors for the trapezoid
and midpoint rules for

∫ 2
1

1
x dx

n
Error in
trapezoid rule

Error in
midpoint rule

2 −0.0152 0.0074

10 −0.00062 0.00031

50 −0.0000250 0.0000125

250 −0.0000010 0.0000005

Midpoint
error

�
Trapezoid
error

�

f(x) = 1
x

Figure 7.11: Errors in the midpoint and
trapezoid rules

We are interested in how the errors behave as n increases. Table 7.4 gives the ratios of the
errors for each rule. For each rule, we see that as n increases by a factor of 5, the error decreases
by a factor of about 25 = 52. In fact, it can be shown that this squaring relationship holds for any
factor, so increasing n by a factor of 10 will decrease the error by a factor of about 100 = 102.
Reducing the error by a factor of 100 is equivalent to adding two more decimal places of accuracy
to the result. In other words: In the trapezoid or midpoint rules, each extra 2 digits of accuracy
requires about 10 times the work.

Table 7.4 Ratios of the errors as n increases for
∫ 2
1

1
x dx

Ratio of errors in
trapezoid rule

Ratio of errors in
midpoint rule

Error(2)
/

Error(10) 24.33 23.84

Error(10)
/

Error(50) 24.97 24.95

Error(50)
/

Error(250) 25.00 25.00

Simpson’s Rule
Observing that the trapezoid error has the opposite sign and about twice the magnitude of the mid-
point error, we may guess that a weighted average of the two rules, with the midpoint rule weighted
twice the trapezoid rule, has a smaller error. This approximation is called Simpson’s rule9:

SIMP(n) =
2 ·MID(n) + TRAP(n)

3
.

Table 7.5 gives the errors for Simpson’s rule. Notice how much smaller the errors are than the
previous errors. Of course, it is a little unfair to compare Simpson’s rule at n = 50, say, with the
previous rules, because Simpson’s rule must compute the value of f at both the midpoint and the
endpoints of each subinterval and hence involves evaluating the function at twice as many points.

We see in Table 7.5 that as n increases by a factor of 5, the errors decrease by a factor of about
600, or about 54. Again this behavior holds for any factor, so increasing n by a factor of 10 decreases
the error by a factor of about 104. In other words: In Simpson’s rule, each extra 4 digits of accuracy
requires about 10 times the work.

Table 7.5 The errors for Simpson’s
rule and the ratios of the errors

n Error Ratio

2 −0.0001067877

10 −0.0000001940
550.15

50 −0.0000000003
632.27

9Some books and computer programs use slightly different terminology for Simpson’s rule; what we call n = 50, they
call n = 100.
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Alternate Approach to Numerical Integration: Approximating by Lines and Parabolas
These rules for numerical integration can be obtained by approximating f(x) on subintervals by a
function:
• The left and right rules use constant functions.

• The trapezoid and midpoint rules use linear functions.

• Simpson’s rule uses quadratic functions.
Problems 36 and 37 on page 394 show how a quadratic approximation leads to Simpson’s rule.

Exercises and Problems for Section 7.5
Exercises

In Exercises 1–6, sketch the area given by the following ap-
proximations to

∫ b

a
f(x)dx. Identify each approximation as

an overestimate or an underestimate.

(a) LEFT(2) (b) RIGHT(2)
(c) TRAP(2) (d) MID(2)

1.

a b
x

f(x)
2.

a b
x

f(x)

3.

a b
x

f(x) 4.

a b
x

f(x)

5. a b

f(x)

x
6. a b

f(x)

x

7. Calculate the following approximations to
∫ 6

0
x2dx.

(a) LEFT(2) (b) RIGHT(2)

(c) TRAP(2) (d) MID(2)

8. (a) Find LEFT(2) and RIGHT(2) for
∫ 4

0
(x2 + 1) dx.

(b) Illustrate your answers to part (a) graphically. Is each
approximation an underestimate or overestimate?

9. (a) Find MID(2) and TRAP(2) for
∫ 4

0
(x2 + 1) dx.

(b) Illustrate your answers to part (a) graphically. Is each
approximation an underestimate or overestimate?

10. Calculate the following approximations to
∫ π

0
sin θ dθ.

(a) LEFT(2) (b) RIGHT(2)

(c) TRAP(2) (d) MID(2)

Problems

11. Use Table 7.6 to estimate
∫ 2

1
g(t)dt by MID(5).

Table 7.6

t 1.0 1.1 1.2 1.3 1.4 1.5

g(t) −2.1 −2.9 −3.4 −3.7 −3.6 −3.2

t 1.6 1.7 1.8 1.9 2.0 2.1

g(t) −2.5 −1.7 −0.7 0.5 2.1 4.1

12. Compute MID(4) for the integral
∫ 2

0
f(x) dx using the

values in Table 7.7.

Table 7.7

x 0 0.25 0.50 0.75 1.00 1.25

f(x) 2.3 5.8 7.8 9.3 10.3 10.8

x 1.50 1.75 2.00 2.25 2.50 2.75

f(x) 10.8 10.3 9.3 7.8 5.8 3.3

In Problems 13–14, compute approximations to
∫ 3

2
(1/x2) dx.

13. TRAP(2) 14. MID(2)

15. (a) Estimate
∫ 1

0
1/(1 + x2) dx by subdividing the in-

terval into eight parts using:

(i) the left Riemann sum

(ii) the right Riemann sum

(iii) the trapezoidal rule

(b) Since the exact value of the integral is π/4, you can
estimate the value of π using part (a). Explain why
your first estimate is too large and your second esti-
mate too small.

16. Using the table, estimate the total distance traveled from
time t = 0 to time t = 6 using LEFT, RIGHT, and
TRAP.

Time, t 0 1 2 3 4 5 6

Velocity, v 3 4 5 4 7 8 11



7.5 NUMERICAL METHODS FOR DEFINITE INTEGRALS 393

17. Using Figure 7.12, order the following approximations to
the integral

∫ 3

0
f(x)dx and its exact value from smallest

to largest:
LEFT(n), RIGHT(n), MID(n), TRAP(n), Exact value.

3

f(x)

0
x

Figure 7.12

18. The results from the left, right, trapezoid, and midpoint
rules used to approximate

∫ 1

0
g(t)dt, with the same num-

ber of subdivisions for each rule, are as follows:
0.601, 0.632, 0.633, 0.664.

(a) Using Figure 7.13, match each rule with its approx-
imation.

(b) Between which two consecutive approximations
does the true value of the integral lie?

1
t

g(t)

Figure 7.13

In Problems 19–22, decide which approximation—left, right,
trapezoid, or midpoint—is guaranteed to give an overestimate
for
∫ 5

0
f(x) dx, and which is guaranteed to give an underesti-

mate. (There may be more than one.)

19.

5

f(x)

x

20.

5

f(x)

x

21.

5

f(x)

x

22.

5

f(x)

x

23. Consider the integral
∫ 4

0
3
√
xdx.

(a) Estimate the value of the integral using MID(2).
(b) Use the Fundamental Theorem of Calculus to find

the exact value of the definite integral.
(c) What is the error for MID(2)?
(d) Use your knowledge of how errors change and your

answer to part (c) to estimate the error for MID(20).
(e) Use your answer to part (d) to estimate the approxi-

mation MID(20).

24. Using a fixed number of subdivisions, we approximate
the integrals of f and g on the interval in Figure 7.14.

(a) For which function, f or g, is LEFT more accurate?
RIGHT? Explain.

(b) For which function, f or g, is TRAP more accurate?
MID? Explain.

f(x)

g(x)
x

Figure 7.14

25. (a) Values for f(x) are in the table. Which of the four
approximation methods in this section is most likely
to give the best estimate of

∫ 12

0
f(x) dx? Estimate

the integral using this method.
(b) Assume f(x) is continuous with no critical points or

points of inflection on the interval 0 ≤ x ≤ 12. Is
the estimate found in part (a) an over- or underesti-
mate? Explain.

x 0 3 6 9 12

f(x) 100 97 90 78 55

26. (a) Find the exact value of
∫ 2π

0
sin θ dθ.

(b) Explain, using pictures, why the MID(1) and
MID(2) approximations to this integral give the ex-
act value.

(c) Does MID(3) give the exact value of this integral?
How about MID(n)? Explain.

27. To investigate the relationship between the integrand and
the errors in the left and right rules, imagine integrating a
linear function. For one subinterval of integration, sketch
lines with small f ′ and large f ′. How do the errors com-
pare?

28. To investigate the relationship between the integrand and
the errors in the midpoint and trapezoid rules, imagine an
integrand whose graph is concave down over one subin-
terval of integration. Sketch graphs where f ′′ has small
magnitude and where f ′′ has large magnitude. How do
the errors compare?
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29. (a) Show geometrically why
∫ 1

0

√
2− x2 dx = π

4
+ 1

2
.

[Hint: Break up the area under y =
√
2− x2 from

x = 0 to x = 1 into two pieces: a sector of a circle
and a right triangle.]

(b) Approximate
∫ 1

0

√
2− x2 dx for n = 5 using the

left, right, trapezoid, and midpoint rules. Compute
the error in each case using the answer to part (a),
and compare the errors.

30. The width, in feet, at various points along the fairway of
a hole on a golf course is given in Figure 7.15. If one
pound of fertilizer covers 200 square feet, estimate the
amount of fertilizer needed to fertilize the fairway.

0110105100
100

105110
95

85

�
80

0

10009008007006005004003002001000

Figure 7.15

Problems 31–35 involve approximating
∫ b

a
f(x) dx.

31. Show RIGHT(n) = LEFT(n) + f(b)Δx− f(a)Δx.

32. Show TRAP(n) = LEFT(n) + 1
2
(f(b)− f(a))Δx.

33. Show LEFT(2n) = 1
2
(LEFT(n) + MID(n)) .

34. Check that the equations in Problems 31 and 32 hold for∫ 2

1
(1/x) dx when n = 10.

35. Suppose that a = 2, b = 5, f(2) = 13, f(5) = 21
and that LEFT(10) = 3.156 and MID(10) = 3.242.
Use Problems 31–33 to compute RIGHT(10), TRAP(10),
LEFT(20), RIGHT(20), and TRAP(20).

Problems 36–37 show how Simpson’s rule can be obtained by
approximating the integrand, f , by quadratic functions.

36. Suppose that a < b and that m is the midpoint m =
(a+ b)/2. Let h = b − a. The purpose of this problem
is to show that if f is a quadratic function, then

∫ b

a

f(x) dx =
h

3

(
f(a)

2
+ 2f(m) +

f(b)

2

)
.

(a) Show that this equation holds for the functions
f(x) = 1, f(x) = x, and f(x) = x2.

(b) Use part (a) and the properties of the integral on
page 300 to show that the equation holds for any
quadratic function, f(x) = Ax2 +Bx+C.

37. Consider the following method for approximating∫ b

a
f(x) dx. Divide the interval [a, b] into n equal

subintervals. On each subinterval approximate f by a
quadratic function that agrees with f at both endpoints
and at the midpoint of the subinterval.

(a) Explain why the integral of f on the subinterval
[xi, xi+1] is approximately equal to the expression

h

3

(
f(xi)

2
+ 2f(mi) +

f(xi+1)

2

)
,

where mi is the midpoint of the subinterval, mi =
(xi + xi+1)/2. (See Problem 36.)

(b) Show that if we add up these approximations for
each subinterval, we get Simpson’s rule:

∫ b

a

f(x)dx ≈ 2 ·MID(n) + TRAP(n)

3
.

Strengthen Your Understanding

In Problems 38–41, explain what is wrong with the statement.

38. The midpoint rule never gives the exact value of a defi-
nite integral.

39. TRAP(n) → 0 as n → ∞.

40. For any integral, TRAP(n) ≥ MID(n).

41. If, for a certain integral, it takes 3 nanoseconds to im-
prove the accuracy of TRAP from one digit to three dig-
its, then it also takes 3 nanoseconds to improve the accu-
racy from 8 digits to 10 digits.

In Problems 42–43, give an example of:

42. A continuous function f(x) on the interval [0, 1] such
that RIGHT(10) <

∫ 1

0
f(x)dx < MID(10).

43. A continuous function f(x) on the interval [0, 10] such
that TRAP(40) > TRAP(80).

In Problems 44–45, decide whether the statements are true or
false. Give an explanation for your answer.

44. The midpoint rule approximation to
∫ 1

0
(y2 − 1) dy is

always smaller than the exact value of the integral.

45. The trapezoid rule approximation is never exact.

The left and right Riemann sums of a function f on the in-
terval [2, 6] are denoted by LEFT(n) and RIGHT(n), respec-
tively, when the interval is divided into n equal parts. In Prob-
lems 46–56, decide whether the statements are true for all con-
tinuous functions, f . Give an explanation for your answer.

46. If n = 10, then the subdivision size is Δx = 1/10.

47. If we double the value of n, we make Δx half as large.

48. LEFT(10) ≤RIGHT(10)
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49. As n approaches infinity, LEFT(n) approaches 0.

50. LEFT(n)− RIGHT(n) = (f(2)− f(6))Δx.

51. Doubling n decreases the difference LEFT(n) −
RIGHT(n) by exactly the factor 1/2.

52. If LEFT(n) = RIGHT(n) for all n, then f is a constant
function.

53. The trapezoid estimate TRAP(n) = (LEFT(n) +

RIGHT(n))/2 is always closer to
∫ 6

2
f(x)dx than

LEFT(n) or RIGHT(n).

54.
∫ 6

2
f(x) dx lies between LEFT(n) and RIGHT(n).

55. If LEFT(2) <
∫ b

a
f(x) dx, then LEFT(4) <∫ b

a
f(x) dx.

56. If 0 < f ′ < g′ everywhere, then the error in approxi-
mating

∫ b

a
f(x) dx by LEFT(n) is less than the error in

approximating
∫ b

a
g(x)dx by LEFT(n).

7.6 IMPROPER INTEGRALS

Our original discussion of the definite integral
∫ b
a f(x) dx assumed that the interval a ≤ x ≤ b was

of finite length and that f was continuous. Integrals that arise in applications do not necessarily have
these nice properties. In this section we investigate a class of integrals, called improper integrals, in
which one limit of integration is infinite or the integrand is unbounded. As an example, to estimate
the mass of the earth’s atmosphere, we might calculate an integral which sums the mass of the air
up to different heights. In order to represent the fact that the atmosphere does not end at a specific
height, we let the upper limit of integration get larger and larger, or tend to infinity.

We consider improper integrals with positive integrands since they are the most common.

One Type of Improper Integral: When the Limit of Integration Is Infinite
Here is an example of an improper integral:

∫ ∞

1

1

x2
dx.

To evaluate this integral, we first compute the definite integral
∫ b
1 (1/x

2) dx:

∫ b

1

1

x2
dx = −x−1

∣∣∣∣b
1

= −
1

b
+

1

1
.

Now take the limit as b → ∞. Since

lim
b→∞

∫ b

1

1

x2
dx = lim

b→∞

(
−
1

b
+ 1

)
= 1,

we say that the improper integral
∫∞
1 (1/x2) dx converges to 1.

If we think in terms of areas, the integral
∫∞
1 (1/x2) dx represents the area under f(x) = 1/x2

from x = 1 extending infinitely far to the right. (See Figure 7.16(a).) It may seem strange that this
region has finite area. What our limit computations are saying is that

When b = 10:
∫ 10

1

1

x2
dx = −

1

x

∣∣∣∣10
1

= −
1

10
+ 1 = 0.9

When b = 100:
∫ 100

1

1

x2
dx = −

1

100
+ 1 = 0.99

When b = 1000:
∫ 1000

1

1

x2
dx = −

1

1000
+ 1 = 0.999

and so on. In other words, as b gets larger and larger, the area between x = 1 and x = b tends to 1.
See Figure 7.16(b). Thus, it does make sense to declare that

∫∞
1

(1/x2) dx = 1.
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1
x

Area =
∫

∞

1
1
x2 dx

y = 1
x2

�

y(a)

1 b
x

y(b)

Area =
∫ b

1

1
x2 dx ;

now let b → ∞

y = 1
x2

�

Figure 7.16: Area representation of improper integral

Of course, in another example, we might not get a finite limit as b gets larger and larger. In that
case we say the improper integral diverges.

Suppose f(x) is positive for x ≥ a.

If lim
b→∞

∫ b

a

f(x) dx is a finite number, we say that
∫ ∞

a

f(x) dx converges and define

∫ ∞

a

f(x) dx = lim
b→∞

∫ b

a

f(x) dx.

Otherwise, we say that
∫ ∞

a

f(x) dx diverges. We define
∫ b

−∞

f(x) dx similarly.

Similar definitions apply if f(x) is negative.

Example 1 Does the improper integral
∫ ∞

1

1
√
x
dx converge or diverge?

Solution We consider ∫ b

1

1
√
x
dx =

∫ b

1

x−1/2 dx = 2x1/2

∣∣∣∣b
1

= 2b1/2 − 2.

We see that
∫ b
1
(1/

√
x) dx grows without bound as b → ∞. We have shown that the area under the

curve in Figure 7.17 is not finite. Thus we say the integral
∫∞
1

(1/
√
x) dx diverges. We could also

say
∫∞
1 (1/

√
x) dx = ∞.

Notice that f(x) → 0 as x → ∞ does not guarantee convergence of
∫∞
a f(x) dx.

1 2 3
x

y

y = 1
√

x

Area representing∫
∞

1
dx
√

x
not finite

�

Figure 7.17:
∫

∞

1
1

√

x
dx diverges

What is the difference between the functions 1/x2 and 1/
√
x that makes the area under the

graph of 1/x2 approach 1 as x → ∞, whereas the area under 1/
√
x grows very large? Both func-

tions approach 0 as x grows, so as b grows larger, smaller bits of area are being added to the definite
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integral. The difference between the functions is subtle: the values of the function 1/
√
x don’t shrink

fast enough for the integral to have a finite value. Of the two functions, 1/x2 drops to 0 much faster
than 1/

√
x, and this feature keeps the area under 1/x2 from growing beyond 1.

Example 2 Find
∫ ∞

0

e−5x dx.

Solution First we consider
∫ b
0
e−5x dx:∫ b

0

e−5x dx = −
1

5
e−5x

∣∣∣∣b
0

= −
1

5
e−5b

+
1

5
.

Since e−5b
=

1

e5b
, this term tends to 0 as b approaches infinity, so

∫∞
0

e−5x dx converges. Its value

is ∫ ∞

0

e−5x dx = lim
b→∞

∫ b

0

e−5x dx = lim
b→∞

(
−
1

5
e−5b

+
1

5

)
= 0 +

1

5
=

1

5
.

Since e5x grows very rapidly, we expect that e−5x will approach 0 rapidly. The fact that the area
approaches 1/5 instead of growing without bound is a consequence of the speed with which the
integrand e−5x approaches 0.

Example 3 Determine for which values of the exponent, p, the improper integral
∫ ∞

1

1

xp
dx diverges.

Solution For p �= 1, ∫ b

1

x−p dx =
1

−p+ 1
x−p+1

∣∣∣∣b
1

=

(
1

−p+ 1
b−p+1 −

1

−p+ 1

)
.

The important question is whether the exponent of b is positive or negative. If it is negative, then
as b approaches infinity, b−p+1 approaches 0. If the exponent is positive, then b−p+1 grows without
bound as b approaches infinity. What happens if p = 1? In this case we get∫ ∞

1

1

x
dx = lim

b→∞
lnx

∣∣∣∣b
1

= lim
b→∞

ln b− ln 1.

Since ln b becomes arbitrarily large as b approaches infinity, the integral grows without bound. We
conclude that

∫∞
1 (1/xp) dx diverges precisely when p ≤ 1. For p > 1 the integral has the value∫ ∞

1

1

xp
dx = lim

b→∞

∫ b

1

1

xp
dx = lim

b→∞

(
1

−p+ 1
b−p+1 −

1

−p+ 1

)
= −

(
1

−p+ 1

)
=

1

p− 1
.

Application of Improper Integrals to Energy

The energy,E, required to separate two charged particles, originally a distance a apart, to a distance
b, is given by the integral

E =

∫ b

a

kq1q2
r2

dr

where q1 and q2 are the magnitudes of the charges and k is a constant. If q1 and q2 are in coulombs,
a and b are in meters, and E is in joules, the value of the constant k is 9 · 109.

Example 4 A hydrogen atom consists of a proton and an electron, with opposite charges of magnitude 1.6·10−19

coulombs. Find the energy required to take a hydrogen atom apart (that is, to move the electron from
its orbit to an infinite distance from the proton). Assume that the initial distance between the electron
and the proton is the Bohr radius, RB = 5.3 · 10−11 meter.
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Solution Since we are moving from an initial distance of RB to a final distance of ∞, the energy is repre-
sented by the improper integral

E =

∫ ∞

RB

k
q1q2
r2

dr = kq1q2 lim
b→∞

∫ b

RB

1

r2
dr

= kq1q2 lim
b→∞

−
1

r

∣∣∣∣b
RB

= kq1q2 lim
b→∞

(
−
1

b
+

1

RB

)
=

kq1q2
RB

.

Substituting numerical values, we get

E =
(9 · 109)(1.6 · 10−19)2

5.3 · 10−11
≈ 4.35 · 10−18

joules.

This is about the amount of energy needed to lift a speck of dust 0.000000025 inch off the ground.
(In other words, not much!)

What happens if the limits of integration are −∞ and ∞? In this case, we break the integral at
any point and write the original integral as a sum of two new improper integrals.

For a positive function f(x), we can use any (finite) number c to define∫ ∞

−∞

f(x) dx =

∫ c

−∞

f(x) dx+

∫ ∞

c

f(x) dx.

If either of the two new improper integrals diverges, we say the original integral diverges.
Only if both of the new integrals have a finite value do we add the values to get a finite value
for the original integral.

It is not hard to show that the preceding definition does not depend on the choice for c.

Another Type of Improper Integral: When the Integrand Becomes Infinite
There is another way for an integral to be improper. The interval may be finite but the function
may be unbounded near some points in the interval. For example, consider

∫ 1
0 (1/

√
x) dx. Since the

graph of y = 1/
√
x has a vertical asymptote at x = 0, the region between the graph, the x-axis, and

the lines x = 0 and x = 1 is unbounded. Instead of extending to infinity in the horizontal direction
as in the previous improper integrals, this region extends to infinity in the vertical direction. See Fig-
ure 7.18(a). We handle this improper integral in a similar way as before: we compute

∫ 1
a (1/

√
x) dx

for values of a slightly larger than 0 and look at what happens as a approaches 0 from the positive
side. (This is written as a → 0+.)

First we compute the integral:∫ 1

a

1
√
x
dx = 2x1/2

∣∣∣∣1
a

= 2− 2a1/2.

1
x

Area =
∫ 1

0
dx
√

x

�
1

√

x

(a)

1a
x

Area =
∫ 1

a
dx
√

x
;

now let a → 0

�
1

√

x

(b)

Figure 7.18: Area representation of improper integral
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Now we take the limit:

lim
a→0+

∫ 1

a

1
√
x
dx = lim

a→0+
(2− 2a1/2) = 2.

Since the limit is finite, we say the improper integral converges, and that∫ 1

0

1
√
x
dx = 2.

Geometrically, what we have done is to calculate the finite area between x = a and x = 1 and
take the limit as a tends to 0 from the right. See Figure 7.18(b). Since the limit exists, the integral
converges to 2. If the limit did not exist, we would say the improper integral diverges.

Example 5 Investigate the convergence of
∫ 2

0

1

(x− 2)2
dx.

Solution This is an improper integral since the integrand tends to infinity as x approaches 2 and is undefined
at x = 2. Since the trouble is at the right endpoint, we replace the upper limit by b, and let b tend to
2 from the left. This is written b → 2−, with the “−” signifying that 2 is approached from below.
See Figure 7.19.∫ 2

0

1

(x− 2)2
dx = lim

b→2−

∫ b

0

1

(x − 2)2
dx = lim

b→2−
(−1)(x− 2)

−1

∣∣∣∣b
0

= lim
b→2−

(
−

1

(b− 2)
−

1

2

)
.

Therefore, since lim
b→2−

(
−

1

b− 2

)
does not exist, the integral diverges.

2
x

y = 1
(x−2)2

y

Figure 7.19: Shaded area represents
∫ 2

0
1

(x−2)2
dx

−1 2
x

y

y = 1
x4

Figure 7.20: Shaded area
represents

∫ 2

−1

1
x4 dx

Suppose f(x) is positive and continuous on a ≤ x < b and tends to infinity as x → b.

If lim
c→b−

∫ c

a

f(x) dx is a finite number, we say that
∫ b

a

f(x) dx converges and define

∫ b

a

f(x) dx = lim
c→b−

∫ c

a

f(x) dx.

Otherwise, we say that
∫ b

a

f(x) dx diverges.

When f(x) tends to infinity as x approaches a, we define convergence in a similar way. In
addition, an integral can be improper because the integrand tends to infinity inside the interval of
integration rather than at an endpoint. In this case, we break the given integral into two (or more)
improper integrals so that the integrand tends to infinity only at endpoints.
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Suppose that f(x) is positive and continuous on [a, b] except at the point c. If f(x) tends to
infinity as x → c, then we define∫ b

a

f(x) dx =

∫ c

a

f(x) dx +

∫ b

c

f(x) dx.

If either of the two new improper integrals diverges, we say the original integral diverges.
Only if both of the new integrals have a finite value do we add the values to get a finite value
for the original integral.

Example 6 Investigate the convergence of
∫ 2

−1

1

x4
dx.

Solution See Figure 7.20. The trouble spot is x = 0, rather than x = −1 or x = 2. We break the given
improper integral into two improper integrals each of which has x = 0 as an endpoint:∫ 2

−1

1

x4
dx =

∫ 0

−1

1

x4
dx+

∫ 2

0

1

x4
dx.

We can now use the previous technique to evaluate the new integrals, if they converge. Since∫ 2

0

1

x4
dx = lim

a→0+
−
1

3
x−3

∣∣∣∣2
a

= lim
a→0+

(
−
1

3

)(
1

8
−

1

a3

)
the integral

∫ 2
0 (1/x

4) dx diverges. Thus, the original integral diverges. A similar computation shows

that
∫ 0
−1(1/x

4) dx also diverges.
It is easy to miss an improper integral when the integrand tends to infinity inside the interval. For

example, it is fundamentally incorrect to say that
∫ 2
−1(1/x

4) dx = − 1
3x

−3
∣∣∣2
−1

= − 1
24 − 1

3 = − 3
8 .

Example 7 Find
∫ 6

0

1

(x− 4)2/3
dx.

Solution Figure 7.21 shows that the trouble spot is at x = 4, so we break the integral at x = 4 and consider
the separate parts.

64
x

y

y = 1

(x−4)2/3

Figure 7.21: Shaded area represents
∫ 6

0
1

(x−4)2/3
dx

We have∫ 4

0

1

(x− 4)2/3
dx = lim

b→4−
3(x− 4)

1/3

∣∣∣∣b
0

= lim
b→4−

(
3(b− 4)

1/3 − 3(−4)
1/3
)
= 3(4)

1/3.

Similarly,∫ 6

4

1

(x− 4)2/3
dx = lim

a→4+
3(x− 4)

1/3

∣∣∣∣6
a

= lim
a→4+

(
3 · 21/3 − 3(a− 4)

1/3
)
= 3(2)

1/3.

Since both of these integrals converge, the original integral converges:
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0

1

(x− 4)2/3
dx = 3(4)

1/3
+ 3(2)

1/3
= 8.542.

Finally, there is a question of what to do when an integral is improper at both endpoints. In this
case, we just break the integral at any interior point of the interval. The original integral diverges if
either or both of the new integrals diverge.

Example 8 Investigate the convergence of
∫ ∞

0

1

x2
dx.

Solution This integral is improper both because the upper limit is ∞ and because the function is undefined at
x = 0. We break the integral into two parts at, say, x = 1. We know by Example 3 that

∫∞
1

(1/x2) dx

has a finite value. However, the other part,
∫ 1
0 (1/x

2) dx, diverges since:

∫ 1

0

1

x2
dx = lim

a→0+
−x−1

∣∣∣∣1
a

= lim
a→0+

(
1

a
− 1

)
.

Therefore
∫ ∞

0

1

x2
dx diverges as well.

Exercises and Problems for Section 7.6
Exercises

1. Shade the area represented by:

(a)
∫

∞

1
(1/x2) dx (b)

∫ 1

0
(1/

√
x) dx

2. Evaluate the improper integral
∫

∞

0
e−0.4xdx and sketch

the area it represents.

3. (a) Use a calculator or computer to estimate
∫ b

0
xe−xdx

for b = 5, 10, 20.
(b) Use your answers to part (a) to estimate the value of∫

∞

0
xe−xdx, assuming it is finite.

4. (a) Sketch the the area represented by the improper in-
tegral

∫
∞

−∞
e−x2

dx.
(b) Use a calculator or computer to estimate∫ a

−a
e−x2

dx for a = 1,2,3,4,5.
(c) Use the answers to part (b) to estimate the value of∫

∞

−∞
e−x2

dx, assuming it is finite.

Calculate the integrals in Exercises 5–33, if they converge.
You may calculate the limits by appealing to the dominance
of one function over another, or by l’Hopital’s rule.

5.

∫
∞

1

1

5x+ 2
dx 6.

∫
∞

1

1

(x+ 2)2
dx

7.

∫ 1

0

ln xdx 8.

∫
∞

0

e−
√

x dx

9.

∫
∞

0

xe−x2

dx 10.

∫
∞

1

e−2x dx

11.

∫
∞

0

x

ex
dx 12.

∫
∞

1

x

4 + x2
dx

13.

∫ 0

−∞

ex

1 + ex
dx 14.

∫
∞

−∞

dz

z2 + 25

15.

∫ 4

0

1√
x
dx 16.

∫ π/2

π/4

sin x√
cos x

dx

17.

∫ 1

0

1

v
dv 18.

∫ 1

0

x4 + 1

x
dx

19.

∫
∞

1

1

x2 + 1
dx 20.

∫
∞

1

1√
x2 + 1

dx

21.

∫ 4

0

−1

u2 − 16
du 22.

∫
∞

1

y

y4 + 1
dy

23.

∫
∞

2

dx

x lnx
24.

∫ 1

0

ln x

x
dx

25.

∫ 20

16

1

y2 − 16
dy 26.

∫ π

0

1√
x
e−

√

x dx

27.

∫
∞

3

dx

x(ln x)2
28.

∫ 2

0

1√
4− x2

dx

29.

∫
∞

4

dx

(x− 1)2
30.

∫
∞

4

dx

x2 − 1

31.

∫
∞

7

dy√
y − 5

32.

∫ 3

0

y dy√
9− y2

33.

∫ 6

3

dθ

(4− θ)2
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Problems

34. Find a formula (not involving integrals) for

f(x) =

∫ x

−∞

et dt.

35. In statistics we encounter P (x), a function defined by

P (x) =
1√
π

∫ x

0

e−t2 dt.

Use a calculator or computer to evaluate

(a) P (1) (b) P (∞)

36. Find the area under the curve y = xe−x for x ≥ 0.

37. Find the area under the curve y = 1/ cos2 t between
t = 0 and t = π/2.

In Problems 38–41, evaluate f(3).

38. f(x) =

∫
∞

0

x−tdt 39. f(x) =

∫
∞

1

t−xdt

40. f(x) =

∫
∞

0

xe−xt dt 41. f(x)=

∫
∞

0

2txe−tx2

dt

42. For α > 0, calculate

(a)

∫
∞

0

e−y/α

α
dy (b)

∫
∞

0

ye−y/α

α
dy

(c)

∫
∞

0

y2e−y/α

α
dy

43. The rate, r, at which people get sick during an epidemic
of the flu can be approximated by r = 1000te−0.5t,
where r is measured in people/day and t is measured in
days since the start of the epidemic.

(a) Sketch a graph of r as a function of t.
(b) When are people getting sick fastest?
(c) How many people get sick altogether?

44. Find the energy required to separate opposite electric
charges of magnitude 1 coulomb. The charges are ini-
tially 1 meter apart and one is moved infinitely far from
the other. (The definition of energy is on page 397.)

45. Given that
∫

∞

−∞
e−x2

dx =
√
π, calculate the exact

value of ∫
∞

−∞

e−(x−a)2/b dx.

46. Assuming g(x) is a differentiable function whose values
are bounded for all x, derive Stein’s identity, which is
used in statistics:∫

∞

−∞

g′(x)e−x2/2 dx =

∫
∞

−∞

xg(x)e−x2/2 dx.

47. Given that ∫
∞

0

x4ex

(ex − 1)2
dx =

4π4

15

evaluate ∫
∞

0

x4e2x

(e2x − 1)2
dx.

48. The gamma function is defined for all x > 0 by the rule

Γ(x) =

∫
∞

0

tx−1e−t dt.

(a) Find Γ(1) and Γ(2).
(b) Integrate by parts with respect to t to show that, for

positive n,
Γ(n+ 1) = nΓ(n).

(c) Find a simple expression for Γ(n) for positive inte-
gers n.

Strengthen Your Understanding

In Problems 49–50, explain what is wrong with the statement.

49. If both
∫

∞

1
f(x) dx and

∫
∞

1
g(x) dx diverge, then so

does
∫

∞

1
f(x)g(x)dx.

50. If
∫

∞

1
f(x) dx diverges, then limx→∞ f(x) �= 0.

In Problems 51–52, give an example of:

51. A function f(x), continuous for x ≥ 1, such that
limx→∞ f(x) = 0, but

∫
∞

1
f(x)dx diverges.

52. A function f(x), continuous at x = 2 and x = 5, such
that the integral

∫ 5

2
f(x) dx is improper and divergent.

In Problems 53–58, decide whether the statements are true or

false. Give an explanation for your answer.

53. If f is continuous for all x and
∫

∞

0
f(x) dx converges,

then so does
∫

∞

a
f(x) dx for all positive a.

54. If f(x) is a positive periodic function, then
∫

∞

0
f(x) dx

diverges.

55. If f(x) is continuous and positive for x > 0 and if
limx→∞ f(x) = 0, then

∫
∞

0
f(x) dx converges.

56. If f(x) is continuous and positive for x > 0 and if
limx→∞ f(x) = ∞, then

∫
∞

0
(1/f(x)) dx converges.

57. If
∫

∞

0
f(x) dx and

∫
∞

0
g(x) dx both converge, then∫

∞

0
(f(x) + g(x))dx converges.
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58. If
∫

∞

0
f(x) dx and

∫
∞

0
g(x)dx both diverge, then∫

∞

0
(f(x) + g(x)) dx diverges.

Suppose that f is continuous for all real numbers and that∫
∞

0
f(x) dx converges. Let a be any positive number. Decide

which of the statements in Problems 59–62 are true and which
are false. Give an explanation for your answer.

59.
∫

∞

0
af(x) dx converges.

60.
∫

∞

0
f(ax) dx converges.

61.
∫

∞

0
f(a+ x) dx converges.

62.
∫

∞

0
(a+ f(x)) dx converges.

7.7 COMPARISON OF IMPROPER INTEGRALS

Making Comparisons
Sometimes it is difficult to find the exact value of an improper integral by antidifferentiation, but it
may be possible to determine whether an integral converges or diverges. The key is to compare the
given integral to one whose behavior we already know. Let’s look at an example.

Example 1 Determine whether
∫ ∞

1

1
√
x3 + 5

dx converges.

Solution First, let’s see what this integrand does as x → ∞. For largex, the 5 becomes insignificant compared
with the x3, so

1
√
x3 + 5

≈
1

√
x3

=
1

x3/2
.

Since∫ ∞

1

1
√
x3

dx =

∫ ∞

1

1

x3/2
dx = lim

b→∞

∫ b

1

1

x3/2
dx = lim

b→∞
−2x−1/2

∣∣∣∣b
1

= lim
b→∞

(
2− 2b−1/2

)
= 2,

the integral
∫∞
1

(1/x3/2) dx converges. So we expect our integral to converge as well.
In order to confirm this, we observe that for 0 ≤ x3 ≤ x3 + 5, we have

1
√
x3 + 5

≤
1

√
x3

.

and so for b ≥ 1, ∫ b

1

1
√
x3 + 5

dx ≤

∫ b

1

1
√
x3

dx.

(See Figure 7.22.) Since
∫ b
1 (1/

√
x3 + 5) dx increases as b approaches infinity but is always smaller

than
∫ b
1
(1/x3/2) dx <

∫∞
1

(1/x3/2) dx = 2, we know
∫∞
1

(1/
√
x3 + 5) dx must have a finite value

less than 2. Thus, ∫ ∞

1

dx
√
x3 + 5

converges to a value less than 2.

1
x

y

y = 1
√

x3

y = 1√
x3+5

Total shaded area =
∫

∞

1

dx
√

x3

Dark shaded area =
∫

∞

1
1√

x3+5
dx

Figure 7.22: Graph showing
∫

∞

1
1√

x3+5
dx ≤

∫
∞

1
dx

√

x3
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Notice that we first looked at the behavior of the integrand as x → ∞. This is useful because
the convergence or divergence of the integral is determined by what happens as x → ∞.

The Comparison Test for
∫

∞

a
f (x) dx

Assume f(x) is positive. Making a comparison involves two stages:
1. Guess, by looking at the behavior of the integrand for large x, whether the integral con-

verges or not. (This is the “behaves like” principle.)

2. Confirm the guess by comparison with a positive function g(x):

• If f(x) ≤ g(x) and
∫∞
a

g(x) dx converges, then
∫∞
a

f(x) dx converges.

• If g(x) ≤ f(x) and
∫∞
a

g(x) dx diverges, then
∫∞
a

f(x) dx diverges.

Example 2 Decide whether
∫ ∞

4

dt

(ln t)− 1
converges or diverges.

Solution Since ln t grows without bound as t → ∞, the −1 is eventually going to be insignificant in compar-
ison to ln t. Thus, as far as convergence is concerned,∫ ∞

4

1

(ln t)− 1
dt behaves like

∫ ∞

4

1

ln t
dt.

Does
∫∞
4

(1/ ln t) dt converge or diverge? Since ln t grows very slowly, 1/ ln t goes to zero very
slowly, and so the integral probably does not converge. We know that (ln t) − 1 < ln t < t for all
positive t. So, provided t > e, we take reciprocals:

1

(ln t)− 1
>

1

ln t
>

1

t
.

Since
∫∞
4 (1/t) dt diverges, we conclude that∫ ∞

4

1

(ln t)− 1
dt diverges.

How Do We Know What to Compare With?

In Examples 1 and 2, we investigated the convergence of an integral by comparing it with an easier
integral. How did we pick the easier integral? This is a matter of trial and error, guided by any infor-
mation we get by looking at the original integrand as x → ∞. We want the comparison integrand
to be easy and, in particular, to have a simple antiderivative.

Useful Integrals for Comparison

•

∫ ∞

1

1

xp
dx converges for p > 1 and diverges for p ≤ 1.

•

∫ 1

0

1

xp
dx converges for p < 1 and diverges for p ≥ 1.

•

∫ ∞

0

e−axdx converges for a > 0.

Of course, we can use any function for comparison, provided we can determine its behavior.

Example 3 Investigate the convergence of
∫ ∞

1

(sinx) + 3
√
x

dx.
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Solution Since it looks difficult to find an antiderivative of this function, we try comparison. What happens
to this integrand as x → ∞? Since sinx oscillates between −1 and 1,

2
√
x
=

−1 + 3
√
x

≤
(sinx) + 3

√
x

≤
1 + 3
√
x

=
4
√
x
,

the integrand oscillates between 2/
√
x and 4/

√
x. (See Figure 7.23.)

What do
∫∞
1

(2/
√
x) dx and

∫∞
1

(4/
√
x) dx do? As far as convergence is concerned, they cer-

tainly do the same thing, and whatever that is, the original integral does it too. It is important to
notice that

√
x grows very slowly. This means that 1/

√
x gets small slowly, which means that con-

vergence is unlikely. Since
√
x = x1/2, the result in the preceding box (with p = 1

2 ) tells us that∫∞
1

(1/
√
x) dx diverges. So the comparison test tells us that the original integral diverges.

1
x

b

y

�

y = (sinx)+3
√

x

�

y = 2
√

x�

y = 4
√

x

Total shaded area =
∫ b

1

(sinx)+3
√

x
dx

Dark shaded area =
∫ b

1

2
√

x
dx

Figure 7.23: Graph showing
∫ b

1
2

√

x
dx ≤

∫ b

1

(sinx)+3
√

x
dx, for b ≥ 1

Notice that there are two possible comparisons we could have made in Example 3:

2
√
x
≤

(sinx) + 3
√
x

or
(sinx) + 3

√
x

≤
4
√
x
.

Since both
∫∞
1 (2/

√
x) dx and

∫∞
1 (4/

√
x) dx diverge, only the first comparison is useful. Knowing

that an integral is smaller than a divergent integral is of no help whatsoever!
The next example shows what to do if the comparison does not hold throughout the interval of

integration.

Example 4 Show
∫ ∞

1

e−x2/2 dx converges.

Solution We know that e−x2/2 goes very rapidly to zero as x → ∞, so we expect this integral to con-
verge. Hence we look for some larger integrand which has a convergent integral. One possibility is∫∞
1

e−x dx, because e−x has an elementary antiderivative and
∫∞
1

e−x dx converges. What is the

relationship between e−x2/2 and e−x? We know that for x ≥ 2,

x ≤
x2

2
so −

x2

2
≤ −x,

and so, for x ≥ 2

e−x2/2 ≤ e−x.

Since this inequality holds only for x ≥ 2, we split the interval of integration into two pieces:∫ ∞

1

e−x2/2 dx =

∫ 2

1

e−x2/2 dx+

∫ ∞

2

e−x2/2 dx.

Now
∫ 2
1 e−x2/2 dx is finite (it is not improper) and

∫∞
2 e−x2/2 dx is finite by comparison with∫∞

2 e−x dx. Therefore,
∫∞
1 e−x2/2 dx is the sum of two finite pieces and therefore must be finite.
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The previous example illustrates the following general principle:

If f is positive and continuous on [a, b],∫ ∞

a

f(x) dx and
∫ ∞

b

f(x) dx

either both converge or both diverge.

In particular, when the comparison test is applied to
∫∞
a

f(x) dx, the inequalities for f(x) and
g(x) do not need to hold for all x ≥ a but only for x greater than some value, say b.

Exercises and Problems for Section 7.7
Exercises

In Exercises 1–9, use the box on page 404 and the behavior
of rational and exponential functions as x → ∞ to predict
whether the integrals converge or diverge.

1.

∫
∞

1

x2

x4 + 1
dx 2.

∫
∞

2

x3

x4 − 1
dx

3.

∫
∞

1

x2 + 1

x3 + 3x+ 2
dx 4.

∫
∞

1

1

x2 + 5x+ 1
dx

5.

∫
∞

1

x

x2 + 2x+ 4
dx 6.

∫
∞

1

x2 − 6x+ 1

x2 + 4
dx

7.

∫
∞

1

5x+ 2

x4 + 8x2 + 4
dx 8.

∫
∞

1

1

e5t + 2
dt

9.

∫
∞

1

x2 + 4

x4 + 3x2 + 11
dx

In Exercises 10–25, decide if the improper integral converges
or diverges.

10.

∫
∞

50

dz

z3
11.

∫
∞

1

dx

1 + x

12.

∫
∞

1

dx

x3 + 1
13.

∫ 8

5

6√
t− 5

dt

14.

∫ 1

0

1

x19/20
dx 15.

∫ 5

−1

dt

(t+ 1)2

16.

∫
∞

−∞

du

1 + u2
17.

∫
∞

1

du

u+ u2

18.

∫
∞

1

dθ√
θ2 + 1

19.

∫
∞

2

dθ√
θ3 + 1

20.

∫ 1

0

dθ√
θ3 + θ

21.

∫
∞

0

dy

1 + ey

22.

∫
∞

1

2 + cosφ

φ2
dφ 23.

∫
∞

0

dz

ez + 2z

24.

∫ π

0

2− sinφ

φ2
dφ 25.

∫
∞

4

3 + sinα

α
dα

Problems

26. The graphs of y = 1/x, y = 1/x2 and the functions
f(x), g(x), h(x), and k(x) are shown in Figure 7.24.

(a) Is the area between y = 1/x and y = 1/x2 on the
interval from x = 1 to ∞ finite or infinite? Explain.

(b) Using the graph, decide whether the integral of each
of the functions f(x), g(x), h(x) and k(x) on the
interval from x = 1 to ∞ converges, diverges, or
whether it is impossible to tell.

1

k(x)

� 1/x2

� 1/xf(x)

h(x)

g(x)

Figure 7.24
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27. Suppose
∫

∞

a
f(x) dx converges. What does Figure 7.25

suggest about the convergence of
∫

∞

a
g(x) dx?

a

�

f(x)

g(x)

x

Figure 7.25

For what values of p do the integrals in Problems 28–29 con-
verge or diverge?

28.

∫
∞

2

dx

x(lnx)p
29.

∫ 2

1

dx

x(lnx)p

30. (a) Find an upper bound for∫
∞

3

e−x2

dx.

[Hint: e−x2 ≤ e−3x for x ≥ 3.]

(b) For any positive n, generalize the result of part (a) to
find an upper bound for∫

∞

n

e−x2

dx

by noting that nx ≤ x2 for x ≥ n.

31. In Planck’s Radiation Law, we encounter the integral∫
∞

1

dx

x5(e1/x − 1)
.

(a) Explain why a graph of the tangent line to et at t = 0
tells us that for all t

1 + t ≤ et.

(b) Substituting t = 1/x, show that for all x �= 0

e1/x − 1 >
1

x
.

(c) Use the comparison test to show that the original in-
tegral converges.

Strengthen Your Understanding

In Problems 32–35, explain what is wrong with the statement.

32.
∫

∞

1
1/(x3 + sin x) dx converges by comparison with∫

∞

1
1/x3 dx.

33.
∫

∞

1
1/(x

√

2 + 1) dx is divergent.

34. If 0 ≤ f(x) ≤ g(x) and
∫

∞

0
g(x)dx diverges then by

the comparison test
∫

∞

0
f(x) dx diverges.

35. Let f(x) > 0. If
∫

∞

1
f(x) dx is convergent then so is∫

∞

1
1/f(x) dx.

In Problems 36–37, give an example of:

36. A continuous function f(x) for x ≥ 1 such that the im-
proper integral

∫
∞

1
f(x)dx can be shown to converge by

comparison with the integral
∫

∞

1
3/(2x2) dx.

37. A positive, continuous function f(x) such that∫
∞

1
f(x)dx diverges and

f(x) ≤ 3

7x− 2 sin x
, for x ≥ 1.

In Problems 38–39, decide whether the statements are true or
false. Give an explanation for your answer.

38. The integral

∫
∞

0

1

ex + x
dx converges.

39. The integral

∫ 1

0

1

x2 − 3
dx diverges.

CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• Integration techniques
Substitution, parts, partial fractions, trigonometric sub-
stitution, using tables.

• Numerical approximations

Riemann sums (left, right, midpoint), trapezoid rule,
Simpson’s rule, approximation errors.

• Improper integrals
Convergence/divergence, comparison test for integrals.
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REVIEW EXERCISES AND PROBLEMS FOR CHAPTER SEVEN

Exercises

For Exercises 1–4, find an antiderivative.

1. q(t) = (t+ 1)2 2. p(θ) = 2 sin(2θ)

3. f(x) = 5x 4. r(t) = et + 5e5t

For Exercises 5–110, evaluate the following integrals. Assume
a, b, c, and k are constants. Exercises 7– 69 can be done with-
out an integral table, as can some of the later problems.

5.

∫
(3w + 7) dw 6.

∫
e2r dr

7.

∫
sin t dt 8.

∫
cos 2t dt

9.

∫
e5z dz 10.

∫
cos(x+ 1) dx

11.

∫
sin 2θ dθ 12.

∫
(x3 − 1)4x2 dx

13.

∫ (
x3/2 + x2/3

)
dx 14.

∫
(ex + 3x) dx

15.

∫
1

ez
dz 16.

∫ (
4

x2
− 3

x3

)
dx

17.

∫
x3 + x+ 1

x2
dx 18.

∫
(1 + ln x)2

x
dx

19.

∫
tet

2

dt 20.

∫
x cosx dx

21.

∫
x2e2x dx 22.

∫
x
√
1− xdx

23.

∫
y ln y dy 24.

∫
y sin y dy

25.

∫
(lnx)2 dx 26.

∫
e0.5−0.3t dt

27.

∫
sin2 θ cos θ dθ 28.

∫
x
√

4− x2 dx

29.

∫
(u+ 1)3

u2
du 30.

∫
cos

√
y

√
y

dy

31.

∫
1

cos2 z
dz 32.

∫
cos2 θ dθ

33.

∫
t10(t− 10) dt 34.

∫
tan(2x− 6) dx

35.

∫
(ln x)2

x
dx 36.

∫
(t+ 2)2

t3
dt

37.

∫ (
x2 + 2x+

1

x

)
dx 38.

∫
t+ 1

t2
dt

39.

∫
tet

2+1 dt 40.

∫
tan θ dθ

41.

∫
sin(5θ) cos(5θ) dθ 42.

∫
x

x2 + 1
dx

43.

∫
dz

1 + z2
44.

∫
dz

1 + 4z2

45.

∫
cos3 2θ sin 2θ dθ 46.

∫
sin 5θ cos3 5θ dθ

47.

∫
sin3 z cos3 z dz 48.

∫
t(t− 10)10 dt

49.

∫
cos θ

√
1 + sin θ dθ 50.

∫
xex dx

51.

∫
t3et dt 52.

∫ 3

1

x(x2 + 1)70 dx

53.

∫
(3z + 5)3 dz 54.

∫
du

9 + u2

55.

∫
cosw

1 + sin2 w
dw 56.

∫
1

x
tan(ln x) dx

57.

∫
1

x
sin(ln x) dx 58.

∫
w dw√
16− w2

59.

∫
e2y + 1

e2y
dy 60.

∫
sinw dw√
1− cosw

61.

∫
dx

x lnx
62.

∫
du

3u+ 8

63.

∫
x cos

√
x2 + 1√

x2 + 1
dx 64.

∫
t3√
1 + t2

dt

65.

∫
ueku du 66.

∫
(w + 5)4w dw

67.

∫
e
√

2x+3 dx 68.

∫
(ex + x)2dx

69.

∫
u2 ln u du 70.

∫
5x+ 6

x2 + 4
dx
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71.

∫
1

sin3(2x)
dx 72.

∫
dr

r2 − 100

73.

∫
y2 sin(cy) dy 74.

∫
e−ct sin kt dt

75.

∫
e5x cos(3x) dx 76.

∫ (
x
√

k +
√
k
x
)

dx

77.

∫ √
3 + 12x2 dx. 78.

∫
1√

x2 − 3x+ 2
dx

79.

∫
x3

x2 + 3x+ 2
dx 80.

∫
x2 + 1

x2 − 3x+ 2
dx

81.

∫
dx

ax2 + bx
82.

∫
ax+ b

ax2 + 2bx+ c
dx

83.

∫ (
x

3
+

3

x

)2
dx 84.

∫
2t

2t + 1
dt

85.

∫
101−x dx 86.

∫
(x2 + 5)3 dx

87.

∫
v arcsin v dv 88.

∫ √
4− x2 dx

89.

∫
z3

z − 5
dz 90.

∫
sinw cosw

1 + cos2 w
dw

91.

∫
1

tan(3θ)
dθ 92.

∫
x

cos2 x
dx

93.

∫
x+ 1√

x
dx 94.

∫
x√
x+ 1

dx

95.

∫ √√
x+ 1√
x

dx 96.

∫
e2y

e2y + 1
dy

97.

∫
z

(z2 − 5)3
dz 98.

∫
z

(z − 5)3
dz

99.

∫
(1 + tanx)3

cos2 x
dx 100.

∫
(2x− 1)ex

2

ex
dx

101.

∫
(2x+ 1)ex

2

ex dx

102.

∫ √
y2 − 2y + 1(y − 1) dy

103.

∫
sin x(

√
2 + 3 cosx)dx

104.

∫
(x2 − 3x+ 2)e−4x dx

105.

∫
sin2(2θ) cos3(2θ) dθ

106.

∫
cos(2 sin x) cosx dx

107.

∫
(x+ sin x)3(1 + cos x) dx

108.

∫ (
2x3 + 3x+ 4

)
cos(2x) dx

109.

∫
sinh2 x cosh x dx

110.

∫
(x+ 1) sinh(x2 + 2x) dx

For Exercises 111–124, evaluate the definite integrals using
the Fundamental Theorem of Calculus and check your an-
swers numerically.

111.

∫ 1

0

x(1 + x2)20 dx 112.

∫ 1

4

x
√

x2 + 4 dx

113.

∫ π

0

sin θ(cos θ+5)7 dθ 114.

∫ 1

0

x

1 + 5x2
dx

115.

∫ 2

1

x2 + 1

x
dx 116.

∫ 3

1

ln(x3) dx

117.

∫ e

1

(ln x)2 dx 118.

∫ π

−π

e2x sin 2x dx

119.

∫ 10

0

ze−z dz 120.

∫ π/4

−π/3

sin3 θ cos θ dθ

121.

∫ 8

1

e
3
√

x

3
√
x2

dx 122.

∫ 1

0

dx

x2 + 1

123.

∫ π/4

−π/4

cos2 θ sin5 θ dθ 124.

∫ 0

−2

2x+ 4

x2 + 4x+ 5
dx

125. Use partial fractions on
1

x2 − 1
to find

∫
1

x2 − 1
dx.

126. (a) Use partial fractions to find

∫
1

x2 − x
dx.

(b) Show that your answer to part (a) agrees with the
answer you get by using the integral tables.

127. Use partial fractions to find

∫
1

x(L− x)
dx, where L is

constant.

Evaluate the integrals in Exercises 128–139 using partial frac-
tions or a trigonometric substitution (a and b are positive con-
stants).

128.

∫
1

(x− 2)(x+ 2)
dx 129.

∫
1√

25− x2
dx,

130.

∫
1

x(x+ 5)
dx 131.

∫
1√

1− 9x2
dx
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132.

∫
2x+ 3

x(x+ 2)(x− 1)
dx 133.

∫
3x+ 1

x(x2 − 1)
dx

134.

∫
1 + x2

x(1 + x)2
dx 135.

∫
1

x2 + 2x+ 2
dx

136.

∫
1

x2 + 4x+ 5
dx 137.

∫
1√

a2 − (bx)2
dx

138.

∫
cosx

sin3 x+ sin x
dx 139.

∫
ex

e2x − 1
dx

Calculate the integrals in Exercises 140–143, if they converge.
You may calculate the limits by appealing to the dominance of
one function over another, or by l’Hopital’s rule.

140.

∫ 4

0

dx√
16− x2

141.

∫ 3

0

5

x2
dx

142.

∫ 2

0

1

x− 2
dx 143.

∫ 8

0

1
3
√
8− x

dx

For Exercises 144–157 decide if the integral converges or di-
verges. If the integral converges, find its value or give a bound

on its value.

144.

∫
∞

4

dt

t3/2
145.

∫
∞

10

dx

x ln x

146.

∫
∞

0

we−w dw 147.

∫ 1

−1

1

x4
dx

148.

∫ π/4

−π/4

tan θ dθ 149.

∫
∞

2

1

4 + z2
dz

150.

∫
∞

10

1

z2 − 4
dz 151.

∫ 10

−5

dt√
t+ 5

152.

∫ π/2

0

1

sin φ
dφ 153.

∫ π/4

0

tan 2θ dθ

154.

∫
∞

1

x

x+ 1
dx 155.

∫
∞

0

sin2 θ

θ2 + 1
dθ

156.

∫ π

0

tan2 θdθ 157.

∫ 1

0

(sin x)−3/2dx

Problems

In Problems 158–160, find the exact area.

158. Under y = (ex)2 for 0 ≤ x ≤ 1.

159. Between y = (ex)3 and y = (ex)2 for 0 ≤ x ≤ 3.

160. Between y = ex and y = 5e−x and the y-axis.

161. The curves y = sin x and y = cosx cross each other
infinitely often. What is the area of the region bounded
by these two curves between two consecutive crossings?

162. Evaluate
∫ 2

0

√
4− x2 dx using its geometric interpreta-

tion.

In Problems 163–164, find a substitution w and constants k, p
so that the integral has the form

∫
kwp dw.

163.

∫
3x4
√

3x5 + 2 dx 164.

∫
5 sin(3θ) dθ

cos3(3θ)

In Problems 165–168, give the substitution and the values of
any constants to rewrite the integral in the desired form.

165.

∫
dx

(2x− 3)(3x− 2)
as

∫ (
A

2x− 3
+

B

3x− 2

)
dx

166.

∫
(x2 + x) cos(0.5x − 1) dx as

∫
p(u) cos(u) du,

where p(u) is a polynomial

167.

∫
x3e−x2

dx as

∫
kueu du

168.

∫
cos4
(√

x
)
sin

√
xdx√

x
as

∫
kun du

In Problems 169–172, explain why the following pairs of an-
tiderivatives are really, despite their apparent dissimilarity,
different expressions of the same problem. You do not need
to evaluate the integrals.

169.

∫
1√

1− x2
dx and

∫
xdx√
1− x4

170.

∫
dx

x2 + 4x+ 4
and

∫
x

(x2 + 1)2
dx

171.

∫
x

1− x2
dx and

∫
1

x ln x
dx

172.

∫
x

x+ 1
dx and

∫
1

x+ 1
dx

In Problems 173–174, show the two integrals are equal using
a substitution.

173.

∫ 2

0

e−w2

dw =

∫ 1

0

2e−4x2

dx

174.

∫ 3

0

sin t

t
dt =

∫ 1

0

sin 3t

t
dt

175. A function is defined by f(t) = t2 for 0 ≤ t ≤ 1 and
f(t) = 2− t for 1 < t ≤ 2. Compute

∫ 2

0
f(t) dt.
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176. (a) Find
∫
(x+ 5)2 dx in two ways:

(i) By multiplying out

(ii) By substituting w = x+ 5

(b) Are the results the same? Explain.

177. Suppose
∫ 1

−1
h(z) dz = 7, and that h(z) is even. Calcu-

late the following:

(a)
∫ 1

0
h(z) dz (b)

∫
−2

−4
5h(z + 3) dz

178. Find the average (vertical) height of the shaded area in
Figure 7.26.

x

y

y = x2

y = 6− x

Figure 7.26

179. Find the average (horizontal) width of the shaded area in
Figure 7.26.

180. (a) Find the average value of the following functions
over one cycle:

(i) f(t) = cos t

(ii) g(t) = | cos t|
(iii) k(t) = (cos t)2

(b) Write the averages you have just found in ascend-
ing order. Using words and graphs, explain why the
averages come out in the order they do.

181. What, if anything, is wrong with the following calcula-
tion?

∫ 2

−2

1

x2
dx = − 1

x

∣∣∣∣2
−2

= −1

2
−
(
− 1

−2

)
= −1.

182. Let

E(x) =

∫
ex

ex + e−x
dx and F (x) =

∫
e−x

ex + e−x
dx.

(a) Calculate E(x) + F (x).
(b) Calculate E(x)− F (x).
(c) Use your results from parts (a) and (b) to calculate

E(x) and F (x).

183. Using Figure 7.27, put the following approximations
to the integral

∫ b

a
f(x) dx and its exact value in order

from smallest to largest: LEFT(5), LEFT(10), RIGHT(5),
RIGHT(10), MID(10), TRAP(10), Exact value

a b
x

Figure 7.27

184. You estimate
∫ 0.5

0
f(x)dx by the trapezoid and midpoint

rules with 100 steps. Which of the two estimates is an
overestimate, and which is an underestimate, of the true
value of the integral if

(a) f(x) = 1 + e−x (b) f(x) = e−x2

(c) f(x) is a line

185. (a) Using the left rectangle rule, a computer takes two
seconds to compute a particular definite integral ac-
curate to 4 digits to the right of the decimal point.
How long (in years) does it take to get 8 digits cor-
rect using the left rectangle rule? How about 12 dig-
its? 20 digits?

(b) Repeat part (a) but this time assume that the trape-
zoidal rule is being used throughout.

186. Given that

∫
∞

0

e−x2

dx =

√
π

2
, find

∫
∞

0

x2e−x2

dx.

187. A population, P , is said to be growing logistically if the
time, T , taken for it to increase from P1 to P2 is given by

T =

∫ P2

P1

k dP

P (L− P )
,

where k and L are positive constants and P1 < P2 < L.

(a) Calculate the time taken for the population to grow
from P1 = L/4 to P2 = L/2.

(b) What happens to T as P2 → L?

188. In 2005, the average per-capita income in the US
was $34,586 and increasing at a rate of r(t) =
1556.37e0.045t dollars per year, where t is the number
of years since 2005.

(a) Estimate the average per-capita income in 2015.
(b) Find a formula for the average per-capita income as

a function of time after 2005.

189. A patient is given an injection of Imitrex, a migraine
medicine, at a rate of r(t) = 2te−2t ml/sec, where t is
the number of seconds since the injection started.

(a) By letting t → ∞, estimate the total quantity of Im-
itrex injected.

(b) What fraction of this dose has the patient received at
the end of 5 seconds?
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190. In 1990 humans generated 1.4 · 1020 joules of energy
from petroleum. At the time, it was estimated that all
of the earth’s petroleum would generate approximately
1022 joules. Assuming the use of energy generated by
petroleum increases by 2% each year, how long will it be
before all of our petroleum resources are used up?

191. An organism has a development time of T days at a tem-
perature H = f(t)◦C. The total the number of degree-
days S required for development to maturity is a constant
defined by

S =

∫ T

0

(f(t)−Hmin)dt.

(a) Evaluate this integral for T = 18, f(t) = 30◦C, and
Hmin = 10◦C. What are the units of S?

(b) Illustrate this definite integral on a graph. Label the
features corresponding to T , f(t), Hmin, and S.

(c) Now suppose H = g(t) = 20 + 10 cos(2πt/6)◦C.
Assuming that S remains constant, write a defi-
nite integral which determines the new development
time, T2. Sketch a graph illustrating this new inte-
gral. Judging from the graph, how does T2 compare
to T ? Find T2.

192. For a positive integer n, let Ψn(x) = Cn sin(nπx) be
the wave function used in describing the behavior of an
electron. If n and m are different positive integers, find∫ 1

0

Ψn(x) ·Ψm(x) dx.

CAS Challenge Problems

193. (a) Use a computer algebra system to find

∫
ln x

x
dx,∫

(ln x)2

x
dx, and

∫
(ln x)3

x
dx.

(b) Guess a formula for

∫
(lnx)n

x
dx that works for

any positive integer n.
(c) Use a substitution to check your formula.

194. (a) Using a computer algebra system, find
∫
(lnx)n dx

for n = 1, 2, 3, 4.
(b) There is a formula relating

∫
(lnx)n dx to∫

(ln x)n−1 dx for any positive integer n. Guess this
formula using your answer to part (a). Check your
guess using integration by parts.

In Problems 195–197:

(a) Use a computer algebra system to find the indefinite in-
tegral of the given function.

(b) Use the computer algebra system again to differentiate
the result of part (a). Do not simplify.

(c) Use algebra to show that the result of part (b) is the same
as the original function. Show all the steps in your calcu-
lation.

195. sin3 x 196. sin x cosx cos(2x)

197.
x4

(1 + x2)2

PROJECTS FOR CHAPTER SEVEN

1. Taylor Polynomial Inequalities

(a) Use the fact that ex ≥ 1 + x for all values of x and the formula

ex = 1+

∫ x

0

et dt

to show that

ex ≥ 1 + x+
x2

2

for all positive values of x. Generalize this idea to get inequalities involving higher-degree
polynomials.

(b) Use the fact that cosx ≤ 1 for all x and repeated integration to show that

cosx ≤ 1−
x2

2!
+

x4

4!
.
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USING THE DEFINITE 
INTEGRAL
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8.1 AREAS AND VOLUMES

In Chapter 5, we calculated areas under graphs using definite integrals. We obtained the integral
by slicing up the region, constructing a Riemann sum, and then taking a limit. In this section, we
calculate areas of other regions, as well as volumes, using definite integrals. To obtain the integral,
we again slice up the region and construct a Riemann sum.

Finding Areas by Slicing

Example 1 Use horizontal slices to set up a definite integral to calculate the area of the isosceles triangle in
Figure 8.1.

�

�

5 cm

�� 10 cm

Figure 8.1: Isosceles triangle

�� 10

�

�

hi

��Δh

�

�

(5− hi)

�� wi

�

�

5

Figure 8.2: Horizontal slices of isosceles triangle

Solution Notice that we can find the area of a triangle without using an integral; we will use this to check the
result from integration:

Area =
1

2
Base · Height = 25 cm2.

To calculate the area using horizontal slices we divide the region into strips; see Figure 8.2. A typical
strip is approximately a rectangle of length wi and width Δh, so

Area of strip ≈ wiΔh cm2.

To get wi in terms of hi, the height above the base, use the similar triangles in Figure 8.2:

wi

10
=

5− hi

5

wi = 2(5− hi) = 10− 2hi.

Summing the areas of the strips gives the Riemann sum approximation:

Area of triangle ≈

n∑
i=1

wiΔh =

n∑
i=1

(10− 2hi)Δh cm2.

Taking the limit as n → ∞, the change in h shrinks and we get the integral:

Area of triangle = lim
n→∞

n∑
i=1

(10− 2hi)Δh =

∫ 5

0

(10− 2h) dh cm2.

Evaluating the integral gives

Area of triangle =

∫ 5

0

(10− 2h) dh = (10h− h2
)

∣∣∣∣5
0

= 25 cm2.

Notice that the limits in the definite integral are the limits for the variable h. Once we decide to
slice the triangle horizontally, we know that a typical slice has thickness Δh, so h is the variable in
our definite integral, and the limits must be values of h.
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Example 2 Use horizontal slices to set up a definite integral representing the area of the semicircle of radius
7 cm in Figure 8.3.

�� 7 cm

Figure 8.3: Semicircle

�� 7

�� wi

7
hi

�

�
Δh

Figure 8.4: Horizontal slices of semicircle

Solution As in Example 1, to calculate the area using horizontal slices, we divide the region into strips; see
Figure 8.4. A typical strip at height hi above the base has width wi and thickness Δh, so

Area of strip ≈ wiΔh cm2.

To get wi in terms of hi, we use the Pythagorean Theorem in Figure 8.4:

h2
i +

(wi

2

)2
= 7

2,

so

wi =

√
4(72 − h2

i ) = 2

√
49− h2

i .

Summing the areas of the strips gives the Riemann sum approximation:

Area of semicircle ≈

n∑
i=1

wiΔh =

n∑
i=1

2

√
49− h2

iΔh cm2.

Taking the limit as n → ∞, the change in h shrinks and we get the integral:

Area of semicircle = lim
n→∞

n∑
i=1

2

√
49− h2

iΔh = 2

∫ 7

0

√
49− h2 dh cm2.

Using the table of integrals VI-30 and VI-28, or a calculator or computer, gives

Area of semicircle = 2·
1

2

(
h
√
49− h2 + 49 arcsin

(
h

7

))∣∣∣∣7
0

= 49 arcsin 1 =
49

2
π = 76.97 cm2.

As a check, notice that the area of the whole circle of radius 7 is π · 72 = 49π cm2.

Finding Volumes by Slicing
To calculate the volume of a solid using Riemann sums, we chop the solid into slices whose volumes
we can estimate.
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Figure 8.5: Cone cut into
vertical slices

Figure 8.6: Cone cut into
horizontal slices

Let’s see how we might slice a cone standing with the vertex uppermost. We could divide the
cone vertically into arch-shaped slices; see Figure 8.5. We could also divide the cone horizontally,
giving coin-shaped slices; see Figure 8.6.

To calculate the volume of the cone, we choose the circular slices because it is easier to estimate
the volumes of the coin-shaped slices.

Example 3 Use horizontal slicing to find the volume of the cone in Figure 8.7.

�� 10 cm

�

�

5 cm
� �ri

Figure 8.7: Cone

�� 10

�

�
hi

�

�
Δh

�

�

(5− hi)

�� wi

Figure 8.8: Vertical cross-section of cone in
Figure 8.7

Solution Each slice is a circular disk of thickness Δh. See Figure 8.7. The disk at height hi above the base
has radius ri = 1

2wi. From Figure 8.8 and the previous example, we have

wi = 10− 2hi so ri = 5− hi.

Each slice is approximately a cylinder of radius ri and thickness Δh, so

Volume of slice ≈ πr2iΔh = π(5 − hi)
2
Δh cm3.

Summing over all slices, we have

Volume of cone ≈

n∑
i=1

π(5− hi)
2
Δh cm3.

Taking the limit as n → ∞, so Δh → 0, gives

Volume of cone = lim
n→∞

n∑
i=1

π(5 − hi)
2
Δh =

∫ 5

0

π(5 − h)2 dh cm3.

The integral can be evaluated using the substitution u = 5−h or by multiplying out (5−h)2. Using
the substitution, we have

Volume of cone =

∫ 5

0

π(5 − h)2dh = −
π

3
(5− h)3

∣∣∣∣5
0

=
125

3
π cm3.



8.1 AREAS AND VOLUMES 417

Note that the sum represented by the
∑

sign is over all the strips. To simplify the notation, in
the future, we will not write limits for

∑
or subscripts on the variable, since all we want is the final

expression for the definite integral. We now calculate the volume of a hemisphere by slicing.

Example 4 Set up and evaluate an integral giving the volume of the hemisphere of radius 7 cm in Figure 8.9.

�
r

�� 7

�

�
h

�

�
Δh

Volume of slice
≈ πr2Δh

Figure 8.9: Slicing to find the volume
of a hemisphere

h 7

r

Figure 8.10: Vertical cut through center of hemisphere
showing relation between ri and hi

Solution We will not use the formula 4
3πr

3 for the volume of a sphere. However, our approach can be used
to derive that formula.

Divide the hemisphere into horizontal slices of thickness Δh cm. (See Figure 8.9.) Each slice
is circular. Let r be the radius of the slice at height h, so

Volume of slice ≈ πr2Δh cm3.

We express r in terms of h using the Pythagorean Theorem as in Example 2. From Figure 8.10, we
have

h2
+ r2 = 7

2,

so
r =
√
72 − h2 =

√
49− h2.

Thus,
Volume of slice ≈ πr2 Δh = π(72 − h2

)Δh cm3.

Summing the volumes of all slices gives:

Volume ≈
∑

πr2 Δh =
∑

π(72 − h2
)Δh cm3.

As the thickness of each slice tends to zero, the sum becomes a definite integral. Since the radius of
the hemisphere is 7, we know that h varies from 0 to 7, so these are the limits of integration:

Volume =

∫ 7

0

π(72 − h2
) dh = π

(
7
2h−

1

3
h3

) ∣∣∣∣7
0

=
2

3
π73 = 718.4 cm3.

Notice that the volume of the hemisphere is half of 4
3π7

3 cm3, as we expected.

We now use slicing to find the volume of a pyramid. We do not use the formula, V = 1
3b

2 · h,
for the volume of a pyramid of height h and square base of side length b, but our approach can be
used to derive that formula.
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Example 5 Compute the volume, in cubic feet, of the Great Pyramid of Egypt, whose base is a square 755 feet
by 755 feet and whose height is 410 feet.

Solution We slice the pyramid horizontally, creating square slices with thickness Δh. The bottom layer is
a square slice 755 feet by 755 feet and volume about (755)2Δh ft3. As we move up the pyramid,
the layers have shorter side lengths. We divide the height into n subintervals of length Δh. See
Figure 8.11. Let s be the side length of the slice at height h; then

Volume of slice ≈ s2 Δh ft3.

s�

�
h

�

�

410 ft
�

Volume of slice
≈ s2Δh

755 ft

Figure 8.11: The Great Pyramid

�

�

410 ft

�� s

�� 755 ft

�

�

410− h

�
�
h

Figure 8.12: Cross-section relating s and h

We express s as a function of h using the vertical cross-section in Figure 8.12. By similar
triangles, we get

s

755
=

(410− h)

410
.

Thus,

s =

(
755

410

)
(410− h),

and the total volume, V , is approximated by adding the volumes of the n layers:

V ≈
∑

s2 Δh =
∑((

755

410

)
(410− h)

)2

Δh ft3.

As the thickness of each slice tends to zero, the sum becomes a definite integral. Finally, since h
varies from 0 to 410, the height of the pyramid, we have

V =

∫ 410

0

((
755

410

)
(410− h)

)2

dh =

(
755

410

)2 ∫ 410

0

(410− h)2 dh

=

(
755

410

)2(
−
(410− h)3

3

) ∣∣∣∣410
0

=

(
755

410

)2
(410)3

3
=

1

3
(755)

2
(410) ≈ 78 million ft3.

Note that V = 1
3 (755)

2(410) = 1
3b

2 · h, as expected.
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Exercises and Problems for Section 8.1
Exercises

1. (a) Write a Riemann sum approximating the area of the
region in Figure 8.13, using vertical strips as shown.

(b) Evaluate the corresponding integral.

Δx 3

6 y = 2x

x

y

Figure 8.13

2. (a) Write a Riemann sum approximating the area of the
region in Figure 8.14, using vertical strips as shown.

(b) Evaluate the corresponding integral.

Δx 6

9 y = −x2 + 6x

x

y

Figure 8.14

3. (a) Write a Riemann sum approximating the area of
the region in Figure 8.15, using horizontal strips as
shown.

(b) Evaluate the corresponding integral.

3

Δy

6 y = 2x

x

y

Figure 8.15

4. (a) Write a Riemann sum approximating the area of
the region in Figure 8.16, using horizontal strips as
shown.

(b) Evaluate the corresponding integral.

6

Δy

9 y = −x2 + 6x

x

y

Figure 8.16

In Exercises 5–12, write a Riemann sum and then a definite
integral representing the area of the region, using the strip
shown. Evaluate the integral exactly.

5. �� 5

�

�

3

�� x

Δx

6.

�

�

3

�� 6

� �
Δx

�� x

7.

�

�
Δh

�

�

h

�� 3

�

�

5

8.

�
�

Δh
�
�
h

3
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9.

x2 + y2 = 10

�

�
Δy

x

y

10.
y = 4

y = |x|

�
�Δy

x

y

11.
y = x

y =
√
x

�

�
Δy

x

y

12.

3x+ y = 6

y = x2 − 4

� �Δx

x

y

In Exercises 13–18, write a Riemann sum and then a defi-
nite integral representing the volume of the region, using the
slice shown. Evaluate the integral exactly. (Regions are parts
of cones, cylinders, spheres, and pyramids.)

13. � �9 cm

� �x ��

Δx

�

�

4 cm

14. � �6 cm

�� x
��
Δx

�

�

4 cm

15.

�

�

5 cm

�� 4 cm

��Δ y

�

�

y

16.

�

�

10 m� �7 m

�
�
y�

�
Δ y

�

�

7 m

17.

�� 10 mm

�

�

5 mm
�

�
y

��Δ y

18.

�

�

2 m

�

�

2 m

�

�

y

�
�Δy

�

�

2 m
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Problems

The integrals in Problems 19–22 represent the area of either a
triangle or part of a circle, and the variable of integration mea-
sures a distance. In each case, say which shape is represented,
and give the radius of the circle or the base and height of the
triangle. Make a sketch to support your answer showing the
variable and all other relevant quantities.

19.

∫ 1

0

3x dx 20.

∫ 9

−9

√
81− x2 dx

21.

∫ √

15

0

√
15− h2 dh 22.

∫ 7

0

5
(
1− h

7

)
dh

23. The integral

∫ 1

0

(x − x2) dx represents the area of a re-

gion between two curves in the plane. Make a sketch of
this region.

In Problems 24–27, construct and evaluate definite inte-
gral(s) representing the area of the region described, using:
(a) Vertical slices (b) Horizontal slices

24. Enclosed by y = x2 and y = 3x.

25. Enclosed by y = 2x and y = 12− x and the y-axis.

26. Enclosed by y = x2 and y = 6− x and the x-axis.

27. Enclosed by y = 2x and x = 5 and y = 6 and the
x-axis.

The integrals in Problems 28–31 represent the volume of ei-
ther a hemisphere or a cone, and the variable of integration
measures a length. In each case, say which shape is repre-
sented, and give the radius of the hemisphere or the radius
and height of the cone. Make a sketch to support your answer
showing the variable and all other relevant quantities.

28.

∫ 12

0

π(144− h2) dh 29.

∫ 12

0

π(x/3)2dx

30.

∫ 6

0

π(3− y/2)2dy 31.

∫ 2

0

π(22−(2−y)2) dy

32. Find the volume of a sphere of radius r by slicing.

33. Set up and evaluate an integral to find the volume of a
cone of height 12 m and base radius 3 m.

34. Find, by slicing, a formula for the volume of a cone of
height h and base radius r.

35. Figure 8.17 shows a solid with both rectangular and tri-
angular cross sections.

(a) Slice the solid parallel to the triangular faces. Sketch
one slice and calculate its volume in terms of x, the
distance of the slice from one end. Then write and
evaluate an integral giving the volume of the solid.

(b) Repeat part (a) for horizontal slices. Instead of x, use
h, the distance of a slice from the top.

�

�

3 cm

�

�

4 cm
�

�

2 cm

Figure 8.17

36. A rectangular lake is 150 km long and 3 km wide. The
vertical cross-section through the lake in Figure 8.18
shows that the lake is 0.2 km deep at the center. (These
are the approximate dimensions of Lake Mead, the
largest reservoir in the US, which provides water to Cal-
ifornia, Nevada, and Arizona.) Set up and evaluate a def-
inite integral giving the total volume of water in the lake.

�� 3 km

�

�

0.2 km

Figure 8.18: Not to scale

37. A dam has a rectangular base 1400 meters long and 160
meters wide. Its cross-section is shown in Figure 8.19.
(The Grand Coulee Dam in Washington state is roughly
this size.) By slicing horizontally, set up and evaluate a
definite integral giving the volume of material used to
build this dam.

�� 160 m

�

�

150 m

��10 m

Figure 8.19: Not to scale
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Strengthen Your Understanding

In Problems 38–39, explain what is wrong with the statement.

38. To find the area between the line y = 2x, the y-axis,
and the line y = 8 using horizontal slices, evaluate the
integral

∫ 8

0
2y dy.

39. The volume of the sphere of radius 10 centered at the
origin is given by the integral

∫ 10

−10
π
√
102 − x2 dx.

In Problems 40–41, give an example of:

40. A region in the plane where it is easier to compute the
area using horizontal slices than it is with vertical slices.
Sketch the region.

41. A triangular region in the plane for which both horizontal
and vertical slices work just as easily.

In Problems 42–45, are the statements true or false? Give an
explanation for your answer.

42. The integral
∫ 3

−3
π(9− x2) dx represents the volume of

a sphere of radius 3.

43. The integral
∫ h

0
π(r − y) dy gives the volume of a cone

of radius r and height h.

44. The integral
∫ r

0
π
√

r2 − y2 dy gives the volume of a
hemisphere of radius r.

45. A cylinder of radius r and length l is lying on its side.
Horizontal slicing tells us that the volume is given by∫ r

−r
2l
√

r2 − y2 dy.

8.2 APPLICATIONS TO GEOMETRY

In Section 8.1, we calculated volumes using slicing and definite integrals. In this section, we use the
same method to calculate the volumes of more complicated regions as well as the length of a curve.
The method is summarized in the following steps:

To Compute a Volume or Length Using an Integral

• Divide the solid (or curve) into small pieces whose volume (or length) we can easily
approximate;

• Add the contributions of all the pieces, obtaining a Riemann sum that approximates the
total volume (or length);

• Take the limit as the number of terms in the sum tends to infinity, giving a definite integral
for the total volume (or total length).

In the previous section, all the slices we created were disks or rectangles. We now look at
different ways of generating volumes whose cross-sections include circles, rectangles, and also
rings.

Volumes of Revolution
One way to create a solid having circular cross-sections is to revolve a region in the plane around a
line, giving a solid of revolution, as in the following examples.

Example 1 The region bounded by the curve y = e−x and the x-axis between x = 0 and x = 1 is revolved
around the x-axis. Find the volume of this solid of revolution.

Solution We slice the region perpendicular to the x-axis, giving circular disks of thickness Δx. See Fig-
ure 8.20. The radius of the disk is y = e−x, so:

Volume of the slice ≈ πy2 Δx = π(e−x
)
2
Δx,

Total volume ≈
∑

πy2 Δx =
∑

π
(
e−x
)2

Δx.
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As the thickness of each slice tends to zero, we get:

Total volume =

∫ 1

0

π(e−x
)
2 dx = π

∫ 1

0

e−2x dx = π

(
−
1

2

)
e−2x

∣∣∣∣1
0

= π

(
−
1

2

)
(e−2 − e0) =

π

2
(1 − e−2

) ≈ 1.36.

x

y
y = e−x

� �
Δx

�

Radius = y

Figure 8.20: A thin strip rotated around the x-axis to form a
circular slice

�

�

100 cm

��r

Figure 8.21: A table
leg

Example 2 A table leg in Figure 8.21 has a circular cross section with radius r cm at a height of y cm above the
ground given by r = 3 + cos(πy/25). Find the volume of the table leg.

Solution The table leg is formed by rotating the curve r = 3 + cos(πy/25) around the y-axis. Slicing the
table leg horizontally gives circular disks of thickness Δy and radius r = 3 + cos(πy/25).

To set up a definite integral for the volume, we find the volume of a typical slice:

Volume of slice ≈ πr2Δy = π
(
3 + cos

( π

25
y
))2

Δy.

Summing over all slices gives the Riemann sum approximation:

Total volume =
∑

π
(
3 + cos

( π

25
y
))2

Δy.

Taking the limit as Δy → 0 gives the definite integral:

Total volume = lim
Δy→0

∑
π
(
3 + cos

( π

25
y
))2

Δy =

∫ 100

0

π
(
3 + cos

( π

25
y
))2

dy.

Evaluating the integral numerically gives:

Total volume =

∫ 100

0

π
(
3 + cos

( π

25
y
))2

dy = 2984.5 cm3.
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Example 3 The region bounded by the curves y = x and y = x2 is rotated about the line y = 3. Compute the
volume of the resulting solid.

x

y

y = 3

�rin = 3− x �rout = 3− x2

Figure 8.22: Cutaway view of volume showing
inner and outer radii

x

y

y = 3

�

rout = 3− x2

�

rin = 3− x

Figure 8.23: One slice (a
disk-with-a-hole)

Solution The solid is shaped like a bowl with the base removed. See Figure 8.22. To compute the volume, we
divide the area in the xy-plane into thin vertical strips of thickness Δx, as in Figure 8.24.

1

1

3

x
� �
Δx

y

y = x

y = x2

�

�

rout = 3− x2

y = 3

�

�

rin = 3− x

Axis of rotation

Figure 8.24: The region for Example 3

As each strip is rotated around the line y = 3, it sweeps out a slice shaped like a circular disk with
a hole in it. See Figure 8.23. This disk-with-a-hole has an inner radius of rin = 3 − x and an outer
radius of rout = 3 − x2. Think of the slice as a circular disk of radius rout from which has been
removed a smaller disk of radius rin. Then:

Volume of slice ≈ πr2out Δx− πr2in Δx = π(3 − x2
)
2
Δx− π(3 − x)2 Δx.

Adding the volumes of all the slices, we have:

Total volume = V ≈
∑(

πr2out − πr2in
)
Δx =

∑(
π(3− x2

)
2 − π(3− x)2

)
Δx.

We let Δx, the thickness of each slice, tend to zero to obtain a definite integral. Since the curves
y = x and y = x2 intersect at x = 0 and x = 1, these are the limits of integration:

V =

∫ 1

0

(
π(3 − x2

)
2 − π(3− x)2

)
dx = π

∫ 1

0

(
(9 − 6x2

+ x4
)− (9− 6x+ x2

)
)
dx

= π

∫ 1

0

(6x− 7x2
+ x4

) dx = π

(
3x2 −

7x3

3
+

x5

5

) ∣∣∣∣1
0

≈ 2.72.
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Volumes of Regions of Known Cross-Section
We now calculate the volume of a solid constructed by a different method. Starting with a region in
the xy-plane as a base, the solid is built by standing squares, semicircles, or triangles vertically on
edge in this region.

Example 4 Find the volume of the solid whose base is the region in the xy-plane bounded by the curves y = x2

and y = 8 − x2 and whose cross-sections perpendicular to the x-axis are squares with one side in
the xy-plane. (See Figure 8.25.)

x

y

y = x2

y = 8− x2

Figure 8.25: The solid for Example 4

x

y

y = x2

y = 8− x2

Side = s



Δx

�

�

s = 8− 2x2

Figure 8.26: A slice of the solid for Example 4

Solution We view the solid as a loaf of bread sitting on the xy-plane and made up of square slices. A typical
slice of thickness Δx is shown in Figure 8.26. The side length, s, of the square is the distance (in
the y direction) between the two curves, so s = (8− x2)− x2 = 8− 2x2, giving

Volume of slice ≈ s2 Δx = (8− 2x2
)
2
Δx.

Thus
Total volume = V ≈

∑
s2 Δx =

∑
(8− 2x2

)
2
Δx.

As the thickness Δx of each slice tends to zero, the sum becomes a definite integral. Since the
curves y = x2 and y = 8 − x2 intersect at x = −2 and x = 2, these are the limits of integration.
We have

V =

∫ 2

−2

(8 − 2x2
)
2 dx =

∫ 2

−2

(64− 32x2
+ 4x4

) dx

=

(
64x−

32

3
x3

+
4

5
x5

)∣∣∣∣2
−2

=
2048

15
≈ 136.5.

Arc Length
A definite integral can be used to compute the arc length, or length, of a curve. To compute the
length of the curve y = f(x) from x = a to x = b, where a < b, we divide the curve into small
pieces, each one approximately straight.
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x

y = f(x)

�� Δx

�

�

Δy ≈ f ′(x)Δx

Length ≈
√

1 + (f ′(x))2Δx



Figure 8.27: Length of a small piece of curve approximated using Pythagoras’ theorem

Figure 8.27 shows that a small change Δx corresponds to a small change Δy ≈ f ′(x)Δx. The
length of the piece of the curve is approximated by

Length ≈
√

(Δx)2 + (Δy)2 ≈

√
(Δx)2 + (f ′(x)Δx)2 =

√
1 + (f ′(x))2 Δx.

Thus, the arc length of the entire curve is approximated by a Riemann sum:

Arc length ≈
∑√

1 + (f ′(x))
2
Δx.

Since x varies between a and b, as we let Δx tend to zero, the sum becomes the definite integral:

For a < b, the arc length of the curve y = f(x) from x = a to x = b is given by

Arc length =

∫ b

a

√
1 + (f ′(x))2 dx.

Example 5 Set up and evaluate an integral to compute the length of the curve y = x3 from x = 0 to x = 5.

Solution If f(x) = x3, then f ′(x) = 3x2, so

Arc length =

∫ 5

0

√
1 + (3x2)2 dx.

Although the formula for the arc length of a curve is easy to apply, the integrands it generates
often do not have elementary antiderivatives. Evaluating the integral numerically, we find the arc
length to be 125.68. To check that the answer is reasonable, notice that the curve starts at (0, 0) and
goes to (5, 125), so its length must be at least the length of a straight line between these points, or√
52 + 1252 = 125.10. (See Figure 8.28.)

5

125

x

y
y = x3

Length ≈ 125.10

Length ≈ 125.68� �

Figure 8.28: Arc length of y = x3 (Note: The picture is distorted because the
scales on the two axes are quite different.)
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Arc Length of a Parametric Curve

A particle moving along a curve in the plane given by the parametric equations x = f(t), y = g(t),
where t is time, has speed given by:

v(t) =

√(
dx

dt

)2

+

(
dy

dt

)2

.

We can find the distance traveled by a particle along a curve between t = a and t = b by integrating
its speed. Thus,

Distance traveled =

∫ b

a

v(t) dt.

If the particle never stops or reverses its direction as it moves along the curve, the distance it travels
is the same as the length of the curve. This suggests the following formula:

If a curve is given parametrically for a ≤ t ≤ b by differentiable functions and if the velocity
v(t) is not 0 for a < t < b, then

Arc length of curve =

∫ b

a

v(t) dt =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

Example 6 Find the circumference of the ellipse given by the parametric equations

x = 2 cos t, y = sin t, 0 ≤ t ≤ 2π.

Solution The circumference of this curve is given by an integral which must be calculated numerically:

Circumference =
∫ 2π

0

√(
dx

dt

)2

+

(
dy

dt

)2

dt =

∫ 2π

0

√
(−2 sin t)2 + (cos t)2 dt

=

∫ 2π

0

√
4 sin

2 t+ cos2 t dt = 9.69.

Since the ellipse is inscribed in a circle of radius 2 and circumscribes a circle of radius 1, we expect
the length of the ellipse to be between 2π(2) ≈ 12.57 and 2π(1) ≈ 6.28, so the value of 9.69 is
reasonable.

Exercises and Problems for Section 8.2
Exercises

1. (a) The region in Figure 8.29 is rotated around the x-
axis. Using the strip shown, write an integral giving
the volume.

(b) Evaluate the integral.

Δx 3

6 y = 2x

x

y

Figure 8.29

2. (a) The region in Figure 8.30 is rotated around the x-
axis. Using the strip shown, write an integral giving
the volume.

(b) Evaluate the integral.

Δx 6

9 y = −x2 + 6x

x

y

Figure 8.30
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3. (a) The region in Figure 8.31 is rotated around the y-
axis. Write an integral giving the volume.

(b) Evaluate the integral.

3

Δy

6 y = 2x

x

y

Figure 8.31

4. (a) The region in Figure 8.32 is rotated around the y-
axis. Using the strip shown, write an integral giving
the volume.

(b) Evaluate the integral.

6

Δy

9 y = −x2 + 6x

x

y

Figure 8.32

In Exercises 5–14, the region is rotated around the x-axis.
Find the volume.

5. Bounded by y = x2, y = 0, x = 0, x = 1.

6. Bounded by y = (x+ 1)2, y = 0, x = 1, x = 2.

7. Bounded by y = 4− x2, y = 0, x = −2, x = 0.

8. Bounded by y =
√
x+ 1, y = 0, x = −1, x = 1.

9. Bounded by y = ex, y = 0, x = −1, x = 1.

10. Bounded by y = cos x, y = 0, x = 0, x = π/2.

11. Bounded by y = 1/(x + 1), y = 0, x = 0, x = 1.

12. Bounded by y =
√
cosh 2x, y = 0, x = 0, x = 1.

13. Bounded by y = x2, y = x, x = 0, x = 1.

14. Bounded by y = e3x, y = ex, x = 0, x = 1.

For Exercises 15–20, find the arc length of the graph of the
function from x = 0 to x = 2.

15. f(x) = x2/2 16. f(x) = cos x

17. f(x) = ln(x+ 1) 18. f(x) =
√
x3

19. f(x) =
√
4− x2 20. f(x) = cosh x

Find the length of the parametric curves in Exercises 21–24.

21. x = 3+5t, y = 1+4t for 1 ≤ t ≤ 2. Explain why your
answer is reasonable.

22. x = cos(et), y = sin(et) for 0 ≤ t ≤ 1. Explain why
your answer is reasonable.

23. x = cos(3t), y = sin(5t) for 0 ≤ t ≤ 2π.

24. x = cos3 t, y = sin3 t, for 0 ≤ t ≤ 2π.

Problems

In Problems 25–28 set up, but do not evaluate, an integral that
represents the volume obtained when the region in the first
quadrant is rotated about the given axis.

25. Bounded by y = 3
√
x, x = 4y. Axis x = 9.

26. Bounded by y = 3
√
x, x = 4y. Axis y = 3.

27. Bounded by y = 0, x = 9, y = 1
3
x. Axis y = −2.

28. Bounded by y = 0, x = 9, y = 1
3
x. Axis x = −1.

In Problems 29–32, set up definite integral(s) to find the vol-
ume obtained when the region between y = x2 and y = 5x is
rotated about the given axis. Do not evaluate the integral(s).

29. The x-axis

30. The y-axis

31. The line y = −4

32. The line x = −3

33. Find the length of one arch of y = sin x.

34. Find the perimeter of the region bounded by y = x and
y = x2.

35. Consider the hyperbola x2 − y2 = 1 in Figure 8.33.

(a) The shaded region 2 ≤ x ≤ 3 is rotated around the
x-axis. What is the volume generated?

(b) What is the arc length with y ≥ 0 from x = 2 to
x = 3?

−3 −2 −1 1 2 3
x

y

Figure 8.33

36. Rotating the ellipse x2/a2 + y2/b2 = 1 about the x-axis
generates an ellipsoid. Compute its volume.
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For Problems 37–39, sketch the solid obtained by rotating
each region around the indicated axis. Using the sketch, show
how to approximate the volume of the solid by a Riemann
sum, and hence find the volume.

37. Bounded by y = x3, x = 1, y = −1. Axis: y = −1.

38. Bounded by y =
√
x, x = 1, y = 0. Axis: x = 1.

39. Bounded by the first arch of y = sin x, y = 0. Axis: x
axis.

Problems 40–45 concern the region bounded by y = x2,
y = 1, and the y-axis, for x ≥ 0. Find the volume of the
following solids.

40. The solid obtained by rotating the region around the y-
axis.

41. The solid obtained by rotating the region about the x-
axis.

42. The solid obtained by rotating the region about the line
y = −2.

43. The solid whose base is the region and whose cross-
sections perpendicular to the x-axis are squares.

44. The solid whose base is the region and whose cross-
sections perpendicular to the x-axis are semicircles.

45. The solid whose base is the region and whose cross-
sections perpendicular to the y-axis are equilateral trian-
gles.

For Problems 46–50 consider the region bounded by y = ex,
the x-axis, and the lines x = 0 and x = 1. Find the volume of
the following solids.

46. The solid obtained by rotating the region about the x-
axis.

47. The solid obtained by rotating the region about the hori-
zontal line y = −3.

48. The solid obtained by rotating the region about the hori-
zontal line y = 7.

49. The solid whose base is the given region and whose
cross-sections perpendicular to the x-axis are squares.

50. The solid whose base is the given region and whose
cross-sections perpendicular to the x-axis are semicir-
cles.

51. Find a curve y = g(x), such that when the region be-
tween the curve and the x-axis for 0 ≤ x ≤ π is revolved
around the x-axis, it forms a solid with volume given by∫ π

0

π(4− 4 cos2 x) dx.

[Hint: Use the identity sin2 x = 1− cos2 x.]

52. A particle starts at the origin and moves along the curve
y = 2x3/2/3 in the positive x-direction at a speed of
3 cm/sec, where x, y are in cm. Find the position of the
particle at t = 6.

53. A tree trunk has a circular cross section at every height;
its circumference is given in the following table. Estimate
the volume of the tree trunk using the trapezoid rule.

Height (feet) 0 20 40 60 80 100 120

Circumference (feet) 26 22 19 14 6 3 1

54. Rotate the bell-shaped curve y = e−x2/2 shown in Fig-
ure 8.34 around the y-axis, forming a hill-shaped solid
of revolution. By slicing horizontally, find the volume of
this hill.

1
y

x

y = e−x2/2

Figure 8.34

55. (a) A pie dish is 9 inches across the top, 7 inches across
the bottom, and 3 inches deep. See Figure 8.35.
Compute the volume of this dish.

(b) Make a rough estimate of the volume in cubic inches
of a single cut-up apple, and estimate the number
of apples needed to make an apple pie that fills this
dish.

�� 7′′

�� 9′′

�

�
3′′

Figure 8.35

56. A 100 cm long gutter is made of three strips of metal,
each 5 cm wide; Figure 8.36 shows a cross-section.

(a) Find the volume of water in the gutter when the
depth is h cm.

(b) What is the maximum value of h?
(c) What is the maximum volume of water that the gut-

ter can hold?
(d) If the gutter is filled with half the maximum volume

of water, is the depth larger or smaller than half of
the answer to part (b)? Explain how you can answer
without any calculation.

(e) Find the depth of the water when the gutter contains
half the maximum possible volume.

h

��
5 cm

60◦60◦ �

�

5 cm

�

�

5 cm

Figure 8.36
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57. The design of boats is based on Archimedes’ Principle,
which states that the buoyant force on an object in wa-
ter is equal to the weight of the water displaced. Suppose
you want to build a sailboat whose hull is parabolic with
cross section y = ax2, where a is a constant. Your boat
will have length L and its maximum draft (the maximum
vertical depth of any point of the boat beneath the wa-
ter line) will be H . See Figure 8.37. Every cubic meter
of water weighs 10,000 newtons. What is the maximum
possible weight for your boat and cargo?

�

�

�

�

H

L

Figure 8.37

58. The circumference of a tree at different heights above the
ground is given in the table below. Assume that all hori-
zontal cross-sections of the tree are circles. Estimate the
volume of the tree.

Height (inches) 0 20 40 60 80 100 120

Circumference (inches) 31 28 21 17 12 8 2

59. A bowl has the shape of the graph of y = x4 between the
points (1, 1) and (−1, 1) rotated about the y-axis. When
the bowl contains water to a depth of h units, it flows
out through a hole in the bottom at a rate (volume/time)
proportional to

√
h, with constant of proportionality 6.

(a) Show that the water level falls at a constant rate.
(b) Find how long it takes to empty the bowl if it is orig-

inally full to the brim.

60. The hull of a boat has widths given by the following ta-
ble. Reading across a row of the table gives widths at
points 0, 10, . . . , 60 feet from the front to the back at
a certain level below waterline. Reading down a column
of the table gives widths at levels 0, 2, 4, 6, 8 feet be-
low waterline at a certain distance from the front. Use the
trapezoidal rule to estimate the volume of the hull below
waterline.

Front of boat −→ Back of boat

0 10 20 30 40 50 60

0 2 8 13 16 17 16 10

Depth 2 1 4 8 10 11 10 8

below 4 0 3 4 6 7 6 4

waterline 6 0 1 2 3 4 3 2

(in feet) 8 0 0 1 1 1 1 1

61. (a) Write an integral which represents the circumfer-
ence of a circle of radius r.

(b) Evaluate the integral, and show that you get the an-
swer you expect.

62. Compute the perimeter of the region used for the base of
the solids in Problems 46–50.

63. Write an integral that represents the arc length of the por-
tion of the graph of f(x) = −x(x − 4) that lies above
the x-axis. Do not evaluate the integral.

64. Find a curve y = f(x) whose arc length from x = 1 to
x = 4 is given by ∫ 4

1

√
1 +

√
xdx.

65. Write a simplified expression that represents the arc
length of the concave-down portion of the graph of
f(x) = e−x2

. Do not evaluate your answer.

66. Write an expression that represents the arc length of the
concave-down portion of the graph of f(x) = x4−8x3+
18x2 + 3x+ 7. Do not simplify or evaluate the answer.

67. With x and b in meters, a chain hangs in the shape of the
catenary cosh x = 1

2
(ex + e−x) for −b ≤ x ≤ b. If the

chain is 10 meters long, how far apart are its ends?

68. There are very few elementary functions y = f(x) for
which arc length can be computed in elementary terms
using the formula

∫ b

a

√
1 +
(
dy

dx

)2
dx.

You have seen some such functions f in Problems 18, 19,
and 67, namely, f(x) =

√
x3, f(x) =

√
4− x2, and

f(x) = 1
2
(ex + e−x). Try to find some other function

that “works,” that is, a function whose arc length you can
find using this formula and antidifferentiation.

69. After doing Problem 68, you may wonder what sort of
functions can represent arc length. If g(0) = 0 and g is
differentiable and increasing, then can g(x), x ≥ 0, rep-
resent arc length? That is, can we find a function f(t)
such that ∫ x

0

√
1 + (f ′(t))2 dt = g(x)?

(a) Show that f(x) =
∫ x

0

√
(g′(t))2 − 1 dt works as

long as g′(x) ≥ 1. In other words, show that the arc
length of the graph of f from 0 to x is g(x).

(b) Show that if g′(x) < 1 for some x, then g(x) cannot
represent the arc length of the graph of any function.

(c) Find a function f whose arc length from 0 to x is
2x.
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70. Consider the graph of the equation

|x|k + |y|k = 1, k constant.

For k an even integer, the absolute values are unneces-
sary. For example, for k = 2, we see the equation gives

the circle
x2 + y2 = 1.

(a) Sketch the graph of the equation for k = 1, 2, 4.
(b) Find the arc length of the three graphs in part (a).

[Note: k = 4 may require a computer.]

Strengthen Your Understanding

In Problems 71–73, explain what is wrong with the statement.

71. The solid obtained by rotating the region bounded by the
curves y = 2x and y = 3x between x = 0 and x = 5
around the x-axis has volume

∫ 5

0
π(3x− 2x)2 dx.

72. The arc length of the curve y = sin x from x = 0 to

x = π/4 is
∫ π/4

0

√
1 + sin2 xdx.

73. The arc length of the curve y = x5 between x = 0 and
x = 2 is less than 32.

In Problems 74–77, give an example of:

74. A region in the plane which gives the same volume
whether rotated about the x-axis or the y-axis.

75. A region where the solid obtained by rotating the region
around the x-axis has greater volume than the solid ob-
tained by revolving the region around the y-axis.

76. Two different curves from (0, 0) to (10, 0) that have the
same arc length.

77. A function f(x) whose graph passes through the points
(0, 0) and (1, 1) and whose arc length between x = 0
and x = 1 is greater than

√
2.

Are the statements in Problems 78–81 true or false? If a state-
ment is true, explain how you know. If a statement is false,
give a counterexample.

78. Of two solids of revolution, the one with the greater vol-
ume is obtained by revolving the region in the plane with
the greater area.

79. If f is differentiable on the interval [0, 10], then the arc
length of the graph of f on the interval [0, 1] is less than
the arc length of the graph of f on the interval [1, 10].

80. If f is concave up for all x and f ′(0) = 3/4, then the arc
length of the graph of f on the interval [0, 4] is at least 5.

81. If f is concave down for all x and f ′(0) = 3/4, then
the arc length of the graph of f on the interval [0, 4] is at
most 5.

8.3 AREA AND ARC LENGTH IN POLAR COORDINATES

Many curves and regions in the plane are easier to describe in polar coordinates than in Cartesian
coordinates. Thus their areas and arc lengths are best found using integrals in polar coordinates.

A point, P , in the plane is often identified by its Cartesian coordinates (x, y), where x is the
horizontal distance to the point from the origin and y is the vertical distance.1 Alternatively, we
can identify the point, P , by specifying its distance, r, from the origin and the angle, θ, shown in
Figure 8.38. The angle θ is measured counterclockwise from the positive x-axis to the line joining
P to the origin. The labels r and θ are called the polar coordinates of point P .

�

�

y

�� x

(x, y)
P

y

x

r

θ

Figure 8.38: Cartesian and polar coordinates for
the point P

−5 3

−5

4

6 P

QR

U

V

x

y

Figure 8.39: Points on the plane
for Example 1

1Cartesian coordinates can also be called rectangular coordinates.
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Relation Between Cartesian and Polar Coordinates
From the right triangle in Figure 8.38, we see that
• x = r cos θ and y = r sin θ

• r =
√
x2 + y2 and tan θ =

y

x
, x �= 0

The angle θ is determined by the equations cos θ = x/
√
x2 + y2 and sin θ = y/

√
x2 + y2.

Warning: In general θ �= tan−1(y/x). It is not possible to determine which quadrant θ is in
from the value of tan θ alone.

Example 1 (a) Give Cartesian coordinates for the points with polar coordinates (r, θ) given by P = (7, π/3),
Q = (5, 0), R = (5, π).

(b) Give polar coordinates for the points with Cartesian coordinates (x, y) given by U = (3, 4) and
V = (0,−5).

Solution (a) See Figure 8.39 on page 431. Point P is a distance of 7 from the origin. The angle θ is π/3
radians (60◦). The Cartesian coordinates of P are

x = r cos θ = 7 cos
π

3
=

7

2
and y = r sin θ = 7 sin

π

3
=

7
√
3

2
.

Point Q is located a distance of 5 units along the positive x-axis with Cartesian coordinates

x = r cos θ = 5 cos 0 = 5 and y = r sin θ = 5 sin 0 = 0.

For point R, which is on the negative x-axis,

x = r cos θ = 5 cosπ = −5 and y = r sin θ = 5 sinπ = 0.

(b) For U = (3, 4), we have r =
√
32 + 42 = 5 and tan θ = 4/3. A possible value for θ is

θ = arctan4/3 = 0.927 radians, or about 53◦. The polar coordinates of U are (5, 0.927). The
point V falls on the negative y-axis, so we can choose r = 5, θ = 3π/2 for its polar coordinates.
In this case, we cannot use tan θ = y/x to find θ, because tan θ = y/x = −5/0 is undefined.

Because the angle θ can be allowed to wrap around the origin more than once, there are many
possibilities for the polar coordinates of a point. For the point V in Example 1, we can also choose
θ = −π/2 or θ = 7π/2, so that (5,−π/2), (5, 7π/2), and (5, 3π/2) are all polar coordinates for
V . However, we often choose θ between 0 and 2π.

Example 2 Give three possible sets of polar coordinates for the point P in Figure 8.40.

2 4

3π/4
π/2

π/4

0

7π/4
3π/2

5π/4

π

P

Figure 8.40

Solution Because r = 3 and θ = π/4, one set of polar coordinates for P is (3, π/4). We can also use
θ = π/4 + 2π = 9π/4 and θ = π/4− 2π = −7π/4, to get (3, 9π/4) and (3,−7π/4).
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Graphing Equations in Polar Coordinates
The equations for certain graphs are much simpler when expressed in polar coordinates than in
Cartesian coordinates. On the other hand, some graphs that have simple equations in Cartesian
coordinates have complicated equations in polar coordinates.

Example 3 (a) Describe in words the graphs of the equation y = 1 (in Cartesian coordinates) and the equation
r = 1 (in polar coordinates).

(b) Write the equation r = 1 using Cartesian coordinates. Write the equation y = 1 using polar
coordinates.

Solution (a) The equation y = 1 describes a horizontal line. Since the equation y = 1 places no restrictions
on the value of x, it describes every point having a y-value of 1, no matter what the value of
its x-coordinate. Similarly, the equation r = 1 places no restrictions on the value of θ. Thus, it
describes every point having an r-value of 1, that is, having a distance of 1 from the origin. This
set of points is the unit circle. See Figure 8.41.

r = 1

y

x

y = 1

Figure 8.41: The graph of the equation r = 1 is the unit circle because
r = 1 for every point regardless of the value of θ. The graph of y = 1

is a horizontal line since y = 1 for any x

π 2π

−3π
2

π
2

5π
2

r = θ

x

y

Figure 8.42: A graph of the
Archimedean spiral r = θ

(b) Since r =
√
x2 + y2, we rewrite the equation r = 1 using Cartesian coordinates as

√
x2 + y2 =

1, or, squaring both sides, as x2 + y2 = 1. We see that the equation for the unit circle is simpler
in polar coordinates than it is in Cartesian coordinates.

On the other hand, since y = r sin θ, we can rewrite the equation y = 1 in polar coordinates
as r sin θ = 1, or, dividing both sides by sin θ, as r = 1/ sin θ. We see that the equation for this
horizontal line is simpler in Cartesian coordinates than in polar coordinates.

Example 4 Graph the equation r = θ. The graph is called an Archimedean spiral after the Greek mathematician
Archimedes who described its properties (although not by using polar coordinates).

Solution To construct this graph, use the values in Table 8.1. To help us visualize the shape of the spiral, we
convert the angles in Table 8.1 to degrees and the r-values to decimals. See Table 8.2.

Table 8.1 Points on the Archimedean spiral r = θ, with θ in radians

θ 0 π
6

π
3

π
2

2π
3

5π
6

π 7π
6

4π
3

3π
2

r 0 π
6

π
3

π
2

2π
3

5π
6

π 7π
6

4π
3

3π
2

Table 8.2 Points on the Archimedean spiral r = θ, with θ in degrees

θ 0 30◦ 60◦ 90◦ 120◦ 150◦ 180◦ 210◦ 240◦ 270◦

r 0.00 0.52 1.05 1.57 2.09 2.62 3.14 3.67 4.19 4.71

Notice that as the angle θ increases, points on the curve move farther from the origin. At 0◦,
the point is at the origin. At 30◦, it is 0.52 units away from the origin, at 60◦ it is 1.05 units away,
and at 90◦ it is 1.57 units away. As the angle winds around, the point traces out a curve that moves
away from the origin, giving a spiral. (See Figure 8.42.)
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In our definition, r is positive. However, graphs of curves in polar coordinates are traditionally
drawn using negative values of r as well, because this makes the graphs symmetric. If an equation
r = f(θ) gives a negative r-value, it is plotted in the opposite direction to θ. See Examples 5 and 6
and Figures 8.43 and 8.45.

Example 5 For a > 0 and n a positive integer, curves of the form r = a sinnθ or r = a cosnθ are called roses.
Graph the roses

(a) r = 3 sin 2θ (b) r = 4 cos 3θ

Solution (a) Using a calculator or making a table of values, we see that the graph is a rose with four petals,
each extending a distance of 3 from base to tip. See Figure 8.43. Negative values of r for
π/2 < θ < π and 3π/2 < θ < 2π give the petals in Quadrants II and IV. For example,
θ = 3π/4 gives r = −3, which is plotted 3 units from the origin in the direction opposite to
θ = 3π/4, namely in Quadrant IV.

(b) The graph is a rose with three petals, each extending 4 from base to tip. See Figure 8.44.

r = 3 sin 2θ

x

y

Figure 8.43: Graph of r = 3 sin 2θ
(petals in Quadrants II and IV have r < 0)

r = 4 cos 3θ

x

y

Figure 8.44: Graph of r = 4 cos 3θ

Example 6 Curves of the form r = a + b sin θ or r = a + b cos θ are called limaçons. Graph r = 1 + 2 cos θ
and r = 3 + 2 cos θ.

Solution See Figures 8.45 and 8.46. The equation r = 1+2 cos θ leads to negative r values for some θ values
between π/2 and 3π/2; these values give the inner loop in Figure 8.45. For example, θ = π gives
r = −1, which is plotted 1 unit from the origin in the direction opposite to θ = π, namely on the
positive x-axis. The equation r = 3 + 2 cos θ does not lead to negative r-values.

r = 1 + 2 cos θ

x

y

Figure 8.45: Graph of r = 1 + 2 cos θ
(inner loop has r < 0)

r = 3 + 2 cos θ

x

y

Figure 8.46: Graph of r = 3 + 2 cos θ

Polar coordinates can be used with inequalities to describe regions that are obtained from cir-
cles. Such regions are often much harder to represent in Cartesian coordinates.
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Example 7 Using inequalities, describe a compact disc with outer diameter 120 mm and inner diameter 15 mm.

Solution The compact disc lies between two circles of radius 7.5 mm and 60 mm. See Figure 8.47. Thus, if
the origin is at the center, the disc is represented by

7.5 ≤ r ≤ 60 and 0 ≤ θ ≤ 2π.

60 mm

�
7.5 mm

x

y

Figure 8.47: Compact disc

π/6

9′′

x

y

Figure 8.48: Pizza slice

Example 8 An 18 inch pizza is cut into 12 slices. Use inequalities to describe one of the slices.

Solution The pizza has radius 9 inches; the angle at the center is 2π/12 = π/6. See Figure 8.48. Thus, if the
origin is at the center of the original pizza, the slice is represented by

0 ≤ r ≤ 9 and 0 ≤ θ ≤
π

6
.

Area in Polar Coordinates
We can use a definite integral to find the area of a region described in polar coordinates. As previ-
ously, we slice the region into small pieces, construct a Riemann sum, and take a limit to obtain the
definite integral. In this case, the slices are approximately circular sectors.

To calculate the area of the sector in Figure 8.49, we think of the area of the sector as a fraction
θ/2π of the area of the entire circle (for θ in radians). Then

Area of sector =
θ

2π
· πr2 =

1

2
r2θ.

θ

r

Figure 8.49: Area of shaded sector
= 1

2
r2θ (for θ in radians)

θ
�

Δθ

x

y

Figure 8.50: Finding the area of
the limaçon r = 3 + 2 cos θ

Example 9 Use circular sectors to set up a definite integral to calculate the area of the region bounded by the
limaçon r = 3 + 2 cos θ, for 0 ≤ θ ≤ 2π. See Figure 8.50.

Solution The slices are not exactly circular sectors because the radius r depends on θ. However,

Area of sector ≈
1

2
r2Δθ =

1

2
(3 + 2 cos θ)2 Δθ.
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Thus, for the whole area,

Area of region ≈
∑ 1

2
(3 + 2 cos θ)2 Δθ.

Taking the limit as n → ∞ and Δθ → 0 gives the integral

Area =

∫ 2π

0

1

2
(3 + 2 cos θ)2 dθ.

To compute this integral, we expand the integrand and use integration by parts or formula IV-18
from the table of integrals:

Area =
1

2

∫ 2π

0

(9 + 12 cos θ + 4 cos
2 θ) dθ

=
1

2

(
9θ + 12 sin θ +

4

2
(cos θ sin θ + θ)

)∣∣∣∣2π
0

=
1

2
(18π + 0 + 4π) = 11π.

The reasoning in Example 9 suggests a general area formula.

For a curve r = f(θ), with f(θ) ≥ 0, the area in Figure 8.51 is given by

Area of region enclosed =
1

2

∫ β

α

f(θ)2 dθ.

α

r = f(θ)

β
x

y

Figure 8.51: Area in polar
coordinates

r = 3 sin 2θ

x

y

Figure 8.52: One petal of the rose
r = 3 sin 2θ with 0 ≤ θ ≤ π/2

Example 10 Find the area of one petal of the four-petal rose r = 3 sin 2θ in Figure 8.52.

Solution The petal in the first quadrant is described by r = 3 sin 2θ for 0 ≤ θ ≤ π/2, so

Area of shaded region =
1

2

∫ π/2

0

(3 sin 2θ)2 dθ =
9

2

∫ π/2

0

sin
2
2θ dθ.

Using the substitution w = 2θ, we rewrite the integral and use integration by parts or formula IV-17
from the table of integrals:

Area =
9

2

∫ π/2

0

sin
2
2θ dθ =

9

4

∫ π

0

sin
2 w dw

=
9

4

(
−
1

2
cosw sinw +

1

2
w

)∣∣∣∣π
0

=
9

4
·
π

2
=

9π

8
.
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Slope in Polar Coordinates
For a curve r = f(θ), we can express x and y in terms of θ as a parameter, giving

x = r cos θ = f(θ) cos θ and y = r sin θ = f(θ) sin θ.

To find the slope of the curve, we use the formula for the slope of a parametric curve

dy

dx
=

dy/dθ

dx/dθ
.

Example 11 Find the slope of the curve r = 3 sin 2θ at θ = π/3.

Solution Expressing x and y in terms of θ, we have

x = 3 sin(2θ) cos θ and y = 3 sin(2θ) sin θ.

The slope is given by
dy

dx
=

6 cos(2θ) sin θ + 3 sin(2θ) cos θ

6 cos(2θ) cos θ − 3 sin(2θ) sin θ
.

At θ = π/3, we have

dy

dx

∣∣∣∣
θ=π/3

=
6(−1/2)(

√
3/2) + 3(

√
3/2)(1/2)

6(−1/2)(1/2)− 3(
√
3/2)(

√
3/2)

=

√
3

5
.

Arc Length in Polar Coordinates
We can calculate the arc length of the curve r = f(θ) by expressing x and y in terms of θ as a
parameter

x = f(θ) cos θ y = f(θ) sin θ

and using the formula for the arc length of a parametric curve:

Arc length =

∫ β

α

√(
dx

dθ

)2

+

(
dy

dθ

)2

dθ.

The calculations may be simplified by using the alternate form of the arc length integral in Prob-
lem 45.

Example 12 Find the arc length of one petal of the rose r = 3 sin 2θ for 0 ≤ θ ≤ π/2. See Figure 8.52.

Solution The curve is given parametrically by

x = 3 sin(2θ) cos θ and y = 3 sin(2θ) sin θ.

Thus, calculating dx/dθ and dy/dθ and evaluating the integral on a calculator, we have:

Arc length =

∫ π/2

0

√
(6 cos(2θ) cos θ − 3 sin(2θ) sin θ)2 + (6 cos(2θ) sin θ + 3 sin(2θ) cos θ)2 dθ

= 7.266.
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Exercises and Problems for Section 8.3
Exercises

Convert the polar coordinates in Exercises 1–4 to Cartesian
coordinates. Give exact answers.

1. (1, 2π/3) 2. (
√
3,−3π/4)

3. (2
√
3,−π/6) 4. (2, 5π/6)

Convert the Cartesian coordinates in Exercises 5–8 to polar
coordinates.

5. (1, 1) 6. (−1, 0)

7. (
√
6,−√

2) 8. (−√
3, 1)

9. (a) Make a table of values for the equation r = 1−sin θ.
Include θ = 0, π/3, π/2, 2π/3, π, · · ·.

(b) Use the table to graph the equation r = 1− sin θ in
the xy-plane. This curve is called a cardioid.

(c) At what point(s) does the cardioid r = 1 − sin θ
intersect a circle of radius 1/2 centered at the origin?

(d) Graph the curve r = 1 − sin 2θ in the xy-plane.
Compare this graph to the cardioid r = 1− sin θ.

10. Graph the equation r = 1− sin(nθ), for n = 1, 2, 3, 4.
What is the relationship between the value of n and the
shape of the graph?

11. Graph the equation r = 1− sin θ, with 0 ≤ θ ≤ nπ, for
n = 2, 3, 4. What is the relationship between the value
of n and the shape of the graph?

12. Graph the equation r = 1 − n sin θ, for n = 2, 3, 4.
What is the relationship between the value of n and the
shape of the graph?

13. Graph the equation r = 1 − cos θ. Describe its relation-
ship to r = 1− sin θ.

14. Give inequalities that describe the flat surface of a washer
that is one inch in diameter and has an inner hole with a
diameter of 3/8 inch.

15. Graph the equation r = 1 − sin(2θ) for 0 ≤ θ ≤ 2π.
There are two loops. For each loop, give a restriction on
θ that shows all of that loop and none of the other loop.

16. A slice of pizza is one eighth of a circle of radius 1 foot.
The slice is in the first quadrant, with one edge along the
x-axis, and the center of the pizza at the origin. Give in-
equalities describing this region using:

(a) Polar coordinates (b) Rectangular coordinates

In Exercises 17–19, give inequalities for r and θ which de-
scribe the following regions in polar coordinates.

17.

(2, 2)

(3, 3)

y = x

Circular
arcs ��

x

y

18.

� Circular
arc

(
√
3, 1)

(
√
3,−1)

y

x

19.

1 2

1

�
Circular

arc

Note: Region extends indefinitely
in the y-direction.

x

y

20. Find the slope of the curve r = 2 at θ = π/4.

21. Find the slope of the curve r = eθ at θ = π/2.

22. Find the slope of the curve r = 1− cos θ at θ = π/2.

23. Find the arc length of the curve r = eθ from θ = π/2 to
θ = π.

24. Find the arc length of the curve r = θ2 from θ = 0 to
θ = 2π.

Problems

25. Sketch the polar region described by the following inte-
gral expression for area:

1

2

∫ π/3

0

sin2(3θ) dθ.

26. Find the area inside the spiral r = θ for 0 ≤ θ ≤ 2π.

27. Find the area between the two spirals r = θ and r = 2θ
for 0 ≤ θ ≤ 2π.

28. Find the area inside the cardioid r = 1 + cos θ for
0 ≤ θ ≤ 2π.
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29. (a) In polar coordinates, write equations for the line
x = 1 and the circle of radius 2 centered at the ori-
gin.

(b) Write an integral in polar coordinates representing
the area of the region to the right of x = 1 and in-
side the circle.

(c) Evaluate the integral.

30. Show that the area formula for polar coordinates gives
the expected answer for the area of the circle r = a for
0 ≤ θ ≤ 2π.

31. Show that the arc length formula for polar coordinates
gives the expected answer for the circumference of the
circle r = a for 0 ≤ θ ≤ 2π.

32. Find the area inside the circle r = 1 and outside the car-
dioid r = 1 + sin θ.

33. Find the area inside the cardioid r = 1 − sin θ and out-
side the circle r = 1/2.

34. Find the area lying outside r = 2 cos θ and inside r =
1 + cos θ.

35. (a) Graph r = 2 cos θ and r = 2 sin θ on the same axes.
(b) Using polar coordinates, find the area of the region

shared by both curves.

36. For what value of a is the area enclosed by r = θ, θ = 0,
and θ = a equal to 1?

37. (a) Sketch the bounded region inside the lemniscate
r2 = 4 cos 2θ and outside the circle r =

√
2.

(b) Compute the area of the region described in part (a).

38. Using Example 11 on page 437, find the equation of the
tangent line to the curve r = 3 sin 2θ at θ = π/3.

39. Using Example 11 on page 437 and Figure 8.43, find the
points where the curve r = 3 sin 2θ has horizontal and
vertical tangents.

40. For what values of θ on the polar curve r = θ, with
0 ≤ θ ≤ 2π, are the tangent lines horizontal? Vertical?

41. (a) In Cartesian coordinates, write an equation for the
tangent line to r = 1/θ at θ = π/2.

(b) The graph of r = 1/θ has a horizontal asymptote as
θ approaches 0. Find the equation of this asymptote.

42. Find the maximum value of the y-coordinate of points on
the limaçon r = 1 + 2 cos θ.

Find the arc length of the curves in Problems 43–44.

43. r = θ, 0 ≤ θ ≤ 2π

44. r = 1/θ, π ≤ θ ≤ 2π

45. For the curve r = f(θ) from θ = α to θ = β, show that

Arc length =

∫ β

α

√
(f ′(θ))2 + (f(θ))2 dθ.

46. Find the arc length of the spiral r = θ where 0 ≤ θ ≤ π.

47. Find the arc length of part of the cardioid r = 1 + cos θ
where 0 ≤ θ ≤ π/2.

Strengthen Your Understanding

In Problems 48–51, explain what is wrong with the statement.

48. The point with Cartesian coordinates (x, y) has polar co-
ordinates r =

√
x2 + y2, θ = tan−1(y/x).

49. All points of the curve r = sin(2θ) for π/2 < θ < π are
in quadrant II.

50. If the slope of the curve r = f(θ) is positive, then dr/dθ
is positive.

51. Any polar curve that is symmetric about both the x and y
axes must be a circle, centered at the origin.

In Problems 52–55, give an example of:

52. Two different pairs of polar coordinates (r, θ) that corre-
spond to the same point in the plane.

53. The equation of a circle in polar coordinates.

54. A polar curve r = f(θ) that is symmetric about neither
the x-axis nor the y-axis.

55. A polar curve r = f(θ) other than a circle that is sym-
metric about the x-axis.

8.4 DENSITY AND CENTER OF MASS

Density and How to Slice a Region
The examples in this section involve the idea of density. For example,
• A population density is measured in, say, people per mile (along the edge of a road), or people

per unit area (in a city), or bacteria per cubic centimeter (in a test tube).

• The density of a substance (e.g. air, wood, or metal) is the mass of a unit volume of the substance
and is measured in, say, grams per cubic centimeter.

Suppose we want to calculate the total mass or total population, but the density is not constant over
a region.
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To find total quantity from density: Divide the region into small pieces in such a way that
the density is approximately constant on each piece, and add the contributions of the pieces.

Example 1 The Massachusetts Turnpike (“the Pike”) starts in the middle of Boston and heads west. The number
of people living next to it varies as it gets farther from the city. Suppose that, x miles out of town,
the population density adjacent to the Pike is P = f(x) people/mile. Express the total population
living next to the Pike within 5 miles of Boston as a definite integral.

Solution Divide the Pike up into segments of length Δx. The population density at the center of Boston is
f(0); let’s use that density for the first segment. This gives an estimate of

People living in first segment ≈ f(0) people/ mile ·Δxmile = f(0)Δx people.

Points west
5

Boston
0

��
Δx

�� x

Population ≈ f(x)Δx

�

Figure 8.53: Population along the Massachusetts Turnpike

Similarly, the population in a typical segment x miles from the center of Boston is the population
density times the length of the interval, or roughly f(x)Δx. (See Figure 8.53.) The sum of all these
estimates gives the estimate

Total population ≈
∑

f(x)Δx.

Letting Δx → 0 gives

Total population = lim
Δx→0

∑
f(x)Δx =

∫ 5

0

f(x) dx.

The 5 and 0 in the limits of the integral are the upper and lower limits of the interval over which we
are integrating.

Example 2 The air density h meters above the earth’s surface is f(h) kg/m3. Find the mass of a cylindrical
column of air 2 meters in diameter and 25 kilometers high, with base on the surface of the earth.

Solution The column of air is a circular cylinder 2 meters in diameter and 25 kilometers, or 25,000 meters,
high. First we must decide how we are going to slice this column. Since the air density varies with
altitude but remains constant horizontally, we take horizontal slices of air. That way, the density will
be more or less constant over the whole slice, being close to its value at the bottom of the slice. (See
Figure 8.54.)

�� 2

�

�

25,000
�

�
h

��Δh

Volume = π · 12 ·Δh

�� 1

��Δh

Figure 8.54: Slicing a column of air horizontally
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A slice is a cylinder of heightΔh and diameter 2 m, so its radius is 1 m. We find the approximate
mass of the slice by multiplying its volume by its density. If the thickness of the slice is Δh, then
its volume is πr2 ·Δh = π12 ·Δh = πΔh m3. The density of the slice is given by f(h). Thus,

Mass of slice ≈ Volume · Density = (πΔh m3
)(f(h) kg/m3

) = πΔh · f(h) kg.

Adding these slices up yields a Riemann sum:

Total mass ≈
∑

πf(h)Δh kg.

As Δh → 0, this sum approximates the definite integral:

Total mass =
∫ 25,000

0

πf(h) dh kg.

In order to get a numerical value for the mass of air, we need an explicit formula for the density
as a function of height, as in the next example.

Example 3 Find the mass of the column of air in Example 2 if the density of air at height h is given by

P = f(h) = 1.28e−0.000124h kg/m3.

Solution Using the result of the previous example, we have

Mass =

∫ 25,000

0

π1.28e−0.000124h dh =
−1.28π

0.000124

(
e−0.000124h

∣∣∣∣25,000
0

)

=
1.28π

0.000124

(
e0 − e−0.000124(25,000)

)
≈ 31,000 kg.

It requires some thought to figure out how to slice a region. The key point is that you want the
density to be nearly constant within each piece.

Example 4 The population density in Ringsburg is a function of the distance from the city center. At r miles
from the center, the density is P = f(r) people per square mile. Ringsburg is circular with radius 5
miles. Write a definite integral that expresses the total population of Ringsburg.

Solution We want to slice Ringsburg up and estimate the population of each slice. If we were to take straight-
line slices, the population density would vary on each slice, since it depends on the distance from the
city center. We want the population density to be pretty close to constant on each slice. We therefore
take slices that are thin rings around the center. (See Figure 8.55.) Since the ring is very thin, we can
approximate its area by straightening it into a thin rectangle. (See Figure 8.56.) The width of the
rectangle is Δr miles, and its length is approximately equal to the circumference of the ring, 2πr
miles, so its area is about 2πrΔr mi2. Since

Population on ring ≈ Density · Area,

we get

Population on ring ≈ (f(r) people/mi2)(2πrΔr mi2) = f(r) · 2πrΔr people.

Adding the contributions from each ring, we get

Total population ≈
∑

2πrf(r)Δr people.

So

Total population =

∫ 5

0

2πrf(r) dr people.
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5

r

Δr

�

�

�

Figure 8.55: Ringsburg

�� 2πr

Width = Δr

Figure 8.56: Ring from Ringsburg (straightened out)

Note: You may wonder what happens if we calculate the area of the ring by subtracting the area of
the inner circle (πr2) from the area of the outer circle (π(r +Δr)2), giving

Area = π(r +Δr)2 − πr2.

Multiplying out and subtracting, we get

Area = π(r2 + 2rΔr + (Δr)2)− πr2

= 2πrΔr + π(Δr)2.

This expression differs from the one we used before by the π(Δr)2 term. However, as Δr
becomes very small, π(Δr)2 becomes much, much smaller. We say its smallness is of second order,
since the power of the small factor, Δr, is 2. In the limit as Δr → 0, we can ignore π(Δr)2.

Center of Mass
The center of mass of a mechanical system is important for studying its behavior when in motion.
For example, some sport utility vehicles and light trucks tend to tip over in accidents, because of
their high centers of mass.

In this section, we first define the center of mass for a system of point masses on a line. Then
we use the definite integral to extend this definition.

Point Masses

Two children on a seesaw, one twice the weight of the other, will balance if the lighter child is twice
as far from the pivot as the heavier child. Thus, the balance point is 2/3 of the way from the lighter
child and 1/3 of the way from the heavier child. This balance point is the center of mass of the
mechanical system consisting of the masses of the two children (we ignore the mass of the seesaw
itself). See Figure 8.57.

To find the balance point, we use the displacement (signed distance) of each child from the
pivot to calculate the moment, where

Moment of mass about pivot = Mass × Displacement from pivot.

A moment represents the tendency of a child to turn the system about the pivot point; the seesaw
balances if the total moment is zero. Thus, the center of mass is the point about which the total
moment is zero.

Heavy child
mass 2m

Light child
mass m

Balance
point

��(1/3)l �� (2/3)l



Seesaw
�� l

Figure 8.57: Children on seesaw

2m m

�� x̄ �� l − x̄
Center
of mass

Figure 8.58: Center of mass of point masses
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Example 5 Calculate the position of the center of mass of the children in Figure 8.57 using moments.

Solution Suppose the center of mass in Figure 8.58 is at a distance of x̄ from the left end. The moment of
the left mass about the center of mass is −2mx̄ (it is negative since it is to the left of the center of
mass); the moment of the right mass about the center of mass is m(l − x̄). The system balances if

−2mx̄+m(l − x̄) = 0 or ml − 3mx̄ = 0 so x̄ =
1

3
l.

Thus, the center of mass is l/3 from the left end.

We use the same method to calculate the center of mass, x̄, of the system in Figure 8.59. The
sum of the moments of the three masses about x̄ is 0, so

m1(x1 − x̄) +m2(x2 − x̄) +m3(x3 − x̄) = 0.

Solving for x̄, we get

m1x̄+m2x̄+m3x̄ = m1x1 +m2x2 +m3x3

x̄ =
m1x1 +m2x2 +m3x3

m1 +m2 +m3
=

∑3
i=1 mixi∑3
i=1 mi

.

Generalizing leads to the following formula:

The center of mass of a system of n point masses m1,m2, . . . ,mn located at positions
x1, x2, . . . , xn along the x-axis is given by

x =

∑
ximi∑
mi

.

The numerator is the sum of the moments of the masses about the origin; the denominator is
the total mass of the system.

m1

0

m2 m3

x2 x3x1

Figure 8.59: Discrete masses m1, m2,m3

Example 6 Show that the definition of x gives the same answer as we found in Example 5.

Solution Suppose the origin is at the left end of the seesaw in Figure 8.57. The total mass of the system is
2m+m = 3m. We compute

x =

∑
ximi∑
mi

=
1

3m
(2m · 0 +m · l) =

ml

3m
=

l

3
.

Continuous Mass Density

Instead of discrete masses arranged along the x-axis, suppose we have an object lying on the x-axis
between x = a and x = b. At point x, suppose the object has mass density (mass per unit length)
of δ(x). To calculate the center of mass of such an object, divide it into n pieces, each of length
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a bxi

��Δx

�

Mass mi ≈ δ(xi)Δx

x

Figure 8.60: Calculating the center of mass of an object of variable density, δ(x)

Δx. On each piece, the density is nearly constant, so the mass of the piece is given by density times
length. See Figure 8.60. Thus, if xi is a point in the ith piece,

Mass of the ith piece, mi ≈ δ(xi)Δx.

Then the formula for the center of mass, x̄ =
∑

ximi/
∑

mi, applied to the n pieces of the
object gives

x̄ =

∑
xiδ(xi)Δx∑
δ(xi)Δx

.

In the limit as n → ∞ we have the following formula:

The center of mass x of an object lying along the x-axis between x = a and x = b is

x =

∫ b
a
xδ(x) dx∫ b

a
δ(x) dx

,

where δ(x) is the density (mass per unit length) of the object.

As in the discrete case, the denominator is the total mass of the object.

Example 7 Find the center of mass of a 2-meter rod lying on the x-axis with its left end at the origin if:
(a) The density is constant and the total mass is 5 kg. (b) The density is δ(x) = 15x2 kg/m.

Solution (a) Since the density is constant along the rod, we expect the balance point to be in the middle, that
is, x̄ = 1. To check this, we compute x̄. The density is the total mass divided by the length, so
δ(x) = 5/2 kg/m. Then

x̄ =
Moment

Mass
=

∫ 2
0 x · 5

2 dx

5
=

1

5
·
5

2
·
x2

2

∣∣∣∣2
0

= 1 meter.

(b) Since more of the mass of the rod is closer to its right end (the density is greatest there), we
expect the center of mass to be in the right half of the rod, that is, between x = 1 and x = 2.
We have

Total mass =

∫ 2

0

15x2 dx = 5x3
∣∣2
0
= 40 kg.

Thus,

x̄ =
Moment

Mass
=

∫ 2
0
x · 15x2dx

40
=

15

40
·
x4

4

∣∣∣∣2
0

= 1.5 meter.
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Two- and Three-Dimensional Regions

For a system of masses that lies in the plane, the center of mass is a point with coordinates (x̄, ȳ).
In three dimensions, the center of mass is a point with coordinates (x̄, ȳ, z̄). To compute the center
of mass in three dimensions, we use the following formulas in which Ax(x) is the area of a slice
perpendicular to the x-axis at x, and Ay(y) and Az(z) are defined similarly. In two dimensions,
we use the same formulas for x̄ and ȳ, but we interpret Ax(x) and Ay(y) as the lengths of strips
perpendicular to the x- and y-axes, respectively.

For a region of constant density δ, the center of mass is given by

x̄ =

∫
xδAx(x) dx

Mass
ȳ =

∫
yδAy(y) dy

Mass
z̄ =

∫
zδAz(z) dz

Mass
.

The expression δAx(x)Δx is the moment of a slice perpendicular to the x-axis. Thus, these for-
mulas are extensions of that on page 444. In the two- and three-dimensional case, we are assuming
that the density δ is constant. If the density is not constant, finding the center of mass may require a
double or triple integral from multivariable calculus.

Example 8 Find the coordinates of the center of mass of the isosceles triangle in Figure 8.61. The triangle has
constant density and mass m.

1

− 1
2

1
2

x

y

Figure 8.61: Find center of mass of this triangle

x 1

− 1
2

1
2

�

�

1
2
(1− x)

�
Δx

x

y

Figure 8.62: Sliced triangle

Solution Because the mass of the triangle is symmetrically distributed with respect to the x-axis, ȳ = 0. We
expect x̄ to be closer to x = 0 than to x = 1, since the triangle is wider near the origin.

The area of the triangle is 1
2 · 1 · 1 = 1

2 . Thus, Density = Mass/Area = 2m. If we slice the
triangle into strips of width Δx, then the strip at position x has lengthAx(x) = 2· 12 (1−x) = (1−x).
(See Figure 8.62.) So

Area of strip = Ax(x)Δx ≈ (1− x)Δx.

Since the density is 2m, the center of mass is given by

x̄ =

∫
xδAx(x) dx

Mass
=

∫ 1
0
2mx(1− x) dx

m
= 2

(
x2

2
−

x3

3

) ∣∣∣∣1
0

=
1

3
.

So the center of mass of this triangle is at the point (x̄, ȳ) = (1/3, 0).

Example 9 Find the center of mass of a hemisphere of radius 7 cm and constant density δ.

Solution Stand the hemisphere with its base horizontal in the xy-plane, with the center at the origin. Symme-
try tells us that its center of mass lies directly above the center of the base, so x̄ = ȳ = 0. Since the
hemisphere is wider near its base, we expect the center of mass to be nearer to the base than the top.

To calculate the center of mass, slice the hemisphere into horizontal disks, as in Figure 8.63. A
disk of thickness Δz at height z above the base has

Volume of disk = Az(z)Δz ≈ π(72 − z2)Δz cm3.
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So, since the density is δ,

z =

∫
zδAz(z) dz

Mass
=

∫ 7
0
zδπ(72 − z2) dz

Mass
.

Since the total mass of the hemisphere is ( 23π7
3) δ, we get

z̄ =
δπ
∫ 7
0 (7

2z − z3) dz

Mass
=

δπ
(
72z2/2− z4/4

)∣∣7
0

Mass
=

74

4 δπ
2
3π7

3δ
=

21

8
= 2.625 cm.

The center of mass of the hemisphere is 2.625 cm above the center of its base. As expected, it is
closer to the base of the hemisphere than its top.

�r

�� 7

�

�
z

�

�
Δz

Volume of slice
≈ πr2 Δz

Figure 8.63: Slicing to find the center of mass of a hemisphere

Exercises and Problems for Section 8.4
Exercises

1. Find the mass of a rod of length 10 cm with density
δ(x) = e−x gm/cm at a distance of x cm from the left
end.

2. A plate occupying the region 0 ≤ x ≤ 2, 0 ≤ y ≤ 3
has density δ = 5 gm/cm2. Set up two integrals giv-
ing the mass of the plate, one corresponding to strips in
the x-direction and one corresponding to strips in the y-
direction.

3. A rod has length 2 meters. At a distance x meters from
its left end, the density of the rod is given by

δ(x) = 2 + 6x gm/m.

(a) Write a Riemann sum approximating the total mass
of the rod.

(b) Find the exact mass by converting the sum into an
integral.

4. If a rod lies along the x-axis between a and b, the mo-
ment of the rod is

∫ b

a
xδ(x) dx, where δ(x) is its density

in grams/meter at a position x meters. Find the moment
and center of mass of the rod in Problem 3.

5. The density of cars (in cars per mile) down a 20-mile
stretch of the Pennsylvania Turnpike is approximated by

δ(x) = 300
(
2 + sin

(
4
√
x+ 0.15

))
,

at a distance x miles from the Breezewood toll plaza.

(a) Sketch a graph of this function for 0 ≤ x ≤ 20.
(b) Write a Riemann sum that approximates the total

number of cars on this 20-mile stretch.
(c) Find the total number of cars on the 20-mile stretch.

6. (a) Find a Riemann sum which approximates the total
mass of a 3× 5 rectangular sheet, whose density per
unit area at a distance x from one of the sides of
length 5 is 1/(1 + x4).

(b) Calculate the mass.

7. A point mass of 2 grams located 3 centimeters to the left
of the origin and a point mass of 5 grams located 4 cen-
timeters to the right of the origin are connected by a thin,
light rod. Find the center of mass of the system.

8. Find the center of mass of a system containing three point
masses of 5 gm, 3 gm, and 1 gm located respectively at
x = −10, x = 1, and x = 2.

9. Find the mass of the block 0 ≤ x ≤ 10, 0 ≤ y ≤ 3,
0 ≤ z ≤ 1, whose density δ, is given by

δ = 2− z for 0 ≤ z ≤ 1.
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Problems

Problems 10–12 refer to a colony of bats which flies out of a
cave each night to eat insects. To estimate the colony’s size,
a naturalist counts samples of bats at different distances from
the cave. Table 8.3 gives n, her count per hectare, at a distance
r km from the cave. For instance, she counts 300 bats in one
hectare at the cave’s mouth, and 219 bats in one hectare one
kilometer from the cave. The bat count r km from the cave is
the same in all directions. [Note that 1 km2 = 100 hectares,
written 100 ha.]

Table 8.3

r 0 1 2 3 4 5

n 300 219 160 117 85 62

10. Give an overestimate of the number of bats between 3
and 4 km from the cave.

11. Give an underestimate of the number of bats between 3
and 4 km from the cave.

12. Letting n = f(r), write an integral in terms of f repre-
senting the number of bats in the cave. Assume that bats
fly no farther away than 5 km from the cave. Do not eval-
uate the integral.

13. Find the total mass of the triangular region in Figure 8.64,
which has density δ(x) = 1 + x grams/cm2.

−1 1

1

x (cm)

y (cm)

Figure 8.64

14. A rectangular plate is located with vertices at points
(0, 0), (2, 0), (2, 3) and (0, 3) in the xy-plane. The den-
sity of the plate at point (x, y) is δ(y) = 2+y2 gm/cm2

and x and y are in cm. Find the total mass of the plate.

15. Circle City, a typical metropolis, is densely populated
near its center, and its population gradually thins out
toward the city limits. In fact, its population density is
10,000(3 − r) people/square mile at distance r miles
from the center.

(a) Assuming that the population density at the city lim-
its is zero, find the radius of the city.

(b) What is the total population of the city?

16. The density of oil in a circular oil slick on the surface of
the ocean at a distance r meters from the center of the
slick is given by δ(r) = 50/(1 + r) kg/m2.

(a) If the slick extends from r = 0 to r = 10,000 m,
find a Riemann sum approximating the total mass of
oil in the slick.

(b) Find the exact value of the mass of oil in the slick by
turning your sum into an integral and evaluating it.

(c) Within what distance r is half the oil of the slick
contained?

17. The soot produced by a garbage incinerator spreads out
in a circular pattern. The depth, H(r), in millimeters, of
the soot deposited each month at a distance r kilometers
from the incinerator is given by H(r) = 0.115e−2r .

(a) Write a definite integral giving the total volume of
soot deposited within 5 kilometers of the incinerator
each month.

(b) Evaluate the integral you found in part (a), giving
your answer in cubic meters.

18. A cardboard figure has the shape shown in Figure 8.65.
The region is bounded on the left by the line x = a, on
the right by the line x = b, above by f(x), and below by
g(x). If the density δ(x) gm/cm2 varies only with x, find
an expression for the total mass of the figure, in terms of
f(x), g(x), and δ(x).

a b
x

f(x)

g(x)

Figure 8.65

19. The storage shed in Figure 8.66 is the shape of a half-
cylinder of radius r and length l.

(a) What is the volume of the shed?
(b) The shed is filled with sawdust whose density

(mass/unit volume) at any point is proportional to
the distance of that point from the floor. The con-
stant of proportionality is k. Calculate the total mass
of sawdust in the shed.

�

�

r

�

�

l

Figure 8.66
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20. The following table gives the density D (in gm/cm3)
of the earth at a depth x km below the earth’s surface.
The radius of the earth is about 6370 km. Find an up-
per and a lower bound for the earth’s mass such that the
upper bound is less than twice the lower bound. Explain
your reasoning; in particular, what assumptions have you
made about the density?

x 0 1000 2000 2900 3000 4000 5000 6000 6370

D 3.3 4.5 5.1 5.6 10.1 11.4 12.6 13.0 13.0

21. Water leaks out of a tank through a square hole with 1-
inch sides. At time t (in seconds) the velocity of water
flowing through the hole is v = g(t) ft/sec. Write a defi-
nite integral that represents the total amount of water lost
in the first minute.

22. An exponential model for the density of the earth’s at-
mosphere says that if the temperature of the atmosphere
were constant, then the density of the atmosphere as a
function of height, h (in meters), above the surface of the
earth would be given by

δ(h) = 1.28e−0.000124h kg/m3.

(a) Write (but do not evaluate) a sum that approximates
the mass of the portion of the atmosphere from h =
0 to h = 100 m (i.e., the first 100 meters above sea
level). Assume the radius of the earth is 6400 km.

(b) Find the exact answer by turning your sum in part (a)
into an integral. Evaluate the integral.

23. Three point masses of 4 gm each are placed at x = −6, 1
and 3. Where should a fourth point mass of 4 gm be
placed to make the center of mass at the origin?

24. A rod of length 3 meters with density δ(x) = 1 + x2

grams/meter is positioned along the positive x-axis, with
its left end at the origin. Find the total mass and the center
of mass of the rod.

25. A rod with density δ(x) = 2 + sin x lies on the x-axis
between x = 0 and x = π. Find the center of mass of
the rod.

26. A rod of length 1 meter has density δ(x) = 1 + kx2

grams/meter, where k is a positive constant. The rod is
lying on the positive x-axis with one end at the origin.

(a) Find the center of mass as a function of k.
(b) Show that the center of mass of the rod satisfies

0.5 < x̄ < 0.75.

27. A rod of length 2 meters and density δ(x) = 3 − e−x

kilograms per meter is placed on the x-axis with its ends
at x = ±1.

(a) Will the center of mass of the rod be on the left or
right of the origin? Explain.

(b) Find the coordinate of the center of mass.

28. One half of a uniform circular disk of radius 1 meter lies
in the xy-plane with its diameter along the y-axis, its cen-
ter at the origin, and x > 0. The mass of the half-disk is
3 kg. Find (x̄, ȳ).

29. A metal plate, with constant density 2 gm/cm2, has a
shape bounded by the curve y = x2 and the x-axis, with
0 ≤ x ≤ 1 and x, y in cm.

(a) Find the total mass of the plate.
(b) Sketch the plate, and decide, on the basis of the

shape, whether x̄ is less than or greater than 1/2.
(c) Find x̄.

30. A metal plate, with constant density 5 gm/cm2, has a
shape bounded by the curve y =

√
x and the x-axis,

with 0 ≤ x ≤ 1 and x, y in cm.

(a) Find the total mass of the plate.
(b) Find x̄ and ȳ.

31. An isosceles triangle with uniform density, altitude a,
and base b is placed in the xy-plane as in Figure 8.67.
Show that the center of mass is at x̄ = a/3, ȳ = 0.
Hence show that the center of mass is independent of the
triangle’s base.

a

− b
2

b
2

x

y

Figure 8.67

32. Find the center of mass of a cone of height 5 cm and base
diameter 10 cm with constant density δ gm/cm3.

33. A solid is formed by rotating the region bounded by the
curve y = e−x and the x-axis between x = 0 and
x = 1, around the x-axis. It was shown in Example 1 on
page 422 that the volume of this solid is π(1 − e−2)/2.
Assuming the solid has constant density δ, find x̄ and ȳ.

34. (a) Find the mass of a pyramid of constant density
δ gm/cm3 with a square base of side 40 cm and
height 10 cm. [That is, the vertex is 10 cm above
the center of the base.]

(b) Find the center of mass of the pyramid.
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Strengthen Your Understanding

In Problems 35–38, explain what is wrong with the statement.

35. A 10 cm rod can have mass density given by f(x) =
x2 − 5x gm/cm, at a point x cm from one end.

36. The center of mass of a rod with density x2 gm/cm for
0 ≤ x ≤ 10 is given by

∫ 10

0
x3 dx.

37. If the center of mass of a rod is in the center of the rod,
then the density of the rod is constant.

38. A disk with radius 3 cm and density δ(r) = 3 −
r gm/cm2, where r is in centimeters from the center of
the disk, has total mass 27π gm.

In Problems 39–41, give an example of:

39. A mass density on a rod such that the rod is most dense
at one end but the center of mass is nearer the other end.

40. A rod of length 2 cm, whose density δ(x) makes the cen-
ter of mass not at the center of the rod.

41. A rod of length 2 cm, whose density δ(x) makes the cen-
ter of mass at the center of the rod.

In Problems 42–48, are the statements true or false? Give an
explanation for your answer.

42. To find the total population in a circular city, we always
slice it into concentric rings, no matter what the popula-
tion density function.

43. A city occupies a region in the xy-plane, with population
density δ(y) = 1 + y. To set up an integral representing
the total population in the city, we should slice the region
parallel to the y-axis.

44. The population density in a circular city of radius 2 de-
pends on the distance r from the center by f(r) =
10− 3r, so that the density is greatest at the center. Then
the population of the inner city, 0 ≤ r ≤ 1, is greater
than the population of the suburbs, 1 ≤ r ≤ 2.

45. The location of the center of mass of a system of three
masses on the x-axis does not change if all the three
masses are doubled.

46. The center of mass of a region in the plane cannot be
outside the region.

47. Particles are shot at a circular target. The density of par-
ticles hitting the target decreases with the distance from
the center. To set up a definite integral to calculate the to-
tal number of particles hitting the target, we should slice
the region into concentric rings.

48. A metal rod of density f(x) lying along the x-axis from
x = 0 to x = 4 has its center of mass at x = 2. Then the
two halves of the rod on either side of x = 2 have equal
mass.

8.5 APPLICATIONS TO PHYSICS

Although geometric problems were a driving force for the development of the calculus in the seven-
teenth century, it was Newton’s spectacularly successful applications of the calculus to physics that
most clearly demonstrated the power of this new mathematics.

Work
In physics the word “work” has a technical meaning which is different from its everyday meaning.
Physicists say that if a constant force, F , is applied to some object to move it a distance, d, then
the force has done work on the object. The force must be parallel to the motion (in the same or the
opposite direction). We make the following definition:

Work done = Force · Distance or W = F · d.

Notice that if we walk across a room holding a book, we do no work on the book, since the
force we exert on the book is vertical, but the motion of the book is horizontal. On the other hand,
if we lift the book from the floor to a table, we accomplish work.

There are several sets of units in common use. To measure work, we will generally use the two
sets of units, International (SI) and British, in the following table.

Force Distance Work

International (SI) units newton (nt) meter (m) joule (j)

British units pound (lb) foot (ft) foot-pound (ft-lb)

Conversions

1 lb = 4.45 nt

1 ft = 0.305 m

1 ft-lb = 1.36 joules
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One joule of work is done when a force of 1 newton moves an object through 1 meter, so
1 joule = 1 newton-meter.

Example 1 Calculate the work done on an object when

(a) A force of 2 newtons moves it 12 meters. (b) A 3-lb force moves it 4 feet.

Solution (a) Work done = 2 nt · 12 m = 24 joules. (b) Work done = 3 lb · 4 ft = 12 ft-lb.

In the previous example, the force was constant and we calculated the work by multiplication.
In the next example, the force varies, so we need an integral. We divide up the distance moved and
sum to get a definite integral representing the work.

Example 2 Hooke’s Law says that the force, F , required to compress the spring in Figure 8.68 by a distance x,
in meters, is given by F = kx, for some constant k. Find the work done in compressing the spring
by 0.1 m if k = 8 nt/m.

Wall

�� x

Equilibrium position

Figure 8.68: Compression of spring: Force
is kx

Wall

0.1 ��
Δx

�� x

�

Figure 8.69: Work done in compressing
spring a small distance Δx is kxΔx

Solution Since k is in newtons/meter and x is in meters, we have F = 8x newtons. Since the force varies
with x, we divide the distance moved into small increments, Δx, as in Figure 8.69. Then

Work done in moving through an increment ≈ FΔx = 8xΔx joules.

So, summing over all increments gives the Riemann sum approximation

Total work done ≈
∑

8xΔx.

Taking the limit as Δx → 0 gives

Total work done =

∫ 0.1

0

8x dx = 4x2

∣∣∣∣0.1
0

= 0.04 joules.

In general, if force is a function F (x) of position x, then in moving from x = a to x = b,

Work done =

∫ b

a

F (x) dx.

The Force Due to Gravity: Mass versus Weight

When an object is lifted, work is done against the force exerted by gravity on the object. By New-
ton’s Second Law, the downward gravitational force acting on a mass m is mg, where g is the
acceleration due to gravity. To lift the object, we need to exert a force equal to the gravitational
force but in the opposite direction.
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In International units, g = 9.8 m/sec2, and we usually measure mass, m, in kilograms. In
British units, mass is seldom used. Instead, we usually talk about the weight of an object, which is
the force exerted by gravity on the object. Roughly speaking, the mass represents the quantity of
matter in an object, whereas the weight represents the force of gravity on it. The mass of an object
is the same everywhere, whereas the weight can vary if, for example, the object is moved to outer
space where gravitational forces are smaller.

When we are given the weight of an object, we do not multiply by g to find the gravitational
force as it has already been done. In British units, a pound is a unit of weight. In International units,
a kilogram is a unit of mass, and the unit of weight is a newton, where 1 newton = 1 kg · m/sec2.

Example 3 How much work is done in lifting

(a) A 5-pound book 3 feet off the floor? (b) A 1.5-kilogram book 2 meters off the floor?

Solution (a) The force due to gravity is 5 lb, so W = F · d = (5 lb)(3 ft) = 15 foot-pounds.
(b) The force due to gravity is mg = (1.5 kg)(g m/sec2), so

W = F · d = [(1.5 kg)(9.8 m/sec2)] · (2 m) = 29.4 joules.

In the previous example, work is found by multiplication. In the next example, different parts
of the object move different distances, so an integral is needed.

Example 4 A 28-meter uniform chain with a mass density of 2 kilograms per meter is dangling from the roof
of a building. How much work is needed to pull the chain up onto the top of the building?

Solution Since 1 meter of the chain has mass density 2 kg, the gravitational force per meter of chain is
(2 kg)(9.8m/sec2) = 19.6 newtons. Let’s divide the chain into small sections of length Δy, each
requiring a force of 19.6Δy newtons to move it against gravity. See Figure 8.70. If Δy is small, all
of this piece is hauled up approximately the same distance, namely y, so

Work done on the small piece ≈ (19.6Δy newtons)(y meters) = 19.6yΔy joules.

The work done on the entire chain is given by the total of the work done on each piece:

Work done ≈
∑

19.6yΔy joules.

As Δy → 0, we obtain a definite integral. Since y varies from 0 to 28 meters, the total work is

Work done =

∫ 28

0

(19.6y) dy = 9.8y2
∣∣∣∣28
0

= 7683.2 joules.

Top of building

�

�

y

�

�Δy

Figure 8.70: Chain for Example 4
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Example 5 Calculate the work done in pumping oil from the cone-shaped tank in Figure 8.71 to the rim. The
oil has density 800 kg/m3 and its vertical depth is 10 m.

�

�

20 m

�� 25 m

�

�

10 m

Figure 8.71: Cone-shaped tank
containing oil

�

�

20 m

w �
�Δh
�

�
h

�� 25 m

�

�

10 m

Figure 8.72: Slicing the oil horizontally to
compute work

Solution We slice the oil horizontally because each part of such a slice moves the same vertical distance.
Each slice is approximately a circular disk with radius w/2 m, so, with h in meters,

Volume of slice ≈ π
(w
2

)2
Δh =

π

4
w2

Δh m3.

Force of gravity on slice = Density · g · Volume = 800g
π

4
w2

Δh = 200πgw2
Δh nt.

Since each part of the slice has to move a vertical distance of (20− h) m, we have

Work done on slice ≈ Force · Distance = 200πgw2
Δh nt · (20− h) m

= 200πgw2
(20− h)Δh joules.

To find w in terms of h, we use the similar triangles in Figure 8.72:

w

h
=

25

20
so w =

5

4
h = 1.25h.

Thus,

Work done on strip ≈ 200πg(1.25h)2(20− h)Δh = 312.5πgh2
(20− h)Δh joules.

Summing and taking the limit as Δh → 0 gives an integral with upper limit h = 10, the depth of
the oil.

Total work = lim
Δh→0

∑
312.5πgh2

(20− h)Δh =

∫ 10

0

312.5πgh2
(20− h) dh joules.

Evaluating the integral using g = 9.8 m/sec2 gives

Total work = 312.5πg

(
20

h3

3
−

h4

4

)∣∣∣∣10
0

= 1,302,083πg ≈ 4.0 · 107 joules.

In the following example, information is given in British units about the weight of the pyramid,
so we do not need to multiply by g to find the gravitational force.



8.5 APPLICATIONS TO PHYSICS 453

Example 6 It is reported that the Great Pyramid of Egypt was built in 20 years. If the stone making up the
pyramid has a density of 200 pounds per cubic foot, find the total amount of work done in building
the pyramid. The pyramid is 410 feet high and has a square base 755 feet by 755 feet. Estimate how
many workers were needed to build the pyramid.

s�
�
h

�

�

410 ft
�

755 ft

Volume of slice ≈ s2Δh

Figure 8.73: Pyramid for Example 6

Solution We assume that the stones were originally located at the approximate height of the construction site.
Imagine the pyramid built in layers as we did in Example 5 on page 418.

By similar triangles, the layer at height h has a side length s = 755(410 − h)/410 ft. (See
Figure 8.73.) The layer at height h has a volume of s2 Δh ft3, so its weight is 200s2Δh lb. This
layer is lifted through a height of h, so

Work to lift layer = (200s2Δh lb)(h ft) = 200s2hΔh ft-lb.

Summing over all layers gives

Total work ≈
∑

200s2 hΔh =
∑

200

(
755

410

)2

(410− h)2hΔh ft-lb.

Since h varies from 0 to 410, as Δh → 0, we obtain

Total work =

∫ 410

0

200

(
755

410

)2

(410− h)2h dh ≈ 1.6 · 1012 foot-pounds.

We have calculated the total work done in building the pyramid; now we want to estimate the total
number of workers needed. Let’s assume every laborer worked 10 hours a day, 300 days a year,
for 20 years. Assume that a typical worker lifted ten 50 pound blocks a distance of 4 feet every
hour, thus performing 2000 foot-pounds of work per hour (this is a very rough estimate). Then
each laborer performed (10)(300)(20)(2000) = 1.2 · 108 foot-pounds of work over a twenty-year
period. Thus, the number of workers needed was about (1.6 · 1012)/(1.2 · 108), or about 13,000.

Force and Pressure
We can use the definite integral to compute the force exerted by a liquid on a surface, for example,
the force of water on a dam. The idea is to get the force from the pressure. The pressure in a liquid
is the force per unit area exerted by the liquid. Two things you need to know about pressure are:
• At any point, pressure is exerted equally in all directions—up, down, sideways.

• Pressure increases with depth. (That is one of the reasons why deep sea divers have to take
much greater precautions than scuba divers.)
At a depth of h meters, the pressure, p, exerted by the liquid, measured in newtons per square

meter, is given by computing the total weight of a column of liquid h meters high with a base of 1
square meter. The volume of such a column of liquid is just h cubic meters. If the liquid has density
δ (mass per unit volume), then its weight per unit volume is δg, where g is the acceleration due to
gravity. The weight of the column of liquid is δgh, so
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Pressure = Mass density · g · Depth or p = δgh.

Provided the pressure is constant over a given area, we also have the following relation:

Force = Pressure · Area.

The units and data we will generally use are given in the following table:

Density of water Force Area Pressure

SI units 1000 kg/m3 (mass) newton (nt) meter2 pascal (nt/m2)

British units 62.4 lb/ft3 (weight) pound (lb) foot2 lb/ft2

Conversions

1 lb = 4.45 nt

1ft2 = 0.093 m2

1 lb/ft2 = 47.9 pa

In International units, the mass density of water is 1000 kg/m3, so the pressure at a depth of h
meters is δgh = 1000 · 9.8h = 9800h nt/m2. See Figure 8.74.

In British units, the density of the liquid is usually given as a weight per unit volume, rather
than a mass per unit volume. In that case, we do not need to multiply by g because it has already
been done. For example, water weighs 62.4 lb/ft3, so the pressure at depth h feet is 62.4h lb/ft2. See
Figure 8.75.
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h m

�

1 square meter

�

Pressure here
= 9800h nt/m2



Surface
of water

Figure 8.74: Pressure exerted by column
of water (International units)

�
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h ft

�

1 square foot

�

Pressure here
= 62.4h lb/ft2



Surface
of water

Figure 8.75: Pressure exerted by a
column of water (British units)

If the pressure is constant over a surface, we calculate the force on the surface by multiplying
the pressure by the area of the surface. If the pressure is not constant, we divide the surface into
small pieces in such a way that the pressure is nearly constant on each one to obtain a definite
integral for the force on the surface. Since the pressure varies with depth, we divide the surface into
horizontal strips, each of which is at an approximately constant depth.

Example 7 In 1912, the ocean liner Titanic sank to the bottom of the Atlantic, 12,500 feet (nearly 2.5 miles)
below the surface. Find the force on one side of a 100-foot square plate at the depth of the Titanic if
the plate is: (a) Lying horizontally (b) Standing vertically.

Solution (a) When the plate is horizontal, the pressure is the same at every point on the plate, so

Pressure = 62.4 lb/ft3 · 12,500 ft = 780,000 lb/ft2.

To imagine this pressure, convert to pounds per square inch, giving 780,000/144≈ 5400 lb/in2.
For the horizontal plate

Force = 780,000 lb/ft2 · 1002 ft2 = 7.8 · 109 pounds.
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(b) When the plate is vertical, only the bottom is at 12,500 feet; the top is at 12,400 feet. Dividing
into horizontal strips of width Δh, as in Figure 8.76, we have

Area of strip = 100Δh ft2.

Since the pressure on a strip at a depth of h feet is 62.4h lb/ft2,

Force on strip ≈ 62.4h · 100Δh = 6240hΔh pounds.

Summing over all strips and taking the limit as Δh → 0 gives a definite integral. The strips vary
in depth from 12,400 to 12,500 feet, so

Total force = lim
Δh→0

∑
6240hΔh =

∫ 12,500

12,400

6240h dh pounds.

Evaluating the integral gives

Total force = 6240
h2

2

∣∣∣∣12,500
12,400

= 3120(12,5002 − 12,4002) = 7.77 · 109 pounds.

Notice that the answer to part (b) is smaller than the answer to part (a). This is because part
of the plate is at a smaller depth in part (b) than in part (a).
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of ocean

Figure 8.76: Square plate at bottom of ocean; h measured from the surface of water

Example 8 Figure 8.77 shows a dam approximately the size of Hoover Dam, which stores water for California,
Nevada, and Arizona. Calculate:

(a) The water pressure at the base of the dam. (b) The total force of the water on the dam.

�

�

220 m

�� 200 m

�� 400 m

Figure 8.77: Trapezoid-shaped dam

�

�

220 m

�� 200 m

�� 400 m

��Δh

�

�
h

�� w

Figure 8.78: Dividing dam into horizontal strips

Solution (a) Since the density of water is δ = 1000 kg/m3, at the base of the dam,

Water pressure = δgh = 1000 · 9.8 · 220 = 2.156 · 106 nt/m2.
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(b) To calculate the force on the dam, we divide the dam into horizontal strips because the pressure
along each strip is approximately constant. See Figure 8.78. Since each strip is approximately
rectangular,

Area of strip ≈ wΔh m2.

The pressure at a depth of h meters is δgh = 9800h nt/m2. Thus,

Force on strip ≈ Pressure · Area = 9800hwΔh nt.

To find w in terms of h, we use the fact that w decreases linearly from w = 400 when h = 0

to w = 200 when h = 220. Thus w is a linear function of h, with slope (200 − 400)/220 =

−10/11, so

w = 400−
10

11
h.

Thus

Force on strip ≈ 9800h

(
400−

10

11
h

)
Δh nt.

Summing over all strips and taking the limit as Δh → 0 gives

Total force on dam = lim
Δh→0

∑
9800h

(
400−

10

11
h

)
Δh

=

∫ 220

0

9800h

(
400−

10

11
h

)
dh newtons.

Evaluating the integral gives

Total force = 9800

(
200h2 −

10

33
h3

)∣∣∣∣220
0

= 6.32 · 1010 newtons.

In fact, Hoover Dam is not flat, as the problem assumed, but arched, to better withstand the
pressure.

Exercises and Problems for Section 8.5
Exercises

1. Find the work done on a 40 lb suitcase when it is raised
9 inches.

2. Find the work done on a 20 kg suitcase when it is raised
30 centimeters.

3. A particle x feet from the origin has a force of x2 + 2x
pounds acting on it. What is the work done in moving the
object from the origin a distance of 1 foot?

In Exercises 4–6, the force, F , required to compress a spring
by a distance x meters is given by F = 3x newtons.

4. Find the work done in compressing the spring from x =
1 to x = 2.

5. Find the work done to compress the spring to x = 3,
starting at the equilibrium position, x = 0.

6. (a) Find the work done in compressing the spring from
x = 0 to x = 1 and in compressing the spring from
x = 4 to x = 5.

(b) Which of the two answers is larger? Why?

7. A circular steel plate of radius 20 ft lies flat on the bottom
of a lake, at a depth of 150 ft. Find the force on the plate
due to the water pressure.

8. A fish tank is 2 feet long and 1 foot wide, and the depth
of the water is 1 foot. What is the force on the bottom of
the fish tank?

9. A child fills a bucket with sand so that the bucket and
sand together weigh 10 lbs, lifts it 2 feet up and then
walks along the beach, holding the bucket at a constant
height of 2 ft above the ground. How much work is done
on the bucket after the child has walked 100 ft?

10. The gravitational force on a 1 kg object at a distance
r meters from the center of the earth is F = 4 · 1014/r2
newtons. Find the work done in moving the object from
the surface of the earth to a height of 106 meters above
the surface. The radius of the earth is 6.4 · 106 meters.
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Problems

11. How much work is required to lift a 1000-kg satellite
from the surface of the earth to an altitude of 2 · 106 m?
The gravitational force is F = GMm/r2, where M is
the mass of the earth, m is the mass of the satellite, and
r is the distance between them. The radius of the earth is
6.4 · 106 m, its mass is 6 · 1024 kg, and in these units the
gravitational constant, G, is 6.67 · 10−11.

12. A worker on a scaffolding 75 ft above the ground needs to
lift a 500 lb bucket of cement from the ground to a point
30 ft above the ground by pulling on a rope weighing 0.5
lb/ft. How much work is required?

13. An anchor weighing 100 lb in water is attached to a chain
weighing 3 lb/ft in water. Find the work done to haul the
anchor and chain to the surface of the water from a depth
of 25 ft.

14. A 1000-lb weight is being lifted to a height 10 feet off
the ground. It is lifted using a rope which weighs 4 lb per
foot and which is being pulled up by construction work-
ers standing on a roof 30 feet off the ground. Find the
work done to lift the weight.

15. A bucket of water of mass 20 kg is pulled at constant ve-
locity up to a platform 40 meters above the ground. This
takes 10 minutes, during which time 5 kg of water drips
out at a steady rate through a hole in the bottom. Find the
work needed to raise the bucket to the platform.

16. A 2000-lb cube of ice must be lifted 100 ft, and it is melt-
ing at a rate of 4 lb per minute. If it can be lifted at a rate
of one foot every minute, find the work needed to get the
block of ice to the desired height.

17. A cylindrical garbage can of depth 3 ft and radius 1 ft
fills with rainwater up to a depth of 2 ft. How much work
would be done in pumping the water up to the top edge
of the can? (Water weighs 62.4 lb/ft3.)

18. A rectangular swimming pool 50 ft long, 20 ft wide, and
10 ft deep is filled with water to a depth of 9 ft. Use an
integral to find the work required to pump all the water
out over the top.

19. A water tank is in the form of a right circular cylinder
with height 20 ft and radius 6 ft. If the tank is half full
of water, find the work required to pump all of it over the
top rim.

20. Suppose the tank in Problem 19 is full of water. Find the
work required to pump all of it to a point 10 ft above the
top of the tank.

21. Water in a cylinder of height 10 ft and radius 4 ft is to be
pumped out. Find the work required if

(a) The tank is full of water and the water is to pumped
over the top of the tank.

(b) The tank is full of water and the water must be
pumped to a height 5 ft above the top of the tank.

(c) The depth of water in the tank is 8 ft and the water
must be pumped over the top of the tank.

22. A water tank is in the shape of a right circular cone with
height 18 ft and radius 12 ft at the top. If it is filled with
water to a depth of 15 ft, find the work done in pumping
all of the water over the top of the tank. (The density of
water is δ = 62.4 lb/ft3.)

23. A cone with height 12 ft and radius 4 ft, pointing down-
ward, is filled with water to a depth of 9 ft. Find the work
required to pump all the water out over the top.

24. A gas station stores its gasoline in a tank under the
ground. The tank is a cylinder lying horizontally on its
side. (In other words, the tank is not standing vertically
on one of its flat ends.) If the radius of the cylinder is 4
feet, its length is 12 feet, and its top is 10 feet under the
ground, find the total amount of work needed to pump
the gasoline out of the tank. (Gasoline weighs 42 lb/ft3.)

25. A cylindrical barrel, standing upright on its circular end,
contains muddy water. The top of the barrel, which has
diameter 1 meter, is open. The height of the barrel is 1.8
meter and it is filled to a depth of 1.5 meter. The density
of the water at a depth of h meters below the surface is
given by δ(h) = 1 + kh kg/m3, where k is a positive
constant. Find the total work done to pump the muddy
water to the top rim of the barrel. (You can leave π, k,
and g in your answer.)

26. (a) The trough in Figure 8.79 is full of water. Find the
force of the water on a triangular end.

(b) Find the work to pump all the water over the top.

�

�

3 ft

�

�

15 ft

�� 2 ft

Figure 8.79

27. (a) A reservoir has a dam at one end. The dam is a rect-
angular wall, 1000 feet long and 50 feet high. Ap-
proximate the total force of the water on the dam by
a Riemann sum.

(b) Write an integral which represents the force, and
evaluate it.

28. What is the total force on the bottom and each side of a
full rectangular water tank that has length 20 ft, width 10
ft, and depth 15 ft?

29. A rectangular dam is 100 ft long and 50 ft high. If the wa-
ter is 40 ft deep, find the force of the water on the dam.

30. A lobster tank in a restaurant is 4 ft long by 3 ft wide by
2 ft deep. Find the water force on the bottom and on each
of the four sides.
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31. The Three Gorges Dam started operation in China in
2008. With the largest electrical generating capacity in
the world, the dam is about 2000 m long and 180 m high,
and has created a lake longer than Lake Superior.2 As-
sume the dam is rectangular in shape.

(a) Estimate the water pressure at the base of the dam.
(b) Set up and evaluate a definite integral giving the total

force of the water on the dam.

32. On August 12, 2000, the Russian submarine Kursk sank
to the bottom of the sea, 350 feet below the surface. Find
the following at the depth of the Kursk.

(a) The water pressure in pounds per square foot and
pounds per square inch.

(b) The force on a 5-foot square metal sheet held

(i) Horizontally. (ii) Vertically.

33. The ocean liner Titanic lies under 12,500 feet of water at
the bottom of the Atlantic Ocean.

(a) What is the water pressure at the Titanic? Give your
answer in pounds per square foot and pounds per
square inch.

(b) Set up and calculate an integral giving the total force
on a circular porthole (window) of diameter 6 feet
standing vertically with its center at the depth of the
Titanic.

34. Set up and calculate a definite integral giving the total
force on the dam shown in Figure 8.80, which is about
the size of the Aswan Dam in Egypt.

�� 3600 m

�� 3000 m

�

�

100 m

Figure 8.80

35. We define the electric potential at a distance r from
an electric charge q by q/r. The electric potential of a
charge distribution is obtained by adding up the potential
from each point. Electric charge is sprayed (with constant
density σ in units of charge/unit area) on to a circular
disk of radius a. Consider the axis perpendicular to the
disk and through its center. Find the electric potential at
the point P on this axis at a distance R from the center.
(See Figure 8.81.)

� Radius = a

P
R

Figure 8.81

For Problems 36–37, find the kinetic energy of the rotating
body. Use the fact that the kinetic energy of a particle of mass
m moving at a speed v is 1

2
mv2. Slice the object into pieces

in such a way that the velocity is approximately constant on
each piece.

36. Find the kinetic energy of a rod of mass 10 kg and length
6 m rotating about an axis perpendicular to the rod at its
midpoint, with an angular velocity of 2 radians per sec-
ond. (Imagine a helicopter blade of uniform thickness.)

37. Find the kinetic energy of a phonograph record of uni-
form density, mass 50 gm and radius 10 cm rotating at
33 1

3
revolutions per minute.

For Problems 38–40, find the gravitational force between
two objects. Use the fact that the gravitational attraction be-
tween particles of mass m1 and m2 at a distance r apart is
Gm1m2/r

2. Slice the objects into pieces, use this formula
for the pieces, and sum using a definite integral.

38. What is the force of gravitational attraction between a
thin uniform rod of mass M and length l and a particle
of mass m lying in the same line as the rod at a distance
a from one end?

39. Two long, thin, uniform rods of lengths l1 and l2 lie on
a straight line with a gap between them of length a. Sup-
pose their masses are M1 and M2, respectively, and the
constant of the gravitation is G. What is the force of at-
traction between the rods? (Use the result of Problem 38.)

40. Find the gravitational force exerted by a thin uniform ring
of mass M and radius a on a particle of mass m lying on
a line perpendicular to the ring through its center. As-
sume m is at a distance y from the center of the ring.

41. A uniform, thin, circular disk of radius a and mass M
lies on a horizontal plane. The point P lies a distance
y directly above O, the center of the disk. Calculate the
gravitational force on a mass m at the point P. (See Fig-
ure 8.82.) Use the fact that the gravitational force exerted
on the mass m by a thin horizontal ring of radius r, mass
μ, and center O is toward O and given by

F =
Gμmy

(r2 + y2)3/2
, where G is constant.

P

y

O� ��

�

r

a

Figure 8.82

2en wikipedia org/wiki/Three Gorges Dam Accessed April 2012
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Strengthen Your Understanding

In Problems 42–44, explain what is wrong with the statement.

42. A 20 meter rope with a mass of 30 kg dangles over the
edge of a cliff. Ignoring friction, the work required to pull
the rope to the top of the cliff is

Work = (30 kg)
(
9.8

m
sec2

)
(20 m) .

43. A cylindrical tank is 10 meters deep. It takes twice as
much work to pump all the oil out through the top of the
tank when the tank is full as when the tank is half full.

44. Lifting a 10 kg rock 2 meters off the ground requires
20 joules of work.

In Problems 45–46, give an example of:

45. A situation where work can be computed as Force ×
Distance without doing an integral.

46. Two cylindrical tanks A and B such that it takes less
work to pump the water from tank A to a height of 10

meters than from tank B. Both tanks contain the same
volume of water and are less than 10 meters high.

In Problems 47–52, are the statements true or false? Give an
explanation for your answer.

47. It takes more work to lift a 20 lb weight 10 ft slowly than
to lift it the same distance quickly.

48. Work can be negative or positive.

49. The force on a rectangular dam is doubled if its length
stays the same and its depth is doubled.

50. To find the force of water on a vertical wall, we always
slice the wall horizontally, no matter what the shape of
the wall.

51. The force of a liquid on a wall can be negative or positive.

52. If the average value of the force F (x) is 7 on the interval
1 ≤ x ≤ 4, then the work done by the force in moving
from x = 1 to x = 4 is 21.

8.6 APPLICATIONS TO ECONOMICS

Present and Future Value
Many business deals involve payments in the future. If you buy a car or furniture, for example, you
may buy it on credit and pay over a period of time. If you are going to accept payment in the future
under such a deal, you obviously need to know how much you should be paid. Being paid $100 in
the future is clearly worse than being paid $100 today for many reasons. If you are given the money
today, you can do something else with it—for example, put it in the bank, invest it somewhere, or
spend it. Thus, even without considering inflation, if you are to accept payment in the future, you
would expect to be paid more to compensate for this loss of potential earnings. The question we will
consider now is, how much more?

To simplify matters, we consider only what we would lose by not earning interest; we will not
consider the effect of inflation. Let’s look at some specific numbers. Suppose you deposit $100 in
an account which earns 3% interest compounded annually, so that in a year’s time you will have
$103. Thus, $100 today will be worth $103 a year from now. We say that the $103 is the future
value of the $100, and that the $100 is the present value of the $103. Observe that the present value
is smaller than the future value. In general, we say the following:

• The future value, $B, of a payment, $P , is the amount to which the $P would have
grown if deposited in an interest-bearing bank account.

• The present value, $P , of a future payment, $B, is the amount which would have to be
deposited in a bank account today to produce exactly $B in the account at the relevant
time in the future.

With an interest rate of r, compounded annually, and a time period of t years, a deposit of $P
grows to a future balance of $B, where
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B = P (1 + r)t, or equivalently, P =
B

(1 + r)t
.

Note that for a 3% interest rate, r = 0.03. If instead of annual compounding, we have continuous
compounding, we get the following result:

B = Pert, or equivalently, P =
B

ert
= Be−rt.

Example 1 You win the lottery and are offered the choice between $1 million in four yearly installments of
$250,000 each, starting now, and a lump-sum payment of $920,000 now. Assuming a 6% interest
rate, compounded continuously, and ignoring taxes, which should you choose?

Solution We will do the problem in two ways. First, we assume that you pick the option with the largest
present value. The first of the four $250,000 payments is made now, so

Present value of first payment = $250,000.

The second payment is made one year from now, so

Present value of second payment = $250,000e−0.06(1).

Calculating the present value of the third and fourth payments similarly, we find:

Total present value = $250,000+ $250,000e−0.06(1)
+ $250,000e−0.06(2)

+ $250,000e−0.06(3)

≈ $250,000+ $235,441+ $221,730+ $208,818

= $915,989.

Since the present value of the four payments is less than $920,000, you are better off taking the
$920,000 right now.

Alternatively, we can compare the future values of the two pay schemes. The scheme with the
highest future value is the best from a purely financial point of view. We calculate the future value
of both schemes three years from now, on the date of the last $250,000 payment. At that time,

Future value of the lump sum payment = $920,000e0.06(3) ≈ $1,101,440.

Now we calculate the future value of the first $250,000 payment:

Future value of the first payment = $250,000e0.06(3).

Calculating the future value of the other payments similarly, we find:

Total future value = $250,000e0.06(3) + $250,000e0.06(2) + $250,000e0.06(1) + $250,000

≈ $299,304+ $281,874+ $265,459+ $250,000

= $1,096,637.

The future value of the $920,000 payment is greater, so you are better off taking the $920,000 right
now. Of course, since the present value of the $920,000 payment is greater than the present value
of the four separate payments, you would expect the future value of the $920,000 payment to be
greater than the future value of the four separate payments.
(Note: If you read the fine print, you will find that many lotteries do not make their payments right
away, but often spread them out, sometimes far into the future. This is to reduce the present value
of the payments made, so that the value of the prizes is much less than it might first appear!)
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Income Stream
When we consider payments made to or by an individual, we usually think of discrete payments,
that is, payments made at specific moments in time. However, we may think of payments made by
a company as being continuous. The revenues earned by a huge corporation, for example, come in
essentially all the time and can be represented by a continuous income stream, written

P (t) dollars/year.

Notice that P (t) is the rate at which deposits are made (its units are dollars per year, for example)
and that this rate may vary with time, t.

Present and Future Values of an Income Stream

Just as we can find the present and future values of a single payment, so we can find the present and
future values of a stream of payments. We will assume that interest is compounded continuously.

Suppose that we want to calculate the present value of the income stream described by a rate of
P (t) dollars per year, and that we are interested in the period from now until M years in the future.
We divide the stream into many small deposits, each of which is made at approximately one instant.
We divide the interval 0 ≤ t ≤ M into subintervals, each of length Δt:

�� t �� (M − t)

Mt+Δtt0

Assuming Δt is small, the rate, P (t), at which deposits are being made will not vary much
within one subinterval. Thus, between t and t+Δt:

Amount deposited ≈ Rate of deposits × Time

≈ (P (t) dollars/year)(Δt years)

= P (t)Δt dollars.

Measured from the present, the deposit of P (t)Δt is made t years in the future. Thus,

Present value of money deposited

in interval t to t+Δt
≈ P (t)Δte−rt.

Summing over all subintervals gives

Total present value ≈
∑

P (t)e−rt
Δt dollars.

In the limit as Δt → 0, we get the following integral:

Present value =

∫ M

0

P (t)e−rtdt dollars.

In computing future value, the deposit of P (t)Δt has a period of (M − t) years to earn interest, and
therefore

Future value of money deposited

in interval t to t+Δt
≈ (P (t)Δt) er(M−t).

Summing over all subintervals, we get:

Total future value ≈
∑

P (t)Δter(M−t) dollars.
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As the length of the subdivisions tends toward zero, the sum becomes an integral:

Future value =

∫ M

0

P (t)er(M−t)dt dollars.

In addition, by writing er(M−t) = erM · e−rt and factoring out erM , we see that

Future value = erM · Present value.

Example 2 Find the present and future values of a constant income stream of $1000 per year over a period of
20 years, assuming an interest rate of 10% compounded continuously.

Solution Using P (t) = 1000 and r = 0.1, we have

Present value =

∫ 20

0

1000e−0.1tdt = 1000

(
−
e−0.1t

0.1

) ∣∣∣∣20
0

= 10,000(1−e−2
) ≈ 8646.65 dollars.

There are two ways to compute the future value. Using the present value of $8646.65, we have

Future value = 8646.65e0.1(20) = 63,890.58 dollars.

Alternatively, we can use the integral formula:

Future value =

∫ 20

0

1000e0.1(20−t)dt =

∫ 20

0

1000e2e−0.1tdt

= 1000e2
(
−
e−0.1t

0.1

) ∣∣∣∣20
0

= 10,000e2(1− e−2
) ≈ 63,890.58 dollars.

Notice that the total amount deposited is $1000 per year for 20 years, or $20,000. The additional
$43,895.58 of the future value comes from interest earned.

Supply and Demand Curves
In a free market, the quantity of a certain item produced and sold can be described by the supply
and demand curves of the item. The supply curve shows the quantity of the item the producers will
supply at different price levels. It is usually assumed that as the price increases, the quantity supplied
will increase. The consumers’ behavior is reflected in the demand curve, which shows what quantity
of goods are bought at various prices. An increase in price is usually assumed to cause a decrease
in the quantity purchased. See Figure 8.83.

q∗ q1

p0

p∗

p1

Supply

Demand

q (quantity)

p (price/unit)

Figure 8.83: Supply and demand curves

It is assumed that the market settles to the equilibrium price and quantity, p∗ and q∗, where the
graphs cross. At equilibrium, a quantity q∗ of an item is produced and sold for a price of p∗ each.

Consumer and Producer Surplus
Notice that at equilibrium, a number of consumers have bought the item at a lower price than they
would have been willing to pay. (For example, there are some consumers who would have been
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willing to pay prices up to p1.) Similarly, there are some suppliers who would have been willing to
produce the item at a lower price (down to p0, in fact). We define the following terms:

• The consumer surplus measures the consumers’ gain from trade. It is the total amount
gained by consumers by buying the item at the current price rather than at the price they
would have been willing to pay.

• The producer surplus measures the suppliers’ gain from trade. It is the total amount
gained by producers by selling at the current price, rather than at the price they would
have been willing to accept.

In the absence of price controls, the current price is assumed to be the equilibrium price.

Both consumers and producers are richer for having traded. The consumer and producer surplus
measure how much richer they are.

Suppose that all consumers buy the good at the maximum price they are willing to pay. Divide
the interval from 0 to q∗ into subintervals of length Δq. Figure 8.84 shows that a quantity Δq of
items are sold at a price of about p1, another Δq are sold for a slightly lower price of about p2, the
next Δq for a price of about p3, and so on. Thus,

Consumers’ total expenditure ≈ p1Δq + p2Δq + p3Δq + · · · =
∑

piΔq.

If D is the demand function given by p = D(q), and if all consumers who were willing to pay more
than p∗ paid as much as they were willing, then as Δq → 0, we would have

Consumer expenditure =

∫ q∗

0

D(q)dq =
Area under demand
curve from 0 to q∗.

Now if all goods are sold at the equilibrium price, the consumers’ actual expenditure is p∗q∗, the
area of the rectangle between the axes and the lines q = q∗ and p = p∗. Thus, if p∗ and q∗ are
equilibrium price and quantity, the consumer surplus is calculated as follows:

Consumer surplus =

(∫ q∗

0

D(q)dq

)
− p∗q∗ =

Area under demand
curve above p = p∗.

q∗

p∗

p3
p2
p1

q (quantity)

p (price/unit)

Supply: p = S(q)

Demand: p = D(q)

� �Δq
. . .

Figure 8.84: Calculation of consumer surplus

q∗

p∗

q (quantity)

p (price/unit)

	

Consumer surplus

	

Producer surplus

Supply: p = S(q)

Demand: p = D(q)

Figure 8.85: Consumer and producer surplus

See Figure 8.85. Similarly, if the supply curve is given by the function p = S(q) and p∗ and q∗ are
equilibrium price and quantity, the producer surplus is calculated as follows:

Producer surplus = p∗q∗ −

(∫ q∗

0

S(q)dq

)
=

Area between supply
curve and line p = p∗.
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Exercises and Problems for Section 8.6
Exercises

In Exercises 1–7 give an expression that represents the state-
ment. Do not simplify your expression.

1. The future value of single $C deposit, after 25 years, at a
3% interest rate compounded annually.

2. The present value of $C deposited 25 years from now, at
a 3% interest rate compounded annually.

3. The present value of a deposit of $C, made 5 years from
now, with a 3% interest rate compounded continuously.

4. The present value of an income stream paying C dol-
lars/year for a period of 15 years, at a 2% interest rate
compounded continuously.

5. The future value at the end of 15 years of an income
stream paying C dollars/year throughout the 15 years,
at a 2% interest rate compounded continuously.

6. The future value, at the end of C years, of a series of
three $500 deposits, where the first deposit is made now,
the second a year from now, and the third two years from
now. Assume a 2% interest rate compounded continu-
ously.

7. The continuous interest rate for a deposit $C that will
grow to $25,000 in 30 years.

8. Find the future value of an income stream of $1000 per
year, deposited into an account paying 8% interest, com-
pounded continuously, over a 10-year period.

9. (a) Find the present and future values of a constant in-
come stream of $100 per year over a period of 20
years, assuming a 10% annual interest rate com-
pounded continuously.

(b) How many years will it take for the balance to reach
$5000?

10. Find the present and future values of an income stream
of $2000 a year, for a period of 5 years, if the continuous
interest rate is 8%.

11. A person deposits money into a retirement account,
which pays 7% interest compounded continuously, at a
rate of $1000 per year for 20 years. Calculate:

(a) The balance in the account at the end of the 20 years.
(b) The amount of money actually deposited into the ac-

count.
(c) The interest earned during the 20 years.

Exercises 12–14 concern a single deposit of $10,000. Find the
continuous interest rate yielding a future value of $20,000 in
the given time period.

12. 60 years 13. 15 years 14. 5 years

Exercises 15–17 concern a constant income stream that pays
a total of $20,000 over a certain time period with an interest
rate of 2% compounded continuously. Find the rate at which
money is paid, in dollars/year, and the future value of the
stream at the end of the given time period.

15. 5 years 16. 10 years 17. 20 years

Problems

18. Find a constant income stream (in dollars per year) which
after 10 years has a future value of $20,000, assuming a
continuous interest rate of 3%.

19. Draw a graph, with time in years on the horizontal axis,
of what an income stream might look like for a company
that sells sunscreen in the northeast United States.

20. On March 6, 2007, the Associated Press reported that
Ed Nabors had won half of a $390 million jackpot, the
largest lottery prize in US history at the time. Suppose he
was given the choice of receiving his $195 million share
paid out continuously over 20 years or one lump sum of
$120 million paid immediately.

(a) Which option is better if the interest rate is 6%, com-
pounded continuously? An interest rate of 3%?

(b) If Mr. Nabors chose the lump-sum option, what as-
sumption was he making about interest rates?

21. (a) A bank account earns 10% interest compounded
continuously. At what (constant, continuous) rate

must a parent deposit money into such an account
in order to save $100,000 in 10 years for a child’s
college expenses?

(b) If the parent decides instead to deposit a lump sum
now in order to attain the goal of $100,000 in 10
years, how much must be deposited now?

22. (a) If you deposit money continuously at a constant rate
of $1000 per year into a bank account that earns 5%
interest, how many years will it take for the balance
to reach $10,000?

(b) How many years would it take if the account had
$2000 in it initially?

23. A business associate who owes you $3000 offers to pay
you $2800 now, or else pay you three yearly installments
of $1000 each, with the first installment paid now. If you
use only financial reasons to make your decision, which
option should you choose? Justify your answer, assuming
a 6% interest rate per year, compounded continuously.
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In Problems 24–27 find the continuous interest rate that yields

a future value of $18,000 in 20 years for each $9000 invest-
ment.

24. A single $9000 deposit.

25. An initial $6000 deposit plus a second $3000 deposit
made three years after the first.

26. An initial $3000 deposit plus a second $6000 deposit
made three years after the first.

27. An income stream of $300 per year.

28. A family wants to save for college tuition for their daugh-
ter. What continuous yearly interest rate r% is needed in
their savings account if their deposits of $4800 per year
are to grow to $100,000 in 15 years? Assume that they
make deposits continuously throughout the year.

29. Big Tree McGee is negotiating his rookie contract with
a professional basketball team. They have agreed to a
three-year deal which will pay Big Tree a fixed amount
at the end of each of the three years, plus a signing bonus
at the beginning of his first year. They are still haggling
about the amounts and Big Tree must decide between
a big signing bonus and fixed payments per year, or a
smaller bonus with payments increasing each year. The
two options are summarized in the table. All values are
payments in millions of dollars.

Signing bonus Year 1 Year 2 Year 3

Option #1 6.0 2.0 2.0 2.0

Option #2 1.0 2.0 4.0 6.0

(a) Big Tree decides to invest all income in stock funds
which he expects to grow at a rate of 10% per year,
compounded continuously. He would like to choose
the contract option which gives him the greater fu-
ture value at the end of the three years when the last
payment is made. Which option should he choose?

(b) Calculate the present value of each contract offer.

30. Sales of Version 6.0 of a computer software package
start out high and decrease exponentially. At time t, in
years, the sales are s(t) = 50e−t thousands of dollars
per year. After two years, Version 7.0 of the software
is released and replaces Version 6.0. Assuming that all
income from software sales is immediately invested in
government bonds which pay interest at a 6% rate com-
pounded continuously, calculate the total value of sales
of Version 6.0 over the two-year period.

31. The value of good wine increases with age. Thus, if you
are a wine dealer, you have the problem of deciding
whether to sell your wine now, at a price of $P a bottle,
or to sell it later at a higher price. Suppose you know that
the amount a wine-drinker is willing to pay for a bottle of
this wine t years from now is $P (1 + 20

√
t). Assuming

continuous compounding and a prevailing interest rate of
5% per year, when is the best time to sell your wine?

32. An oil company discovered an oil reserve of 100 million
barrels. For time t > 0, in years, the company’s extrac-
tion plan is a linear declining function of time as follows:

q(t) = a− bt,

where q(t) is the rate of extraction of oil in millions of
barrels per year at time t and b = 0.1 and a = 10.

(a) How long does it take to exhaust the entire reserve?
(b) The oil price is a constant $20 per barrel, the extrac-

tion cost per barrel is a constant $10, and the market
interest rate is 10% per year, compounded contin-
uously. What is the present value of the company’s
profit?

33. You are manufacturing a particular item. After t years,
the rate at which you earn a profit on the item is (2−0.1t)
thousand dollars per year. (A negative profit represents a
loss.) Interest is 10%, compounded continuously,

(a) Write a Riemann sum approximating the present
value of the total profit earned up to a time M years
in the future.

(b) Write an integral representing the present value in
part (a). (You need not evaluate this integral.)

(c) For what M is the present value of the stream of
profits on this item maximized? What is the present
value of the total profit earned up to that time?

34. In 1980, before the unification of Germany in 1990 and
the introduction of the Euro, West Germany made a loan
of 20 billion Deutsche Marks to the Soviet Union, to
be used for the construction of a natural gas pipeline
connecting Siberia to Western Russia, and continuing
to West Germany (Urengoi–Uschgorod–Berlin). Assume
that the deal was as follows: In 1985, upon completion
of the pipeline, the Soviet Union would deliver natu-
ral gas to West Germany, at a constant rate, for all fu-
ture times. Assuming a constant price of natural gas of
0.10 Deutsche Mark per cubic meter, and assuming West
Germany expects 10% annual interest on its investment
(compounded continuously), at what rate does the Soviet
Union have to deliver the gas, in billions of cubic me-
ters per year? Keep in mind that delivery of gas could
not begin until the pipeline was completed. Thus, West
Germany received no return on its investment until after
five years had passed. (Note: A more complex deal of this
type was actually made between the two countries.)

35. In May 1991, Car and Driver described a Jaguar that sold
for $980,000. At that price only 50 have been sold. It
is estimated that 350 could have been sold if the price
had been $560,000. Assuming that the demand curve is a
straight line, and that $560,000 and 350 are the equilib-
rium price and quantity, find the consumer surplus at the
equilibrium price.
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36. Using Riemann sums, explain the economic significance

of
∫ q∗

0
S(q) dq to the producers.

37. Using Riemann sums, give an interpretation of producer

surplus,
∫ q∗

0
(p∗ − S(q)) dq analogous to the interpreta-

tion of consumer surplus.

38. In Figure 8.85, page 463, mark the regions represent-
ing the following quantities and explain their economic
meaning:

(a) p∗q∗ (b)

∫ q∗

0

D(q) dq

(c)

∫ q∗

0

S(q) dq (d)

∫ q∗

0

D(q) dq − p∗q∗

(e) p∗q∗ −
∫ q∗

0

S(q) dq (f)

∫ q∗

0

(D(q)−S(q)) dq

39. The dairy industry is an example of cartel pricing: the
government has set milk prices artificially high. On a

supply and demand graph, label p+, a price above the
equilibrium price. Using the graph, describe the effect of
forcing the price up to p+ on:

(a) The consumer surplus.
(b) The producer surplus.
(c) The total gains from trade (Consumer surplus + Pro-

ducer surplus).

40. Rent controls on apartments are an example of price con-
trols on a commodity. They keep the price artificially low
(below the equilibrium price). Sketch a graph of supply
and demand curves, and label on it a price p− below
the equilibrium price. What effect does forcing the price
down to p− have on:

(a) The producer surplus?
(b) The consumer surplus?
(c) The total gains from trade (Consumer surplus + Pro-

ducer surplus)?

Strengthen Your Understanding

In Problems 41–44, explain what is wrong with the statement.

41. The future value of an income stream of $2000 per year
after 10 years is $15,000, assuming a 3% continuous in-
terest rate per year.

42. The present value of a lump-sum payment S dollars one
year from now is greater with an annual interest rate of
4% than with an annual interest rate of 3%.

43. Payments are made at a constant rate of P dollars per
year over a two-year period. The present value of these
payments is 2Pe−2r, where r is the continuous interest
rate per year.

44. Producer surplus is measured in the same units as the
quantity, q.

In Problems 45–48, give an example of:

45. Supply and demand curves where producer surplus is
smaller than consumer surplus.

46. A continuous interest rate such that a $10,000 payment
in 10 years’ time has a present value of less than $5000.

47. An interest rate, compounded annually, and a present
value that correspond to a future value of $5000 one year
from now.

48. An interest rate, compounded annually, and a table of
values that shows how much money you would have
to put down in a single deposit t years from now, at
t = 0, 1, 2, 3, or 4, if you want to have $10,000 ten years
from now (ignoring inflation).

8.7 DISTRIBUTION FUNCTIONS

Understanding the distribution of various quantities through the population is important to decision
makers. For example, the income distribution gives useful information about the economic structure
of a society. In this section we will look at the distribution of ages in the US. To allocate funding for
education, health care, and social security, the government needs to know how many people are in
each age group. We will see how to represent such information by a density function.

US Age Distribution
The data in Table 8.4 shows how the ages of the US population were distributed in 1995. To represent
this information graphically we use a type3 of histogram, putting a vertical bar above each age group
in such a way that the area of each bar represents the fraction of the population in that age group.
The total area of all the rectangles is 100% = 1. We only consider people who are less than 100
years old.4 For the 0–20 age group, the base of the rectangle is 20, and we want the area to be
0.29, so the height must be 0.29/20 = 0.0145. We treat ages as though they were continuously
distributed. The category 0–20, for example, contains people who are just one day short of their
twentieth birthday. (See Figure 8.86.)

3There are other types of histogram which have frequency on the vertical axis.
4In fact, 0.02% of the population is over 100, but this is too small to be visible on the histogram.
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Table 8.4 Distribution of ages in
the US in 1995

Age group
Fraction of

total population

0–20 29% = 0.29

20–40 31% = 0.31

40–60 24% = 0.24

60–80 13% = 0.13

80–100 3% = 0.03

20 40 60 80 100

0.015

0.01

0.005

age
(years)

fraction of population
per year of age

29%=
0.29

31%=
0.31 24%=

0.24

13%=
0.13 3% = 0.03

Figure 8.86: How ages were distributed in the US in 1995

Example 1 In 1995, estimate what fraction of the US population was:

(a) Between 20 and 60 years old. (b) Less than 10 years old.
(c) Between 75 and 80 years old. (d) Between 80 and 85 years old.

Solution (a) We add the fractions, so 0.31 + 0.24 = 0.55; that is, 55% of the US population was in this age
group.

(b) To find the fraction less than 10 years old, we could assume, for example, that the population
was distributed evenly over the 0–20 group. (This means we are assuming that babies were born
at a fairly constant rate over the last 20 years, which is probably reasonable.) If we make this
assumption, then we can say that the population less than 10 years old was about half that in
the 0–20 group, that is, 0.145 of the total population. Notice that we get the same result by
computing the area of the rectangle from 0 to 10. (See Figure 8.87.)

(c) To find the population between 75 and 80 years old, since 0.13 of Americans in 1995 were
in the 60-80 group, we might apply the same reasoning and say that 1

4 (0.13) = 0.0325 of
the population was in this age group. This result is represented as an area in Figure 8.87. The
assumption that the population was evenly distributed is not a good one here; certainly there
were more people between the ages of 60 and 65 than between 75 and 80. Thus, the estimate of
0.0325 is certainly too high.

(d) Again using the (faulty) assumption that ages in each group were distributed uniformly, we
would find that the fraction between 80 and 85 was 1

4 (0.03) = 0.0075. (See Figure 8.87.)
This estimate is also poor—there were certainly more people in the 80–85 group than, say, the
95–100 group, and so the 0.0075 estimate is too low.

10 20 40 60 75 80 85 100

0.015

0.01

0.005

age (years)

fraction of population
per year of age

0.31
0.24�0.145

�

0.0325

�

0.0075

Figure 8.87: Ages in the US in 1995 — various subgroups (for Example 1)
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Table 8.5 Ages in the US in
1995 (more detailed)

Age group
Fraction of

total population

0–10 15% = 0.15

10–20 14% = 0.14

20–30 14% = 0.14

30–40 17% = 0.17

40–50 14% = 0.14

50–60 10% = 0.10

60–70 8% = 0.08

70–80 5% = 0.05

80–90 2% = 0.02

90–100 1% = 0.01

20 40 60 80 100

0.015

0.01

0.005

age
(years)

fraction of population
per year of age

0.15
0.14 0.14 0.17

0.14
0.10

0.08
0.05

�

0.02

�

0.01

70 80

0.05

�
�

Shaded areas equal,
so area under curve ≈
area of rectangle

Figure 8.88: Smoothing out the age histogram

Smoothing Out the Histogram

We could get better estimates if we had smaller age groups (each age group in Figure 8.86 is 20
years, which is quite large). The more detailed data in Table 8.5 leads to the new histogram in
Figure 8.88. As we get more detailed information, the upper silhouette of the histogram becomes
smoother, but the area of any of the bars still represents the percentage of the population in that age
group. Imagine, in the limit, replacing the upper silhouette of the histogram by a smooth curve in
such a way that area under the curve above one age group is the same as the area in the corresponding
rectangle. The total area under the whole curve is again 100% = 1. (See Figure 8.88.)

The Age Density Function

If t is age in years, we define p(t), the age density function, to be a function which “smooths out”
the age histogram. This function has the property that

Fraction of population

between ages a and b
=

Area under graph of p

between a and b
=

∫ b

a

p(t)dt.

If a and b are the smallest and largest possible ages (say, a = 0 and b = 100), so that the ages
of all of the population are between a and b, then∫ b

a

p(t)dt =

∫ 100

0

p(t)dt = 1.

What does the age density function p tell us? Notice that we have not talked about the mean-
ing of p(t) itself, but only of the integral

∫ b
a p(t) dt. Let’s look at this in a bit more detail. Suppose,

for example, that p(10) = 0.015 per year. This is not telling us that 0.015 of the population is pre-
cisely 10 years old (where 10 years old means exactly 10, not 10 1

2 , not 10 1
4 , not 10.1). However,

p(10) = 0.015 does tell us that for some small interval Δt around 10, the fraction of the population
with ages in this interval is approximately p(10)Δt = 0.015Δt.

The Probability Density Function
Suppose we are interested in how a certain characteristic, x, is distributed through a population. For
example, x might be height or age if the population is people, or might be wattage for a population
of light bulbs. Then we define a general density function with the following properties:
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The function, p(x), is a probability density function, or pdf, if

Fraction of population for which

x is between a and b
=

Area under graph of p

between a and b
=

∫ b

a

p(x)dx.

∫ ∞

−∞

p(x) dx = 1 and p(x) ≥ 0 for all x.

The density function must be nonnegative because its integral always gives a fraction of the
population. Also, the fraction of the population with x between −∞ and ∞ is 1 because the entire
population has the characteristic x between −∞ and ∞. The function p that was used to smooth
out the age histogram satisfies this definition of a density function. We do not assign a meaning
to the value p(x) directly, but rather interpret p(x)Δx as the fraction of the population with the
characteristic in a short interval of length Δx around x.

The density function is often approximated by formulas, as in the next example.

Example 2 Find formulas to approximate the density function, p, for the US age distribution. To reflect Fig-
ure 8.88, use a continuous function, constant at 0.015 up to age 40 and then dropping linearly.

Solution We have p(t) = 0.015 for 0 ≤ t < 40. For t ≥ 40, we need a linear function sloping down-
ward. Because p is continuous, we have p(40) = 0.015. Because p is a density function we have∫ 100
0

p(t)dt = 1. Suppose b is as in Figure 8.89; then∫ 100

0

p(t)dt =

∫ 40

0

p(t)dt+

∫ 100

40

p(t)dt = 40(0.015) +
1

2
(0.015)b = 1,

where
∫ 100
40 p(t)dt is given by the area of the triangle. This gives

0.015

2
b = 0.4, and so b ≈ 53.3.

Thus the slope of the line is −0.015/53.3 ≈ −0.00028, so for 40 ≤ t ≤ 40+53.3 = 93.3, we have

p(t)− 0.015 = −0.00028(t− 40),

p(t) = 0.0262− 0.00028t.

According to this way of smoothing the data, there is no one over 93.3 years old, so p(t) = 0 for
t > 93.3.

40

100

0.015

t (age in years)

fraction of population
per year of age

�� b

�

p(t) = 0.015 here

p(t)

Figure 8.89: Age density function

Cumulative Distribution Function for Ages

Another way of showing how ages are distributed in the US is by using the cumulative distribution
function P (t), defined by

P (t) =
Fraction of population

of age less than t
=

∫ t

0

p(x)dx.

Thus, P is the antiderivative of p with P (0) = 0, and P (t) gives the area under the density curve
between 0 and t.
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Notice that the cumulative distribution function is nonnegative and increasing (or at least non-
decreasing), since the number of people younger than age t increases as t increases. Another way
of seeing this is to notice that P ′ = p, and p is positive (or nonnegative). Thus the cumulative age
distribution is a function which starts with P (0) = 0 and increases as t increases. P (t) = 0 for
t < 0 because, when t < 0, there is no one whose age is less than t. The limiting value of P , as
t → ∞, is 1 since as t becomes very large (100 say), everyone is younger than age t, so the fraction
of people with age less than t tends toward 1. (See Figure 8.90.) For t less than 40, the graph of P
is a straight line, because p is constant there. For t > 40, the graph of P levels off as p tends to 0.

100t

0.015

x (age in years)

fraction of population
per year of age

�

Area= P (t) =
∫ t

0
p(x)dx

p(x)

40 40 100

1

t (age in years)

fraction of
population

P (t)

Figure 8.90: P (t), the cumulative age distribution function, and its relation to p(x), the age density function

Cumulative Distribution Function

A cumulative distribution function, or cdf, P (t), of a density function p, is defined by

P (t) =

∫ t

−∞

p(x) dx =
Fraction of population having

values of x below t.

Thus, P is an antiderivative of p, that is, P ′ = p.
Any cumulative distribution has the following properties:
• P is increasing (or nondecreasing).

• lim
t→∞

P (t) = 1 and lim
t→−∞

P (t) = 0.

•
Fraction of population having

values of x between a and b
=

∫ b

a

p(x) dx = P (b)− P (a).

Exercises and Problems for Section 8.7
Exercises

1. Match the graphs of the density functions (a), (b), and (c)
with the graphs of the cumulative distribution functions
I, II, and III.

(a) (I)

(b)
(II)

(c) (III)

In Exercises 2–4, graph a density function and a cumulative
distribution function which could represent the distribution of
income through a population with the given characteristics.

2. A large middle class.

3. Small middle and upper classes and many poor people.

4. Small middle class, many poor and many rich people.
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Decide if the function graphed in Exercises 5–10 is a probabil-
ity density function (pdf) or a cumulative distribution function
(cdf). Give reasons. Find the value of c. Sketch and label the
other function. (That is, sketch and label the cdf if the problem
shows a pdf, and the pdf if the problem shows a cdf.)

5.

c

4

x

6.

4

c

x

7.

5

c

x

8.

0.5 1

c

2c

x

9.

2 4

c

3c

x

10.

1

c

x

11. Let p(x) be the density function for annual family in-
come, where x is in thousands of dollars. What is the
meaning of the statement p(70) = 0.05?

12. Find a density function p(x) such that p(x) = 0 when
x ≥ 5 and when x < 0, and is decreasing when
0 ≤ x ≤ 5.

Problems

13. Figure 8.91 shows the distribution of kinetic energy of
molecules in a gas at temperatures 300 kelvins and 500
kelvins. At higher temperatures, more of the molecules
in a gas have higher kinetic energies. Which graph corre-
sponds to which temperature?

A

B

energy

Figure 8.91

14. A large number of people take a standardized test, receiv-
ing scores described by the density function p graphed in
Figure 8.92. Does the density function imply that most
people receive a score near 50? Explain why or why not.

10 20 30 40 50 60 70
x test scores

fraction of students
per test score

Figure 8.92

15. An experiment is done to determine the effect of two new
fertilizers A and B on the growth of a species of peas.

The cumulative distribution functions of the heights of
the mature peas without treatment and treated with each
of A and B are graphed in Figure 8.93.

(a) About what height are most of the unfertilized
plants?

(b) Explain in words the effect of the fertilizers A and B
on the mature height of the plants.

1 2

A B

1

x height (meters)

fraction of
plants

�

Unfertilized

Figure 8.93

16. Suppose F (x) is the cumulative distribution function for
heights (in meters) of trees in a forest.

(a) Explain in terms of trees the meaning of the state-
ment F (7) = 0.6.

(b) Which is greater, F (6) or F (7)? Justify your answer
in terms of trees.

17. Suppose that p(x) is the density function for heights of
American men, in inches. What is the meaning of the
statement p(68) = 0.2?

18. Suppose P (t) is the fraction of the US population of age
less than t. Using Table 8.5 on page 468, make a table of
values for P (t).

19. Figure 8.94 shows a density function and the correspond-
ing cumulative distribution function.5

(a) Which curve represents the density function and
which represents the cumulative distribution func-
tion? Give a reason for your choice.

5Adapted from Calculus, by David A. Smith and Lawrence C. Moore (Lexington, D.C. Heath, 1994).
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(b) Put reasonable values on the tick marks on each of
the axes.

Figure 8.94

20. The density function and cumulative distribution func-
tion of heights of grass plants in a meadow are in Fig-
ures 8.95 and 8.96, respectively.

(a) There are two species of grass in the meadow, a short
grass and a tall grass. Explain how the graph of the
density function reflects this fact.

(b) Explain how the graph of the cumulative distribution
function reflects the fact that there are two species of
grass in the meadow.

(c) About what percentage of the grasses in the meadow
belong to the short grass species?

0.5 1 1.5 2
height
(meter)

fraction of plants
per meter of height

Figure 8.95

0.5 1 1.5 2

0.25

0.5

0.75

1

height
(meter)

fraction of plants

Figure 8.96

21. After measuring the duration of many telephone calls, the
telephone company found their data was well approxi-
mated by the density function p(x) = 0.4e−0.4x, where
x is the duration of a call, in minutes.

(a) What percentage of calls last between 1 and 2 min-
utes?

(b) What percentage of calls last 1 minute or less?
(c) What percentage of calls last 3 minutes or more?
(d) Find the cumulative distribution function.

22. Students at the University of California were surveyed
and asked their grade point average. (The GPA ranges
from 0 to 4, where 2 is just passing.) The distribution of
GPAs is shown in Figure 8.97.6

(a) Roughly what fraction of students are passing?

(b) Roughly what fraction of the students have honor
grades (GPAs above 3)?

(c) Why do you think there is a peak around 2?
(d) Sketch the cumulative distribution function.

0 1 2 3 4
GPA

fraction of students
per GPA

Figure 8.97

23. Figure 8.986shows the distribution of elevation, in miles,
across the earth’s surface. Positive elevation denotes land
above sea level; negative elevation shows land below sea
level (i.e., the ocean floor).

(a) Describe in words the elevation of most of the earth’s
surface.

(b) Approximately what fraction of the earth’s surface
is below sea level?

−2 0 2 4−4
elevation (miles)

fraction of earth’s surface
per mile of elevation

Figure 8.98

24. Consider a population of individuals with a disease. Sup-
pose that t is the number of years since the onset of the
disease. The death density function, f(t) = cte−kt, ap-
proximates the fraction of the sick individuals who die in
the time interval [t, t+Δt] as follows:

Fraction who die ≈ f(t)Δt = cte−ktΔt

where c and k are positive constants whose values de-
pend on the particular disease.

(a) Find the value of c in terms of k.
(b) If 40% of the population dies within 5 years, find c

and k.
(c) Find the cumulative death distribution function,

C(t). Give your answer in terms of k.

6Adapted from Statistics, by Freedman, Pisani, Purves, and Adikhari (New York: Norton, 1991).
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Strengthen Your Understanding

In Problems 25–31, explain what is wrong with the statement.

25. If p(x) is a probability density function with p(1) =
0.02, then the probability that x takes the value 1 is 0.02.

26. If P (x) is a cumulative distribution function with
P (5) = 0.4, then the probability that x = 5 is 0.4.

27. The function p(t) = t2 is a density function.

28. The function p(x) = x2ex is a density function.

29. The function P (x) = x2ex is a cumulative distribution
function.

30. The function P (t) = e−t2 is a cumulative distribution
function.

31. A probability density function is always increasing.

In Problems 32–35, give an example of:

32. A density function that is greater than zero on 0 ≤ x ≤
20 and zero everywhere else.

33. A cumulative distribution function that is piecewise lin-
ear.

34. A probability density function which is nonzero only be-
tween x = 2 and x = 7.

35. A cumulative distribution function with P (3) = 0 and
P (7) = 1.

In Problems 36–37, are the statements true or false? Give an
explanation for your answer.

36. If p(x) = xe−x2

for all x, then p(x) is a probability
density function.

37. If p(x) = xe−x2

for all x > 0 and p(x) = 0 for x ≤ 0,
then p(x) is a probability density function.

8.8 PROBABILITY, MEAN, AND MEDIAN

Probability
Suppose we pick a member of the US population at random and ask what is the probability that the
person is between, say, the ages of 70 and 80. We saw in Table 8.5 on page 468 that 5% = 0.05 of
the population is in this age group. We say that the probability, or chance, that the person is between
70 and 80 is 0.05. Using any age density function p(t), we can define probabilities as follows:

Probability that a person is

between ages a and b
=

Fraction of population

between ages a and b
=

∫ b

a

p(t) dt.

Since the cumulative distribution function gives the fraction of the population younger than age
t, the cumulative distribution can also be used to calculate the probability that a randomly selected
person is in a given age group.

Probability that a person is

younger than age t
=

Fraction of population

younger than age t
= P (t) =

∫ t

0

p(x) dx.

In the next example, both a density function and a cumulative distribution function are used to
describe the same situation.

Example 1 Suppose you want to analyze the fishing industry in a small town. Each day, the boats bring back at
least 2 tons of fish, and never more than 8 tons.

(a) Using the density function describing the daily catch in Figure 8.99, find and graph the corre-
sponding cumulative distribution function and explain its meaning.

(b) What is the probability that the catch will be between 5 and 7 tons?
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2 5 6 7 8

0.08
0.12

0.24

x (tons of fish)

fraction of days per
ton of caught fish

p(x)

Figure 8.99: Density function of daily catch

Solution (a) The cumulative distribution function P (t) is equal to the fraction of days on which the catch is
less than t tons of fish. Since the catch is never less than 2 tons, we have P (t) = 0 for t ≤ 2.
Since the catch is always less than 8 tons, we have P (t) = 1 for t ≥ 8. For t in the range
2 < t < 8, we must evaluate the integral

P (t) =

∫ t

−∞

p(x)dx =

∫ t

2

p(x)dx.

This integral equals the area under the graph of p(x) between x = 2 and x = t. It can be
calculated by noting that p(x) is given by the formula

p(x) =

{
0.04x for 2 ≤ x ≤ 6

−0.06x+ 0.6 for 6 < x ≤ 8

and p(x) = 0 for x < 2 or x > 8. Thus, for 2 ≤ t ≤ 6,

P (t) =

∫ t

2

0.04x dx = 0.04
x2

2

∣∣∣∣t
2

= 0.02t2 − 0.08.

And for 6 ≤ t ≤ 8,

P (t) =

∫ t

2

p(x) dx =

∫ 6

2

p(x) dx +

∫ t

6

p(x) dx

= 0.64 +

∫ t

6

(−0.06x+ 0.6) dx = 0.64 +

(
−0.06

x2

2
+ 0.6x

) ∣∣∣∣t
6

= −0.03t2 + 0.6t− 1.88.

Thus

P (t) =

{
0.02t2 − 0.08 for 2 ≤ t ≤ 6

−0.03t2 + 0.6t− 1.88 for 6 < t ≤ 8.

In addition P (t) = 0 for t < 2 and P (t) = 1 for 8 < t. (See Figure 8.100.)

2 5 6 7 8

0.2

0.4

0.6

0.8

1

P (t)

t (tons of fish)

fraction of days

Figure 8.100: Cumulative distribution of daily catch

2 5 6 7 8

0.08

0.12

0.24

x (tons of fish)

fraction of days per
ton of caught fish

p(x)

Figure 8.101: Shaded area represents the probability
that the catch is between 5 and 7 tons
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(b) The probability that the catch is between 5 and 7 tons can be found using either the density func-
tion, p, or the cumulative distribution function,P . If we use the density function, this probability
can be represented by the shaded area in Figure 8.101, which is about 0.43:

Probability catch is

between 5 and 7 tons
=

∫ 7

5

p(x) dx = 0.43.

The probability can be found from the cumulative distribution as follows:

Probability catch is

between 5 and 7 tons
= P (7)− P (5) = 0.85− 0.42 = 0.43.

The Median and Mean
It is often useful to be able to give an “average” value for a distribution. Two measures that are in
common use are the median and the mean.

The Median

A median of a quantity x distributed through a population is a value T such that half the
population has values of x less than (or equal to) T , and half the population has values of x
greater than (or equal to) T . Thus, a median T satisfies∫ T

−∞

p(x) dx = 0.5,

where p is the density function. In other words, half the area under the graph of p lies to the
left of T .

Example 2 Find the median age in the US in 1995, using the age density function given by

p(t) =

{
0.015 for 0 ≤ t ≤ 40

0.0262− 0.00028t for 40 < t ≤ 93.3.

Solution We want to find the value of T such that∫ T

−∞

p(t) dt =

∫ T

0

p(t) dt = 0.5.

Since p(t) = 0.015 up to age 40, we have

Median = T =
0.5

0.015
≈ 33 years.

(See Figure 8.102.)

4033

0.015

t (age in years)

fraction of population
per year of age

0.5

�
Median

p(t)

Figure 8.102: Median of age distribution
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t t+Δt
t (age)

�

�

p(t) Area= p(t)Δt�

Figure 8.103: Shaded area is percentage of population with
age between t and t+Δt

The Mean

Another commonly used average value is the mean. To find the mean of N numbers, you add
the numbers and divide the sum by N . For example, the mean of the numbers 1, 2, 7, and 10 is
(1 + 2 + 7 + 10)/4 = 5. The mean age of the entire US population is therefore defined as

Mean age =

∑
Ages of all people in the US

Total number of people in the US
.

Calculating the sum of all the ages directly would be an enormous task; we will approximate
the sum by an integral. The idea is to “slice up” the age axis and consider the people whose age is
between t and t+Δt. How many are there?

The fraction of the population between t and t + Δt is the area under the graph of p between
these points, which is well approximated by the area of the rectangle, p(t)Δt. (See Figure 8.103.)
If the total number of people in the population is N , then

Number of people with age

between t and t+Δt
≈ p(t)ΔtN.

The age of all of these people is approximately t:

Sum of ages of people

between age t and t+Δt
≈ tp(t)ΔtN.

Therefore, adding and factoring out an N gives us

Sum of ages of all people ≈
(∑

tp(t)Δt
)
N.

In the limit, as we allow Δt to shrink to 0, the sum becomes an integral, so

Sum of ages of all people =

(∫ 100

0

tp(t)dt

)
N.

Therefore, with N equal to the total number of people in the US, and assuming no person is over
100 years old,

Mean age =
Sum of ages of all people in US

N
=

∫ 100

0

tp(t)dt.

We can give the same argument for any7 density function p(x).

7Provided all the relevant improper integrals converge.
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If a quantity has density function p(x),

Mean value of the quantity =

∫ ∞

−∞

xp(x) dx.

It can be shown that the mean is the point on the horizontal axis where the region under the
graph of the density function, if it were made out of cardboard, would balance.

Example 3 Find the mean age of the US population, using the density function of Example 2.

Solution The formula for p is

p(t) =

⎧⎪⎨
⎪⎩

0 for t < 0

0.015 for 0 ≤ t ≤ 40

0.0262− 0.00028t for 40 < t ≤ 93.3
0 for t > 93.3.

Using these formulas, we compute

Mean age =

∫ 100

0

tp(t)dt =

∫ 40

0

t(0.015)dt+

∫ 93.3

40

t(0.0262− 0.00028t)dt

= 0.015
t2

2

∣∣∣∣40
0

+ 0.0262
t2

2

∣∣∣∣93.3
40

− 0.00028
t3

3

∣∣∣∣93.3
40

≈ 35 years.

The mean is shown is Figure 8.104.

35
t

fraction of population
per year of age

p(t)

Mean = Balance point

Figure 8.104: Mean of age distribution

Normal Distributions
How much rain do you expect to fall in your home town this year? If you live in Anchorage, Alaska,
the answer is something close to 15 inches (including the snow). Of course, you don’t expect exactly
15 inches. Some years have more than 15 inches, and some years have less. Most years, however, the
amount of rainfall is close to 15 inches; only rarely is it well above or well below 15 inches. What
does the density function for the rainfall look like? To answer this question, we look at rainfall data
over many years. Records show that the distribution of rainfall is well-approximated by a normal
distribution. The graph of its density function is a bell-shaped curve which peaks at 15 inches and
slopes downward approximately symmetrically on either side.

Normal distributions are frequently used to model real phenomena, from grades on an exam
to the number of airline passengers on a particular flight. A normal distribution is characterized by
its mean, μ, and its standard deviation, σ. The mean tells us the location of the central peak. The
standard deviation tells us how closely the data is clustered around the mean. A small value of σ
tells us that the data is close to the mean; a large σ tells us the data is spread out. In the following
formula for a normal distribution, the factor of 1/(σ

√
2π) makes the area under the graph equal

to 1.



478 Chapter Eight USING THE DEFINITE INTEGRAL

A normal distribution has a density function of the form

p(x) =
1

σ
√
2π

e−(x−μ)2/(2σ2),

where μ is the mean of the distribution and σ is the standard deviation, with σ > 0.

To model the rainfall in Anchorage, we use a normal distribution with μ = 15 and σ = 1. (See
Figure 8.105.)

13 15 17
x

p(x) = 1
√

2π
e−(x−15)2/2

(15, 1
√

2π
)

Figure 8.105: Normal distribution with μ = 15 and σ = 1

Example 4 For Anchorage’s rainfall, use the normal distribution with the density function with μ = 15 and
σ = 1 to compute the fraction of the years with rainfall between
(a) 14 and 16 inches, (b) 13 and 17 inches, (c) 12 and 18 inches.

Solution (a) The fraction of the years with annual rainfall between 14 and 16 inches is
∫ 16
14

1√
2π

e−(x−15)2/2 dx.

Since there is no elementary antiderivative for e−(x−15)2/2, we find the integral numerically. Its
value is about 0.68.

Fraction of years with rainfall

between 14 and 16 inches
=

∫ 16

14

1
√
2π

e−(x−15)2/2 dx ≈ 0.68.

(b) Finding the integral numerically again:

Fraction of years with rainfall

between 13 and 17 inches
=

∫ 17

13

1
√
2π

e−(x−15)2/2 dx ≈ 0.95.

(c)

Fraction of years with rainfall

between 12 and 18 inches
=

∫ 18

12

1
√
2π

e−(x−15)2/2 dx ≈ 0.997.

Since 0.95 is so close to 1, we expect that most of the time the rainfall will be between 13 and 17
inches a year.

Among the normal distributions, the one having μ = 0, σ = 1 is called the standard normal
distribution. Values of the corresponding cumulative distribution function are published in tables.

Exercises and Problems for Section 8.8
Exercises

1. Show that the area under the fishing density function
in Figure 8.99 on page 474 is 1. Why is this to be ex-
pected?

2. Find the mean daily catch for the fishing data in Fig-
ure 8.99, page 474.
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3. (a) Using a calculator or computer, sketch graphs of the
density function of the normal distribution

p(x) =
1

σ
√
2π

e−(x−μ)2/(2σ2).

(i) For fixed μ (say, μ = 5) and varying σ (say,
σ = 1, 2, 3).

(ii) For varying μ (say, μ = 4, 5, 6) and fixed σ
(say, σ = 1).

(b) Explain how the graphs confirm that μ is the mean
of the distribution and that σ is a measure of how
closely the data is clustered around the mean.

Problems

4. A quantity x is distributed with density function p(x) =
0.5(2− x) for 0 ≤ x ≤ 2 and p(x) = 0 otherwise. Find
the mean and median of x.

5. A quantity x has cumulative distribution function
P (x) = x − x2/4 for 0 ≤ x ≤ 2 and P (x) = 0 for
x < 0 and P (x) = 1 for x > 2. Find the mean and
median of x.

6. The probability of a transistor failing between t = a

months and t = b months is given by c
∫ b

a
e−ctdt, for

some constant c.

(a) If the probability of failure within the first six
months is 10%, what is c?

(b) Given the value of c in part (a), what is the probabil-
ity the transistor fails within the second six months?

7. Suppose that x measures the time (in hours) it takes for
a student to complete an exam. All students are done
within two hours and the density function for x is

p(x) =
{
x3/4 if 0 < x < 2
0 otherwise.

(a) What proportion of students take between 1.5 and
2.0 hours to finish the exam?

(b) What is the mean time for students to complete the
exam?

(c) Compute the median of this distribution.

8. In 1950 an experiment was done observing the time gaps
between successive cars on the Arroyo Seco Freeway.8

The data show that the density function of these time gaps
was given approximately by

p(x) = ae−0.122x

where x is the time in seconds and a is a constant.

(a) Find a.
(b) Find P , the cumulative distribution function.
(c) Find the median and mean time gap.
(d) Sketch rough graphs of p and P .

9. Consider a group of people who have received treatment
for a disease such as cancer. Let t be the survival time,
the number of years a person lives after receiving treat-
ment. The density function giving the distribution of t is
p(t) = Ce−Ct for some positive constant C.

(a) What is the practical meaning for the cumulative dis-
tribution function P (t) =

∫ t

0
p(x)dx?

(b) The survival function, S(t), is the probability that
a randomly selected person survives for at least t
years. Find S(t).

(c) Suppose a patient has a 70% probability of surviving
at least two years. Find C.

10. While taking a walk along the road where you live,
you accidentally drop your glove, but you don’t know
where. The probability density p(x) for having dropped
the glove x kilometers from home (along the road) is

p(x) = 2e−2x for x ≥ 0.

(a) What is the probability that you dropped it within 1
kilometer of home?

(b) At what distance y from home is the probability that
you dropped it within y km of home equal to 0.95?

11. The distribution of IQ scores can be modeled by a normal
distribution with mean 100 and standard deviation 15.

(a) Write the formula for the density function of IQ
scores.

(b) Estimate the fraction of the population with IQ be-
tween 115 and 120.

12. The speeds of cars on a road are approximately normally
distributed with a mean μ = 58 km/hr and standard de-
viation σ = 4 km/hr.

(a) What is the probability that a randomly selected car
is going between 60 and 65 km/hr?

(b) What fraction of all cars are going slower than 52
km/hr?

13. Consider the normal distribution, p(x).

(a) Show that p(x) is a maximum when x = μ. What is
that maximum value?

(b) Show that p(x) has points of inflection where x =
μ+ σ and x = μ− σ.

(c) Describe in your own words what μ and σ tell you
about the distribution.

14. For a normal population of mean 0, show that the frac-
tion of the population within one standard deviation of
the mean does not depend on the standard deviation.

[Hint: Use the substitution w = x/σ.]

8Reported by Daniel Furlough and Frank Barnes.
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15. Which of the following functions makes the most sense
as a model for the probability density representing the
time (in minutes, starting from t = 0) that the next cus-
tomer walks into a store?

(a) p(t) =
{
cos t 0 ≤ t ≤ 2π
et−2π t ≥ 2π

(b) p(t) = 3e−3t for t ≥ 0
(c) p(t) = e−3t for t ≥ 0
(d) p(t) = 1/4 for 0 ≤ t ≤ 4

16. Let P (x) be the cumulative distribution function for the
household income distribution in the US in 2009.9 Values
of P (x) are in the following table:

Income x (thousand $) 20 40 60 75 100

P (x) (%) 29.5 50.1 66.8 76.2 87.1

(a) What percent of the households made between
$40,000 and $60,000? More than $100,000?

(b) Approximately what was the median income?
(c) Is the statement “More than one-third of households

made between $40,000 and $75,000” true or false?

17. If we think of an electron as a particle, the function

P (r) = 1− (2r2 + 2r + 1)e−2r

is the cumulative distribution function of the distance, r,
of the electron in a hydrogen atom from the center of the
atom. The distance is measured in Bohr radii. (1 Bohr ra-
dius = 5.29 × 10−11 m. Niels Bohr (1885–1962) was a
Danish physicist.)

For example, P (1) = 1− 5e−2 ≈ 0.32 means that
the electron is within 1 Bohr radius from the center of the
atom 32% of the time.

(a) Find a formula for the density function of this distri-
bution. Sketch the density function and the cumula-
tive distribution function.

(b) Find the median distance and the mean distance.
Near what value of r is an electron most likely to
be found?

(c) The Bohr radius is sometimes called the “radius of
the hydrogen atom.” Why?

Strengthen Your Understanding

In Problems 18–19, explain what is wrong with the statement.

18. A median T of a quantity distributed through a popula-
tion satisfies p(T ) = 0.5 where p is the density function.

19. The following density function has median 1:

p(x) =

⎧⎪⎨
⎪⎩

0 for x < 0

2(1− x) for 0 ≤ x ≤ 1

0 for x > 1.

In Problems 20–21, give an example of:

20. A distribution with a mean of 1/2 and standard deviation
1/2.

21. A distribution with a mean of 1/2 and median 1/2.

In Problems 22–26, a quantity x is distributed through a pop-
ulation with probability density function p(x) and cumulative
distribution function P (x). Decide if each statement is true or
false. Give an explanation for your answer.

22. If p(10) = 1/2, then half the population has x < 10.

23. If P (10) = 1/2, then half the population has x < 10.

24. If p(10) = 1/2, then the fraction of the population lying
between x = 9.98 and x = 10.04 is about 0.03.

25. If p(10) = p(20), then none of the population has x val-
ues lying between 10 and 20.

26. If P (10) = P (20), then none of the population has x
values lying between 10 and 20.

CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• Geometry
Area, volume, arc length.

• Density
Finding total quantity from density, center of mass.

• Physics
Work, force and pressure.

• Economics

Present and future value of income stream, consumer and
producer surplus.

• Probability
Density function, cumulative distribution function, mean,
median, normal distribution.

• Polar coordinates
Area, slope, arc length.

9http://www.census.gov/hhes/www/income/income.html, accessed on January 7, 2012.
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Exercises

1. Imagine a hard-boiled egg lying on its side cut into thin
slices. First think about vertical slices and then horizon-
tal ones. What would these slices look like? Sketch them.

For each region in Exercises 2–4, write a definite integral
which represents its area. Evaluate the integral to derive a for-
mula for the area.

2. A rectangle with base b
and height h:

x
�� b

�

�
h

3. A circle of radius r:

x
��r

4. A right triangle of base b and height h:

x
�� b

�

�
h

In Exercises 5–9, the region is rotated about the x-axis. Find
the volume

5. Bounded by y = x2 + 1, the x-axis, x = 0, x = 4.

6. Bounded by y =
√
x, x-axis, x = 1, x = 2.

7. Bounded by y = e−2x, the x-axis, x = 0, x = 1.

8. Bounded by y = 4− x2 and the x-axis.

9. Bounded by y = 2x, y = x, x = 0, x = 3.

Exercises 10–15 refer to the regions marked in Figure 8.106.
Set up, but do not evaluate, an integral that represents the vol-
ume obtained when the region is rotated about the given axis.

8

2
R1

R2

R3

�

y = x1/3

�

x = 4y

(8, 2)

x

y

Figure 8.106

10. R2 about the x-axis

11. R1 about the y-axis

12. R1 about the line y = −2

13. R3 about the line x = 10

14. R3 about the line y = 3

15. R2 about the line x = −3

16. Find the volume of the region in Figure 8.107, given that
the radius, r of the circular slice at h is r =

√
h.

�

�12

��

Δ h

� �

h

Figure 8.107

17. Find, by slicing, the volume of a cone whose height is
3 cm and whose base radius is 1 cm. Slice the cone as
shown in Figure 8.6 on page 416.

18. (a) Set up and evaluate an integral giving the volume of
a pyramid of height 10 m and square base 8 m by 8
m.

(b) The pyramid in part (a) is cut off at a height of 6 m.
See Figure 8.108. Find the volume.

�

�

8 m

�

�

8 m

�

�

6

Figure 8.108

19. The exterior of a holding tank is a cylinder with radius
3 m and height 6 m; the interior is cone-shaped; Fig-
ure 8.109 shows its cross-section. Using an integral, find
the volume of material needed to make the tank.

Tank

Solid

�� 3 m

�

�

6 m

Figure 8.109
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For the curves described in Exercises 20–21, write the integral
that gives the exact length of the curve; do not evaluate it.

20. One arch of the sine curve, from x = 0 to x = π.

21. The ellipse with equation (x2/a2) + (y2/b2) = 1.

In Exercises 22–23, find the arc length of the function from
x = 0 to x = 3. Use a graph to explain why your answer is
reasonable.

22. f(x) = sin x 23. f(x) = 5x2

For Exercises 24–26, find the arc lengths.

24. f(x) =
√
1− x2 from x = 0 to x = 1

25. f(x) = ex from x = 1 to x = 2

26. f(x) =
1

3
x3 +

1

4x
from x = 1 to x = 2.

In Exercises 27–28, find the length of the parametric curves.
Give exact answers if possible.

27. x = 3 cos t, y = 2 sin t, for 0 ≤ t ≤ 2π.

28. x = 1 + cos(2t), y = 3 + sin(2t), for 0 ≤ t ≤ π.

In Exercises 29–33, let f(x) = xp, for x ≥ 0 and p > 1. Note
that f(0) = 0, f(1) = 1, and f is increasing with a concave-
up graph. Use geometrical arguments to order the given quan-
tities.

29.

∫ 1

0

f(x) dx and
1

2

30.

∫ 0.5

0

f ′(x) dx and
1

2

31.

∫ 1

0

f−1(x) dx and
1

2

32.

∫ 1

0

π (f(x))2 dx and
π

3

33.

∫ 1

0

√
1 + (f ′(x))2 dx and

√
2

Problems

34. (a) Find the area of the region between y = x2 and
y = 2x.

(b) Find the volume of the solid of revolution if this re-
gion is rotated about the x-axis.

(c) Find the length of the perimeter of this region.

35. The integral

∫ 2

0

(
√

4− x2 − (−
√

4− x2)) dx repre-

sents the area of a region in the plane. Sketch this region.

In Problems 36–37, set up definite integral(s) to find the vol-
ume obtained when the region between y = x2 and y = 5x is
rotated about the given axis. Do not evaluate the integral(s).

36. The line y = 30 37. The line x = 8

38. (a) Sketch the solid obtained by rotating the region
bounded by y =

√
x, x = 1, and y = 0 around

the line y = 0.
(b) Approximate its volume by Riemann sums, showing

the volume represented by each term in your sum on
the sketch.

(c) Now find the volume of this solid using an integral.

39. Using the region of Problem 38, find the volume when it
is rotated around
(a) The line y = 1. (b) The y-axis.

40. (a) Find (in terms of a) the area of the region bounded
by y = ax2, the x-axis, and x = 2. Assume a > 0.

(b) If this region is rotated about the x-axis, find the vol-
ume of the solid of revolution in terms of a.

41. (a) Find (in terms of b) the area of the region between
y = e−bx and the x-axis, between x = 0 and x = 1.
Assume b > 0.

(b) If this region is rotated about the x-axis, find the vol-
ume of the solid of revolution in terms of b.

For Problems 42–44, set up and compute an integral giving
the volume of the solid of revolution.

42. Bounded by y = sin x, y = 0.5x, x = 0, x = 1.9;

(a) Rotated about the x-axis.
(b) Rotated about y = 5.

43. Bounded by y = 2x, the x-axis, x = 0, x = 4. Axis:
y = −5.

44. Bounded by y = x2, the x-axis, x = 0, x = 3;

(a) Rotated about y = −2.
(b) Rotated about y = 10.

Problems 45–50 concern the region bounded by the quarter
circle x2 + y2 = 1, with x ≥ 0, y ≥ 0. Find the volume of
the following solids.

45. The solid obtained by rotating the region about the x-
axis.

46. The solid obtained by rotating the region about the line
x = −2.

47. The solid obtained by rotating the region about the line
x = 1.

48. The solid whose base is the region and whose cross-
sections perpendicular to the x-axis are squares.

49. The solid whose base is the region and whose cross-
sections perpendicular to the y-axis are semicircles.

50. The solid whose base is the region and whose cross-
section perpendicular to the y-axis is an isosceles right
triangle with one leg in the region.
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In Problems 51–52, what does the expression represent geo-
metrically in terms of the function f(x) = x(x−3)2? Do not
evaluate the expressions.

51.

∫ 3

0

x(x− 3)2 dx 52.

∫ 3

0

πx2(x− 3)4 dx

53. The catenary cosh x = 1
2
(ex+e−x) represents the shape

of a hanging cable. Find the exact length of this catenary
between x = −1 and x = 1.

54. The reflector behind a car headlight is made in the shape
of the parabola x = 4

9
y2, with a circular cross-section,

as shown in Figure 8.110.

(a) Find a Riemann sum approximating the volume con-
tained by this headlight.

(b) Find the volume exactly.

4

x = 4
9
y2

x

y

Figure 8.110

x

y

�

�

b

�� l

y = ax

Figure 8.111

55. In this problem, you will derive the formula for the vol-
ume of a right circular cone with height l and base radius
b by rotating the line y = ax from x = 0 to x = l around
the x-axis. See Figure 8.111.

(a) What value should you choose for a such that the
cone will have height l and base radius b?

(b) Given this value of a, find the volume of the cone.

56. Figure 8.112 shows a cross section through an apple.
(Scale: One division = 1/2 inch.)

(a) Give a rough estimate for the volume of this apple
(in cubic inches).

(b) The density of these apples is about 0.03 lb/in3 (a
little less than the density of water—as you might
expect, since apples float). Estimate how much this
apple would cost. (They go for 80 cents a pound.)

Figure 8.112

57. The circle x2 + y2 = 1 is rotated about the line y = 3
forming a torus (a doughnut-shaped figure). Find the vol-
ume of this torus.

58. Find a curve whose arc length is

∫ 8

3

√
1 + e6t dt.

59. Water is flowing in a cylindrical pipe of radius 1 inch. Be-
cause water is viscous and sticks to the pipe, the rate of
flow varies with the distance from the center. The speed
of the water at a distance r inches from the center is
10(1 − r2) inches per second. What is the rate (in cu-
bic inches per second) at which water is flowing through
the pipe?

Problems 60–64 concern C, the circle r = 2a cos θ, for
−π/2 ≤ θ ≤ π/2, of radius a > 0 centered at the point
(x, y) = (a, 0) on the x-axis.

60. By converting to Cartesian coordinates, show that r =
2a cos θ gives the circle described.

61. Find the area of the circle C by integrating in polar coor-
dinates.

62. Find the area of the region enclosed by C and outside the
circle of radius a centered at the origin. What percent is
this of the area of C?

63. (a) Find the slope of C at the angle θ.
(b) At what value of θ does the maximum y-value oc-

cur?

64. Calculate the arc length of C using polar coordinates.

65. Write a definite integral for the volume of the bounded re-
gion formed by rotating the graph of y = (x−1)2(x+2)
around the x-axis. You need not evaluate this integral.

66. Find the center of mass of a system containing four iden-
tical point masses of 3 gm, located at x = −5,−3, 2, 7.

67. A metal plate, with constant density 2 gm/cm2, has a
shape bounded by the two curves y = x2 and y =

√
x,

with 0 ≤ x ≤ 1, and x, y in cm.

(a) Find the total mass of the plate.
(b) Because of the symmetry of the plate about the line

y = x, we have x̄ = ȳ. Sketch the plate and decide,
on the basis of the shape, whether x̄ is less than or
greater than 1/2.

(c) Find x̄ and ȳ.

68. A 200-lb weight is attached to a 20-foot rope and dan-
gling from the roof of a building. The rope weighs 2 lb/ft.
Find the work done in lifting the weight to the roof.

69. A 10 ft pole weighing 20 lbs lies flat on the ground. Keep-
ing one end of the pole braced on the ground, the other
end is lifted until the pole stands vertically. Once the pole
is upright, the segment of length Δx at height x has been
raised a vertical distance of x ft. How much work is done
to raise the pole vertically?
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70. Water is raised from a well 40 ft deep by a bucket at-
tached to a rope. When the bucket is full, it weighs 30 lb.
However, a leak in the bucket causes it to lose water at
a rate of 1/4 lb for each foot that the bucket is raised.
Neglecting the weight of the rope, find the work done in
raising the bucket to the top.

71. A rectangular water tank has length 20 ft, width 10 ft,
and depth 15 ft. If the tank is full, how much work does
it take to pump all the water out?

72. A fuel oil tank is an upright cylinder, buried so that its
circular top is 10 feet beneath ground level. The tank has
a radius of 5 feet and is 15 feet high, although the current
oil level is only 6 feet deep. Calculate the work required
to pump all of the oil to the surface. Oil weighs 50 lb/ft3.

73. An underground tank filled with gasoline of density 42
lb/ft3 is a hemisphere of radius 5 ft, as in Figure 8.113.
Use an integral to find the work to pump the gasoline over
the top of the tank.

�� 5 ft

Figure 8.113

74. The dam in Hannawa Falls, NY, on the Raquette River is
approximately 60 feet across and 25 feet high. Find the
water force on the dam.

75. A crane lifts a 1000 lb object to a height of 20 ft using
chain that weighs 2 lb/ft. If the crane arm is at a height of
50 ft, find the work required.

76. Find the present and future values of an income stream
of $3000 per year over a 15-year period, assuming a 6%
annual interest rate compounded continuously.

77. A nuclear power plant produces strontium-90 at a rate of
3 kg/yr. How much of the strontium produced since 1971
(when the plant opened) was still around in 1992? (The
half-life of strontium-90 is 28 years.)

78. Mt. Shasta is a cone-like volcano whose radius at an
elevation of h feet above sea level is approximately
(3.5 · 105)/√h+ 600 feet. Its bottom is 400 feet above
sea level, and its top is 14,400 feet above sea level. See
Figure 8.114. (Note: Mt. Shasta is in northern California,
and for some time was thought to be the highest point in
the US outside Alaska.)

(a) Give a Riemann sum approximating the volume of
Mt. Shasta.

(b) Find the volume in cubic feet.

(2860, 14400)

(11070, 400)

Radius =
3.5 · 105
√
h+ 600

r

h

Figure 8.114: Mt. Shasta

79. Figure 8.115 shows an ancient Greek water clock called
a clepsydra, which is designed so that the depth of the
water decreases at a constant rate as the water runs out
a hole in the bottom. This design allows the hours to be
marked by a uniform scale. The tank of the clepsydra
is a volume of revolution about a vertical axis. Accord-
ing to Torricelli’s law, the exit speed of the water flowing
through the hole is proportional to the square root of the
depth of the water. Use this to find the formula y = f(x)
for this profile, assuming that f(1) = 1.

x

y

(1, 1)(−1, 1)

y = f(x)

�
Hole

Figure 8.115

80. Suppose that P (t) is the cumulative distribution function
for age in the US, where x is measured in years. What is
the meaning of the statement P (70) = 0.76?

81. Figure 8.116 shows the distribution of the velocity of
molecules in two gases. In which gas is the average ve-
locity larger?

A

B

velocity

Figure 8.116

82. A radiation detector is a circular disk which registers
photons hitting it. The probability that a photon hitting
the disk at a distance r from the center is actually de-
tected is given by S(r). A radiation detector of radius
R is bombarded by constant radiation of N photons per
second per unit area. Write an integral representing the
number of photons per second registered by the detector.
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83. Housing prices depend on the distance in miles r from a
city center according to

p(r) = 400e−0.2r2 , price in $1000s.

Assuming 1000 houses per square mile, what is the total
value of the houses within 7 miles of the city center?

84. A blood vessel is cylindrical with radius R and length l.
The blood near the boundary moves slowly; blood at the
center moves the fastest. The velocity, v, of the blood at
a distance r from the center of the artery is given by

v =
P

4ηl
(R2 − r2)

where P is the pressure difference between the ends of
the blood vessel and η is the viscosity of blood.

(a) Find the rate at which the blood is flowing down the
blood vessel. (Give your answer as a volume per unit
time.)

(b) Show that your result agrees with Poiseuille’s Law,
which says that the rate at which blood is flowing
down the blood vessel is proportional to the radius
of the blood vessel to the fourth power.

85. A car moving at a speed of v mph achieves 25 + 0.1v
mpg (miles per gallon) for v between 20 and 60 mph.
Your speed as a function of time, t, in hours, is given by

v = 50
t

t + 1
mph.

How many gallons of gas do you consume between t = 2
and t = 3?

86. A bowl is made by rotating the curve y = ax2 around
the y-axis (a is a constant).

(a) The bowl is filled with water to depth h. What is
the volume of water in the bowl? (Your answer will
contain a and h.)

(b) What is the area of the surface of the water if the
bowl is filled to depth h? (Your answer will contain
a and h.)

(c) Water is evaporating from the surface of the bowl
at a rate proportional to the surface area, with pro-
portionality constant k. Find a differential equation
satisfied by h as a function of time, t. (That is, find
an equation for dh/dt.)

(d) If the water starts at depth h0, find the time taken for
all the water to evaporate.

87. A cylindrical centrifuge of radius 1 m and height 2 m
is filled with water to a depth of 1 meter (see Fig-
ure 8.117(I)). As the centrifuge accelerates, the water
level rises along the wall and drops in the center; the
cross-section will be a parabola. (See Figure 8.117(II).)

(a) Find the equation of the parabola in Figure 8.117(II)
in terms of h, the depth of the water at its lowest
point.

(b) As the centrifuge rotates faster and faster, either wa-
ter will be spilled out the top, as in Figure 8.117(III),
or the bottom of the centrifuge will be exposed, as in
Figure 8.117(IV). Which happens first?

(I)

x

y

�

�

2 m
�

�
1 m

��1 m

(II)

x

y

�

�

h

(III)

x

y
(IV)

x

y

Figure 8.117

In Problems 88–89, you are given two objects that have the
same mass M , the same radius R, and the same angular veloc-
ity about the indicated axes (say, one revolution per minute).
Use reasoning (not computation) to determine which of the
two objects has the greater kinetic energy. (The kinetic energy
of a particle of mass m with speed v is 1

2
mv2.)

88.

�

�

2R

Axis

Solid sphere about
any diameter

�

�

2R

Axis

Thin spherical shell
about any diameter

89.

Hoop about
any diameter

Axis

R

Axis

R

Hoop about
cylindrical axis
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CAS Challenge Problems

90. For a positive constant a, consider the curve

y =

√
x3

a− x
, 0 ≤ x < a.

(a) Using a computer algebra system, show that for
0 ≤ t < π/2, the point with coordinates (x, y) lies
on the curve if:

x = a sin2 t, y =
a sin3 t

cos t
.

(b) A solid is obtained by rotating the curve about its
asymptote at x = a. Use horizontal slicing to write
an integral in terms of x and y that represents the
volume of this solid.

(c) Use part (a) to substitute in the integral for both x
and y in terms of t. Use a computer algebra system
or trigonometric identities to calculate the volume of
the solid.

For Problems 91–92, define A(t) to be the arc length of the
graph of y = f(x) from x = 0 to x = t, for t ≥ 0.
(a) Use the integral expression for arc length and a computer

algebra system to obtain a formula for A(t).

(b) Graph A(t) for 0 ≤ t ≤ 10. What simple function does
A(t) look like? What does this tell you about the approx-
imate value of A(t) for large t?

(c) In order to estimate arc length visually, you need the
same scales on both axes, so that the lengths are not dis-
torted in one direction. Draw a graph of f(x) with view-
ing window 0 ≤ x ≤ 100, 0 ≤ y ≤ 100. Explain what
you noticed in part (b) in terms of this graph.

91. f(x) = x2

92. f(x) =
√
x

93. A bead is formed by drilling a cylindrical hole of circu-
lar cross section and radius a through a sphere of radius
r > a, the axis of the hole passing through the center of
the sphere.

(a) Write a definite integral expressing the volume of
the bead.

(b) Find a formula for the bead by evaluating the definite
integral in part (a).

PROJECTS FOR CHAPTER EIGHT

1. Medical Case Study: Flux of Fluid from a Capillary10

The heart pumps blood throughout the body, the arteries are the blood vessels carrying
blood away from the heart, and the veins return blood to the heart. Close to the heart, arteries
are very large. As they progress toward tissues (such as the brain), the arteries branch repeatedly,
getting smaller as they do. The smallest blood vessels are capillaries—microscopic, living tubes
that link the smallest arteries to the smallest veins. The capillary is where nutrients and fluids
move out of the blood into the adjacent tissues and waste products from the tissues move into
the blood. The key to this process is the capillary wall, which is only one cell thick, allowing the
unfettered passage of small molecules, such as water, ions, oxygen, glucose, and amino acids,
while preventing the passage of large components of the blood (such as large proteins and blood
cells).

Precise measurements demonstrate that the flux (rate of flow) of fluid through the capillary
wall is not constant over the length of the capillary. Fluids in and around the capillary are
subjected to two forces. The hydrostatic pressure, resulting from the heart’s pumping, pushes
fluid out of the capillary into the surrounding tissue. The oncotic pressure drives absorption
in the other direction. At the start of a capillary, where the capillary branches off the small
artery, the hydrostatic pressure is high while the oncotic pressure is low. Along the length of
the capillary, the hydrostatic pressure decreases while the oncotic pressure is approximately
constant. See Figure 8.118.

For most capillaries there is a net positive value for flow: more fluid flows from the cap-
illaries into the surrounding tissue than the other way around. This presents a major problem
for maintaining fluid balance in the body. How is the fluid left in the tissues to get back into
circulation? If it cannot, the tissues progressively swell (a condition called edema). Evolution’s
solution is to provide humans and other mammals with a second set of vessels, the lymphatics,
that absorb extra tissue fluid and provide one way routes back to the bloodstream.

10From David E. Sloane, M.D.
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Along a cylindrical capillary of length L = 0.1 cm and radius r = 0.0004 cm, the hydro-
static pressure, ph, varies from 35 mm Hg at the artery end to 15 mm Hg at the vein end. (mm
Hg, millimeters of mercury, is a unit of pressure.) The oncotic pressure, po, is approximately
23 mm Hg throughout the length of the capillary.

(a) Find a formula for ph as a function of x, the distance in centimeters from the artery end of
the capillary, assuming that ph is a linear function of x.

(b) Find a formula for p, the net outward pressure, as a function of x.
(c) The rate of movement, j, of fluid volume per capillary wall area across the capillary wall is

proportional to the net pressure. We have j = k · p where k, the hydraulic conductivity, has
value

k = 10
−7 cm

sec · mm Hg
.

Check that j has units of volume per time per area.
(d) Write and evaluate an integral for the net volume flow rate (volume per unit time) through

the wall of the entire capillary.

�

Oncotic pressure vector�
Hydrostatic pressure vector

Capillary wall

Capillary wall
Tissue

Tissue

Blood StreamArtery VeinDirection of blood flow

Figure 8.118: Vectors representing pressure in and out of capillary

2. Medical Case Study: Testing for Kidney Disease11

Patients with kidney disease often have protein in their urine. While small amounts of
protein are not very worrisome, more than 1 gram of protein excreted in 24 hours warrants
active treatment. The most accurate method for measuring urine protein is to have the patient
collect all his or her urine in a container for a full 24 hour period. The total mass of protein can
then be found by measuring the volume and protein concentration of the urine.

However, this process is not as straightforward as it sounds. Since the urine is collected
intermittently throughout the 24 hour period, the first urine voided sits in the container longer
than the last urine voided. During this time, the proteins slowly fall to the bottom of the con-
tainer. Thus, at the end of a 24 hour collection period, there is a higher concentration of protein
on the bottom of the container than at the top.

One could try to mix the urine so that the protein concentration is more uniform, but this
forms bubbles that trap the protein, leading to an underestimate of the total amount excreted. A
better way to determine the total protein is to measure the concentration at the top and at the
bottom, and then calculate the total protein.

(a) Suppose a patient voids 2 litres (2000 ml) of urine in 24 hours and collects it in a cylindrical
container of diameter 10 cm (note that 1 cm3 = 1 ml). A technician determines that the
protein concentration at the top is 0.14 mg/ml, and at the bottom is 0.96 mg/ml. Assume
that the concentration of protein varies linearly from the top to the bottom.
(i) Find a formula for c, the protein concentration in mg/ml, as a function of y, the dis-

tance in centimeters from the base of the cylinder.
11From David E. Sloane, M.D.
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(ii) Determine the quantity of protein in a slice of the cylinder extending from height y to
y +Δy.

(iii) Write an integral that gives the total quantity of protein in the urine sample. Does this
patient require active treatment?

(b) Assuming that concentration changes linearly with height, another way to estimate the
quantity of protein in the sample is to multiply the average of the top and bottom protein
concentrations by the volume of urine collected. Show that this procedure gives the same
answer as integration, no matter what the radius of the cylindrical container, the volume
collected, and the top and bottom protein concentrations.

3. Volume Enclosed by Two Cylinders
Two cylinders are inscribed in a cube of side length 2, as shown in Figure 8.119. What is

the volume of the solid that the two cylinders enclose? [Hint: Use horizontal slices.] Note: The
solution was known to Archimedes. The Chinese mathematician Liu Hui (third century A.D.)
tried to find this volume, but he failed; he wrote a poem about his efforts calling the enclosed
volume a “box-lid:”

Look inside the cube
And outside the box-lid;
Though the dimension increases,
It doesn’t quite fit.
The marriage preparations are complete;
But square and circle wrangle,
Thick and thin are treacherous plots,
They are incompatible.
I wish to give my humble reflections,
But fear that I will miss the correct principle;
I dare to let the doubtful points stand,
Waiting
For one who can expound them.

Figure 8.119

4. Length of a Hanging Cable
The distance between the towers of the main span of the Golden Gate Bridge is about

1280 m; the sag of the cable halfway between the towers on a cold winter day is about 143 m.
See Figure 8.120.

�

�

143 m

�� 1280 m

Figure 8.120

(a) How long is the cable, assuming it has an approximately parabolic shape? (Represent the
cable as a parabola of the form y = kx2 and determine k to at least 1 decimal place.)

(b) On a hot summer day the cable is about 0.05% longer, due to thermal expansion. By how
much does the sag increase? Assume no movement of the towers.

5. Surface Area of an Unpaintable Can of Paint
This project introduces the formula for the surface area of a volume of revolution and shows
that it is possible to have a solid with finite volume but infinite surface area.
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We know that the arclength of the curve y = f(x) from a to b can be found using the
integral

Arc length =

∫ b

a

√
1 + (f ′(x))2 dx.

Figure 8.121 shows the corresponding arc length of a small piece of the curve. Similarly, it can
be shown that the surface area from a to b of the solid obtained by revolving y = f(x) around
the x-axis is given by

Surface area = 2π

∫ b

a

f(x)
√

1 + (f ′(x))2 dx.

We can see this why this might be true by looking at Figure 8.122. We approximate the small
piece of the surface by a slanted cylinder of radius y and “height” equal to the arclength of the
curve, so that

Surface area of edge of slice ≈ 2πy
√
1 + (f ′(x))2 Δx.

Integrating this expression from x = a to x = b gives the surface area of the solid.

x
�� Δx

�
�

Change in y ≈ Δy
= f ′(x)Δx

Length ≈
√

1 + (f ′(x))2Δx



f(x)

Figure 8.121

x

y = f(x)

��
Δx



Radius = y

Figure 8.122

(a) Calculate the surface area of a sphere of radius r.
(b) Calculate the surface area of a cone of radius r and height h.
(c) Rotate the curve y = 1/x for x ≥ 1 around the x-axis. Find the volume of this solid.
(d) Show that the surface area of the solid in part (c) is infinite. [Hint: You might not be able

to find an antiderivative of the integrand in the surface area formula; can you get a lower
bound on the integral?]

(e) (Optional. Requires Chapter 11.) Find a curve such that when the portion of the curve from
x = a to x = b is rotated around the x-axis (for any a and b), the volume of the solid of
revolution is equal to its surface area. You may assume dy/dx ≥ 0.

6. Maxwell’s Distribution of Molecular Velocities
Let v be the speed, in meters/second, of an oxygen molecule, and let p(v) be the density

function of the speed distribution of oxygen molecules at room temperature. Maxwell showed
that

p(v) = av2e−mv2/(2kT ),

where k = 1.4 × 10−23 is the Boltzmann constant, T is the temperature in Kelvin (at room
temperature, T = 293), and m = 5× 10−26 is the mass of the oxygen molecule in kilograms.

(a) Find the value of a.
(b) Estimate the median and the mean speed. Find the maximum of p(v).
(c) How do your answers in part (b) for the mean and the maximum of p(v) change as T

changes?



 



©
 P

at
ric

k 
Z

ep
hy

r/
P

at
ric

k 
Z

ep
hy

r 
N

at
ur

e 
P

ho
to

g
ra

p
hy

Chapter Nine

SEQUENCES AND 
SERIES

Contents
9.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

The Numerical, Algebraic, and Graphical

Viewpoint  . . . . . . . . . . . . . . . . . . . . . . 492

Defi ning Sequences Recursively . . . . . . . . . . . 493

Convergence of Sequences  . . . . . . . . . . . . . . . 494

Convergence and Bounded Sequences . . . . . . . 494

9.2 Geometric Series . . . . . . . . . . . . . . . . . . . . . . . . 498

Repeated Drug Dosage  . . . . . . . . . . . . . . . . . . 498

What Happens as n → ∞? . . . . . . . . . 499

The Geometric Series in General . . . . . . . . . . . 500

Sum of a Finite Geometric Series  . . . . . . . . . . 500

Sum of an Infi nite Geometric Series . . . . . . . . 500

Regular Deposits into a Savings Account . . . . 502

What Happens as n → ∞?  . . . . . . . . 502

9.3 Convergence of Series . . . . . . . . . . . . . . . . . . . . 505

Partial Sums and Convergence of Series . . . . . 505

Visualizing Series  . . . . . . . . . . . . . . . . 506

Comparison of Series and Integrals . . . . . . . . . 507

9.4 Tests for Convergence . . . . . . . . . . . . . . . . . . . . 512

Comparison of Series  . . . . . . . . . . . . . . . . . . . 512

Limit Comparison Test  . . . . . . . . . . . . 513

Series of Both Positive and Negative Terms . . 515

Comparison with a Geometric Series: The

Ratio Test . . . . . . . . . . . . . . . . . . . . . . . 515

Alternating Series  . . . . . . . . . . . . . . . . . . . . . . 517

Absolute and Conditional Convergence  . . . . . 518

9.5 Power Series and Interval of Convergence . . . 521

Numerical and Graphical View of Convergence  522

Intervals of Convergence . . . . . . . . . . . . . . . . . 523

What Happens at the Endpoints of the Interval

of Convergence?  . . . . . . . . . . . . . . . . . 525

Series with All Odd, or All Even, Terms . . . . . 526

REVIEW PROBLEMS . . . . . . . . . . . . . . . . . . . 529

PROJECTS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533



492 Chapter Nine SEQUENCES AND SERIES

9.1 SEQUENCES

A sequence1 is an infinite list of numbers s1, s2, s3, . . . , sn, . . .. We call s1 the first term, s2 the
second term; sn is the general term. For example, the sequence of squares, 1, 4, 9, . . . , n2, . . . can
be denoted by the general term sn = n2. Thus, a sequence is a function whose domain is the
positive integers, but it is traditional to denote the terms of a sequence using subscripts, sn, rather
than function notation, s(n). In addition, we may talk about sequences whose general term has no
simple formula, such as the sequence 3, 3.1, 3.14, 3.141, 3.1415, . . ., in which sn gives the first n
digits of π.

The Numerical, Algebraic, and Graphical Viewpoint
Just as we can view a function algebraically, numerically, graphically, or verbally, we can view
sequences in different ways. We may give an algebraic formula for the general term. We may give
the numerical values of the first few terms of the sequence, suggesting a pattern for the later terms.

Example 1 Give the first six terms of the following sequences:

(a) sn =
n(n+ 1)

2
(b) sn =

n+ (−1)n

n

Solution (a) Substituting n = 1, 2, 3, 4, 5, 6 into the formula for the general term, we get

1 · 2

2
,
2 · 3

2
,
3 · 4

2
,
4 · 5

2
,
5 · 6

2
,
6 · 7

2
= 1, 3, 6, 10, 15, 21.

(b) Substituting n = 1, 2, 3, 4, 5, 6 into the formula for the general term, we get

1− 1

1
,
2 + 1

2
,
3− 1

3
,
4 + 1

4
,
5− 1

5
,
6 + 1

6
= 0,

3

2
,
2

3
,
5

4
,
4

5
,
7

6
.

Example 2 Give a general term for the following sequences:

(a) 1, 2, 4, 8, 16, 32, . . . (b)
7

2
,
7

5
,
7

8
,
7

11
,
1

2
,
7

17
, . . .

Solution Although the first six terms do not determine the sequence, we can sometimes use them to guess a
possible formula for the general term.

(a) We have powers of 2, so we guess sn = 2n. When we check by substituting in n = 1, 2, 3, 4, 5, 6,
we get 2, 4, 8, 16, 32, 64, instead of 1, 2, 4, 8, 16, 32. We fix our guess by subtracting 1 from the
exponent, so the general term is

sn = 2
n−1.

Substituting the first six values of n shows that the formula checks.
(b) In this sequence, the fifth term looks different from the others, whose numerators are all 7. We

can fix this by rewriting 1/2 = 7/14. The sequence of denominators is then 2, 5, 8, 11, 14, 17.
This looks like a linear function with slope 3, so we expect the denominator has formula 3n+k
for some k. When n = 1, the denominator is 2, so

2 = 3 · 1 + k giving k = −1

and the denominator of sn is 3n− 1. Our general term is then

sn =
7

3n− 1
.

To check this, evaluate sn for n = 1, . . . , 6.

There are two ways to visualize a sequence. One is to plot points with n on the horizontal
axis and sn on the vertical axis. The other is to label points on a number line s1, s2, s3, . . . . See
Figure 9.1 for the sequence sn = 1 + (−1)n/n.

1In everyday English, the words “sequence” and “series” are used interchangeably. In mathematics, they have different
meanings and cannot be interchanged.
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2 4 6 8 10

1

n

sn

0

s1

1 2

s2s3 s4s5 s6
sn

Figure 9.1: The sequence sn = 1 + (−1)n/n

Defining Sequences Recursively
Sequences can also be defined recursively, by giving an equation relating the nth term to the previ-
ous terms and as many of the first few terms as are needed to get started.

Example 3 Give the first six terms of the recursively defined sequences.

(a) sn = sn−1 + 3 for n > 1 and s1 = 4

(b) sn = −3sn−1 for n > 1 and s1 = 2

(c) sn = 1
2 (sn−1 + sn−2) for n > 2 and s1 = 0, s2 = 1

(d) sn = nsn−1 for n > 1 and s1 = 1

Solution (a) When n = 2, we obtain s2 = s1 + 3 = 4 + 3 = 7. When n = 3, we obtain s3 = s2 + 3 =

7+ 3 = 10. In words, we obtain each term by adding 3 to the previous term. The first six terms
are

4, 7, 10, 13, 16, 19.

(b) Each term is −3 times the previous term, starting with s1 = 2. We have s2 = −3s1 = −3 · 2 =

−6 and s3 = −3s2 = −3(−6) = 18. Continuing, we get

2, −6, 18, −54, 162, −486.

(c) Each term is the average of the previous two terms, starting with s1 = 0 and s2 = 1. We get
s3 = (s2 + s1)/2 = (1 + 0)/2 = 1/2. Then s4 = (s3 + s2)/2 = ((1/2) + 1)/2 = 3/4.
Continuing, we get

0, 1,
1

2
,
3

4
,
5

8
,
11

16
.

(d) Here s2 = 2s1 = 2 · 1 = 2 so s3 = 3s2 = 3 · 2 = 6 and s4 = 4s3 = 4 · 6 = 24. Continuing
gives

1, 2, 6, 24, 120, 720.

The general term of part (d) of the previous example is given by sn = n(n−1)(n−2) . . .3·2·1,
which is denoted sn = n! and is called n factorial. We define 0! = 1.

We can also look at the first few terms of a sequence and try to guess a recursive definition by
looking for a pattern.

Example 4 Give a recursive definition of the following sequences.

(a) 1, 3, 7, 15, 31, 63, . . . (b) 1, 4, 9, 16, 25, 36, . . .

Solution (a) Each term is twice the previous term plus one; for example 7 = 2 · 3 + 1 and 63 = 2 · 31 + 1.
Thus, a recursive definition is

sn = 2sn−1 + 1 for n > 1 and s1 = 1.

There are other ways to define the sequence recursively. We might notice, for example, that the
differences of consecutive terms are powers of 2. Thus, we could also use

sn = sn−1 + 2
n−1 for n > 1 and s1 = 1.
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(b) We recognize the terms as the squares of the positive integers, but we are looking for a recursive
definition which relates consecutive terms. We see that

s2 = s1 + 3

s3 = s2 + 5

s4 = s3 + 7

s5 = s4 + 9,

so the differences between consecutive terms are consecutive odd integers. The difference be-
tween sn and sn−1 is 2n− 1, so a recursive definition is

sn = sn−1 + 2n− 1, for n > 1 and s1 = 1.

Recursively defined sequences, sometimes called recurrence relations, are powerful tools used
frequently in computer science, as well as in differential equations. Finding a formula for the general
term can be surprisingly difficult.

Convergence of Sequences
The limit of a sequence sn as n → ∞ is defined the same way as the limit of a function f(x) as
x → ∞; see also Problem 61.

The sequence s1, s2, s3, . . . , sn, . . . has a limit L, written lim
n→∞

sn = L, if sn is as close to

L as we please whenever n is sufficiently large. If a limit, L, exists, we say the sequence
converges to its limit L. If no limit exists, we say the sequence diverges.

To calculate the limit of a sequence, we use what we know about the limits of functions, in-
cluding the properties in Theorem 1.2 and the following facts:
• The sequence sn = xn converges to 0 if |x| < 1 and diverges if |x| > 1

• The sequence sn = 1/np converges to 0 if p > 0

Example 5 Do the following sequences converge or diverge? If a sequence converges, find its limit.

(a) sn = (0.8)n (b) sn =
1− e−n

1 + e−n
(c) sn =

n2 + 1

n
(d) sn = 1 + (−1)n

Solution (a) Since 0.8 < 1, the sequence converges by the first fact and the limit is 0.
(b) Since e−1 < 1, we have lim

n→∞
e−n

= lim
n→∞

(e−1
)
n

= 0 by the first fact. Thus, using the

properties of limits from Section 1.8, we have

lim
n→∞

1− e−n

1 + e−n
=

1− 0

1 + 0
= 1.

(c) Since (n2 + 1)/n grows without bound as n → ∞, the sequence sn diverges.
(d) Since (−1)n alternates in sign, the sequence alternates between 0 and 2. Thus the sequence sn

diverges, since it does not get close to any fixed value.

Convergence and Bounded Sequences
A sequence sn is bounded if there are numbers K and M such that K ≤ sn ≤ M for all terms. If
lim
n→∞

sn = L, then from some point on, the terms are bounded between L− 1 and L+ 1. Thus we

have the following fact:

A convergent sequence is bounded.
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On the other hand, a bounded sequence need not be convergent. In Example 5, we saw that
1+(−1)n diverges, but it is bounded between 0 and 2. To ensure that a bounded sequence converges
we need to rule out this sort of oscillation. The following theorem gives a condition that ensures
convergence for a bounded sequence. A sequence sn is called monotone if it is either increasing,
that is sn < sn+1 for all n, or decreasing, that is sn > sn+1 for all n.

Theorem 9.1: Convergence of a Monotone, Bounded Sequence

If a sequence sn is bounded and monotone, it converges.

To understand this theorem graphically, see Figure 9.2. The sequence sn is increasing and
bounded above by M , so the values of sn must “pile up” at some number less than or equal to M .
This number is the limit.2

s2 s3 s4 s5 Ms1

Figure 9.2: Values of sn for n = 1, 2, · · · , 10

Example 6 The sequence sn = (1/2)n is decreasing and bounded below by 0, so it converges. We have already
seen that it converges to 0.

Example 7 The sequence sn = (1 + 1/n)n can be shown to be increasing and bounded (see Project 2 on
page 534). Theorem 9.1 then guarantees that this sequence has a limit, which turns out to be e. (In
fact, the sequence can be used to define e.)

Example 8 If sn = (1 + 1/n)n, find s100 and s1000. How many decimal places agree with e?

Solution We have s100 = (1.01)100 = 2.7048 and s1000 = (1.001)1000 = 2.7169. Since e = 2.7183 . . .,we
see that s100 agrees with e to one decimal place and s1000 agrees with e to two decimal places.

Exercises and Problems for Section 9.1
Exercises

For Exercises 1–6, find the first five terms of the sequence
from the formula for sn, n ≥ 1.

1. 2n + 1 2. n+ (−1)n

3.
2n

2n+ 1
4. (−1)n

(
1

2

)n
5. (−1)n+1

(
1

2

)n−1

6.
(
1− 1

n+ 1

)n+1

In Exercises 7–12, find a formula for sn, n ≥ 1.

7. 4, 8, 16, 32, 64, . . . 8. 1, 3, 7, 15, 31, . . .

9. 2, 5, 10, 17, 26, . . . 10. 1, −3, 5, −7, 9, . . .

11. 1/3, 2/5, 3/7, 4/9, 5/11, . . .

12. 1/2, −1/4, 1/6, −1/8, 1/10, . . .
Problems

Do the sequences in Problems 13–24 converge or diverge? If
a sequence converges, find its limit.

13. 2n 14. (0.2)n

15. 3 + e−2n 16. (−0.3)n

17.
n

10
+

10

n
18.

2n

3n

19.
2n+ 1

n
20.

(−1)n

n

21.
1

n
+ lnn 22.

2n+ (−1)n5

4n− (−1)n3

23.
sin n

n
24. cos(πn)

2See the online supplement for a proof.
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25. Match formulas (a)–(d) with graphs (I)–(IV).

(a) sn = 1− 1/n (b) sn = 1 + (−1)n/n

(c) sn = 1/n (d) sn = 1 + 1/n

10

1

n

sn(I)

10

1

n

sn(II)

10

1

n

sn(III)

10

1

n

sn(IV)

26. Match formulas (a)–(e) with descriptions (I)–(V) of the
behavior of the sequence as n → ∞.

(a) sn = n(n+ 1)− 1
(b) sn = 1/(n+ 1)
(c) sn = 1− n2

(d) sn = cos(1/n)
(e) sn = (sinn)/n

(I) Diverges to −∞
(II) Diverges to +∞

(III) Converges to 0 through positive numbers
(IV) Converges to 1
(V) Converges to 0 through positive and negative num-

bers

27. Match formulas (a)–(e) with graphs (I)–(V).

(a) sn = 2− 1/n
(b) sn = (−1)n2 + 1/n
(c) sn = 2 + (−1)n/n
(d) sn = 2 + 1/n
(e) sn = (−1)n2 + (−1)n/n

−2 0 2
sn(I)

−2 0 2
sn(II)

−2 0 2
sn(III)

−2 0 2
sn(IV)

−2 0 2
sn(V)

In Problems 28–31, find the first six terms of the recursively
defined sequence.

28. sn = 2sn−1 + 3 for n > 1 and s1 = 1

29. sn = sn−1 + n for n > 1 and s1 = 1

30. sn = sn−1 +
(
1
2

)n−1
for n > 1 and s1 = 0

31. sn = sn−1 + 2sn−2 for n > 2 and s1 = 1, s2 = 5

In Problems 32–33, let a1 = 8, b1 = 5, and, for n > 1,

an = an−1 + 3n

bn = bn−1 + an−1.

32. Give the values of a2, a3, a4.

33. Give the values of b2, b3, b4, b5.

34. Suppose s1 = 0, s2 = 0, s3 = 1, and that sn =
sn−1 + sn−2 + sn−3 for n ≥ 4. The members of the
resulting sequence are called tribonacci numbers.3 Find
s4, s5, . . . , s10.

Problems 35–37 concern analog signals in electrical engineer-
ing, which are continuous functions f(t), where t is time. To
digitize the signal, we sample f(t) every Δt to form the se-
quence sn = f(nΔt). For example, if f(t) = sin t with t
in seconds, sampling f every 1/10 second produces the se-
quence sin(1/10), sin(2/10), sin(3/10), . . .. Give the first
6 terms of a sampling of the signal every Δt seconds.

35. f(t) = (t− 1)2, Δt = 0.5

36. f(t) = cos 5t, Δt = 0.1

37. f(t) =
sin t

t
, Δt = 1

In Problems 38–40, we smooth a sequence, s1, s2, s3, . . ., by
replacing each term sn by tn, the average of sn with its neigh-
boring terms

tn =
(sn−1 + sn + sn+1)

3
for n > 1.

Start with t1 = (s1 + s2)/2, since s1 has only one neighbor.
Smooth the given sequence once and then smooth the result-
ing sequence. What do you notice?

38. 18, −18, 18, −18, 18, −18, 18 . . .

39. 0, 0, 0, 18, 0, 0, 0, 0 . . .

40. 1, 2, 3, 4, 5, 6, 7, 8 . . .

In Problems 41–46, find a recursive definition for the se-
quence.

41. 1, 3, 5, 7, 9, . . . 42. 2, 4, 6, 8, 10, . . .

43. 3, 5, 9, 17, 33, . . . 44. 1, 5, 14, 30, 55, . . .

45. 1, 3, 6, 10, 15, . . . 46. 1, 2,
3

2
,
5

3
,
8

5
,
13

8
, . . .

3http://en.wikipedia.org/wiki/Tribonacci numbers, page accessed March 16, 2011.
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In Problems 47–49, show that the sequence sn satisfies the
recurrence relation.

47. sn = 3n− 2
sn = sn−1 + 3 for n > 1 and s1 = 1

48. sn = n(n+ 1)/2
sn = sn−1 + n for n > 1 and s1 = 1

49. sn = 2n2 − n
sn = sn−1 + 4n− 3 for n > 1 and s1 = 1

In Problems 50–53, for the function f define a sequence recur-
sively by xn = f(xn−1) for n > 1 and x1 = a. Depending
on f and the starting value a, this sequence may converge to a
limit L. If L exists, it has the property that f(L) = L. For the
functions and starting values given, use a calculator to see if
the sequence converges. [To obtain the terms of the sequence,
repeatedly push the function button.]

50. f(x) = cosx, a = 0 51. f(x) = e−x, a = 0

52. f(x) = sin x, a = 1 53. f(x) =
√
x, a = 0.5

54. Let Vn be the number of new SUVs sold in the US in
month n, where n = 1 is January 2004. In terms of
SUVs, what do the following represent?

(a) V10

(b) Vn − Vn−1

(c)
∑12

i=1
Vi and

∑n

i=1
Vi

55. (a) Let sn be the number of ancestors a person has n
generations ago. (Your ancestors are your parents,
grandparents, great-grandparents, etc.) What is s1?
s2? Find a formula for sn.

(b) For which n is sn greater than 6 billion, the cur-
rent world population? What does this tell you about
your ancestors?

56. For 1 ≤ n ≤ 10, find a formula for pn, the payment in
year n on a loan of $100,000. Interest is 5% per year,
compounded annually, and payments are made at the end
of each year for ten years. Each payment is $10,000 plus
the interest on the amount of money outstanding.

57. (a) Cans are stacked in a triangle on a shelf. The bottom
row contains k cans, the row above contains one can
fewer, and so on, until the top row, which has one
can. How many rows are there? Find an, the number
of cans in the nth row, 1 ≤ n ≤ k (where the top
row is n = 1).

(b) Let Tn be the total number of cans in the top n rows.
Find a recurrence relation for Tn in terms of Tn−1.

(c) Show that Tn = 1
2
n(n + 1) satisfies the recurrence

relation.

58. You are deciding whether to buy a new or a two-year-old
car (of the same make) based on which will have cost
you less when you resell it at the end of three years. Your

cost consists of two parts: the loss in value of the car and
the repairs. A new car costs $20,000 and loses 12% of
its value each year. Repairs are $400 the first year and
increase by 18% each subsequent year.

(a) For a new car, find the first three terms of the se-
quence dn giving the depreciation (loss of value) in
dollars in year n. Give a formula for dn.

(b) Find the first three terms of the sequence rn, the re-
pair cost in dollars for a new car in year n. Give a
formula for rn.

(c) Find the total cost of owning a new car for three
years.

(d) Find the total cost of owning the two-year-old car for
three years. Which should you buy?

59. The Fibonacci sequence, first studied by the thirteenth
century Italian mathematician Leonardo di Pisa, also
known as Fibonacci, is defined recursively by

Fn = Fn−1 + Fn−2 for n > 2 and F1 = 1, F2 = 1.

The Fibonacci sequence occurs in many branches of
mathematics and can be found in patterns of plant growth
(phyllotaxis).

(a) Find the first 12 terms.
(b) Show that the sequence of successive ratios

Fn+1/Fn appears to converge to a number r satis-
fying the equation r2 = r + 1. (The number r was
known as the golden ratio to the ancient Greeks.)

(c) Let r satisfy r2 = r + 1. Show that the sequence
sn = Arn, where A is constant, satisfies the Fi-
bonacci equation sn = sn−1 + sn−2 for n > 2.

60. This problem defines the Calkin-Wilf-Newman sequence
of positive rational numbers. The sequence is remarkable
because every positive rational number appears as one
of its terms and none appears more than once. Every real
number x can be written as an integer A plus a number B
where 0 ≤ B < 1. For example, for x = 12/5 = 2+2/5
we have A = 2 and B = 2/5. For x = 3 = 3 + 0 we
have A = 3 and B = 0. Define the function f(x) by

f(x) = A+ (1−B).

For example, f(12/5) = 2 + (1 − 2/5) = 13/5 and
f(3) = 3 + (1− 0) = 4.

(a) Evaluate f(x) for x = 25/8, 13/9, and π.
(b) Find the first six terms of the recursively defined

Calkin-Wilf-Newman sequence: sn = 1/f(sn−1)
for n > 1 and s1 = 1.

61. Write a definition for lim
n→∞

sn = L similar to the ε, δ

definition for lim
x→a

f(x) = L in Section 1.8. Instead of δ,

you will need N , a value of n.

62. The sequence sn is increasing, the sequence tn con-
verges, and sn ≤ tn for all n. Show that sn converges.
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Strengthen Your Understanding

In Problems 63–64, explain what is wrong with the statement.

63. The sequence sn =
3n+ 10

7n+ 3
, which begins with the

terms
13

10
,
16

17
,
19

24
,
22

31
, . . . converges to 0 because the

terms of the sequence get smaller and smaller.

64. If a convergent sequence consists entirely of terms
greater than 2, then the limit of the sequence must be
greater than 2.

In Problems 65–66, give an example of:

65. An increasing sequence that converges to 0.

66. A monotone sequence that does not converge.

Decide if the statements in Problems 67–74 are true or false.
Give an explanation for your answer.

67. You can tell if a sequence converges by looking at the
first 1000 terms.

68. If the terms sn of a convergent sequence are all positive
then lim

n→∞

sn is positive.

69. If the sequence sn of positive terms is unbounded, then
the sequence has a term greater than a million.

70. If the sequence sn of positive terms is unbounded, then
the sequence has an infinite number of terms greater than
a million.

71. If a sequence sn is convergent, then the terms sn tend to
zero as n increases.

72. A monotone sequence cannot have both positive and neg-
ative terms.

73. If a monotone sequence of positive terms does not con-
verge, then it has a term greater than a million.

74. If all terms sn of a sequence are less than a million, then
the sequence is bounded.

75. Which of the sequences I–IV is monotone and bounded
for n ≥ 1?

I. sn = 10− 1

n

II. sn =
10n+ 1

n
III. sn = cosn

IV. sn = lnn

(a) I
(b) I and II
(c) II and IV
(d) I, II, and III

9.2 GEOMETRIC SERIES

Adding the terms of a sequence produces a series. For example, we have the sequence 1, 2, 3, 4, 5, 6, . . .
and the series 1+2+3+4+5+6+ · · ·. This section introduces infinite series of constants, which
are sums of the form

1 + 1
2 + 1

3 + 1
4 + · · ·

0.4 + 0.04 + 0.004 + 0.0004 + · · · .

The individual numbers, 1, 1
2 ,

1
3 , . . . , or 0.4, 0.04, . . . , etc., are called terms in the series. To talk

about the sum of the series, we must first explain how to add infinitely many numbers.
Let us look at the repeated administration of a drug. In this example, the terms in the series

represent each dose; the sum of the series represents the drug level in the body in the long run.

Repeated Drug Dosage
A person with an ear infection is told to take antibiotic tablets regularly for several days. Since the
drug is being excreted by the body between doses, how can we calculate the quantity of the drug
remaining in the body at any particular time?

To be specific, let’s suppose the drug is ampicillin (a common antibiotic) taken in 250 mg doses
four times a day (that is, every six hours). It is known that at the end of six hours, about 4% of the
drug is still in the body. What quantity of the drug is in the body right after the tenth tablet? The
fortieth?

Let Qn represent the quantity, in milligrams, of ampicillin in the blood right after the nth tablet.



9.2 GEOMETRIC SERIES 499

Then

Q1 = 250 = 250 mg

Q2 = 250(0.04)︸ ︷︷ ︸
Remnants of first tablet

+ 250︸︷︷︸
New tablet

= 260 mg

Q3 = Q2(0.04) + 250 = (250(0.04) + 250) (0.04) + 250

= 250(0.04)2 + 250(0.04)︸ ︷︷ ︸
Remnants of first and second tablets

+ 250︸︷︷︸
New tablet

= 260.4 mg

Q4 = Q3(0.04) + 250 =
(
250(0.04)2 + 250(0.04) + 250

)
(0.04) + 250

= 250(0.04)3 + 250(0.04)2 + 250(0.04)︸ ︷︷ ︸
Remnants of first, second, and third tablets

+ 250︸︷︷︸
New tablet

= 260.416 mg.

Looking at the pattern that is emerging, we guess that

Q10 = 250(0.04)9 + 250(0.04)8 + 250(0.04)7 + · · ·+ 250(0.04)2 + 250(0.04) + 250.

Notice that there are 10 terms in this sum—one for every tablet—but that the highest power of
0.04 is the ninth, because no tablet has been in the body for more than 9 six-hour time periods.
Now suppose we actually want to find the numerical value of Q10. It seems that we have to add 10
terms—fortunately, there’s a better way. Notice the remarkable fact that if you subtract (0.04)Q10

from Q10, all but two terms drop out. First, multiplying by 0.04, we get

(0.04)Q10 = 250(0.04)10+250(0.04)9+250(0.04)8+ · · ·+250(0.04)3+250(0.04)2+250(0.04).

Subtracting gives
Q10 − (0.04)Q10 = 250− 250(0.04)10.

Factoring Q10 on the left and solving for Q10 gives

Q10(1 − 0.04) = 250
(
1− (0.04)10

)
Q10 =

250
(
1− (0.04)10

)
1− 0.04

.

This is called the closed-form expression for Q10. It is easy to evaluate on a calculator, giving
Q10 = 260.42 (to two decimal places). Similarly, Q40 is given in closed form by

Q40 =
250
(
1− (0.04)40

)
1− 0.04

.

Evaluating this on a calculator shows Q40 = 260.42, which is the same (to two decimal places) as
Q10. Thus after ten tablets, the value of Qn appears to have stabilized at just over 260 mg.

Looking at the closed forms for Q10 and Q40, we can see that, in general, Qn must be given by

Qn =
250 (1− (0.04)n)

1− 0.04
.

What Happens as n → ∞?

What does this closed form for Qn predict about the long-run level of ampicillin in the body? As
n → ∞, the quantity (0.04)n → 0. In the long run, assuming that 250 mg continue to be taken
every six hours, the level right after a tablet is taken is given by

Qn =
250 (1− (0.04)n)

1− 0.04
→

250(1− 0)

1− 0.04
= 260.42.
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The Geometric Series in General
In the previous example we encountered sums of the form a+ ax+ ax2 + · · ·+ ax8 + ax9 (with
a = 250 and x = 0.04). Such a sum is called a finite geometric series. A geometric series is one
in which each term is a constant multiple of the one before. The first term is a, and the constant
multiplier, or common ratio of successive terms, is x.

A finite geometric series has the form

a+ ax+ ax2
+ · · ·+ axn−2

+ axn−1.

An infinite geometric series has the form

a+ ax+ ax2
+ · · ·+ axn−2

+ axn−1
+ axn

+ · · · .

The “· · ·” at the end of the second series tells us that the series is going on forever—in other words,
that it is infinite.

Sum of a Finite Geometric Series
The same procedure that enabled us to find the closed form for Q10 can be used to find the sum of
any finite geometric series. Suppose we write Sn for the sum of the first n terms, which means up
to the term containing xn−1:

Sn = a+ ax+ ax2
+ · · ·+ axn−2

+ axn−1.

Multiply Sn by x:
xSn = ax+ ax2

+ ax3
+ · · ·+ axn−1

+ axn.

Now subtract xSn from Sn, which cancels out all terms except for two, giving

Sn − xSn = a− axn

(1 − x)Sn = a(1− xn
).

Provided x �= 1, we can solve to find a closed form for Sn as follows:

The sum of a finite geometric series is given by

Sn = a+ ax+ ax2
+ · · ·+ axn−1

=
a(1− xn)

1− x
, provided x �= 1.

Note that the value of n in the formula for Sn is the number of terms in the sum Sn.

Sum of an Infinite Geometric Series
In the ampicillin example, we found the sum Qn and then let n → ∞. We do the same here. The
sum Qn, which shows the effect of the first n doses, is an example of a partial sum. The first three
partial sums of the series a+ ax+ ax2 + · · ·+ axn−1 + axn + · · · are

S1 = a

S2 = a+ ax

S3 = a+ ax+ ax2.

To find the sum of this infinite series, we consider the partial sum, Sn, of the first n terms. The
formula for the sum of a finite geometric series gives

Sn = a+ ax+ ax2
+ · · ·+ axn−1

=
a(1− xn)

1− x
.
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What happens to Sn as n → ∞? It depends on the value of x. If |x| < 1, then xn → 0 as n → ∞,
so

lim
n→∞

Sn = lim
n→∞

a(1− xn)

1− x
=

a(1− 0)

1− x
=

a

1− x
.

Thus, provided |x| < 1, as n → ∞ the partial sums Sn approach a limit of a/(1 − x). When this
happens, we define the sum S of the infinite geometric series to be that limit and say the series
converges to a/(1− x).

For |x| < 1, the sum of the infinite geometric series is given by

S = a+ ax+ ax2
+ · · ·+ axn−1

+ axn
+ · · · =

a

1− x
.

If, on the other hand, |x| > 1, then xn and the partial sums have no limit as n → ∞ (if a �= 0).
In this case, we say the series diverges. If x > 1, the terms in the series become larger and larger in
magnitude, and the partial sums diverge to +∞ (if a > 0) or −∞ (if a < 0). When x < −1, the
terms become larger in magnitude, the partial sums oscillate as n → ∞, and the series diverges.

What happens when x = 1? The series is

a+ a+ a+ a+ · · · ,

and if a �= 0, the partial sums grow without bound, and the series does not converge. When x = −1,
the series is

a− a+ a− a+ a− · · · ,

and, if a �= 0, the partial sums oscillate between a and 0, and the series does not converge.

Example 1 For each of the following infinite geometric series, find several partial sums and the sum (if it exists).

(a) 1 +
1

2
+

1

4
+

1

8
+ · · · (b) 1 + 2 + 4 + 8 + · · · (c) 6− 2 +

2

3
−

2

9
+

2

27
− · · ·

Solution (a) This series may be written

1 +
1

2
+

(
1

2

)2

+

(
1

2

)3

+ · · ·

which we can identify as a geometric series with a = 1 and x = 1
2 , so S =

1

1− (1/2)
= 2.

Let’s check this by finding the partial sums:

S1 = 1

S2 = 1 +
1

2
=

3

2
= 2−

1

2

S3 = 1 +
1

2
+

1

4
=

7

4
= 2−

1

4

S4 = 1 +
1

2
+

1

4
+

1

8
=

15

8
= 2−

1

8
.

The sequence of partial sums begins

1, 2−
1

2
, 2−

1

4
, 2−

1

8
, . . . .

The formula for Sn gives

Sn =
1− (12 )

n

1− 1
2

= 2−

(
1

2

)n−1

.

Thus, the partial sums are creeping up to the value S = 2, so Sn → 2 as n → ∞.
(b) The partial sums of this geometric series (with a = 1 and x = 2) grow without bound, so the

series has no sum:
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S1 = 1

S2 = 1 + 2 = 3

S3 = 1 + 2 + 4 = 7

S4 = 1 + 2 + 4 + 8 = 15.

The sequence of partial sums begins

1, 3, 7, 15, . . . .

The formula for Sn gives

Sn =
1− 2n

1− 2
= 2

n − 1.

(c) This is an infinite geometric series with a = 6 and x = − 1
3 . The partial sums,

S1 = 6.00, S2 = 4.00, S3 ≈ 4.67, S4 ≈ 4.44, S5 ≈ 4.52, S6 ≈ 4.49,

appear to be converging to 4.5. This turns out to be correct because the sum is

S =
6

1− (−1/3)
= 4.5.

Regular Deposits into a Savings Account
People who save money often do so by putting some fixed amount aside regularly. To be specific,
suppose $1000 is deposited every year in a savings account earning 5% a year, compounded annu-
ally. What is the balance, Bn, in dollars, in the savings account right after the nth deposit?

As before, let’s start by looking at the first few years:

B1 = 1000

B2 = B1(1.05) + 1000 = 1000(1.05)︸ ︷︷ ︸
Original deposit

+ 1000︸︷︷︸
New deposit

B3 = B2(1.05) + 1000 = 1000(1.05)2 + 1000(1.05)︸ ︷︷ ︸
First two deposits

+ 1000︸︷︷︸
New deposit

Observing the pattern, we see
Bn = 1000(1.05)n−1

+ 1000(1.05)n−2
+ · · ·+ 1000(1.05) + 1000.

So Bn is a finite geometric series with a = 1000 and x = 1.05. Thus we have

Bn =
1000 (1− (1.05)n)

1− 1.05
.

We can rewrite this so that both the numerator and denominator of the fraction are positive:

Bn =
1000 ((1.05)n − 1)

1.05− 1
.

What Happens as n → ∞?

Common sense tells you that if you keep depositing $1000 in an account and it keeps earning
interest, your balance grows without bound. This is what the formula for Bn shows also: (1.05)n →

∞ as n → ∞, so Bn has no limit. (Alternatively, observe that the infinite geometric series of which
Bn is a partial sum has x = 1.05, which is greater than 1, so the series does not converge.)

Exercises and Problems for Section 9.2
Exercises

In Exercises 1–7, is a sequence or a series given?

1. 22, 42, 62, 82, . . .

2. 22 + 42 + 62 + 82 + · · ·
3. 1 + 2, 3 + 4, 5 + 6, 7 + 8, . . .

4. 1,−2, 3,−4, 5, . . .

5. 1− 2 + 3− 4 + 5− · · ·
6. 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + · · ·
7. −S1 + S2 − S3 + S4 − S5 + · · ·



9.2 GEOMETRIC SERIES 503

In Exercises 8–18, decide which of the following are geomet-
ric series. For those which are, give the first term and the ratio
between successive terms. For those which are not, explain
why not.

8. 5− 10 + 20− 40 + 80− · · ·
9. 1 +

1

2
+

1

3
+

1

4
+

1

5
+ · · ·

10. 2 + 1 +
1

2
+

1

4
+

1

8
+ · · ·

11. 1− 1

2
+

1

4
− 1

8
+

1

16
+ · · ·

12. 1 + x+ 2x2 + 3x3 + 4x4 + · · ·
13. 1 + 2z + (2z)2 + (2z)3 + · · ·
14. 3 + 3z + 6z2 + 9z3 + 12z4 + · · ·
15. 1− x+ x2 − x3 + x4 − · · ·
16. 1− y2 + y4 − y6 + · · ·
17. y2 + y3 + y4 + y5 + · · ·
18. z2 − z4 + z8 − z16 + · · ·

In Exercises 19–22, say how many terms are in the finite geo-
metric series and find its sum.

19. 2 + 2(0.1) + 2(0.1)2 + · · ·+ 2(0.1)25

20. 2(0.1) + 2(0.1)2 + · · ·+ 2(0.1)10

21. 2(0.1)5 + 2(0.1)6 + · · ·+ 2(0.1)13

22. 8 + 4 + 2 + 1 +
1

2
+ · · ·+ 1

210

In Exercises 23–25, find the sum of the infinite geometric se-
ries.

23. 36 + 12 + 4 +
4

3
+

4

9
+ · · ·

24. −810 + 540 − 360 + 240 − 160 + · · ·
25. 80 +

80√
2
+ 40 +

40√
2
+ 20 +

20√
2
+ · · ·

In Exercises 26–31, find the sum of the series. For what values
of the variable does the series converge to this sum?

26. 1 + z/2 + z2/4 + z3/8 + · · ·
27. 1 + 3x+ 9x2 + 27x3 + · · ·
28. y − y2 + y3 − y4 + · · ·
29. 2− 4z + 8z2 − 16z3 + · · ·
30. 3 + x+ x2 + x3 + · · ·
31. 4 + y + y2/3 + y3/9 + · · ·

Problems

32. This problem shows another way of deriving the long-run
ampicillin level. (See page 498.) In the long run the ampi-
cillin levels off to Q mg right after each tablet is taken.
Six hours later, right before the next dose, there will be
less ampicillin in the body. However, if stability has been
reached, the amount of ampicillin that has been excreted
is exactly 250 mg because taking one more tablet raises
the level back to Q mg. Use this to solve for Q.

33. On page 499, you saw how to compute the quantity Qn

mg of ampicillin in the body right after the nth tablet of
250 mg, taken once every six hours.

(a) Do a similar calculation for Pn, the quantity of
ampicillin (in mg) in the body right before the nth

tablet is taken.
(b) Express Pn in closed form.
(c) What is limn→∞ Pn? Is this limit the same as

limn→∞ Qn? Explain in practical terms why your
answer makes sense.

34. Figure 9.3 shows the quantity of the drug atenolol in the
blood as a function of time, with the first dose at time
t = 0. Atenolol is taken in 50 mg doses once a day to
lower blood pressure.

(a) If the half-life of atenolol in the blood is 6.3 hours,
what percentage of the atenolol present at the start
of a 24-hour period is still there at the end?

(b) Find expressions for the quantities Q0, Q1, Q2, Q3,
. . ., and Qn shown in Figure 9.3. Write the expres-

sion for Qn in closed form.
(c) Find expressions for the quantities P1, P2, P3, . . .,

and Pn shown in Figure 9.3. Write the expression
for Pn in closed form.

1 2 3 4 5

Q0

t (time, days)

q (quantity, mg)

Q1 Q2 Q3 Q4

P1 P2 P3 P4

Figure 9.3

35. Draw a graph like that in Figure 9.3 for 250 mg of ampi-
cillin taken every 6 hours, starting at time t = 0. Put on
the graph the values of Q1, Q2, Q3, . . . introduced in the
text on page 499 and the values of P1, P2, P3, . . . calcu-
lated in Problem 33.

36. Once a day, eight tons of pollutants are dumped into a
bay. Of this, 25% is removed by natural processes each
day. What happens to the quantity of pollutants in the bay
over time? Give the long-run quantity right after a dump.

37. (a) The total reserves of a non-renewable resource are
400 million tons. Annual consumption, currently 25
million tons per year, is expected to rise by 1% each
year. After how many years will the reserves be ex-
hausted?



504 Chapter Nine SEQUENCES AND SERIES

(b) Instead of increasing by 1% per year, suppose con-
sumption was decreasing by a constant percentage
per year. If existing reserves are never to be ex-
hausted, what annual percentage reduction in con-
sumption is required?

38. One way of valuing a company is to calculate the present
value of all its future earnings. A farm expects to sell
$1000 worth of Christmas trees once a year forever, with
the first sale in the immediate future. What is the present
value of this Christmas tree business? The interest rate is
1% per year, compounded continuously.

39. Around January 1, 1993, Barbra Streisand signed a con-
tract with Sony Corporation for $2 million a year for 10
years. Suppose the first payment was made on the day
of signing and that all other payments were made on
the first day of the year. Suppose also that all payments
were made into a bank account earning 4% a year, com-
pounded annually.

(a) How much money was in the account
(i) On the night of December 31, 1999?

(ii) On the day the last payment was made?
(b) What was the present value of the contract on the

day it was signed?

40. Bill invests $200 at the start of each month for 24 months,
starting now. If the investment yields 0.5% per month,
compounded monthly, what is its value at the end of 24
months?

41. Peter wishes to create a retirement fund from which he
can draw $20,000 when he retires and the same amount
at each anniversary of his retirement for 10 years. He
plans to retire 20 years from now. What investment need
he make today if he can get a return of 5% per year, com-
pounded annually?

42. In theory, drugs that decay exponentially always leave a
residue in the body. However, in practice, once the drug
has been in the body for 5 half-lives, it is regarded as
being eliminated.4 If a patient takes a tablet of the same
drug every 5 half-lives forever, what is the upper limit to
the amount of drug that can be in the body?

43. This problem shows how to estimate the cumulative ef-
fect of a tax cut on a country’s economy. Suppose the
government proposes a tax cut totaling $100 million. We
assume that all the people who have extra money spend
80% of it and save 20%. Thus, of the extra income gen-
erated by the tax cut, $100(0.8) million = $80 mil-
lion is spent and becomes extra income to someone else.
These people also spend 80% of their additional income,
or $80(0.8) million, and so on. Calculate the total addi-
tional spending created by such a tax cut.

44. (a) What is the present value of a $1000 bond which
pays $50 a year for 10 years, starting one year from
now? Assume the interest rate is 5% per year, com-
pounded annually.

(b) Since $50 is 5% of $1000, this bond is called a 5%
bond. What does your answer to part (a) tell you
about the relationship between the principal and the
present value of this bond if the interest rate is 5%?

(c) If the interest rate is more than 5% per year, com-
pounded annually, which is larger: the principal or
the present value of the bond? Why is the bond then
described as trading at a discount?

(d) If the interest rate is less than 5% per year, com-
pounded annually, why is the bond described as
trading at a premium?

45. The government proposes a tax cut of $100 million as in
Problem 43, but that economists now predict that people
will spend 90% of their extra income and save only 10%.
How much additional spending would be generated by
the tax cut under these assumptions?

46. A ball is dropped from a height of 10 feet and bounces.
Each bounce is 3

4
of the height of the bounce before.

Thus, after the ball hits the floor for the first time, the
ball rises to a height of 10( 3

4
) = 7.5 feet, and after it

hits the floor for the second time, it rises to a height of
7.5( 3

4
) = 10( 3

4
)2 = 5.625 feet. (Assume that there is no

air resistance.)

(a) Find an expression for the height to which the ball
rises after it hits the floor for the nth time.

(b) Find an expression for the total vertical distance the
ball has traveled when it hits the floor for the first,
second, third, and fourth times.

(c) Find an expression for the total vertical distance the
ball has traveled when it hits the floor for the nth

time. Express your answer in closed form.

47. You might think that the ball in Problem 46 keeps bounc-
ing forever since it takes infinitely many bounces. This is
not true!

(a) Show that a ball dropped from a height of h feet
reaches the ground in 1

4

√
h seconds. (Assume g =

32 ft/sec2)
(b) Show that the ball in Problem 46 stops bouncing af-

ter

1

4

√
10+

1

2

√
10

√
3

4

(
1

1−
√

3/4

)
≈ 11 seconds.

4http://dr.pierce1.net/PDF/half life.pdf, accessed on May 10, 2003.
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Strengthen Your Understanding

In Problems 48–49, explain what is wrong with the statement.

48. The sequence 4, 1,
1

4
,
1

16
, . . . converges to

4

1− 1/4
=

16

3
.

49. The sum of the infinite geometric series 1 − 3

2
+

9

4
−

27

8
+ · · · is

1

1 + 3/2
=

2

5
.

In Problems 50–53, give an example of:

50. A geometric series that does not converge.

51. A geometric series in which a term appears more than
once.

52. A finite geometric series with four distinct terms whose
sum is 10.

53. An infinite geometric series that converges to 10.

54. Which of the following geometric series converge?

(I) 20− 10 + 5− 2.5 + · · ·
(II) 1− 1.1 + 1.21− 1.331 + · · ·

(III) 1 + 1.1 + 1.21 + 1.331 + · · ·
(IV) 1 + y2 + y4 + y6 + · · · , for − 1 < y < 1

(a) (I) only
(b) (IV) only
(c) (I) and (IV)
(d) (II) and (IV)
(e) None of the other choices is correct.

9.3 CONVERGENCE OF SERIES

We now consider general series in which each term an is a number. The series can be written
compactly using a

∑
sign as follows:

∞∑
n=1

an = a1 + a2 + a3 + · · ·+ an + · · · .

For any values of a and x, the geometric series is such a series, with general term an = axn−1.

Partial Sums and Convergence of Series
As in Section 9.2, we define the partial sum, Sn, of the first n terms of a series as

Sn =

n∑
i=1

ai = a1 + a2 + · · ·+ an.

To investigate the convergence of the series, we consider the sequence of partial sums

S1, S2, S3, . . . , Sn, . . . .

If Sn has a limit as n → ∞, then we define the sum of the series to be that limit.

If the sequence Sn of partial sums converges to S, so lim
n→∞

Sn = S, then we say the series
∞∑

n=1

an converges and that its sum is S. We write
∞∑
n=1

an = S. If lim
n→∞

Sn does not exist, we

say that the series diverges.

The following example shows how a series leads to sequence of partial sums and how we use
them to determine convergence.

Example 1 Investigate the convergence of the series with an = 1/(n(n+ 1)):

∞∑
n=1

an =
1

2
+

1

6
+

1

12
+

1

20
+ · · · .
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Solution In order to determine whether the series converges, we first find the partial sums:

S1 =
1

2

S2 =
1

2
+

1

6
=

2

3

S3 =
1

2
+

1

6
+

1

12
=

3

4

S4 =
1

2
+

1

6
+

1

12
+

1

20
=

4

5

...

It appears that Sn = n/(n+ 1) for each positive integer n. We check that this pattern continues by
assuming that Sn = n/(n+ 1) for a given integer n, adding an+1, and simplifying

Sn+1 = Sn + an+1 =
n

n+ 1
+

1

(n+ 1)(n+ 2)
=

n2 + 2n+ 1

(n+ 1)(n+ 2)
=

n+ 1

n+ 2
.

Thus the sequence of partial sums has formula Sn = n/(n+1), which converges to 1, so the series∑∞
n=1 an converges to 1. That is, we can say that

1

2
+

1

6
+

1

12
+

1

20
+ · · · = 1.

Visualizing Series

We can visualize the terms of the series in Example 1 as the heights of the bars in Figure 9.4. The
partial sums of the series are illustrated by stacking the bars on top of each other in Figure 9.5.

1 2 3 4 5

a = 1/12
a = 1/6

a = 1/2

· · · n

Figure 9.4: Terms of the series with
an = 1/(n(n+ 1))

1 2 3 4 5

S3 = 3/4
S2 = 2/3

S1 = 1/2

1

· · ·

S = 1

n

Figure 9.5: Partial sums of the series with
an = 1/(n(n+ 1))

Here are some properties that are useful in determining whether or not a series converges.
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Theorem 9.2: Convergence Properties of Series

1. If
∞∑

n=1

an and
∞∑
n=1

bn converge and if k is a constant, then

•

∞∑
n=1

(an + bn) converges to
∞∑
n=1

an +

∞∑
n=1

bn.

•

∞∑
n=1

kan converges to k
∞∑

n=1

an.

2. Changing a finite number of terms in a series does not change whether or not it converges,
although it may change the value of its sum if it does converge.

3. If lim
n→∞

an �= 0 or lim
n→∞

an does not exist, then
∞∑

n=1

an diverges.

4. If
∞∑

n=1

an diverges, then
∞∑
n=1

kan diverges if k �= 0.

For proofs of these properties, see Problems 39–42. As for improper integrals, the convergence
of a series is determined by its behavior for large n. (See the “behaves like” principle on page 404.)
From Property 2 we see that, if N is a positive integer, then

∑∞
n=1 an and

∑∞
n=N an either both

converge or both diverge. Thus, if all we care about is the convergence of a series, we can omit the
limits and write

∑
an.

Example 2 Does the series
∑

(1− e−n
) converge?

Solution Since the terms in the series an = 1 − e−n tend to 1, not 0, as n → ∞, the series diverges by
Property 3 of Theorem 9.2.

Comparison of Series and Integrals
We investigate the convergence of some series by comparison with an improper integral. The har-
monic series is the infinite series

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ · · ·+

1

n
+ · · · .

Convergence of this sum would mean that the sequence of partial sums

S1 = 1, S2 = 1 +
1

2
, S3 = 1 +

1

2
+

1

3
, · · · , Sn = 1 +

1

2
+

1

3
+ · · ·+

1

n
, · · ·

tends to a limit as n → ∞. Let’s look at some values:

S1 = 1, S10 ≈ 2.93, S100 ≈ 5.19, S1000 ≈ 7.49, S10000 ≈ 9.79.

The growth of these partial sums is slow, but they do in fact grow without bound, so the harmonic
series diverges. This is justified in the following example and in Problem 46.

Example 3 Show that the harmonic series 1 + 1/2 + 1/3 + 1/4 + · · · diverges.

Solution The idea is to approximate
∫∞
1 (1/x) dx by a left-hand sum, where the terms 1, 1/2, 1/3, . . . are

heights of rectangles of base 1. In Figure 9.6, the sum of the areas of the 3 rectangles is larger than
the area under the curve between x = 1 and x = 4, and the same kind of relationship holds for the
first n rectangles. Thus, we have
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Sn = 1+
1

2
+

1

3
+ · · ·+

1

n
>

∫ n+1

1

1

x
dx = ln(n+ 1).

Since ln(n+ 1) gets arbitrarily large as n → ∞, so do the partial sums, Sn. Thus, the partial sums
have no limit, so the series diverges.

1 2 3 4

� y = 1/x

�
Area= 1

�

Area= 1/2

�
Area= 1/3

Rectangles showing

1 + 1
2
+ 1

3
>
∫ 4

1
1
x
dx = ln 4

x

y

Figure 9.6: Comparing the harmonic series to
∫

∞

1
(1/x) dx

Notice that the harmonic series diverges, even though lim
n→∞

an = lim
n→∞

(1/n) = 0. Although

Property 3 of Theorem 9.2 guarantees
∑

an diverges if lim
n→∞

an �= 0, it is possible for
∑

an to

either converge or diverge if lim
n→∞

an = 0. When we have lim
n→∞

an = 0, we must investigate the

series further to determine whether it converges or diverges.

Example 4 By comparison with the improper integral
∫∞
1

(1/x2) dx, show that the following series converges:
∞∑

n=1

1

n2
= 1 +

1

4
+

1

9
+ · · · .

Solution Since we want to show that
∞∑

n=1

1/n2 converges, we want to show that the partial sums of this series

tend to a limit. We do this by showing that the sequence of partial sums increases and is bounded
above, so Theorem 9.1 applies.

Each successive partial sum is obtained from the previous one by adding one more term in the
series. Since all the terms are positive, the sequence of partial sums is increasing.

To show that the partial sums of
∞∑
n=1

1/n2 are bounded, we consider the right-hand sum repre-

sented by the area of the rectangles in Figure 9.7. We start at x = 1, since the area under the curve
is infinite for 0 ≤ x ≤ 1. The shaded rectangles in Figure 9.7 suggest that:

1

4
+

1

9
+

1

16
+ · · ·+

1

n2
≤

∫ ∞

1

1

x2
dx.

1 2 3 4 · · ·1/16

1/9

1/4

1
y = 1/x2

�

Area = 1/4

�

Area = 1/9

�
Area = 1/16

Area = 1/25�

Shaded rectangles show
1

4
+

1

9
+

1

16
+

1

25
<

∫
∞

1

1

x2
dx

x

y

Figure 9.7: Comparing
∑

∞

n=1
1/n2 to

∫
∞

1
(1/x2) dx
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The area under the graph is finite, since∫ ∞

1

1

x2
dx = lim

b→∞

∫ b

1

1

x2
dx = lim

b→∞

(
−
1

b
+ 1

)
= 1.

To get Sn, we add 1 to both sides, giving

Sn = 1 +
1

4
+

1

9
+

1

16
+ · · ·+

1

n2
≤ 1 +

∫ ∞

1

1

x2
dx = 2.

Thus, the sequence of partial sums is bounded above by 2. Hence, by Theorem 9.1 the sequence of
partial sums converges, so the series converges.

Notice that we have shown that the series in the Example 4 converges, but we have not found
its sum. The integral gives us a bound on the partial sums, but it does not give us the limit of the
partial sums. Euler proved the remarkable fact that the sum is π2/6.

The method of Examples 3 and 4 can be used to prove the following theorem. See Problem 45.

Theorem 9.3: The Integral Test

Suppose an = f(n), where f(x) is decreasing and positive.

• If
∫ ∞

1

f(x) dx converges, then
∑

an converges.

• If
∫ ∞

1

f(x) dx diverges, then
∑

an diverges.

Suppose f(x) is continuous. Then if f(x) is positive and decreasing for all x beyond some
point, say c, the integral test can be used.

The integral test allows us to analyze a family of series, the p-series, and see how convergence
depends on the parameter p.

Example 5 For what values of p does the series
∞∑

n=1

1/np converge?

Solution If p ≤ 0, the terms in the series an = 1/np do not tend to 0 as n → ∞. Thus the series diverges for
p ≤ 0.

If p > 0, we compare
∞∑

n=1

1/np to the integral
∫∞
1

1/xp dx. In Example 3 of Section 7.6 we

saw that the integral converges if p > 1 and diverges if p ≤ 1. By the integral test, we conclude that∑
1/np converges if p > 1 and diverges if p ≤ 1.

We can summarize Example 5 as follows:

The p-series
∞∑

n=1

1/np converges if p > 1 and diverges if p ≤ 1.
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Exercises and Problems for Section 9.3
Exercises

In Exercises 1–3, find the first five terms of the sequence of
partial sums.

1.
∞∑

n=1

n 2.
∞∑

n=1

(−1)n

n
3.

∞∑
n=1

1

n(n+ 1)

In Exercises 4–7, use the integral test to decide whether the
series converges or diverges.

4.
∞∑

n=1

1

(n+ 2)2
5.

∞∑
n=1

n

n2 + 1

6.
∞∑

n=1

1

en
7.

∞∑
n=2

1

n(lnn)2

8. Use comparison with
∫

∞

1
x−3 dx to show that∑

∞

n=2
1/n3 converges to a number less than or equal

to 1/2.

9. Use comparison with
∫

∞

0
1/(x2 + 1) dx to show that∑

∞

n=1
1/(n2 + 1) converges to a number less than or

equal to π/2.

In Exercises 10–12, explain why the integral test cannot be
used to decide if the series converges or diverges.

10.
∞∑

n=1

n2 11.
∞∑

n=1

(−1)n

n
12.

∞∑
n=1

e−n sinn

Problems

In Problems 13–32, does the series converge or diverge?

13.
∞∑

n=0

3

n+ 2
14.

∞∑
n=0

4

2n+ 1

15.
∞∑

n=0

2√
2 + n

16.
∞∑

n=0

2n

1 + n4

17.
∞∑

n=0

2n

(1 + n2)2
18.

∞∑
n=0

2n√
4 + n2

19.
∞∑

n=1

3

(2n− 1)2
20.

∞∑
n=1

4

(2n+ 1)3

21.
∞∑

n=0

3

n2 + 4
22.

∞∑
n=0

2

1 + 4n2

23.
∞∑

n=1

n

n+ 1
24.

∞∑
n=0

n+ 1

2n+ 3

25.
∞∑

n=1

(
1

2

)n
+
(
2

3

)n
26.

∞∑
n=1

((
3

4

)n
+

1

n

)

27.
∞∑

n=1

n+ 2n

n2n
28.

∞∑
n=1

lnn

n

29.
∞∑

n=1

1

n(1 + lnn)
30.

∞∑
n=3

n+ 1

n2 + 2n+ 2

31.
∞∑

n=0

1

n2 + 2n+ 2
32.

∞∑
n=2

n lnn+ 4

n2

33. Show that
∞∑

n=1

1

ln(2n)
diverges.

34. Show that
∞∑

n=1

1

(ln(2n))2
converges.

35. (a) Find the partial sum, Sn, of
∞∑

n=1

ln
(
n+ 1

n

)
.

(b) Does the series in part (a) converge or diverge?

36. (a) Show rlnn = nln r for positive numbers n and r.
(b) For what values r > 0 does

∑
∞

n=1
rlnn converge?

37. Consider the series
∞∑

k=1

1

k(k + 1)
=

1

1 · 2 +
1

2 · 3 + · · ·.

(a) Show that
1

k
− 1

k + 1
=

1

k(k + 1)
.

(b) Use part (a) to find the partial sums S3, S10, and Sn.
(c) Use part (b) to show that the sequence of partial

sums Sn, and therefore the series, converges to 1.

38. Consider the series
∞∑

k=1

ln

(
k(k + 2)

(k + 1)2

)
= ln
(
1 · 3
2 · 2
)
+ ln
(
2 · 4
3 · 3
)
+ · · · .

(a) Show that the partial sum of the first three nonzero
terms S3 = ln (5/8).

(b) Show that the partial sum Sn = ln

(
n+ 2

2(n+ 1)

)
.

(c) Use part (b) to show that the partial sums Sn, and
therefore the series, converge to ln (1/2).
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39. Show that if
∑

an and
∑

bn converge and if k is a con-
stant, then

∑
(an + bn),

∑
(an − bn), and

∑
kan con-

verge.

40. Let N be a positive integer. Show that if an = bn for
n ≥ N , then

∑
an and

∑
bn either both converge, or

both diverge.

41. Show that if
∑

an converges, then lim
n→∞

an = 0. [Hint:

Consider limn→∞(Sn−Sn−1), where Sn is the nth par-
tial sum.]

42. Show that if
∑

an diverges and k �= 0, then
∑

kan

diverges.

43. The series
∑

an converges. Explain, by looking at par-
tial sums, why the series

∑
(an+1−an) also converges.

44. The series
∑

an diverges. Give examples that show the
series

∑
(an+1 − an) could converge or diverge.

45. In this problem, you will justify the integral test. Suppose
c ≥ 0 and f(x) is a decreasing positive function, defined
for all numbers x ≥ c, with f(n) = an for all integers
n ≥ c.

(a) Suppose that
∫

∞

c
f(x) dx diverges. By considering

rectangles above the graph of f , show that
∑

an di-
verges. [Hint: See Example 3 on page 507.]

(b) Suppose
∫

∞

c
f(x) dx converges. By considering

rectangles under the graph of f , show that
∑

an

converges. [Hint: See Example 4 on page 508.]

46. Consider the following grouping of terms in the har-
monic series:

1 +
(
1

2

)
+
(
1

3
+

1

4

)
+
(
1

5
+

1

6
+

1

7
+

1

8

)
+(

1

9
+

1

10
+ · · ·+ 1

16

)
+ · · ·

(a) Show that the sum of each group of fractions is more
than 1/2.

(b) Explain why this shows that the harmonic series
does not converge.

47. Show that
∞∑

n=2

1

n lnn
diverges.

(a) Using the integral test.
(b) By considering the grouping of terms(

1

2 ln 2

)
+
(

1

3 ln 3
+

1

4 ln 4

)
+
(

1

5 ln 5
+

1

6 ln 6
+

1

7 ln 7
+

1

8 ln 8

)
+ · · · .

48. Consider the sequence given by

an =
(
1 +

1

2
+

1

3
+ · · · 1

n

)
− ln(n+ 1).

(a) Show that an < an+1 for all n. [Use a left-sum ap-
proximation to

∫ n+1

1
(1/x) dx with Δx = 1.]

(b) Show that an < 1 for all n.
(c) Explain why limn→∞ an exists.
(d) The number γ = limn→∞ an is called Euler’s con-

stant. Estimate γ to two decimal places by comput-
ing a200.

49. On page 509, we gave Euler’s result

∞∑
n=1

1

n2
=

π2

6
.

(a) Find the sum of the first 20 terms of this series. Give
your answer to three decimal places.

(b) Use your answer to estimate π. Give your answer to
two decimal places.

(c) Repeat parts (a) and (b) with 100 terms.
(d) Use a right sum approximation to bound the er-

ror in approximating π2/6 by
∑20

n=1
(1/n2) and by∑100

n=1
(1/n2).

50. This problem approximates e using

e =

∞∑
n=0

1

n!
.

(a) Find a lower bound for e by evaluating the first five
terms of the series.

(b) Show that 1/n! ≤ 1/2n−1 for n ≥ 1.
(c) Find an upper bound for e using part (b).

51. In this problem we investigate how fast the partial sums
SN = 15 + 25 + 35 + · · · +N5 of the divergent series∑

∞

n=1
n5 grow as N gets larger and larger. Show that

(a) SN > N6/6 by considering the right-hand Riemann

sum for
∫ N

0
x5dx with Δx = 1.

(b) SN < ((N+1)6−1)/6 by considering the left-hand

Riemann sum for
∫ N+1

1
x5dx with Δx = 1.

(c) limN→∞ SN/(N6/6) = 1. We say that SN is
asymptotic to N6/6 as N goes to infinity.

52. In 1913, the English mathematician G. H. Hardy received
a letter from the then-unknown Indian mathematical ge-
nius Srinivasa Ramanujan, and was astounded by the re-
sults it contained.5 In particular, Hardy was interested in
Ramanujan’s results involving infinite series, such as:

2

π
= 1−5

(
1

2

)3
+9
(
1× 3

2× 4

)3
−13
(
1× 3× 5

2× 4× 6

)3
+· · · .

In this problem you will find a formula for the general
term an of this series.

(a) Write a formula in terms of n for cn where c1 =
1, c2 = −5, c3 = 9, c4 = −13, . . ..

5http://en.wikipedia.org/wiki/Srinivasa Ramanujan, page accessed April 2, 2011.
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(b) For products of all odd or even values up to n,
we use the so-called double factorial notation n!!.
For instance, we write 7!! = 1 × 3 × 5 × 7 and
8!! = 2× 4× 6× 8. By definition,6 we assume that
(−1)!! = 0!! = 1!! = 1 and that 2!! = 2. With this
notation, write a formula in terms of n for bn where

b2 =
(
1

2

)3
, b3 =

(
1× 3

2× 4

)3
, b4 =

(
1× 3× 5

2× 4× 6

)3
, . . . .

(c) Use your answers to parts (a) and (b), write a for-
mula in terms of n for an where

a1 = 1, a2 = −5
(
1

2

)3
, a3 = 9

(
1× 3

2× 4

)3
,

a4 = −13
(
1× 3× 5

2× 4× 6

)3
, . . . .

Strengthen Your Understanding

In Problems 53–54, explain what is wrong with the statement.

53. The series
∑

(1/n)2 converges because the terms ap-
proach zero as n → ∞.

54. The integral
∫

∞

1
(1/x3) dx and the series

∑
∞

n=1
1/n3

both converge to the same value, 1
2

.

In Problems 55–56, give an example of:

55. A series
∑

∞

n=1
an with limn→∞ an = 0, but such that∑

∞

n=1
an diverges.

56. A convergent series
∑

∞

n=1
an, whose terms are all posi-

tive, such that the series
∑

∞

n=1

√
an is not convergent.

Decide if the statements in Problems 57–64 are true or false.
Give an explanation for your answer.

57.
∞∑

n=1

(1 + (−1)n) is a series of nonnegative terms.

58. If a series converges, then the sequence of partial sums
of the series also converges.

59. If
∑ |an + bn| converges, then

∑ |an| and
∑ |bn| con-

verge.

60. The series
∞∑

n=1

2(−1)n converges.

61. If a series
∑

an converges, then the terms, an, tend to
zero as n increases.

62. If the terms, an, of a series tend to zero as n increases,
then the series

∑
an converges.

63. If
∑

an does not converge and
∑

bn does not converge,
then
∑

anbn does not converge.

64. If
∑

anbn converges, then
∑

an and
∑

bn converge.

65. Which of the following defines a convergent sequence of
partial sums?

(a) Each term in the sequence is closer to the last term
than any two prior consecutive terms.

(b) Assume that the sequence of partial sums converges
to a number, L. Regardless of how small a number
you give me, say ε, I can find a value of N such that
the N th term of the sequence is within ε of L.

(c) Assume that the sequence of partial sums converges
to a number, L. I can find a value of N such that all
the terms in the sequence, past the N th term, are less
than L.

(d) Assume that the sequence of partial sums converges
to a number, L. Regardless of how small a number
you give me, say ε, I can find a value of N such that
all the terms in the sequence, past the N th term, are
within ε of L.

9.4 TESTS FOR CONVERGENCE

Comparison of Series
In Section 7.7, we compared two integrals to decide whether an improper integral converged. In
Theorem 9.3 we compared an integral and a series. Now we compare two series.

Theorem 9.4: Comparison Test

Suppose 0 ≤ an ≤ bn for all n beyond a certain value.
• If
∑

bn converges, then
∑

an converges.

• If
∑

an diverges, then
∑

bn diverges.

Since an ≤ bn, the plot of the an terms lies under the plot of the bn terms. (See Figure 9.8.)
The comparison test says that if the total area for

∑
bn is finite, then the total area for

∑
an is finite

also. If the total area for
∑

an is not finite, then neither is the total area for
∑

bn.
6http://mathworld.wolfram.com/DoubleFactorial.html, page accessed April 2, 2011.
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1 2 3 4 5 n

a1

a2

a3

a4

a5

b1

b2

b3

b4
b5

bn


an

. . . . . .

Figure 9.8: Each an is represented by the area of a dark rectangle, and each bn by a dark plus a light rectangle

Example 1 Use the comparison test to determine whether the series
∞∑
n=1

1

n3 + 1
converges.

Solution For n ≥ 1, we know that n3 ≤ n3 + 1, so

0 ≤
1

n3 + 1
≤

1

n3
.

Thus, every term in the series
∑∞

n=1 1/(n
3 + 1) is less than or equal to the corresponding term

in
∑∞

n=1 1/n
3. Since we saw that

∑∞
n=1 1/n

3 converges as a p-series with p > 1, we know that∑∞
n=1 1/(n

3 + 1) converges.

Example 2 Decide whether the following series converge: (a)
∞∑
n=1

n− 1

n3 + 3
(b)

∞∑
n=1

6n2 + 1

2n3 − 1
.

Solution (a) Since the convergence is determined by the behavior of the terms for large n, we observe that

n− 1

n3 + 3
behaves like

n

n3
=

1

n2
as n → ∞.

Since
∑

1/n2 converges, we guess that
∑

(n− 1)/(n3 +3) converges. To confirm this, we use
the comparison test. Since a fraction increases if its numerator is made larger or its denominator
is made smaller, we have

0 ≤
n− 1

n3 + 3
≤

n

n3
=

1

n2
for all n ≥ 1.

Thus, the series
∑

(n− 1)/(n3 + 3) converges by comparison with
∑

1/n2.
(b) First, we observe that

6n2 + 1

2n3 − 1
behaves like

6n2

2n3
=

3

n
as n → ∞.

Since
∑

1/n diverges, so does
∑

3/n, and we guess that
∑

(6n2 + 1)/(2n3 − 1) diverges. To
confirm this, we use the comparison test. Since a fraction decreases if its numerator is made
smaller or its denominator is made larger, we have

0 ≤
6n2

2n3
≤

6n2 + 1

2n3 − 1
,

so

0 ≤
3

n
≤

6n2 + 1

2n3 − 1
.

Thus, the series
∑

(6n2 + 1)/(2n3 − 1) diverges by comparison with
∑

3/n.

Limit Comparison Test

The comparison test uses the relationship between the terms of two series, an ≤ bn, which can
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be difficult to establish. However, the convergence or divergence of a series depends only on the
long-run behavior of the terms as n → ∞; this idea leads to the limit comparison test.

Example 3 Predict the convergence or divergence of∑ n2 − 5

n3 + n+ 2
.

Solution As n → ∞, the highest power terms in the numerator and denominator, n2 and n3, dominate. Thus
the term

an =
n2 − 5

n3 + n+ 2

behaves, as n → ∞, like
n2

n3
=

1

n
.

Since the harmonic series
∑

1/n diverges, we guess that
∑

an also diverges. However, the inequal-
ity

n2 − 5

n3 + n+ 2
≤

1

n
is in the wrong direction to use with the comparison test to confirm divergence, since we need the
given series to be greater than a known divergent series.

The following test can be used to confirm a prediction of convergence or divergence, as in
Example 3, without inequalities.

Theorem 9.5: Limit Comparison Test

Suppose an > 0 and bn > 0 for all n. If

lim
n→∞

an
bn

= c where c > 0,

then the two series
∑

an and
∑

bn either both converge or both diverge.

The limit limn→∞ an/bn = c captures the idea that an “behaves like” cbn as n → ∞.

Example 4 Use the limit comparison test to determine if the following series converge or diverge.

(a)
∑ n2 − 5

n3 + n+ 2
(b)

∑
sin

(
1

n

)

Solution (a) We take an =
n2 − 5

n3 + n+ 2
. Because an behaves like

n2

n3
=

1

n
as n → ∞ we take bn = 1/n.

We have

lim
n→∞

an
bn

= lim
n→∞

1

1/n
·

n2 − 5

n3 + n+ 2
= lim

n→∞

n3 − 5n

n3 + n+ 2
= 1.

The limit comparison test applies with c = 1. Since
∑

1/n diverges, the limit comparison test

shows that
∑ n2 − 5

n3 + n+ 2
also diverges.

(b) Since sinx ≈ x for x near 0, we know that sin (1/n) behaves like 1/n as n → ∞. We apply
the limit comparison test with an = sin (1/n) and bn = 1/n. We have

lim
n→∞

an
bn

= lim
n→∞

sin (1/n)

1/n
= 1.

Thus c = 1 and since
∑

1/n diverges, the series
∑

sin (1/n) also diverges.
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Series of Both Positive and Negative Terms
If
∑

an has both positive and negative terms, then its plot has rectangles lying both above and
below the horizontal axis. See Figure 9.9. The total area of the rectangles is no longer equal to∑

an. However, it is still true that if the total area of the rectangles above and below the axis is
finite, then the series converges. The area of the nth rectangle is |an|, so we have:

Theorem 9.6: Convergence of Absolute Values Implies Convergence

If
∑

|an| converges, then so does
∑

an.

Problem 93 shows how to prove this result.

n

an

a5
a4

a3

a2

a1

. . .
. . .

Figure 9.9: Representing a series with positive and negative terms

Example 5 Explain how we know that the following series converges:
∞∑
n=1

(−1)n−1

n2
= 1−

1

4
+

1

9
− · · · .

Solution Writing an = (−1)n−1/n2, we have

|an| =

∣∣∣∣∣(−1)
n−1

n2

∣∣∣∣∣ = 1

n2
.

The p-series
∑

1/n2 converges, since p > 1, so
∑

(−1)
n−1

/n2 converges.

Comparison with a Geometric Series: The Ratio Test
A geometric series

∑
an has the property that the ratio an+1/an is constant for all n. For many other

series, this ratio, although not constant, tends to a constant as n increases. In some ways, such series
behave like geometric series. In particular, a geometric series converges if the ratio |an+1/an| < 1.
A non-geometric series also converges if the ratio |an+1/an| tends to a limit which is less than 1.
This idea leads to the following test.

Theorem 9.7: The Ratio Test

For a series
∑

an, suppose the sequence of ratios |an+1|/|an| has a limit:

lim
n→∞

|an+1|

|an|
= L.

• If L < 1, then
∑

an converges.

• If L > 1, or if L is infinite,7 then
∑

an diverges.

• If L = 1, the test does not tell us anything about the convergence of
∑

an.

7That is, the sequence |an+1|/|an| grows without bound.
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Proof Here are the main steps in the proof. Suppose lim
n→∞

|an+1|

|an|
= L < 1. Let x be a number between L

and 1. Then for all sufficiently large n, say for all n ≥ k, we have

|an+1|

|an|
< x.

Then,

|ak+1| < |ak|x,

|ak+2| < |ak+1|x < |ak|x
2,

|ak+3| < |ak+2|x < |ak|x
3,

and so on. Thus, writing a = |ak|, we have for i = 1, 2, 3, . . . ,

|ak+i| < axi.

Now we can use the comparison test:
∑

|ak+i| converges by comparison with the geometric series∑
axi. Since

∑
|ak+i| converges, Theorem 9.6 tells us that

∑
ak+i converges. So, by property 2

of Theorem 9.2, we see that
∑

an converges too.
If L > 1, then for sufficiently large n, say n ≥ m,

|an+1| > |an|,

so the sequence |am|, |am+1|, |am+2|, . . ., is increasing. Thus, lim
n→∞

an �= 0, so
∑

an diverges (by

Theorem 9.2, property 3). The argument in the case that |an+1|/|an| is unbounded is similar.

Example 6 Show that the following series converges:
∞∑
n=1

1

n!
= 1 +

1

2!
+

1

3!
+ · · · .

Solution Since an = 1/n! and an+1 = 1/ (n+ 1)!, we have

|an+1|

|an|
=

1/(n+ 1)!

1/n!
=

n!

(n+ 1)!
=

n(n− 1)(n− 2) · · · 2 · 1

(n+ 1)n(n− 1) · · · 2 · 1
.

We cancel n(n− 1)(n− 2) · · · · · 2 · 1, giving

lim
n→∞

|an+1|

|an|
= lim

n→∞

n!

(n+ 1)!
= lim

n→∞

1

n+ 1
= 0.

Because the limit is 0, which is less than 1, the ratio test tells us that
∞∑
n=1

1/n! converges. In Chap-

ter 10, we see that the sum is e− 1.

Example 7 What does the ratio test tell us about the convergence of the following two series?
∞∑
n=1

1

n
and

∞∑
n=1

(−1)n−1

n
.

Solution Because |(−1)
n
| = 1, in both cases we have limn→∞ |an+1/an| = limn→∞ n/(n+ 1) = 1. The

first series is the harmonic series, which diverges. However, Example 8 will show that the second
series converges. Thus, if the ratio test gives a limit of 1, the ratio test does not tell us anything about
the convergence of a series.
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Alternating Series
A series is called an alternating series if the terms alternate in sign. For example,

∞∑
n=1

(−1)
n−1

n
= 1−

1

2
+

1

3
−

1

4
+ · · ·+

(−1)
n−1

n
+ · · · .

The convergence of an alternating series can often be determined using the following test:

Theorem 9.8: Alternating Series Test

An alternating series of the form

∞∑
n=1

(−1)
n−1an = a1 − a2 + a3 − a4 + · · ·+ (−1)

n−1an + · · ·

converges if
0 < an+1 < an for all n and lim

n→∞
an = 0.

Although we do not prove this result, we can see why it is reasonable. The first partial sum,
S1 = a1, is positive. The second, S2 = a1 − a2, is still positive, since a2 < a1, but S2 is smaller
than S1. (See Figure 9.10.) The next sum, S3 = a1 − a2 + a3, is greater than S2 but smaller than
S1. The partial sums oscillate back and forth, and since the distance between them tends to 0, they
eventually converge.

0 S2 S4 S3 S1

�
�

�
�

a4

a3

a2
a1

x

Figure 9.10: Partial sums, S1, S2, S3, S4 of an alternating series

Example 8 Show that the following alternating harmonic series converges:

∞∑
n=1

(−1)n−1

n
.

Solution We have an = 1/n and an+1 = 1/(n+ 1). Thus,

an+1 =
1

n+ 1
<

1

n
= an for all n, and lim

n→∞
1/n = 0.

Thus, the hypothesis of Theorem 9.8 is satisfied, so the alternating harmonic series converges.

Suppose S is the sum of an alternating series, so S = limn→∞ Sn. Then S is trapped between
any two consecutive partial sums, say S3 and S4 or S4 and S5, so

S2 < S4 < · · · < S < · · · < S3 < S1.

Thus, the error in using Sn to approximate the true sum S is less than the distance from Sn to Sn+1,
which is an+1. Stated symbolically, we have the following result:
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Theorem 9.9: Error Bounds for Alternating Series

Let Sn =

n∑
i=1

(−1)
i−1ai be the nth partial sum of an alternating series and let S = lim

n→∞
Sn.

Suppose that 0 < an+1 < an for all n and limn→∞ an = 0. Then

|S − Sn| < an+1.

Thus, providedSn converges to S by the alternating series test, the error in using Sn to approxi-
mateS is less than the magnitude of the first term of the series which is omitted in the approximation.

Example 9 Estimate the error in approximating the sum of the alternating harmonic series
∞∑

n=1

(−1)
n−1/n by

the sum of the first nine terms.

Solution The ninth partial sum is given by

S9 = 1−
1

2
+

1

3
− · · ·+

1

9
= 0.7456 . . . .

The first term omitted is −1/10, with magnitude 0.1. By Theorem 9.9, we know that the true value
of the sum differs from 0.7456 . . . by less than 0.1.

Absolute and Conditional Convergence

We say that the series
∑

an is

• Absolutely convergent if
∑

an and
∑

|an| both converge.

• Conditionally convergent if
∑

an converges but
∑

|an| diverges.

Conditionally convergent series rely on cancellation between positive and negative terms for their
convergence.

Example: The series
∞∑

n=1

(−1)n−1

n2
is absolutely convergent because the series converges and

the p-series
∑

1/n2 also converges.

Example: The series
∞∑
n=1

(−1)n−1

n
is conditionally convergent because the series converges but

the harmonic series
∑

1/n diverges.

Exercises and Problems for Section 9.4
Exercises

Use the comparison test to confirm the statements in Exer-
cises 1–3.

1.
∞∑

n=4

1

n
diverges, so

∞∑
n=4

1

n− 3
diverges.

2.
∞∑

n=1

1

n2
converges, so

∞∑
n=1

1

n2 + 2
converges.

3.
∞∑

n=1

1

n2
converges, so

∞∑
n=1

e−n

n2
converges.

In Exercises 4–7, use end behavior to compare the series to a
p-series and predict whether the series converges or diverges.

4.
∞∑

n=1

n3 + 1

n4 + 2n3 + 2n
5.

∞∑
n=1

n+ 4

n3 + 5n− 3

6.
∞∑

n=1

1

n4 + 3n3 + 7
7.

∞∑
n=1

n− 4√
n3 + n2 + 8
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In Exercises 8–13, use the comparison test to determine
whether the series converges.

8.
∞∑

n=1

1

3n + 1
9.

∞∑
n=1

1

n4 + en

10.
∞∑

n=2

1

lnn
11.

∞∑
n=1

n2

n4 + 1

12.
∞∑

n=1

n sin2 n

n3 + 1
13.

∞∑
n=1

2n + 1

n2n − 1

In Exercises 14–20, use the ratio test to decide whether the
series converges or diverges.

14.
∞∑

n=1

n

2n
15.

∞∑
n=1

1

(2n)!

16.
∞∑

n=1

(n!)2

(2n)!
17.

∞∑
n=1

n!(n+ 1)!

(2n)!

18.
∞∑

n=1

1

rnn!
, r > 0 19.

∞∑
n=1

1

nen

20.
∞∑

n=0

2n

n3 + 1

Which of the series in Exercises 21–24 are alternating?

21.
∞∑

n=1

(−1)n
(
2− 1

n

)
22.

∞∑
n=1

cos(nπ)

23.
∞∑

n=1

(−1)n cos(nπ) 24.
∞∑

n=1

(−1)n cosn

Use the alternating series test to show that the series in Exer-
cises 25–28 converge.

25.
∞∑

n=1

(−1)n−1

√
n

26.
∞∑

n=1

(−1)n−1

2n+ 1

27.
∞∑

n=1

(−1)n−1

n2 + 2n+ 1
28.

∞∑
n=1

(−1)n−1

en

In Exercises 29–37, determine whether the series is absolutely
convergent, conditionally convergent, or divergent.

29.
∑ (−1)n

2n
30.
∑ (−1)n

2n

31.
∑

(−1)n
n

n+ 1
32.
∑ (−1)n

n4 + 7

33.
∑ (−1)n−1

n lnn
34.

∞∑
n=1

cosn

n2

35.
∞∑

n=1

(−1)n−1

√
n

36.
∑

(−1)n−1 arcsin
(
1

n

)

37.
∑ (−1)n−1 arctan(1/n)

n2

In Exercises 38–48, use the limit comparison test to determine
whether the series converges or diverges.

38.
∞∑

n=1

5n+ 1

3n2
, by comparing to

∞∑
n=1

1

n

39.
∞∑

n=1

(
1 + n

3n

)n
, by comparing to

∞∑
n=1

(
1

3

)n
[Hint: limn→∞(1 + 1/n)n = e.]

40.
∑(

1− cos
1

n

)
, by comparing to

∑
1/n2

41.
∑ 1

n4 − 7
42.
∑ n+ 1

n2 + 2

43.
∑ n3 − 2n2 + n+ 1

n4 − 2
44.
∑ 2n

3n − 1

45.
∑ 1

2
√
n+

√
n+ 2

46.
∑(

1

2n− 1
− 1

2n

)

47.
∑ n

cosn+ en
48.
∑ 4 sinn+ n

n2

Problems

In Problems 49–50, explain why the comparison test cannot
be used to decide if the series converges or diverges.

49.
∞∑

n=1

(−1)n

n2
50.

∞∑
n=1

sinn

In Problems 51–52, explain why the ratio test cannot be used
to decide if the series converges or diverges.

51.
∞∑

n=1

(−1)n 52.
∞∑

n=1

sinn
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In Problems 53–56, explain why the alternating series test
cannot be used to decide if the series converges or diverges.

53.
∞∑

n=1

(−1)n−1n 54.
∞∑

n=1

(−1)n−1 sinn

55.
∞∑

n=1

(−1)n−1
(
2− 1

n

)
56.

2

1
− 1

1
+

2

2
− 1

2
+

2

3
− 1

3
+ · · ·

In Problems 57–59, use a computer or calculator to investi-
gate the behavior of the partial sums of the alternating series.
Which appear to converge? Confirm convergence using the al-
ternating series test. If a series converges, estimate its sum.

57. 1− 2 + 3− 4 + 5 + · · ·+ (−1)n(n+ 1) + · · ·
58. 1− 0.1 + 0.01 − 0.001 + · · ·+ (−1)n10−n + · · ·
59. 1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n

1

n!
+ · · ·

In Problems 60–78, determine whether the series converges.

60.
∞∑

n=1

8n

n!
61.

∞∑
n=1

n2n

3n

62.
∞∑

n=0

(0.1)n

n!
63.

∞∑
n=1

(n− 1)!

n2

64.
∞∑

n=0

e−n 65.
∞∑

n=1

en

66.
∞∑

n=1

(2n)!

(n!)2
67.

∞∑
n=1

1

n2
tan
(
1

n

)

68.
∞∑

n=1

n+ 1

n3 + 6
69.

∞∑
n=1

5n+ 2

2n2 + 3n+ 7

70.
∞∑

n=1

(−1)n−1

√
3n− 1

71.
∞∑

n=1

(−1)n−12n

n2

72.
∞∑

n=1

sin n

n2
73.

∞∑
n=1

sinn2

n2

74.
∞∑

n=1

cos(nπ)

n
75.

∞∑
n=2

n+ 2

n2 − 1

76.
∞∑

n=2

3

lnn2
77.

∞∑
n=1

1√
n2(n+ 2)

78.
∞∑

n=1

n(n+ 1)√
n3 + 2n2

In Problems 79–83, for what values of a does the series con-
verge?

79.
∞∑

n=1

(
2

n

)a
80.

∞∑
n=1

(
2

a

)n
, a > 0

81.
∞∑

n=1

(ln a)n , a > 0 82.
∞∑

n=1

lnn

na

83.
∞∑

n=1

(−1)n arctan
(
a

n

)
, a > 0

The series in Problems 84–86 converge by the alternating se-
ries test. Use Theorem 9.9 to find how many terms give a par-
tial sum, Sn, within 0.01 of the sum, S, of the series.

84.
∞∑

n=1

(−1)n−1

n
85.

∞∑
n=1

(
−2

3

)n−1

86.
∞∑

n=1

(−1)n−1

(2n)!

87. Suppose 0 ≤ bn ≤ 2n ≤ an and 0 ≤ cn ≤ 2−n ≤ dn
for all n. Which of the series

∑
an,
∑

bn,
∑

cn, and∑
dn definitely converge and which definitely diverge?

88. Given two convergent series
∑

an and
∑

bn, we know
that the term-by-term sum

∑
(ab + bn) converges. What

about the series formed by taking the products of the
terms

∑
an ·bn? This problem shows that it may or may

not converge.

(a) Show that if
∑

an =
∑

1/n2 and
∑

bn =∑
1/n3, then

∑
an · bn converges.

(b) Explain why
∑

(−1)n/
√
n converges.

(c) Show that if an = bn = (−1)n/
√
n, then

∑
an ·bn

does not converge.

89. Suppose that bn > 0 for all n and
∑

bn converges. Show
that if lim

n→∞

an/bn = 0 then
∑

an converges.

90. Suppose that bn > 0 for all n and
∑

bn diverges. Show
that if lim

n→∞

an/bn = ∞ then
∑

an diverges.

91. A series
∑

an of positive terms (that is, an > 0) can be
used to form another series

∑
bn where each term bn is

the average of the first n terms of the original series, that
is, bn = (a1 + a2 + · · ·+ an)/n. Show that

∑
bn does

not converge (even if
∑

an does). [Hint: Compare
∑

bn
to a multiple of the harmonic series.]

92. Show that if
∑ |an| converges, then

∑
(−1)nan con-

verges.

93. (a) For a series
∑

an, show that 0≤an+|an|≤2|an|.
(b) Use part (a) to show that if

∑ |an| converges, then∑
an converges.

Problems 94–95 introduce the root test for convergence.
Given a series

∑
an of positive terms (that is, an > 0) such

that the root n

√
an has a limit r as n → ∞,

• if r < 1, then
∑

an converges
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• if r > 1, then
∑

an diverges
• if r = 1, then

∑
an could converge or diverge.

(This test works since limn→∞
n

√
an = r tells us that the se-

ries is comparable to a geometric series with ratio r.) Use this
test to determine the behavior of the series.

94.
∞∑

n=1

(
2

n

)n
95.

∞∑
n=1

(
5n+ 1

3n2

)n

Strengthen Your Understanding

In Problems 96–98, explain what is wrong with the statement.

96. The series
∑

(−1)2n/n2 converges by the alternating
series test.

97. The series
∑

1/(n2 + 1) converges by the ratio test.

98. The series
∑

1/n3/2 converges by comparison with∑
1/n2.

In Problems 99–101, give an example of:

99. A series
∑

∞

n=1
an that converges but

∑
∞

n=1
|an| di-

verges.

100. An alternating series that does not converge.

101. A series
∑

an such that

lim
n→∞

|an+1|
|an| = 3.

Decide if the statements in Problems 102–117 are true or false.
Give an explanation for your answer.

102. If the terms sn of a sequence alternate in sign, then the
sequence converges.

103. If 0 ≤ an ≤ bn for all n and
∑

an converges, then∑
bn converges.

104. If 0 ≤ an ≤ bn for all n and
∑

an diverges, then
∑

bn
diverges.

105. If bn ≤ an ≤ 0 for all n and
∑

bn converges, then∑
an converges.

106. If
∑

an converges, then
∑ |an| converges.

107. If
∑

an converges, then lim
n→∞

|an+1|/|an| �= 1.

108.
∞∑

n=0

(−1)n cos(2πn) is an alternating series.

109. The series
∞∑

n=0

(−1)n2n converges.

110. If
∑

an converges, then
∑

(−1)nan converges.

111. If an alternating series converges by the alternating series
test, then the error in using the first n terms of the series
to approximate the entire series is less in magnitude than
the first term omitted.

112. If an alternating series converges, then the error in using
the first n terms of the series to approximate the entire
series is less in magnitude than the first term omitted.

113. If
∑ |an| converges, then

∑
(−1)n|an| converges.

114. To find the sum of the alternating harmonic series∑
(−1)n−1/n to within 0.01 of the true value, we can

sum the first 100 terms.

115. If
∑

an is absolutely convergent, then it is convergent.

116. If
∑

an is conditionally convergent, then it is absolutely
convergent.

117. If an > 0.5bn > 0 for all n and
∑

bn diverges, then∑
an diverges.

118. Which test will help you determine if the series converges
or diverges?

∞∑
k=1

1

k3 + 1

(a) Integral test
(b) Comparison test
(c) Ratio test

9.5 POWER SERIES AND INTERVAL OF CONVERGENCE

In Section 9.2 we saw that the geometric series
∑

axn converges for −1 < x < 1 and diverges
otherwise. This section studies the convergence of more general series constructed from powers.
Chapter 10 shows how such power series are used to approximate functions such as ex, sinx, cosx,
and lnx.

A power series about x = a is a sum of constants times powers of (x− a):

C0 + C1(x− a) + C2(x− a)2 + · · ·+ Cn(x− a)n + · · · =

∞∑
n=0

Cn(x− a)n.
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We think of a as a constant. For any fixed x, the power series
∑

Cn(x − a)n is a series of
numbers like those considered in Section 9.3. To investigate the convergence of a power series, we
consider the partial sums, which in this case are the polynomialsSn(x) = C0+C1(x−a)+C2(x−
a)2 + · · ·+ Cn(x− a)n. As before, we consider the sequence8

S0(x), S1(x), S2(x), . . . , Sn(x), . . . .

For a fixed value of x, if this sequence of partial sums converges to a limit S, that is, if
lim
n→∞

Sn(x) = S, then we say that the power series converges to S for this value of x.

A power series may converge for some values of x and not for others.

Example 1 Find an expression for the general term of the series and use it to write the series using
∑

notation:

(x− 2)4

4
−

(x− 2)6

9
+

(x− 2)8

16
−

(x− 2)10

25
+ · · · .

Solution The series is about x = 2 and the odd terms are zero. We use (x−2)2n and begin with n = 2. Since
the series alternates and is positive for n = 2, we multiply by (−1)n. For n = 2, we divide by 4, for
n = 3 we divide by 9, and in general, we divide by n2. One way to write this series is

∞∑
n=2

(−1)n(x− 2)2n

n2
.

Example 2 Determine whether the power series
∞∑
n=0

xn

2n
converges or diverges for

(a) x = −1 (b) x = 3

Solution (a) Substituting x = −1, we have
∞∑

n=0

xn

2n
=

∞∑
n=0

(−1)n

2n
=

∞∑
n=0

(
−
1

2

)n

.

This is a geometric series with ratio −1/2, so the series converges to 1/(1− (− 1
2 )) = 2/3.

(b) Substituting x = 3, we have
∞∑
n=0

xn

2n
=

∞∑
n=0

3n

2n
=

∞∑
n=0

(
3

2

)n

.

This is a geometric series with ratio greater than 1, so it diverges.

Numerical and Graphical View of Convergence
Consider the series

(x− 1)−
(x− 1)2

2
+

(x− 1)3

3
−

(x− 1)4

4
+ · · ·+ (−1)

n−1 (x− 1)n

n
+ · · · .

To investigate the convergence of this series, we look at the sequence of partial sums graphed in
8Here we call the first term in the sequence S0(x) rather than S1(x) so that the last term of Sn(x) is Cn(x− a)n.
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Figure 9.11. The graph suggests that the partial sums converge for x in the interval (0, 2). In Ex-
amples 4 and 5, we show that the series converges for 0 < x ≤ 2. This is called the interval of
convergence of this series.

At x = 1.4, which is inside the interval, the series appears to converge quite rapidly:

S5(1.4) = 0.33698 . . . S7(1.4) = 0.33653 . . .

S6(1.4) = 0.33630 . . . S8(1.4) = 0.33645 . . .

Table 9.1 shows the results of using x = 1.9 and x = 2.3 in the power series. For x = 1.9,
which is inside the interval of convergence but close to an endpoint, the series converges, though
rather slowly. For x = 2.3, which is outside the interval of convergence, the series diverges: the
larger the value of n, the more wildly the series oscillates. In fact, the contribution of the twenty-
fifth term is about 28; the contribution of the hundredth term is about −2,500,000,000. Figure 9.11
shows the interval of convergence and the partial sums.

1.9

2.3

3

S11(x)

S8(x)

S5(x)S14(x)

x = 2

x

�� Interval
of

convergence

1

Figure 9.11: Partial sums for series in
Example 4 converge for 0 < x < 2

Table 9.1 Partial sums for series in
Example 4 with x = 1.9 inside interval
of convergence and x = 2.3 outside

n Sn(1.9) n Sn(2.3)

2 0.495 2 0.455

5 0.69207 5 1.21589

8 0.61802 8 0.28817

11 0.65473 11 1.71710

14 0.63440 14 −0.70701

Notice that the interval of convergence, 0 < x ≤ 2, is centered on x = 1. Since the interval
extends one unit on either side, we say the radius of convergence of this series is 1.

Intervals of Convergence
Each power series falls into one of three cases, characterized by its radius of convergence, R. This
radius gives an interval of convergence.

• The series converges only for x = a; the radius of convergence is defined to be R = 0.

• The series converges for all values of x; the radius of convergence is defined to be
R = ∞.

• There is a positive number R, called the radius of convergence, such that the series
converges for |x− a| < R and diverges for |x− a| > R. See Figure 9.12.

Using the radius of convergence, we make the following definition:

• The interval of convergence is the interval between a − R and a + R, including any
endpoint where the series converges.

a−R a a+R

Series
diverges �� Interval of convergence

Series
diverges

x

�� R

Figure 9.12: Radius of convergence, R, determines an interval, centered at x = a, in which the series converges

There are some series whose radius of convergence we already know. For example, the geo-
metric series
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1 + x+ x2
+ · · ·+ xn

+ · · ·

converges for |x| < 1 and diverges for |x| ≥ 1, so its radius of convergence is 1. Similarly, the
series

1 +
x

3
+

(x
3

)2
+ · · ·+

(x
3

)n
+ · · ·

converges for |x/3| < 1 and diverges for |x/3| ≥ 1, so its radius of convergence is 3.
The next theorem gives a method of computing the radius of convergence for many series. To

find the values of x for which the power series
∞∑
n=0

Cn(x − a)n converges, we use the ratio test.

Writing an = Cn(x− a)n and assuming Cn �= 0 and x �= a, we have

lim
n→∞

|an+1|

|an|
= lim

n→∞

|Cn+1(x− a)n+1|

|Cn(x− a)n|
= lim

n→∞

|Cn+1||x − a|

|Cn|
= |x− a| lim

n→∞

|Cn+1|

|Cn|
.

Case 1. Suppose lim
n→∞

|an+1|/|an| is infinite. Then the ratio test shows that the power series con-

verges only for x = a. The radius of convergence is R = 0.
Case 2. Suppose lim

n→∞
|an+1|/|an| = 0. Then the ratio test shows that the power series converges

for all x. The radius of convergence is R = ∞.
Case 3. Suppose lim

n→∞
|an+1|/|an| = K|x − a|, where lim

n→∞
|Cn+1|/|Cn| = K . In Case 1, K

does not exist; in Case 2, K = 0. Thus, we can assume K exists and K �= 0, and we can define
R = 1/K . Then we have

lim
n→∞

|an+1|

|an|
= K|x− a| =

|x− a|

R
,

so the ratio test tells us that the power series:

• Converges for
|x− a|

R
< 1; that is, for |x− a| < R

• Diverges for
|x− a|

R
> 1; that is, for |x− a| > R.

The results are summarized in the following theorem.

Theorem 9.10: Method for Computing Radius of Convergence

To calculate the radius of convergence,R, for the power series
∞∑

n=0

Cn(x− a)n, use the ratio

test with an = Cn(x− a)n.
• If lim

n→∞
|an+1|/|an| is infinite, then R = 0.

• If lim
n→∞

|an+1|/|an| = 0, then R = ∞.

• If lim
n→∞

|an+1|/|an| = K|x− a|, where K is finite and nonzero, then R = 1/K .

Note that the ratio test does not tell us anything if limn→∞ |an+1|/|an| fails to exist, which can
occur, for example, if some of the Cns are zero.

A proof that a power series has a radius of convergence and of Theorem 9.10 is given in the
online theory supplement. To understand these facts informally, we can think of a power series as
being like a geometric series whose coefficients vary from term to term. The radius of convergence
depends on the behavior of the coefficients: if there are constants C and K such that for larger and
larger n,

|Cn| ≈ CKn,

then it is plausible that
∑

Cnx
n and

∑
CKnxn =

∑
C(Kx)n converge or diverge together. The

geometric series
∑

C(Kx)n converges for |Kx| < 1, that is, for |x| < 1/K . We can find K using
the ratio test, because
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|an+1|

|an|
=

|Cn+1||(x− a)n+1|

|Cn||(x− a)n|
≈

CKn+1|(x− a)n+1|

CKn|(x− a)n|
= K|x− a|.

Example 3 Show that the following power series converges for all x:

1 + x+
x2

2!
+

x3

3!
+ · · ·+

xn

n!
+ · · · .

Solution Because Cn = 1/n!, none of the Cns are zero and we can use the ratio test:

lim
n→∞

|an+1|

|an|
= |x| lim

n→∞

|Cn+1|

|Cn|
= |x| lim

n→∞

1/(n+ 1)!

1/n!
= |x| lim

n→∞

n!

(n+ 1)!
= |x| lim

n→∞

1

n+ 1
= 0.

This gives R = ∞, so the series converges for all x. We see in Chapter 10 that it converges to ex.

Example 4 Determine the radius of convergence of the series

(x− 1)

3
−

(x− 1)2

2 · 32
+

(x− 1)3

3 · 33
−

(x− 1)4

4 · 34
+ · · ·+ (−1)

n−1 (x− 1)n

n · 3n
+ · · · .

What does this tell us about the interval of convergence of this series?

Solution Because Cn = (−1)n−1/(n · 3n) is never zero we can use the ratio test. We have

lim
n→∞

|an+1|

|an|
= |x−1| lim

n→∞

|Cn+1|

|Cn|
= |x−1| lim

n→∞

|
(−1)n

(n+1)·3n+1 |

|
(−1)n−1

n·3n |
= |x−1| lim

n→∞

n

3(n+ 1)
=

|x− 1|

3
.

Thus, K = 1/3 in Theorem 9.10, so the radius of convergence is R = 1/K = 3. The power series
converges for |x − 1| < 3 and diverges for |x − 1| > 3, so the series converges for −2 < x < 4.
Notice that the radius of convergence does not tell us what happens at the endpoints, x = −2 and
x = 4. The endpoints are investigated in Example 5.

What Happens at the Endpoints of the Interval of Convergence?
The ratio test does not tell us whether a power series converges at the endpoints of its interval of
convergence, x = a±R. There is no simple theorem that answers this question. Since substituting
x = a ± R converts the power series to a series of numbers, the tests in Sections 9.3 and 9.4 are
often useful.

Example 5 Determine the interval of convergence of the series

(x− 1)

3
−

(x− 1)2

2 · 32
+

(x− 1)3

3 · 33
−

(x− 1)4

4 · 34
+ · · ·+ (−1)

n−1 (x− 1)n

n · 3n
+ · · · .

Solution In Example 4 we showed that this series has R = 3; it converges for −2 < x < 4 and diverges for
x < −2 or x > 4. We need to determine whether it converges at the endpoints of the interval of
convergence, x = −2 and x = 4. At x = 4, we have the series

1−
1

2
+

1

3
−

1

4
+ · · ·+

(−1)n−1

n
+ · · · .

This is an alternating series with an = 1/(n+ 1), so by the alternating series test (Theorem 9.8), it
converges. At x = −2, we have the series

−1−
1

2
−

1

3
−

1

4
− · · · −

1

n
− · · · .

This is the negative of the harmonic series, so it diverges. Therefore, the interval of convergence is
−2 < x ≤ 4. The right endpoint is included and the left endpoint is not.
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Series with All Odd, or All Even, Terms
The ratio test requires lim

n→∞
|an+1|/|an| to exist for an = Cn(x − a)n. What happens if the power

series has only even or odd powers, so some of the coefficients Cn are zero? Then we use the fact
that an infinite series can be written in several ways and pick one in which the terms are nonzero.

Example 6 Find the radius and interval of convergence of the series

1 + 2
2x2

+ 2
4x4

+ 2
6x6

+ · · · .

Solution If we take an = 2nxn for n even and an = 0 for n odd, lim
n→∞

|an+1|/|an| does not exist. Therefore,

for this series we take
an = 2

2nx2n,

so that, replacing n by n+ 1, we have

an+1 = 2
2(n+1)x2(n+1)

= 2
2n+2x2n+2.

Thus,
|an+1|

|an|
=

∣∣22n+2x2n+2
∣∣

|22nx2n|
=
∣∣22x2

∣∣ = 4x2.

We have

lim
n→∞

|an+1|

|an|
= 4x2.

The ratio test guarantees that the power series converges if 4x2 < 1, that is, if |x| < 1
2 . The radius

of convergence is 1
2 . The series converges for − 1

2 < x < 1
2 and diverges for x > 1

2 or x < − 1
2 . At

x = ± 1
2 , all the terms in the series are 1, so the series diverges (by Theorem 9.2, Property 3). Thus,

the interval of convergence is − 1
2 < x < 1

2 .

Example 7 Write the general term an of the following series so that none of the terms are zero:

x−
x3

3!
+

x5

5!
−

x7

7!
+

x9

9!
− · · · .

Solution This series has only odd powers. We can get odd integers using 2n− 1 for n ≥ 1, since

2 · 1− 1 = 1, 2 · 2− 1 = 3, 2 · 3− 1 = 5, etc.

Also, the signs of the terms alternate, with the first (that is, n = 1) term positive, so we include a
factor of (−1)n−1. Thus we get

an = (−1)
n−1 x2n−1

(2n− 1)!
.

We see in Chapter 10 that the series converges to sinx. Exercise 24 shows that the radius of conver-
gence of this series is infinite, so that it converges for all values of x.
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Exercises and Problems for Section 9.5
Exercises

Which of the series in Exercises 1–4 are power series?

1. x− x3 + x6 − x10 + x15 − · · ·
2.

1

x
+

1

x2
+

1

x3
+

1

x4
+ · · ·

3. 1 + x+ (x− 1)2 + (x− 2)3 + (x− 3)4 + · · ·
4. x7 + x+ 2

In Exercises 5–10, find an expression for the general term of
the series. Give the starting value of the index (n or k, for
example).

5.
1

2
x+

1 · 3
22 · 2!x

2 +
1 · 3 · 5
23 · 3! x

3 + · · ·

6. px+
p(p− 1)

2!
x2 +

p(p− 1)(p− 2)

3!
x3 + · · ·

7. 1− (x− 1)2

2!
+

(x− 1)4

4!
− (x− 1)6

6!
+ · · ·

8. (x− 1)3 − (x− 1)5

2!
+

(x− 1)7

4!
− (x− 1)9

6!
+ · · ·

9.
x− a

1
+

(x− a)2

2 · 2! +
(x− a)3

4 · 3! +
(x− a)4

8 · 4! + · · ·

10. 2(x+5)3 +3(x+5)5 +
4(x+ 5)7

2!
+

5(x+ 5)9

3!
+ · · ·

In Exercises 11–23, find the radius of convergence.

11.
∞∑

n=0

nxn 12.
∞∑

n=0

(5x)n

13.
∞∑

n=0

n3xn 14.
∞∑

n=0

(2n + n2)xn

15.
∞∑

n=0

(n+ 1)xn

2n + n
16.

∞∑
n=1

2n(x− 1)n

n

17.
∞∑

n=1

(x− 3)n

n2n
18.

∞∑
n=0

(−1)n
x2n

(2n)!

19. x− x2

4
+

x3

9
− x4

16
+

x5

25
− · · ·

20. 1 + 2x+
4x2

2!
+

8x3

3!
+

16x4

4!
+

32x5

5!
+ · · ·

21. 1 + 2x+
4!x2

(2!)2
+

6!x3

(3!)2
+

8!x4

(4!)2
+

10!x5

(5!)2
+ · · ·

22. 3x+
5

2
x2 +

7

3
x3 +

9

4
x4 +

11

5
x5 + · · ·

23. x− x3

3
+

x5

5
− x7

7
+ · · ·

24. Show that the radius of convergence of the power series

x− x3

3!
+

x5

5!
− x7

7!
+ · · · in Example 7 is infinite.

Problems

25. (a) Determine the radius of convergence of the series

x− x2

2
+

x3

3
− x4

4
+ · · ·+ (−1)n−1 x

n

n
+ · · · .

What does this tell us about the interval of conver-
gence of this series?

(b) Investigate convergence at the end points of the in-
terval of convergence of this series.

26. Show that the series
∞∑

n=1

(2x)n

n
converges for |x| < 1/2.

Investigate whether the series converges for x = 1/2 and
x = −1/2.

In Problems 27–34, find the interval of convergence.

27.
∞∑

n=0

xn

3n
28.

∞∑
n=2

(x− 3)n

n

29.
∞∑

n=1

n2x2n

22n
30.

∞∑
n=1

(−1)n(x− 5)n

2nn2

31.
∞∑

n=1

x2n+1

n!
32.

∞∑
n=0

n!xn

33.
∞∑

n=1

(5x)n√
n

34.
∞∑

n=1

(5x)2n√
n

In Problems 35–38, use the formula for the sum of a geomet-
ric series to find a power series centered at the origin that con-
verges to the expression. For what values does the series con-
verge?

35.
1

1 + 2z
36.

2

1 + y2

37.
3

1− z/2
38.

8

4 + y

39. For constant p, find the radius of convergence of the bi-
nomial power series:9

1 + px+
p(p− 1)x2

2!
+

p(p− 1)(p− 2)x3

3!
+ · · · .

9For an explanation of the name, see Section 10.2.
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40. Show that if C0 +C1x+C2x
2 +C3x

3 + · · · converges
for |x| < R with R given by the ratio test, then so does
C1 + 2C2x+ 3C3x

2 + · · ·. Assume Ci �= 0 for all i.

41. The series
∑

Cnx
n converges at x = −5 and diverges

at x = 7. What can you say about its radius of conver-
gence?

42. The series
∑

Cn(x + 7)n converges at x = 0 and di-
verges at x = −17. What can you say about its radius of
convergence?

43. The series
∑

Cnx
n converges when x = −4 and di-

verges when x = 7. Decide whether each of the follow-
ing statements is true or false, or whether this cannot be
determined.

(a) The power series converges when x = 10.
(b) The power series converges when x = 3.
(c) The power series diverges when x = 1.
(d) The power series diverges when x = 6.

44. If
∑

Cn(x − 3)n converges at x = 7 and diverges at
x = 10, what can you say about the convergence at
x = 11? At x = 5? At x = 0?

45. Bessel functions are important in such diverse areas as
describing planetary motion and the shape of a vibrating
drumhead. The Bessel function of order 0 is defined by

J(x) =

∞∑
n=0

(−1)nx2n

22n(n!)2
.

(a) Find the domain of J(x) by finding the interval of
convergence for this power series.

(b) Find J(0).
(c) Find the partial sum polynomials S0, S1, S2, S3, S4.
(d) Estimate J(1) to three decimal places.
(e) Use your answer to part (d) to estimate J(−1).

46. For all x-values for which it converges, the function f is
defined by the series

f(x) =

∞∑
n=0

xn

n!
.

(a) What is f(0)?
(b) What is the domain of f?
(c) Assuming that f ′ can be calculated by differentiat-

ing the series term-by-term, find the series for f ′(x).
What do you notice?

(d) Guess what well-known function f is.

47. From Exercise 24 we know the following series con-
verges for all x. We define g(x) to be its sum:

g(x) =

∞∑
n=1

(−1)n−1 x2n−1

(2n− 1)!
.

(a) Is g(x) odd, even, or neither? What is g(0)?
(b) Assuming that derivatives can be computed term by

term, show that g′′(x) = −g(x).
(c) Guess what well-known function g might be. Check

your guess using g(0) and g′(0).

48. The functions p(x) and q(x) are defined by the series

p(x) =

∞∑
n=0

(−1)n
x2n

(2n)!
, q(x) =

∞∑
n=1

(−1)n−1 x2n−1

(2n− 1)!
.

Assuming that these series converge for all x and that
multiplication can be done term by term:

(a) Find the series for (p(x))2 + (q(x))2 up to the term
in x6.

(b) Guess what well-known functions p and q could be.

Strengthen Your Understanding

In Problems 49–50, explain what is wrong with the statement.

49. If limn→∞ |Cn+1/Cn| = 0, then the radius of conver-
gence for

∑
Cnx

n is 0.

50. The series
∑

Cnx
n diverges at x = 2 and converges at

x = 3.

In Problems 51–53, give an example of:

51. A power series that is divergent at x = 0.

52. A power series that converges at x = 5 but nowhere else.

53. A series
∑

Cnx
n with radius of convergence 1 and that

converges at x = 1 and x = −1.

Decide if the statements in Problems 54–66 are true or false.
Give an explanation for your answer.

54.
∞∑

n=1

(x− n)n is a power series.

55. If the power series
∑

Cnx
n converges for x = 2, then

it converges for x = 1.

56. If the power series
∑

Cnx
n converges for x = 1, then

the power series converges for x = 2.

57. If the power series
∑

Cnx
n does not converge for x =

1, then the power series does not converge for x = 2.

58.
∑

Cn(x − 1)n and
∑

Cnx
n have the same radius of

convergence.

59. If
∑

Cnx
n and

∑
Bnx

n have the same radius of con-
vergence, then the coefficients, Cn and Bn, must be
equal.

60. If a power series converges at one endpoint of its interval
of convergence, then it converges at the other.

61. A power series always converges at at least one point.



REVIEW EXERCISES AND PROBLEMS FOR CHAPTER NINE 529

62. If the power series
∑

Cnx
n converges at x = 10, then

it converges at x = −9.

63. If the power series
∑

Cnx
n converges at x = 10, then

it converges at x = −10.

64. −5 < x ≤ 7 is a possible interval of convergence of a
power series.

65. −3 < x < 2 could be the interval of convergence of∑
Cnx

n.

66. If −11 < x < 1 is the interval of convergence of∑
Cn(x− a)n, then a = −5.

67. The power series
∑

Cnx
n diverges at x = 7 and con-

verges at x = −3. At x = −9, the series is

(a) Conditionally convergent
(b) Absolutely convergent
(c) Alternating
(d) Divergent
(e) Cannot be determined.

CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• Sequences
Recursive definition, monotone, bounded, convergence.

• Geometric series
Finite sum, infinite sum.

• Harmonic series

• Alternating series

• Tests for convergence of series
Integral test, p-series, comparison test, limit comparison
test, ratio test, alternating series test.
Absolute and conditional convergence.

• Power series
Ratio test for radius of convergence, interval of conver-
gence.

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER NINE

Exercises

In Exercises 1–8, find the sum of the series.

1. 3 +
3

2
+

3

4
+

3

8
+ · · ·+ 3

210

2. −2 + 1− 1

2
+

1

4
− 1

8
+

1

16
− · · ·

3. 125 + 100 + 80 + · · ·+ 125(0.8)20

4. (0.5)3 + (0.5)4 + · · ·+ (0.5)k

5. b5 + b6 + b7 + b8 + b9 + b10

6.
∞∑

n=4

(
1

3

)n

7.
20∑

n=4

(
1

3

)n

8.
∞∑

n=0

3n + 5

4n

In Exercises 9–12, find the the first four partial sums of the
geometric series, a formula for the nth partial sum, and the
sum of the series, if it exists.

9. 36 + 12 + 4 +
4

3
+

4

9
+ · · ·

10. 1280− 960 + 720 − 540 + 405 − · · ·
11. −810 + 540− 360 + 240− 160 + · · ·
12. 2 + 6z + 18z2 + 54z3 + · · ·

In Exercises 13–16, does the sequence converge or diverge? If
a sequence converges, find its limit.

13.
3 + 4n

5 + 7n
14. (−1)n

(n+ 1)

n

15. sin
(
π

4
n
)

16.
2n

n3

In Exercises 17–20, use the integral test to decide whether the
series converges or diverges.

17.
∞∑

n=1

1

n3
18.

∞∑
n=1

3n2 + 2n

n3 + n2 + 1

19.
∞∑

n=0

ne−n2

20.
∞∑

n=2

2

n2 − 1

In Exercises 21–23, use the ratio test to decide if the series
converges or diverges.

21.
∞∑

n=1

1

2nn!
22.

∞∑
n=1

(n− 1)!

5n

23.
∞∑

n=1

(2n)!

n!(n+ 1)!

In Exercises 24–25, use the alternating series test to decide
whether the series converges.

24.
∞∑

n=1

(−1)n

n2 + 1
25.

∞∑
n=1

(−1)n−1

√
n2 + 1
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In Exercises 26–29, determine whether the series is absolutely
convergent, conditionally convergent, or divergent.

26.
∑ (−1)n

n1/2
27.
∑

(−1)n
(
1 +

1

n2

)
28.
∑ (−1)n−1 lnn

n
29.
∑ (−1)n−1

arctan n

In Exercises 30–31, use the comparison test to confirm the
statement.

30.
∞∑

n=1

(
1

3

)n
converges, so

∞∑
n=1

(
n2

3n2 + 4

)n

converges.

31.
∞∑

n=1

1

n
diverges, so

∞∑
n=1

1

n sin2 n
diverges.

In Exercises 32–35, use the limit comparison test to determine
whether the series converges or diverges.

32.
∑ √

n− 1

n2 + 3
33.
∑ n3 − 2n2 + n+ 1

n5 − 2

34.
∑

sin
1

n2
35.
∑ 1√

n3 − 1

In Exercises 36–57, determine whether the series converges.

36.
∞∑

n=1

1

n+ 1
37.

∞∑
n=1

1

n3

38.
∞∑

n=3

2√
n− 2

39.
∞∑

n=1

(−1)n−1

√
n+ 1

40.
∞∑

n=1

n2

n2 + 1
41.

∞∑
n=1

n2

n3 + 1

42.
∞∑

n=1

3n

(2n)!
43.

∞∑
n=1

(2n)!

(n!)2

44.
∞∑

n=1

n2 + 2n

n22n
45.

∞∑
n=1

32n

(2n)!

46.
∞∑

n=1

2−n (n+ 1)

(n+ 2)
47.

∞∑
n=1

(−1)n
2n

(2n+ 1)!

48.
∞∑

n=1

(−1)n
n+ 1√

n
49.

∞∑
n=0

2 + 3n

5n

50.
∞∑

n=1

(
1 + 5n

4n

)n
51.

∞∑
n=1

1

2 + sinn

52.
∞∑

n=3

1

(2n− 5)3
53.

∞∑
n=2

1

n3 − 3

54.
∞∑

n=1

sin(nπ/2)

n3
55.

∞∑
k=1

ln
(
1 +

1

k

)

56.
∞∑

n=1

n

2n
57.

∞∑
n=2

1

(lnn)2

In Exercises 58–61, find the radius of convergence.

58.
∞∑

n=1

(2n)!xn

(n!)2
59.

∞∑
n=0

xn

n! + 1

60. x+ 4x2 + 9x3 + 16x4 + 25x5 + · · ·

61.
x

3
+

2x2

5
+

3x3

7
+

4x4

9
+

5x5

11
+ · · ·

In Exercises 62–65, find the interval of convergence.

62.
∞∑

n=1

xn

3nn2
63.

∞∑
n=0

(−1)n(x− 2)n

5n

64.
∞∑

n=1

(−1)nxn

n
65.

∞∑
n=1

xn

n!

Problems

66. Write the first four terms of the sequence given by

sn =
(−1)n (2n+ 1)2

22n−1 + (−1)n+1
, n ≥ 1.

In Problems 67–68, find a possible formula for the general
term of the sequence.

67. s1, s2, s3, s4, s5, . . . = 5, 7, 9, 11, 13, . . .

68. t1, t2, t3, t4, t5, . . . = 9, 25, 49, 81, 121, . . .

In Problems 69–70, let a1 = 5, b1 = 10 and, for n > 1,

an = an−1 + 2n and bn = bn−1 + an−1.

69. Give the values of a2, a3, a4.

70. Give the values of b2, b3, b4, b5.
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71. For r > 0, how does the convergence of the following
series depend on r?

∞∑
n=1

nr + rn

nrrn

72. The series
∑

Cn(x − 2)n converges when x = 4 and
diverges when x = 6. Decide whether each of the fol-
lowing statements is true or false, or whether this cannot
be determined.

(a) The power series converges when x = 7.
(b) The power series diverges when x = 1.
(c) The power series converges when x = 0.5.
(d) The power series diverges when x = 5.
(e) The power series converges when x = −3.

73. For all the t-values for which it converges, the function h
is defined by the series

h(t) =

∞∑
n=0

(−1)n
t2n

(2n)!
.

(a) What is the domain of h?
(b) Is h odd, even, or neither?
(c) Assuming that derivatives can be computed term by

term, show that

h′′(t) = −h(t).

74. A $200,000 loan is to be repaid over 20 years in equal
monthly installments of $M , beginning at the end of the
first month. Find the monthly payment if the loan is at an
annual rate of 9%, compounded monthly. [Hint: Find an
expression for the present value of the sum of all of the
monthly payments, set it equal to $200,000, and solve
for M .]

75. The extraction rate of a mineral is currently 12 million
tons a year, but this rate is expected to fall by 5% each
year. What minimum level of world reserves would al-
low extraction to continue indefinitely?

76. A new car costs $30,000; it loses 10% of its value each
year. Maintenance is $500 the first year and increases by
20% annually.

(a) Find a formula for ln, the value lost by the car in
year n.

(b) Find a formula for mn, the maintenance expenses in
year n.

(c) In what year do maintenance expenses first exceed
the value lost by the car?

Problems 77–79 are about bonds, which are issued by a gov-
ernment to raise money. An individual who buys a $1000 bond
gives the government $1000 and in return receives a fixed sum
of money, called the coupon, every six months or every year
for the life of the bond. At the time of the last coupon, the
individual also gets back the $1000, or principal.

77. What is the present value of a $1000 bond which pays
$50 a year for 10 years, starting one year from now? As-
sume the interest rate is 6% per year, compounded annu-
ally.

78. What is the present value of a $1000 bond which pays
$50 a year for 10 years, starting one year from now? As-
sume the interest rate is 4% per year, compounded annu-
ally.

79. In the nineteenth century, the railroads issued 100-year
bonds. Consider a $100 bond which paid $5 a year, start-
ing a year after it was sold. Assume interest rates are 4%
per year, compounded annually.

(a) Find the present value of the bond.
(b) Suppose that instead of maturing in 100 years, the

bond was to have paid $5 a year forever. This time
the principal, $100, is never repaid. What is the
present value of the bond?

80. Cephalexin is an antibiotic with a half-life in the body of
0.9 hours, taken in tablets of 250 mg every six hours.

(a) What percentage of the cephalexin in the body at the
start of a six-hour period is still there at the end (as-
suming no tablets are taken during that time)?

(b) Write an expression for Q1, Q2, Q3, Q4, where Qn

mg is the amount of cephalexin in the body right af-
ter the nth tablet is taken.

(c) Express Q3, Q4 in closed form and evaluate them.
(d) Write an expression for Qn and put it in closed form.
(e) If the patient keeps taking the tablets, use your an-

swer to part (d) to find the quantity of cephalexin in
the body in the long run, right after taking a tablet.

81. Before World War I, the British government issued what
are called consols, which pay the owner or his heirs a
fixed amount of money every year forever. (Cartoonists
of the time described aristocrats living off such payments
as “pickled in consols.”) What should a person expect to
pay for consols which pay £10 a year forever? Assume
the first payment is one year from the date of purchase
and that interest remains 4% per year, compounded an-
nually. (£ denotes pounds, the British unit of currency.)

82. This problem illustrates how banks create credit and can
thereby lend out more money than has been deposited.
Suppose that initially $100 is deposited in a bank. Ex-
perience has shown bankers that on average only 8% of
the money deposited is withdrawn by the owner at any
time. Consequently, bankers feel free to lend out 92% of
their deposits. Thus $92 of the original $100 is loaned
out to other customers (to start a business, for example).
This $92 becomes someone else’s income and, sooner or
later, is redeposited in the bank. Thus 92% of $92, or
$92(0.92) = $84.64, is loaned out again and eventu-
ally redeposited. Of the $84.64, the bank again loans out
92%, and so on.

(a) Find the total amount of money deposited in the
bank as a result of these transactions.
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(b) The total amount of money deposited divided by the
original deposit is called the credit multiplier. Calcu-
late the credit multiplier for this example and explain
what this number tells us.

83. Baby formula can contain bacteria which double in num-
ber every half hour at room temperature and every 10
hours in the refrigerator.10 There are B0 bacteria initially.

(a) Write formulas for

(i) Rn, the number of bacteria n hours later if the
baby formula is kept at room temperature.

(ii) Fn, the number of bacteria n hours later if the
baby formula is kept in the refrigerator.

(iii) Yn, the ratio of the number of bacteria at room
temperature to the number of bacteria in the re-
frigerator.

(b) How many hours does it take before there are a mil-
lion times as many bacteria in baby formula kept at
room temperature as there are in baby formula kept
in the refrigerator?

84. The sequence 1, 5/8, 14/27, 15/32, . . . is defined by:

s1 = 1

s2 =
1

2

((
1

2

)2
+
(
2

2

)2)
=

5

8

s3 =
1

3

((
1

3

)2
+
(
2

3

)2
+
(
3

3

)2)
=

14

27
.

(a) Extend the pattern and find s5.
(b) Write an expression for sn using sigma notation.
(c) Use Riemann sums to evaluate lim

n→∞

sn.

85. Estimate
∞∑

n=1

(−1)n−1

(2n− 1)!
to within 0.01 of the actual sum

of the series.

86. Is it possible to construct a convergent alternating se-

ries
∞∑

n=1

(−1)n−1an for which 0 < an+1 < an but

lim
n→∞

an �= 0?

87. Suppose that 0 ≤ bn ≤ 2n for all n. Give two exam-
ples of series

∑
bn that satisfy this condition, one that

diverges and one that converges.

88. Show that if
∑

an converges and
∑

bn diverges, then∑
(an + bn) diverges. [Hint: Assume that

∑
(an + bn)

converges and consider
∑

(an + bn)−
∑

an.]

In Problems 89–93, the series
∑

an converges with an > 0
for all n. Does the series converge or diverge or is there not
enough information to tell?

89.
∑

an/n 90.
∑

1/an 91.
∑

nan

92.
∑

(an + an/2) 93.
∑

a2
n

94. Does
∞∑

n=1

(
1

n
+

1

n

)
converge or diverge? Does

∞∑
n=1

(
1

n
− 1

n

)
converge or diverge? Is the statement

“If
∑

an and
∑

bn diverge, then
∑

(an + bn) may or
may not diverge” true?

95. This problem shows how you can create a fractal called a
Cantor Set. Take a line segment of length 1, divide it into
three equal pieces and remove the middle piece. We are
left with two smaller line segments. At the second stage,
remove the middle third of each of the two segments. We
now have four smaller line segments left. At the third
stage, remove the middle third of each of the remaining
segments. Continue in this manner.

(a) Draw a picture that illustrates this process.
(b) Find a series that gives the total length of the pieces

we have removed after the nth stage.
(c) If we continue the process indefinitely, what is the

total length of the pieces that we remove?

96. Although the harmonic series does not converge, the par-
tial sums grow very, very slowly. Take a right-hand sum
approximating the integral of f(x) = 1/x on the interval
[1, n], with Δx = 1, to show that

1

2
+

1

3
+

1

4
+ · · ·+ 1

n
< lnn.

If a computer could add a million terms of the harmonic
series each second, estimate the sum after one year.

97. Estimate the sum of the first 100,000 terms of the har-
monic series,

100,000∑
k=1

1

k
,

to the closest integer. [Hint: Use left- and right-hand
sums of the function f(x) = 1/x on the interval from
1 to 100,000 with Δx = 1.]

98. Is the following argument true or false? Give reasons for
your answer.

Consider the infinite series
∞∑

n=2

1

n(n− 1)
. Since

1

n(n− 1)
=

1

n− 1
− 1

n
we can write this series as

∞∑
n=2

1

n− 1
−

∞∑
n=2

1

n
.

For the first series an = 1/(n − 1). Since n − 1 < n
we have 1/(n− 1) > 1/n and so this series diverges by

comparison with the divergent harmonic series
∞∑

n=2

1

n
.

The second series is the divergent harmonic series. Since
both series diverge, their difference also diverges.

10Iverson, C. and Forsythe, F., reported in “Baby Food Could Trigger Meningitis,” www.newscientist.com, June 3, 2004.
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PROJECTS FOR CHAPTER NINE

1. Medical Case Study: Drug Desensitization Schedule11

Some patients have allergic reactions to critical medications for which there are no ef-
fective alternatives. In some such cases, the drug can be given safely by a process known as
drug desensitization. Desensitization starts by administering a very small amount of the needed
medication intravenously, and then progressively increasing the concentration or the rate that
the drug is infused until the full dose is achieved.

An example of a drug desensitization regimen is shown in Table 9.2. Three solutions of
the drug at different concentrations (full strength, 10-fold diluted, and 100-fold diluted) are
prepared. The procedure starts with a low rate of infusion of the most dilute solution and pro-
gresses in 15 minute steps until the highest infusion rate of the most concentrated solution is
reached. At the last stage, the infusion runs until the target dose is reached.

(a) For a target dose of 500 mg of a drug and a full strength solution of 2 mg/ml, make a
spreadsheet that enables you to fill out the first 11 steps in Table 9.2, each of which runs for
15 minutes.

(b) How much of the drug is administered in the 12th step? How long does this step last? Fill
in the last row of the table.

(c) Show how a geometric series can be used to calculate the total drug administered in the first
11 steps.

(d) How long does it take from the beginning of step 1 for the patient to receive the target dose?

Table 9.2

Ratio of dose administered

Concentration Rate Time Volume infused Dose administered Cumulative in this step to dose

Step Solution (mg/ml) (ml/hr) (min) per step (ml) per step (mg) dose (mg) administered in previous step

1 100-fold dilution 2.5

2 100-fold dilution 5.0

3 100-fold dilution 10.0

4 100-fold dilution 20.0

5 10-fold dilution 4.0

6 10-fold dilution 8.0

7 10-fold dilution 16.0

8 10-fold dilution 32.0

9 undiluted 6.4

10 undiluted 12.8

11 undiluted 25.6

12 undiluted 51.2

2. A Definition of e

We show that the sequence sn =

(
1 +

1

n

)n

converges; its limit can be used to define e.

(a) For a fixed integer n > 0, let f(x) = (n+1)xn −nxn+1. For x > 1, show f is decreasing
and that f(x) < 1. Hence, for x > 1,

xn
(n+ 1− nx) < 1.

(b) Substitute the following x-value into the inequality from part (a):

x =
1 + 1/n

1 + 1/(n+ 1)
,

11From David E. Sloane, M.D.
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and show that

xn

(
n+ 1

n+ 2

)
< 1.

(c) Use the inequality from part (b) to show that sn < sn+1 for all n > 0. Conclude that the
sequence is increasing.

(d) Substitute x = 1 + 1/2n into the inequality from part (a) to show that(
1 +

1

2n

)n

< 2.

(e) Use the inequality from part (d) to show s2n < 4. Conclude that the sequence is bounded.
(f) Use parts (c) and (e) to show that the sequence has a limit.

3. Probability of Winning in Sports
In certain sports, winning a game requires a lead of two points. That is, if the score is tied

you have to score two points in a row to win.

(a) For some sports (e.g. tennis), a point is scored every play. Suppose your probability of
scoring the next point is always p. Then, your opponent’s probability of scoring the next
point is always 1− p.

(i) What is the probability that you win the next two points?

(ii) What is the probability that you and your opponent split the next two points, that is,
that neither of you wins both points?

(iii) What is the probability that you split the next two points but you win the two after
that?

(iv) What is the probability that you either win the next two points or split the next two and
then win the next two after that?

(v) Give a formula for your probability w of winning a tied game.

(vi) Compute your probability of winning a tied game when p = 0.5; when p = 0.6; when
p = 0.7; when p = 0.4. Comment on your answers.

(b) In other sports (e.g. volleyball prior to 1999), you can score a point only if it is your turn,
with turns alternating until a point is scored. Suppose your probability of scoring a point
when it is your turn is p, and your opponent’s probability of scoring a point when it is her
turn is q.

(i) Find a formula for the probability S that you are the first to score the next point,
assuming it is currently your turn.

(ii) Suppose that if you score a point, the next turn is yours. Using your answers to part (a)
and your formula for S, compute the probability of winning a tied game (if you need
two points in a row to win).

• Assume p = 0.5 and q = 0.5 and it is your turn.

• Assume p = 0.6 and q = 0.5 and it is your turn.

4. Prednisone
Prednisone is often prescribed for acute asthma attacks. For 5 mg tablets, typical instructions

are: “Take 8 tablets the first day, 7 the second, and decrease by one tablet each day until all
tablets are gone.” Prednisone decays exponentially in the body, and 24 hours after taking k mg,
there are kx mg in the body.

(a) Write formulas involving x for the amount of prednisone in the body

(i) 24 hours after taking the first dose (of 8 tablets), right before taking the second dose
(of 7 tablets).

(ii) Immediately after taking the second dose (of 7 tablets).

(iii) Immediately after taking the third dose (of 6 tablets).
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(iv) Immediately after taking the eighth dose (of 1 tablet).

(v) 24 hours after taking the eighth dose.

(vi) n days after taking the eighth dose.

(b) Find a closed form for the sum T = 8x7 +7x6 +6x5 + · · ·+2x+1, which is the number
of prednisone tablets in the body immediately after taking the eighth dose.

(c) If a patient takes all the prednisone tablets as prescribed, how many days after taking the
eighth dose is there less than 3% of a prednisone tablet in the patient’s body? The half-life
of prednisone is about 24 hours.

(d) A patient is prescribed n tablets of prednisone the first day, n−1 the second, and one tablet
fewer each day until all tablets are gone. Write a formula that represents Tn, the number of
prednisone tablets in the body immediately after taking all tablets. Find a closed-form sum
for Tn.
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10.1 TAYLOR POLYNOMIALS

In this section, we see how to approximate a function by polynomials.

Linear Approximations

We already know how to approximate a function using a degree-1 polynomial, namely the tangent
line approximation given in Section 3.9 :

f(x) ≈ f(a) + f ′
(a)(x − a).

The tangent line and the curve have the same slope at x = a. As Figure 10.1 suggests, the tangent
line approximation to the function is generally more accurate for values of x close to a.

a x
x

Tangent line

�
�

f(a) �
�
f(a)

�� x− a
�
�
f ′(a)(x− a)

True value f(x)

	

Approximate value of f(x)

Figure 10.1: Tangent line approximation of f(x) for x near a

We first focus on a = 0. The tangent line approximation at x = 0 is referred to as the first
Taylor approximation at x = 0, or as follows:

Taylor Polynomial of Degree 1 Approximating f(x) for x near 0

f(x) ≈ P1(x) = f(0) + f ′
(0)x

Example 1 Find the Taylor polynomial of degree 1 for g(x) = cosx, with x in radians, for x near 0.

Solution The tangent line at x = 0 is just the horizontal line y = 1, as shown in Figure 10.2, so P1(x) = 1.
We have

g(x) = cosx ≈ 1, for x near 0.

If we take x = 0.05, then
g(0.05) = cos(0.05) = 0.998 . . . ,

which is quite close to the approximation cosx ≈ 1. Similarly, if x = −0.1, then

g(−0.1) = cos(−0.1) = 0.995 . . .

is close to the approximation cosx ≈ 1. However, if x = 0.4, then

g(0.4) = cos(0.4) = 0.921 . . . ,

so the approximation cosx ≈ 1 is less accurate. For x near 0, the graph suggests that the farther x
is from 0, the worse the approximation, cosx ≈ 1, is likely to be.

π−π

−1

x

y
y = 1

� cos x

Figure 10.2: Graph of cos x and its tangent line at x = 0
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The previous example shows that the Taylor polynomial of degree 1 might actually have degree
less than 1.

Quadratic Approximations

To get a more accurate approximation, we use a quadratic function instead of a linear function.

Example 2 Find the quadratic approximation to g(x) = cosx for x near 0.

Solution To ensure that the quadratic, P2(x), is a good approximation to g(x) = cosx at x = 0, we require
that cosx and the quadratic have the same value, the same slope, and the same second derivative at
x = 0. That is, we require P2(0) = g(0), P ′

2(0) = g′(0), and P ′′
2 (0) = g′′(0). We take the quadratic

polynomial
P2(x) = C0 + C1x+ C2x

2

and determine C0, C1, and C2. Since

P2(x) = C0 + C1x+ C2x
2 and g(x) = cosx

P ′
2(x) = C1 + 2C2x g′(x) = − sinx

P ′′
2 (x) = 2C2 g′′(x) = − cosx,

we have
C0 = P2(0) = g(0) = cos 0 = 1 so C0 = 1

C1 = P ′
2(0) = g′(0) = − sin 0 = 0 C1 = 0

2C2 = P ′′
2 (0) = g′′(0) = − cos 0 = −1, C2 = − 1

2 .

Consequently, the quadratic approximation is

cosx ≈ P2(x) = 1 + 0 · x−
1

2
x2

= 1−
x2

2
, for x near 0.

Figure 10.3 suggests that the quadratic approximation cosx ≈ P2(x) is better than the linear
approximation cosx ≈ P1(x) for x near 0. Let’s compare the accuracy of the two approximations.
Recall that P1(x) = 1 for all x. At x = 0.4, we have cos(0.4) = 0.921 . . . and P2(0.4) = 0.920,
so the quadratic approximation is a significant improvement over the linear approximation. The
magnitude of the error is about 0.001 instead of 0.08.

−π

−π
2

−√
2

√
2

π
2

π

−1

1

x

� P2(x) = 1− x2

2

�cos x

P1(x) = 1

Figure 10.3: Graph of cosx and its linear, P1(x), and quadratic, P2(x), approximations for x near 0

Generalizing the computations in Example 2, we define the second Taylor approximation at
x = 0.

Taylor Polynomial of Degree 2 Approximating f(x) for x near 0

f(x) ≈ P2(x) = f(0) + f ′
(0)x+

f ′′(0)

2
x2
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Higher-Degree Polynomials

In a small interval around x = 0, the quadratic approximation to a function is usually a better
approximation than the linear (tangent line) approximation. However, Figure 10.3 shows that the
quadratic can still bend away from the original function for large x. We can attempt to fix this by
using an approximating polynomial of higher degree. Suppose that we approximate a function f(x)
for x near 0 by a polynomial of degree n:

f(x) ≈ Pn(x) = C0 + C1x+ C2x
2
+ · · ·+ Cn−1x

n−1
+ Cnx

n.

We need to find the values of the constants: C0, C1, C2, . . . , Cn. To do this, we require that
the function f(x) and each of its first n derivatives agree with those of the polynomial Pn(x) at
the point x = 0. In general, the higher the degree of a Taylor polynomial, the larger the interval on
which the function and the polynomial remain close to each other.

To see how to find the constants, let’s take n = 3 as an example:

f(x) ≈ P3(x) = C0 + C1x+ C2x
2
+ C3x

3.

Substituting x = 0 gives
f(0) = P3(0) = C0.

Differentiating P3(x) yields
P ′
3(x) = C1 + 2C2x+ 3C3x

2,

so substituting x = 0 shows that
f ′
(0) = P ′

3(0) = C1.

Differentiating and substituting again, we get

P ′′
3 (x) = 2 · 1C2 + 3 · 2 · 1C3x,

which gives
f ′′

(0) = P ′′
3 (0) = 2 · 1C2,

so that

C2 =
f ′′(0)

2 · 1
.

The third derivative, denoted by P ′′′
3 , is

P ′′′
3 (x) = 3 · 2 · 1C3,

so

f ′′′
(0) = P ′′′

3 (0) = 3 · 2 · 1C3,

and then

C3 =
f ′′′(0)

3 · 2 · 1
.

You can imagine a similar calculation starting with P4(x) and using the fourth derivative f (4),
which would give

C4 =
f (4)(0)

4 · 3 · 2 · 1
,

and so on. Using factorial notation,1 we write these expressions as

C3 =
f ′′′(0)

3!
, C4 =

f (4)(0)

4!
.

1Recall that k! = k(k − 1) · · · 2 · 1. In addition, 1! = 1, and 0! = 1.
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Writing f (n) for the nth derivative of f , we have, for any positive integer n,

Cn =
f (n)(0)

n!
.

So we define the nth Taylor approximation at x = 0:

Taylor Polynomial of Degree n Approximating f(x) for x near 0

f(x) ≈ Pn(x)

= f(0) + f ′
(0)x+

f ′′(0)

2!
x2

+
f ′′′(0)

3!
x3

+
f (4)(0)

4!
x4

+ · · ·+
f (n)(0)

n!
xn

We call Pn(x) the Taylor polynomial of degree n centered at x = 0 or the Taylor polynomial
about (or around) x = 0.

Example 3 Construct the Taylor polynomial of degree 7 approximating the function f(x) = sinx for x near 0.
Compare the value of the Taylor approximation with the true value of f at x = π/3.

Solution We have
f(x) = sinx giving f(0) = 0

f ′(x) = cosx f ′(0) = 1

f ′′(x) = − sinx f ′′(0) = 0

f ′′′(x) = − cosx f ′′′(0) = −1

f (4)(x) = sinx f (4)(0) = 0

f (5)(x) = cosx f (5)(0) = 1

f (6)(x) = − sinx f (6)(0) = 0

f (7)(x) = − cosx f (7)(0) = −1.

Using these values, we see that the Taylor polynomial approximation of degree 7 is

sinx ≈ P7(x) = 0 + 1 · x+
0

2!
· x2 −

1

3!
· x3

+
0

4!
· x4

+
1

5!
· x5

+
0

6!
· x6 −

1

7!
· x7

= x−
x3

3!
+

x5

5!
−

x7

7!
, for x near 0.

Notice that since f (8)(0) = 0, the seventh and eighth Taylor approximations to sinx are the same.
In Figure 10.4 we show the graphs of the sine function and the approximating polynomial of

degree 7 for x near 0. They are indistinguishable where x is close to 0. However, as we look at values
of x farther away from 0 in either direction, the two graphs move apart. To check the accuracy of this
approximation numerically, we see how well it approximates sin(π/3) =

√
3/2 = 0.8660254 . . . .

−π π
3

π

−1

1

x

P7(x) sin x

P7(x)sin x

Figure 10.4: Graph of sin x and its seventh-degree Taylor polynomial, P7(x), for x near 0

When we substitute π/3 = 1.0471976 . . . into the polynomial approximation, we obtain P7(π/3) =
0.8660213 . . . , which is extremely accurate—to about four parts in a million.

Example 4 Graph the Taylor polynomial of degree 8 approximating g(x) = cosx for x near 0.
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Solution We find the coefficients of the Taylor polynomial by the method of the preceding example, giving

cosx ≈ P8(x) = 1−
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
.

Figure 10.5 shows that P8(x) is close to the cosine function for a larger interval of x-values than
the quadratic approximation P2(x) = 1− x2/2 in Example 2 on page 539.

−π π
−1

1

x

cos xcos x

P8(x) P8(x)

P2(x) P2(x)

Figure 10.5: P8(x) approximates cos x better than P2(x) for x near 0

Example 5 Construct the Taylor polynomial of degree 10 about x = 0 for the function f(x) = ex.

Solution We have f(0) = 1. Since the derivative of ex is equal to ex, all the higher-order derivatives are equal
to ex. Consequently, for any k = 1, 2, . . . , 10, f (k)(x) = ex and f (k)(0) = e0 = 1. Therefore, the
Taylor polynomial approximation of degree 10 is given by

ex ≈ P10(x) = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+ · · ·+

x10

10!
, for x near 0.

To check the accuracy of this approximation, we use it to approximate e = e1 = 2.718281828 . . ..
Substituting x = 1 gives P10(1) = 2.718281801. Thus, P10 yields the first seven decimal places
for e. For large values of x, however, the accuracy diminishes because ex grows faster than any
polynomial as x → ∞. Figure 10.6 shows graphs of f(x) = ex and the Taylor polynomials of
degree n = 0, 1, 2, 3, 4. Notice that each successive approximation remains close to the exponential
curve for a larger interval of x-values.

−4 −2 2 4

−10

10

20

x

P4

P2

P0

P1

P3

ex P4 P3 P2

P1

P0

ex

Figure 10.6: For x near 0, the value of ex is more closely approximated by higher-degree Taylor polynomials

Example 6 Construct the Taylor polynomial of degree n approximating f(x) =
1

1− x
for x near 0.

Solution Differentiating gives f(0) = 1, f ′(0) = 1, f ′′(0) = 2, f ′′′(0) = 3!, f (4)(0) = 4!, and so on. This
means

1

1− x
≈ Pn(x) = 1 + x+ x2

+ x3
+ x4

+ · · ·+ xn, for x near 0.

Let us compare the Taylor polynomial with the formula obtained from the sum of a finite geometric
series on page 500:
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1− xn+1

1− x
= 1 + x+ x2

+ x3
+ x4

+ · · ·+ xn.

If x is close to 0 and xn+1 is small enough to neglect, the formula for the sum of a finite geometric
series gives us the Taylor approximation of degree n:

1

1− x
≈ 1 + x+ x2

+ x3
+ x4

+ · · ·+ xn.

Taylor Polynomials Around x = a

Suppose we want to approximate f(x) = lnx by a Taylor polynomial. This function has no Taylor
polynomial about x = 0 because the function is not defined for x ≤ 0. However, it turns out that
we can construct a polynomial centered about some other point, x = a.

First, let’s look at the equation of the tangent line at x = a:

y = f(a) + f ′
(a)(x − a).

This gives the first Taylor approximation

f(x) ≈ f(a) + f ′
(a)(x− a) for x near a.

The f ′(a)(x−a) term is a correction term that approximates the change in f as x moves away from
a.

Similarly, the Taylor polynomial Pn(x) centered at x = a is set up as f(a) plus correction
terms that are zero for x = a. This is achieved by writing the polynomial in powers of (x − a)
instead of powers of x:

f(x) ≈ Pn(x) = C0 + C1(x− a) + C2(x− a)2 + · · ·+ Cn(x− a)n.

If we require n derivatives of the approximating polynomial Pn(x) and the original function f(x)
to agree at x = a, we get the following result for the nth Taylor approximation at x = a:

Taylor Polynomial of Degree n Approximating f(x) for x near a

f(x) ≈ Pn(x)

= f(a) + f ′
(a)(x− a) +

f ′′(a)

2!
(x − a)2 + · · ·+

f (n)(a)

n!
(x− a)n

We call Pn(x) the Taylor polynomial of degree n centered at x = a or the Taylor polyno-
mial about x = a.

You can derive the formula for these coefficients in the same way that we did for a = 0. (See
Problem 34, page 545.)

Example 7 Construct the Taylor polynomial of degree 4 approximating the function f(x) = lnx for x near 1.

Solution We have
f(x) = lnx so f(1) = ln(1) = 0

f ′(x) = 1/x f ′(1) = 1

f ′′(x) = −1/x2 f ′′(1) = −1

f ′′′(x) = 2/x3 f ′′′(1) = 2

f (4)(x) = −6/x4, f (4)(1) = −6.

The Taylor polynomial is therefore

lnx ≈ P4(x) = 0 + (x− 1)−
(x − 1)2

2!
+ 2

(x− 1)3

3!
− 6

(x− 1)4

4!

= (x− 1)−
(x − 1)2

2
+

(x− 1)3

3
−

(x− 1)4

4
, for x near 1.
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1 2 3

1

x

P1(x)P3(x)

ln x

P2(x)

P4(x)
P1(x)

P2(x)

ln x

� P4(x)

P3(x)

Figure 10.7: Taylor polynomials approximate lnx closely for x near 1, but not necessarily farther away

Graphs of lnx and several of its Taylor polynomials are shown in Figure 10.7. Notice that
P4(x) stays reasonably close to lnx for x near 1, but bends away as x gets farther from 1. Also,
note that the Taylor polynomials are defined for x ≤ 0, but lnx is not.

The examples in this section suggest that the following results are true for common functions:
• Taylor polynomials centered at x = a give good approximations to f(x) for x near a. Farther

away, they may or may not be good.

• The higher the degree of the Taylor polynomial, the larger the interval over which it fits the
function closely.

Exercises and Problems for Section 10.1
Exercises

For Exercises 1–10, find the Taylor polynomials of degree n
approximating the functions for x near 0. (Assume p is a con-
stant.)

1.
1

1− x
, n = 3, 5, 7 2.

1

1 + x
, n = 4, 6, 8

3.
√
1 + x, n = 2, 3, 4 4. 3

√
1− x, n = 2, 3, 4

5. cosx, n = 2, 4, 6 6. ln(1+x), n = 5, 7, 9

7. arctan x, n = 3, 4 8. tanx, n = 3, 4

9.
1√
1 + x

, n = 2, 3, 4 10. (1 + x)p, n = 2, 3, 4

For Exercises 11–16, find the Taylor polynomial of degree n
for x near the given point a.

11.
√
1− x, a = 0, n = 3

12. ex, a = 1, n = 4

13.
1

1 + x
, a = 2, n = 4

14. cos x, a = π/2, n = 4

15. sin x, a = −π/4, n = 3

16. ln(x2), a = 1, n = 4

Problems

17. The Taylor polynomial of degree 7 of f(x) is given by

P7(x) = 1− x

3
+

5x2

7
+ 8x3 − x5

11
+ 8x7.

Find the Taylor polynomial of degree 3 of f(x).

18. The function f(x) is approximated near x = 0 by the
third-degree Taylor polynomial

P3(x) = 2− x− x2/3 + 2x3.

Give the value of

(a) f(0) (b) f ′(0)

(c) f ′′(0) (d) f ′′′(0)

19. Find the second-degree Taylor polynomial for f(x) =
4x2 − 7x+ 2 about x = 0. What do you notice?

20. Find the third-degree Taylor polynomial for f(x) =
x3+7x2−5x+1 about x = 0. What do you notice?

21. (a) Based on your observations in Problems 19–20,
make a conjecture about Taylor approximations in
the case when f is itself a polynomial.

(b) Show that your conjecture is true.

22. Find the value of f (5)(1) if f(x) is approximated near
x = 1 by the Taylor polynomial

p(x) =

10∑
n=0

(x− 1)n

n!
.
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In Problems 23–24, find a simplified formula for P5(x), the
fifth-degree Taylor polynomial approximating f near x = 0.

23. Use the values in the table.

f(0) f ′(0) f ′′(0) f ′′′(0) f(4)(0) f(5)(0)

−3 5 −2 0 −1 4

24. Let f(0) = −1 and, for n > 0, f (n)(0) = −(−2)n.

For Problems 25–28, suppose P2(x) = a + bx + cx2 is
the second-degree Taylor polynomial for the function f about
x = 0. What can you say about the signs of a, b, and c if f
has the graph given below?

25.

x

f(x)
26.

x

f(x)

27.

x

f(x) 28.

x

f(x)

29. Use the Taylor approximation for x near 0,

sin x ≈ x− x3

3!
,

to explain why lim
x→0

sin x

x
= 1.

30. Use the fourth-degree Taylor approximation for x near 0,

cos x ≈ 1− x2

2!
+

x4

4!
,

to explain why lim
x→0

1− cos x

x2
=

1

2
.

31. Use a fourth-degree Taylor approximation for eh, for h
near 0, to evaluate the following limits. Would your an-
swer be different if you used a Taylor polynomial of
higher degree?

(a) lim
h→0

eh − 1− h

h2

(b) lim
h→0

eh − 1− h− h2

2

h3

32. If f(2) = g(2) = h(2) = 0, and f ′(2) = h′(2) = 0,
g′(2) = 22, and f ′′(2) = 3, g′′(2) = 5, h′′(2) = 7,
calculate the following limits. Explain your reasoning.

(a) lim
x→2

f(x)

h(x)
(b) lim

x→2

f(x)

g(x)

33. One of the two sets of functions, f1, f2, f3, or g1, g2,
g3, is graphed in Figure 10.8; the other set is graphed in
Figure 10.9. Points A and B each have x = 0. Taylor
polynomials of degree 2 approximating these functions
near x = 0 are as follows:

f1(x) ≈ 2 + x+ 2x2 g1(x) ≈ 1 + x+ 2x2

f2(x) ≈ 2 + x− x2 g2(x) ≈ 1 + x+ x2

f3(x) ≈ 2 + x+ x2 g3(x) ≈ 1− x+ x2.

(a) Which group of functions, the fs or the gs, is repre-
sented by each figure?

(b) What are the coordinates of the points A and B?
(c) Match each function with the graphs (I)–(III) in the

appropriate figure.

A
I

IIIII

Figure 10.8

B

II

I

III

Figure 10.9

34. Derive the formulas given in the box on page 543 for
the coefficients of the Taylor polynomial approximating
a function f for x near a.

35. (a) Find and multiply the Taylor polynomials of degree
1 near x = 0 for the two functions f(x) = 1/(1−x)
and g(x) = 1/(1− 2x).

(b) Find the Taylor polynomial of degree 2 near x = 0
for the function h(x) = f(x)g(x).

(c) Is the product of the Taylor polynomials for f(x)
and g(x) equal to the Taylor polynomial for the
function h(x)?

36. (a) Find and multiply the Taylor polynomials of degree
1 near x = 0 for the two functions f(x) and g(x).

(b) Find the Taylor polynomial of degree 2 near x = 0
for the function h(x) = f(x)g(x).

(c) Show that the product of the Taylor polynomials
for f(x) and g(x) and the Taylor polynomial for
the function h(x) are the same if f ′′(0)g(0) +
f(0)g′′(0) = 0.

37. (a) Find the Taylor polynomial approximation of degree
4 about x = 0 for the function f(x) = ex

2

.
(b) Compare this result to the Taylor polynomial ap-

proximation of degree 2 for the function f(x) = ex

about x = 0. What do you notice?
(c) Use your observation in part (b) to write out the Tay-

lor polynomial approximation of degree 20 for the
function in part (a).

(d) What is the Taylor polynomial approximation of de-
gree 5 for the function f(x) = e−2x?



546 Chapter Ten APPROXIMATING FUNCTIONS USING SERIES

38. The integral
∫ 1

0
(sin t/t) dt is difficult to approximate

using, for example, left Riemann sums or the trapezoid
rule because the integrand (sin t)/t is not defined at
t = 0. However, this integral converges; its value is
0.94608 . . . . Estimate the integral using Taylor polyno-
mials for sin t about t = 0 of

(a) Degree 3 (b) Degree 5

39. Consider the equations sin x = 0.2 and x− x3

3!
= 0.2.

(a) How many solutions does each equation have?
(b) Which of the solutions of the two equations are ap-

proximately equal? Explain.

40. When we model the motion of a pendulum, we replace

the differential equation

d2θ

dt2
= −g

l
sin θ by

d2θ

dt2
= −g

l
θ,

where θ is the angle between the pendulum and the ver-
tical. Explain why, and under what circumstances, it is
reasonable to make this replacement.

41. (a) Using a graph, explain why the following equation
has a solution at x = 0 and another just to the right
of x = 0:

cosx = 1− 0.1x.

(b) Replace cosx by its second-degree Taylor polyno-
mial near 0 and solve the equation. Your answers
are approximations to the solutions to the original
equation at or near 0.

Strengthen Your Understanding

In Problems 42–43, explain what is wrong with the statement.

42. If f(x) = ln(2+x), then the second-degree Taylor poly-
nomial approximating f(x) near x = 0 has a negative
constant term.

43. Let f(x) =
1

1− x
. The coefficient of the x term of the

Taylor polynomial of degree 3 approximating f(x) near
x = 0 is −1.

In Problems 44–45, give an example of:

44. A function f(x) for which every Taylor polynomial ap-
proximation near x = 0 involves only odd powers of x.

45. A third-degree Taylor polynomial near x = 1 approxi-
mating a function f(x) with f ′(1) = 3.

Decide if the statements in Problems 46–53 are true or false.
Give an explanation for your answer.

46. If f(x) and g(x) have the same Taylor polynomial of de-
gree 2 near x = 0, then f(x) = g(x).

47. Using sin θ ≈ θ−θ3/3! with θ = 1◦, we have sin(1◦) ≈
1− 13/6 = 5/6.

48. The Taylor polynomial of degree 2 for ex near x = 5 is
1 + (x− 5) + (x− 5)2/2.

49. If the Taylor polynomial of degree 2 for f(x) near x = 0
is P2(x) = 1 + x − x2, then f(x) is concave up near
x = 0.

50. The quadratic approximation to f(x) for x near 0 is bet-
ter than the linear approximation for all values of x.

51. A Taylor polynomial for f near x = a touches the graph
of f only at x = a.

52. The linear approximation to f(x) near x = −1 shows
that if f(−1) = g(−1) and f ′(−1) < g′(−1), then
f(x) < g(x) for all x sufficiently close to −1 (but not
equal to −1).

53. The quadratic approximation to f(x) near x = −1
shows that if f(−1) = g(−1), f ′(−1) = g′(−1), and
f ′′(−1) < g′′(−1), then f(x) < g(x) for all x suffi-
ciently close to −1 (but not equal to −1).

10.2 TAYLOR SERIES

In the previous section we saw how to approximate a function near a point by Taylor polynomials.
Now we define a Taylor series, which is a power series that can be thought of as a Taylor polynomial
that goes on forever.

Taylor Series for cos x, sin x, e
x

We have the following Taylor polynomials centered at x = 0 for cosx:

cosx ≈ P0(x) = 1

cosx ≈ P2(x) = 1−
x2

2!

cosx ≈ P4(x) = 1−
x2

2!
+

x4

4!
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cosx ≈ P6(x) = 1−
x2

2!
+

x4

4!
−

x6

6!

cosx ≈ P8(x) = 1−
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
.

Here we have a sequence of polynomials, P0(x), P2(x), P4(x), P6(x), P8(x), ..., each of which is a
better approximation to cosx than the last, for x near 0. When we go to a higher-degree polynomial
(say from P6 to P8), we add more terms (x8/8!, for example), but the terms of lower degree don’t
change. Thus, each polynomial includes the information from all the previous ones. We represent
the whole sequence of Taylor polynomials by writing the Taylor series for cosx:

1−
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
− · · · .

Notice that the partial sums of this series are the Taylor polynomials, Pn(x).
We define the Taylor series for sinx and ex similarly. It turns out that, for these functions, the

Taylor series converges to the function for all x, so we can write the following:

sinx = x−
x3

3!
+

x5

5!
−

x7

7!
+

x9

9!
− · · ·

cosx = 1−
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
− · · ·

ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

These series are also called Taylor expansions of the functions sinx, cosx, and ex about x = 0. The
general term of a Taylor series is a formula which gives any term in the series. For example, xn/n!
is the general term in the Taylor expansion for ex, and (−1)kx2k/(2k)! is the general term in the
expansion for cosx. We call n or k the index.

Taylor Series in General
Any function f , all of whose derivatives exist at 0, has a Taylor series. However, the Taylor series
for f does not necessarily converge to f(x) for all values of x. For the values of x for which the
series does converge to f(x), we have the following formula:

Taylor Series for f(x) About x = 0

f(x) = f(0) + f ′
(0)x+

f ′′(0)

2!
x2

+
f ′′′(0)

3!
x3

+ · · ·+
f (n)(0)

n!
xn

+ · · ·

In addition, just as we have Taylor polynomials centered at points other than 0, we can also
have a Taylor series centered at x = a (provided all the derivatives of f exist at x = a). For the
values of x for which the series converges to f(x), we have the following formula:

Taylor Series for f(x) About x = a

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · ·+ f (n)(a)

n!
(x− a)n + · · ·
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The Taylor series is a power series whose partial sums are the Taylor polynomials. As we saw in
Section 9.5, power series generally converge on an interval centered at x = a.

For a given function f and a given x, even if the Taylor series converges, it might not converge
to f(x). However, the Taylor series for most common functions, including ex, cosx, and sinx, do
converge to the original function for all x. See Section 10.4.

Convergence of Taylor Series
Let us look again at the Taylor polynomial for lnx about x = 1 that we derived in Example 7 on
page 543. A similar calculation gives the Taylor series

lnx = (x− 1)−
(x− 1)2

2
+

(x− 1)3

3
−

(x − 1)4

4
+ · · ·+ (−1)

n−1 (x− 1)n

n
+ · · · .

Example 4 on page 525 and Example 5 on page 525 show that this power series has interval of
convergence 0 < x ≤ 2. However, although we know that the series converges in this interval,
we do not yet know that its sum is lnx. The fact that in Figure 10.10 the polynomials fit the curve
well for 0 < x < 2 suggests that the Taylor series does converge to lnx for 0 < x ≤ 2. For such
x-values, a higher-degree polynomial gives, in general, a better approximation.

However, when x > 2, the polynomials move away from the curve and the approximations get
worse as the degree of the polynomial increases. Thus, the Taylor polynomials are effective only
as approximations to lnx for values of x between 0 and 2; outside that interval, they should not
be used. Inside the interval, but near the ends, 0 or 2, the polynomials converge very slowly. This
means we might have to take a polynomial of very high degree to get an accurate value for lnx.

1 2

�� Convergence to lnx

3 4
x

�P5(x)

ln x P8(x) P6(x)

�P6(x)
�P7(x)
�P8(x)

P7(x) P5(x)

ln x

Figure 10.10: Taylor polynomials P5(x), P6(x), P7(x), P8(x), . . . converge to ln x for 0 < x ≤ 2 and
diverge outside that interval

Proving that the Taylor series converges to lnx between 0 and 2, as Figure 10.10 suggests,
requires the error term introduced in Section 10.4.

Example 1 Find the Taylor series for ln(1 + x) about x = 0, and investigate its convergence to ln(1 + x).

Solution Taking derivatives of ln(1 + x) and substituting x = 0 leads to the Taylor series

ln(1 + x) = x−
x2

2
+

x3

3
−

x4

4
+ · · · .

Notice that this is the same series that we get by substituting (1 + x) for x in the series for lnx:

lnx = (x − 1)−
(x− 1)2

2
+

(x− 1)3

3
−

(x− 1)4

4
+ · · · for 0 < x ≤ 2.
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Since the series for lnx about x = 1 converges to lnx for x between 0 and 2, the Taylor series for
ln(1 + x) about x = 0 converges to ln(1 + x) for x between −1 and 1. Notice that the series could
not possibly converge to ln(1 + x) for x ≤ −1 since ln(1 + x) is not defined there.

−1 1

�� Convergence to
ln(1 + x)

x

ln(1 + x)

P5(x)P7(x)P9(x)

P8(x) P6(x)

�P5(x)

� ln(1 + x)

� P9(x)
�P8(x)

�P7(x)

�P6(x)

Figure 10.11: Convergence of the Taylor series for ln(1 + x)

The Binomial Series Expansion
We now find the Taylor series about x = 0 for the function f(x) = (1 + x)p, with p a constant, but
not necessarily a positive integer. Taking derivatives:

f(x) = (1 + x)p so f(0) = 1

f ′(x) = p(1 + x)p−1 f ′(0) = p

f ′′(x) = p(p− 1)(1 + x)p−2 f ′′(0) = p(p− 1)

f ′′′(x) = p(p− 1)(p− 2)(1 + x)p−3, f ′′′(0) = p(p− 1)(p− 2).

Thus, the third-degree Taylor polynomial for x near 0 is

(1 + x)p ≈ P3(x) = 1 + px+
p(p− 1)

2!
x2

+
p(p− 1)(p− 2)

3!
x3.

Graphing P3(x), P4(x), . . . for various specific values of p suggests that the Taylor polynomials
converge to f(x) for −1 < x < 1. (See Problems 26–27, page 551.) The Taylor series for f(x) =
(1 + x)p about x = 0 is as follows:

The Binomial Series

(1 + x)p = 1 + px+
p(p− 1)

2!
x2

+
p(p− 1)(p− 2)

3!
x3

+ · · · for −1 < x < 1.

In fact, when p is a positive integer, the binomial series gives the same result as multiplying
(1 + x)p out. (Newton discovered that the binomial series can be used for noninteger exponents.)
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Example 2 Find the Taylor series about x = 0 for
1

1 + x
.

Solution Since
1

1 + x
= (1 + x)−1, use the binomial series with p = −1. Then

1

1 + x
= (1 + x)−1

= 1 + (−1)x+
(−1)(−2)

2!
x2

+
(−1)(−2)(−3)

3!
x3

+ · · ·

= 1− x+ x2 − x3
+ · · · for −1 < x < 1.

This series is both a special case of the binomial series and an example of a geometric series. It
converges for −1 < x < 1.

Example 3 Find the Taylor series about x = 0 for
√
1 + x.

Solution Since
√
1 + x = (1 + x)1/2, we use the binomial series with p = 1/2. Then

f(x) =
√
1 + x = 1 +

1

2
x+

(12 )(−
1
2 )x

2

2!
+

(12 )(−
1
2 )(−

3
2 )x

3

3!
+ · · ·

= 1 +
1

2
x+

(− 1
4 )x

2

2!
+

(38 )x
3

3!
+ · · ·

= 1 +
x

2
−

x2

8
+

x3

16
+ · · · .

Exercises and Problems for Section 10.2
Exercises

For Exercises 1–7, find the first four nonzero terms of the Tay-
lor series for the function about 0.

1. (1 + x)3/2 2. 4
√
x+ 1

3. sin(−x) 4. ln(1− x)

5.
1

1− x
6.

1√
1 + x

7. 3
√
1− y

For Exercises 8–15, find the first four terms of the Taylor se-
ries for the function about the point a.

8. sin x, a = π/4 9. cos θ, a = π/4

10. cos t, a = π/6 11. sin θ, a = −π/4

12. tan x, a = π/4 13. 1/x, a = 1

14. 1/x, a = 2 15. 1/x, a = −1

In Exercises 16–23, find an expression for the general term of
the series and give the range of values for the index (n or k,
for example).

16.
1

1− x
= 1 + x+ x2 + x3 + x4 + · · ·

17.
1

1 + x
= 1− x+ x2 − x3 + x4 − · · ·

18. ln(1− x) = −x− x2

2
− x3

3
− x4

4
− · · ·

19. ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+

x5

5
− · · ·

20. sin x = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

21. arctan x = x− x3

3
+

x5

5
− x7

7
+ · · ·

22. ex
2

= 1 + x2 +
x4

2!
+

x6

3!
+

x8

4!
+ · · ·

23. x2 cos x2 = x2 − x6

2!
+

x10

4!
− x14

6!
+ · · ·

24. Compute the binomial series expansion for (1 + x)3.
What do you notice?
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Problems

25. By graphing the function f(x) =
1√
1 + x

and several

of its Taylor polynomials, estimate the interval of con-
vergence of the series you found in Exercise 6.

26. By graphing the function f(x) =
√
1 + x and several

of its Taylor polynomials, estimate where the series we
found in Example 3 converges to

√
1 + x.

27. (a) By graphing the function f(x) =
1

1− x
and several

of its Taylor polynomials, estimate where the series
you found in Exercise 5 converges to 1/(1− x) .

(b) Compute the radius of convergence analytically.

28. Find the radius of convergence of the Taylor series
around x = 0 for ex.

29. Find the radius of convergence of the Taylor series
around x = 0 for ln(1− x).

30. (a) Write the general term of the binomial series for
(1 + x)p about x = 0.

(b) Find the radius of convergence of this series.

31. Using the Taylor series for f(x) = ex around 0, compute
the following limit:

lim
x→0

ex − 1

x
.

32. Use the fact that the Taylor series of g(x) = sin(x2) is

x2 − x6

3!
+

x10

5!
− x14

7!
+ · · ·

to find g′′(0), g′′′(0), and g(10)(0). (There is an easy way
and a hard way to do this!)

33. The Taylor series of f(x) = x2ex
2

about x = 0 is

x2 + x4 +
x6

2!
+

x8

3!
+

x10

4!
+ · · · .

Find
d

dx

(
x2ex

2
) ∣∣∣∣

x=0

and
d6

dx6

(
x2ex

2
) ∣∣∣∣

x=0

.

34. One of the two sets of functions, f1, f2, f3, or g1, g2,
g3 is graphed in Figure 10.12; the other set is graphed in
Figure 10.13. Taylor series for the functions about a point
corresponding to either A or B are as follows:

f1(x) = 3 + (x− 1)− (x− 1)2 + · · ·
f2(x) = 3− (x− 1) + (x− 1)2 + · · ·
f3(x) = 3− 2(x− 1) + (x− 1)2 + · · ·
g1(x) = 5− (x− 4)− (x− 4)2 + · · ·
g2(x) = 5− (x− 4) + (x− 4)2 + · · ·
g3(x) = 5 + (x− 4) + (x− 4)2 + · · · .

(a) Which group of functions is represented in each fig-
ure?

(b) What are the coordinates of the points A and B?
(c) Match each function with the graphs (I)–(III) in the

appropriate figure.

A

I

II

III

Figure 10.12

B

III

II

I

Figure 10.13

By recognizing each series in Problems 35–43 as a Taylor se-
ries evaluated at a particular value of x, find the sum of each
of the following convergent series.

35. 1 +
2

1!
+

4

2!
+

8

3!
+ · · ·+ 2n

n!
+ · · ·

36.1− 1

3!
+

1

5!
− 1

7!
+ · · ·+ (−1)n

(2n+ 1)!
+ · · ·

37. 1 +
1

4
+
(
1

4

)2
+
(
1

4

)3
+ · · ·+

(
1

4

)n
+ · · ·

38.1− 100

2!
+

10000

4!
+ · · ·+ (−1)n · 102n

(2n)!
+ · · ·

39.
1

2
− ( 1

2
)2

2
+

( 1
2
)3

3
− ( 1

2
)4

4
+ · · ·+ (−1)n · ( 1

2
)n+1

(n+ 1)
+ · · ·

40. 1− 0.1 + 0.12 − 0.13 + · · ·
41. 1 + 3 +

9

2!
+

27

3!
+

81

4!
+ · · ·

42. 1− 1

2!
+

1

4!
− 1

6!
+ · · ·

43. 1− 0.1 +
0.01

2!
− 0.001

3!
+ · · ·

In Problems 44–45 solve exactly for the variable.

44. 1 + x+ x2 + x3 + · · · = 5

45. x− 1

2
x2 +

1

3
x3 + · · · = 0.2

46. Let i =
√−1. We define eiθ by substituting iθ in the

Taylor series for ex. Use this definition2 to explain Eu-
ler’s formula

eiθ = cos θ + i sin θ.

2Complex numbers are discussed in Appendix B.
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Strengthen Your Understanding

In Problems 47–48, explain what is wrong with the statement.

47. Since
1

1− x
= 1 + x+ x2 + x3 + · · · ,

we conclude that
1

1− 2
= 1 + 2 + 22 + 23 + · · · .

48. The radius of convergence is 2 for the following Taylor
series: 1 + (x− 3) + (x− 3)2 + (x− 3)3 + · · ·.

In Problems 49–50, give an example of:

49. A function with a Taylor series whose third-degree term
is zero.

50. A Taylor series that is convergent at x = −1.

Decide if the statements in Problems 51–55 are true or false.
Assume that the Taylor series for a function converges to that
function. Give an explanation for your answer.

51. The Taylor series for sin x about x = π is

(x− π)− (x− π)3

3!
+

(x− π)5

5!
− · · · .

52. If f is an even function, then the Taylor series for f near
x = 0 has only terms with even exponents.

53. If f has the following Taylor series about x = 0, then
f (7)(0) = −8:

f(x) = 1− 2x+
3

2!
x2 − 4

3!
x3 + · · · .

(Assume the pattern of the coefficients continues.)

54. The Taylor series for f converges everywhere f is de-
fined.

55. The graphs of ex and its Taylor polynomial P10(x) get
further and further apart as x → ∞.

10.3 FINDING AND USING TAYLOR SERIES

Finding a Taylor series for a function means finding the coefficients. Assuming the function has all
its derivatives defined, finding the coefficients can always be done, in theory at least, by differentia-
tion. That is how we derived the four most important Taylor series, those for the functions ex, sinx,
cosx, and (1 + x)p.

For many functions, however, computing Taylor series coefficients by differentiation can be a
very laborious business. We now introduce easier ways of finding Taylor series, if the series we want
is closely related to a series that we already know.

New Series by Substitution

Suppose we want to find the Taylor series for e−x2

about x = 0. We could find the coefficients
by differentiation. Differentiating e−x2

by the chain rule gives −2xe−x2

, and differentiating again
gives −2e−x2

+ 4x2e−x2

. Each time we differentiate we use the product rule, and the number of
terms grows. Finding the tenth or twentieth derivative of e−x2

, and thus the series for e−x2

up to
the x10 or x20 terms, by this method is tiresome (at least without a computer or calculator that can
differentiate).

Fortunately, there’s a quicker way. Recall that

ey = 1 + y +
y2

2!
+

y3

3!
+

y4

4!
+ · · · for all y.

Substituting y = −x2 tells us that

e−x2

= 1 + (−x2
) +

(−x2)2

2!
+

(−x2)3

3!
+

(−x2)4

4!
+ · · ·

= 1− x2
+

x4

2!
−

x6

3!
+

x8

4!
− · · · for all x.

Using this method, it is easy to find the series up to the x10 or x20 terms. It can be shown that this
is the Taylor series for e−x2

.
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Example 1 Find the Taylor series about x = 0 for f(x) =
1

1 + x2
.

Solution The binomial series tells us that
1

1 + y
= (1 + y)−1

= 1− y + y2 − y3 + y4 − · · · for −1 < y < 1.

Substituting y = x2 gives

1

1 + x2
= 1− x2

+ x4 − x6
+ x8 − · · · for −1 < x < 1,

which is the Taylor series for
1

1 + x2
.

New Series by Differentiation and Integration
Just as we can get new series by substitution, we can also get new series by differentiation and
integration. Term-by-term differentiation of a Taylor series for f(x) gives a Taylor series for f ′(x);
antidifferentiation works similarly.

Example 2 Find the Taylor Series about x = 0 for
1

(1− x)
2 from the series for

1

1− x
.

Solution We know that
d

dx

(
1

1− x

)
=

1

(1− x)
2 , so we start with the geometric series

1

1− x
= 1 + x+ x2

+ x3
+ x4

+ · · · for − 1 < x < 1.

Differentiation term by term gives the binomial series

1

(1− x)
2 =

d

dx

(
1

1− x

)
= 1 + 2x+ 3x2

+ 4x3
+ · · · for − 1 < x < 1.

Example 3 Find the Taylor series3 about x = 0 for arctanx from the series for
1

1 + x2
.

Solution We know that
d

dx
(arctanx) =

1

1 + x2
, so we use the series from Example 1:

d

dx
(arctanx) =

1

1 + x2
= 1− x2

+ x4 − x6
+ x8 − · · · for −1 < x < 1.

Antidifferentiating term by term gives

arctanx =

∫
1

1 + x2
dx = C + x−

x3

3
+

x5

5
−

x7

7
+

x9

9
− · · · for − 1 < x < 1,

where C is the constant of integration. Since arctan0 = 0, we have C = 0, so

arctanx = x−
x3

3
+

x5

5
−

x7

7
+

x9

9
− · · · for − 1 < x < 1.

Multiplying and Substituting Taylor Series
We can also form a Taylor series for a product of two functions. In some cases, this is easy; for
example, if we want to find the Taylor series about x = 0 for the function f(x) = x2 sinx, we can
start with the Taylor series for sinx,

sinx = x−
x3

3!
+

x5

5!
−

x7

7!
+ · · · ,

3The series for arctanx was discovered by James Gregory (1638–1675).
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and multiply the series by x2:

x2
sinx = x2

(
x−

x3

3!
+

x5

5!
−

x7

7!
+ · · ·

)

= x3 −
x5

3!
+

x7

5!
−

x9

7!
+ · · · .

However, in some cases, finding a Taylor series for a product of two functions requires more work.

Example 4 Find the Taylor series about x = 0 for g(x) = sinx cosx.

Solution The Taylor series about x = 0 for sinx and cosx are

sinx = x−
x3

3!
+

x5

5!
− · · ·

cosx = 1−
x2

2!
+

x4

4!
− · · · .

So we have

g(x) = sinx cosx =

(
x−

x3

3!
+

x5

5!
− · · ·

)(
1−

x2

2!
+

x4

4!
− · · ·

)
.

To multiply these two series, we must multiply each term of the series for sinx by each term of
the series for cosx. Because each series has infinitely many terms, we organize the process by first
determining the constant term of the product, then the linear term, and so on.

The constant term of this product is zero because there is no combination of a term from the
first series and a term from the second that yields a constant. The linear term of the product is x;
we obtain this term by multiplying the x from the first series by the 1 from the second. The degree-
2 term of the product is also zero; more generally, we notice that every even-degree term of the
product is zero because every combination of a term from the first series and a term from the second
yields an odd-degree term. To find the degree-3 term, observe that the combinations of terms that
yield degree-3 terms are x · −x2

2! = − 1
2x

3 and −x3

3! · 1 = − 1
6x

3, and thus the degree-3 term is
− 1

2x
3 − 1

6x
3 = − 2

3x
3. Continuing in this manner, we find that

g(x) = x−
2

3
x3

+
2

15
x5 − · · · .

There is another way to find this series. Notice that sinx cos x = 1
2 sin(2x). Substituting 2x into

the Taylor series about x = 0 for the sine function, we get

sin(2x) = 2x−
(2x)3

3!
+

(2x)5

5!
− · · ·

= 2x−
4

3
x3

+
4

15
x5 − · · · .

Therefore, we have

g(x) =
1

2
sin(2x) = x−

2

3
x3

+
2

15
x5 − · · · .

We can also obtain a Taylor series for a composite function by substituting a Taylor series into
another one, as in the next example.

Example 5 Find the Taylor series about θ = 0 for g(θ) = esin θ.

Solution For all y and θ, we know that

ey = 1 + y +
y2

2!
+

y3

3!
+

y4

4!
+ · · ·
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and

sin θ = θ −
θ3

3!
+

θ5

5!
− · · · .

Let’s substitute the series for sin θ for y:

esin θ
= 1+

(
θ −

θ3

3!
+

θ5

5!
− · · ·

)
+

1

2!

(
θ −

θ3

3!
+

θ5

5!
− · · ·

)2

+
1

3!

(
θ −

θ3

3!
+

θ5

5!
− · · ·

)3

+· · · .

To simplify, we multiply out and collect terms. The only constant term is the 1, and there’s only one
θ term. The only θ2 term is the first term we get by multiplying out the square, namely θ2/2!. There
are two contributors to the θ3 term: the −θ3/3! from within the first parentheses and the first term
we get from multiplying out the cube, which is θ3/3!. Thus the series starts

esin θ
= 1 + θ +

θ2

2!
+

(
−
θ3

3!
+

θ3

3!

)
+ · · ·

= 1 + θ +
θ2

2!
+ 0 · θ3 + · · · for all θ.

Applications of Taylor Series

Example 6 Use the series for arctanx to estimate the numerical value of π.

Solution Since arctan 1 = π/4, we use the series for arctanx from Example 3. We assume—as is the
case—that the series does converge to π/4 at x = 1. Substituting x = 1 into the series for arctanx
gives

π = 4 arctan 1 = 4

(
1−

1

3
+

1

5
−

1

7
+

1

9
− · · ·

)
.

Table 10.1 Approximating π using the series for arctanx

n 4 5 25 100 500 1000 10,000

Sn 2.895 3.340 3.182 3.132 3.140 3.141 3.141

Table 10.1 shows the value of the nth partial sum, Sn, obtained by summing the nonzero terms
from 1 through n. The values of Sn do seem to converge to π = 3.141 . . . . However, this series
converges very slowly, meaning that we have to take a large number of terms to get an accurate
estimate for π. So this way of calculating π is not particularly practical. (A better one is given in
Project 2, page 583.) However, the expression for π given by this series is surprising and elegant.

A basic question we can ask about two functions is which one gives larger values. Taylor series
can often be used to answer this question over a small interval. If the constant terms of the series for
two functions are the same, compare the linear terms; if the linear terms are the same, compare the
quadratic terms, and so on.

Example 7 By looking at their Taylor series, decide which of the following functions is largest for t near 0.

(a) et (b)
1

1− t

Solution The Taylor expansion about t = 0 for et is

et = 1 + t+
t2

2!
+

t3

3!
+ · · · .

Viewing 1/(1− t) as the sum of a geometric series with initial term 1 and common ratio t, we have

1

1− t
= 1 + t+ t2 + t3 + · · · for − 1 < t < 1.
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Notice that these two series have the same constant term and the same linear term. However, their
remaining terms are different. For values of t near zero, the quadratic terms dominate all of the
subsequent terms,4 so we can use the approximations

et ≈ 1 + t+
t2

2

1

1− t
≈ 1 + t+ t2.

Since

1 + t+
1

2
t2 < 1 + t+ t2,

and since the approximations are valid for t near 0, we conclude that, for t near 0,

et <
1

1− t
.

See Figure 10.14.

−1 1

3

1
1−t

et

t

y

Figure 10.14: Comparing two
functions near t = 0

Example 8 Two electrical charges of equal magnitude and opposite signs located near one another are called
an electrical dipole. The charges Q and −Q are a distance r apart. (See Figure 10.15.) The electric
field, E, at the point P , at a distance R from the dipole is given by

E =
Q

R2
−

Q

(R+ r)2
.

Use series to investigate the behavior of the electric field far to the left along the line through the
dipole. Show that when R is large in comparison to r, the electric field is approximately proportional
to 1/R3.

��
R

��
r

P Q −Q

Figure 10.15: Approximating the electric field at P due to a
dipole consisting of charges Q and −Q a distance r apart

Solution In order to use a series approximation, we need a variable whose value is small. Although we know
that r is much smaller than R, we do not know that r itself is small. The quantity r/R is, however,
very small. Hence we expand 1/(R+ r)2 in powers of r/R so that we can safely use only the first
few terms of the Taylor series. First we rewrite using algebra:

1

(R + r)2
=

1

R2(1 + r/R)2
=

1

R2

(
1 +

r

R

)−2

.

4To make this argument rigorous, we need the Lagrange error bound given in the next section.
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Now we use the binomial expansion for (1 + x)p with x = r/R and p = −2:

1

R2

(
1 +

r

R

)−2

=
1

R2

(
1 + (−2)

( r
R

)
+

(−2)(−3)

2!

( r
R

)2
+

(−2)(−3)(−4)

3!

( r
R

)3
+ · · ·

)

=
1

R2

(
1− 2

r

R
+ 3

r2

R2
− 4

r3

R3
+ · · ·

)
.

So, substituting the series into the expression for E, we have

E =
Q

R2
−

Q

(R + r)2
= Q

(
1

R2
−

1

R2

(
1− 2

r

R
+ 3

r2

R2
− 4

r3

R3
+ · · ·

))

=
Q

R2

(
2
r

R
− 3

r2

R2
+ 4

r3

R3
− · · ·

)
.

Since r/R is smaller than 1, the binomial expansion for (1+r/R)−2 converges. We are interested in
the electric field far away from the dipole. The quantity r/R is small there, and (r/R)2 and higher
powers are smaller still. Thus, we approximate by disregarding all terms except the first, giving

E ≈
Q

R2

(
2r

R

)
, so E ≈

2Qr

R3
.

Since Q and r are constants, this means that E is approximately proportional to 1/R3.

In the previous example, we say that E is expanded in terms of r/R, meaning that the variable
in the expansion is r/R.

Exercises and Problems for Section 10.3
Exercises

In Exercises 1–10, using known Taylor series, find the first
four nonzero terms of the Taylor series about 0 for the func-
tion.

1. e−x 2.
√
1− 2x

3. cos(θ2) 4. ln(1− 2y)

5. arcsin x 6. t sin(3t)

7.
1√

1− z2
8.

z

ez2

9. φ3 cos(φ2) 10. arctan(r2)

Find the Taylor series about 0 for the functions in Exer-
cises 11–13, including the general term.

11. (1 + x)3 12. t sin(t2)−t3 13.
1√

1− y2

For Exercises 14–19, expand the quantity about 0 in terms of
the variable given. Give four nonzero terms.

14.
1

2 + x
in terms of

x

2
15.

√
T + h in terms of

h

T

16.
1

a− r
in terms of

r

a
17.

1

(a+ r)2
in terms of

r

a

18. 3
√
P + t in terms of

t

P

19.
a√

a2 + x2
in terms of

x

a
, where a > 0

Problems

In Problems 20–23, using known Taylor series, find the first
four nonzero terms of the Taylor series about 0 for the func-
tion.

20.
√

(1 + t) sin t 21. et cos t

22.
√
1 + sin θ 23.

1

1− ln(1 + t)

24. (a) Find the first three nonzero terms of the Taylor series
for ex + e−x.

(b) Explain why the graph of ex + e−x looks like a
parabola near x = 0. What is the equation of this
parabola?
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25. (a) Find the first three nonzero terms of the Taylor series
for ex − e−x.

(b) Explain why the graph of ex − e−x near x = 0
looks like the graph of a cubic polynomial symmet-
ric about the origin. What is the equation for this
cubic?

26. Find the first three terms of the Taylor series for f(x) =

ex
2

around 0. Use this information to approximate the
integral ∫ 1

0

ex
2

dx.

27. Find the sum of
∞∑
p=1

pxp−1 for |x| < 1.

28. For values of y near 0, put the following functions in in-
creasing order, using their Taylor expansions.

(a) ln(1 + y2) (b) sin(y2) (c) 1− cos y

29. For values of θ near 0, put the following functions in in-
creasing order, using their Taylor expansions.

(a) 1 + sin θ (b) eθ (c)
1√

1− 2θ

30. A function has the following Taylor series about x = 0:

f(x) =

∞∑
n=0

x2n+1

2n+ 1
.

Find the ninth-degree Taylor polynomial for f(2x).

31. Figure 10.16 shows the graphs of the four functions be-
low for values of x near 0. Use Taylor series to match
graphs and formulas.

(a)
1

1− x2
(b) (1 + x)1/4

(c)
√

1 +
x

2
(d)

1√
1− x

(I) (III)

(IV)

(II)

Figure 10.16

32. The sine integral function is defined by the improper in-

tegral Si(x) =

∫ x

0

sin t

t
dt. Use the Taylor polynomial,

P7(x), of degree 7 about x = 0 for the sine function to
estimate Si(2).

33. Write out the first four nonzero terms of the Taylor series

about x = 0 for f(x) =

∫ x

0

sin
(
t2
)
dt.

34. (a) Find the Taylor series for f(t) = tet about t = 0.
(b) Using your answer to part (a), find a Taylor series

expansion about x = 0 for∫ x

0

tet dt.

(c) Using your answer to part (b), show that

1

2
+

1

3
+

1

4(2!)
+

1

5(3!)
+

1

6(4!)
+ · · · = 1.

35. Find the sum of
∞∑

n=1

kn−1

(n− 1)!
e−k.

36. The hyperbolic sine and cosine are differentiable and sat-
isfy the conditions cosh 0 = 1 and sinh 0 = 0, and

d

dx
(cosh x) = sinh x

d

dx
(sinhx) = cosh x.

(a) Using only this information, find the Taylor approx-
imation of degree n = 8 about x = 0 for f(x) =
cosh x.

(b) Estimate the value of cosh 1.
(c) Use the result from part (a) to find a Taylor polyno-

mial approximation of degree n = 7 about x = 0
for g(x) = sinh x.

37. Use the series for ex to find the Taylor series for sinh 2x
and cosh 2x.

38. Use Taylor series to explain the patterns in the digits in
the following expansions:

(a)
1

0.98
= 1.02040816 . . .

(b)
(

1

0.99

)2
= 1.020304050607 . . .

39. Padé approximants are rational functions used to approx-
imate more complicated functions. In this problem, you
will derive the Padé approximant to the exponential func-
tion.

(a) Let f(x) = (1 + ax)/(1 + bx), where a and b are
constants. Write down the first three terms of the
Taylor series for f(x) about x = 0.

(b) By equating the first three terms of the Taylor se-
ries about x = 0 for f(x) and for ex, find a and b
so that f(x) approximates ex as closely as possible
near x = 0.

40. One of Einstein’s most amazing predictions was that light
traveling from distant stars would bend around the sun on
the way to earth. His calculations involved solving for φ
in the equation

sinφ+ b(1 + cos2 φ+ cosφ) = 0,

where b is a very small positive constant.

(a) Explain why the equation could have a solution for
φ which is near 0.
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(b) Expand the left-hand side of the equation in Taylor
series about φ = 0, disregarding terms of order φ2

and higher. Solve for φ. (Your answer will involve
b.)

41. A hydrogen atom consists of an electron, of mass m, or-
biting a proton, of mass M , where m is much smaller
than M . The reduced mass, μ, of the hydrogen atom is
defined by

μ =
mM

m+M
.

(a) Show that μ ≈ m.
(b) To get a more accurate approximation for μ, express

μ as m times a series in m/M .
(c) The approximation μ ≈ m is obtained by disregard-

ing all but the constant term in the series. The first-
order correction is obtained by including the linear
term but no higher terms. If m ≈ M/1836, by what
percentage does including the linear term change the
estimate μ ≈ m?

42. Resonance in electric circuits leads to the expression(
ωL− 1

ωC

)2
,

where ω is the variable and L and C are constants.

(a) Find ω0, the value of ω making the expression zero.
(b) In practice, ω fluctuates about ω0, so we are inter-

ested in the behavior of this expression for values of
ω near ω0. Let ω = ω0 + Δω and expand the ex-
pression in terms of Δω up to the first nonzero term.
Give your answer in terms of Δω and L but not C.

43. The Michelson-Morley experiment, which contributed to
the formulation of the theory of relativity, involved the
difference between the two times t1 and t2 that light took
to travel between two points. If v is velocity; l1, l2, and c
are constants; and v < c, then t1 and t2 are given by

t1 =
2l2

c(1− v2/c2)
− 2l1

c
√

1− v2/c2

t2 =
2l2

c
√

1− v2/c2
− 2l1

c(1− v2/c2)
.

(a) Find an expression for Δt = t1 − t2, and give its
Taylor expansion in terms of v2/c2 up to the second
nonzero term.

(b) For small v, to what power of v is Δt proportional?
What is the constant of proportionality?

44. The theory of relativity predicts that when an object
moves at speeds close to the speed of light, the object
appears heavier. The apparent, or relativistic, mass, m,
of the object when it is moving at speed v is given by the
formula

m =
m0√

1− v2/c2
,

where c is the speed of light and m0 is the mass of the
object when it is at rest.

(a) Use the formula for m to decide what values of v are
possible.

(b) Sketch a rough graph of m against v, labeling inter-
cepts and asymptotes.

(c) Write the first three nonzero terms of the Taylor se-
ries for m in terms of v.

(d) For what values of v do you expect the series to con-
verge?

45. The potential energy, V , of two gas molecules separated
by a distance r is given by

V = −V0

(
2
(
r0
r

)6
−
(
r0
r

)12)
,

where V0 and r0 are positive constants.

(a) Show that if r = r0, then V takes on its minimum
value, −V0.

(b) Write V as a series in (r − r0) up through the
quadratic term.

(c) For r near r0, show that the difference between
V and its minimum value is approximately pro-
portional to (r − r0)

2. In other words, show that
V −(−V0) = V +V0 is approximately proportional
to (r − r0)

2.
(d) The force, F , between the molecules is given by

F = −dV/dr. What is F when r = r0? For r
near r0, show that F is approximately proportional
to (r − r0).

46. Van der Waal’s equation relates the pressure, P , and the
volume, V , of a fixed quantity of a gas at constant tem-
perature T :(

P +
n2a

V 2

)
(V − nb) = nRT,

where a, b, n,R are constants. Find the first two nonzero
terms of the Taylor series of P in terms for 1/V .

Strengthen Your Understanding

In Problems 47–48, explain what is wrong with the statement.

47. Within its radius of convergence,
1

2 + x
= 1 − x

2
+(

x

2

)2
−
(
x

2

)3
+ · · ·.

48. Using the Taylor series for ex = 1+x+ x2

2!
+ x3

3!
+ · · · ,

we find that e−x = 1− x− x2

2!
− x3

3!
− · · · .

In Problems 49–50, give an example of:

49. A function with no Taylor series around 0.

50. A function f(x) that does not have a Taylor series around
0 even though f(0) is defined.
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Decide if the statements in Problems 51–55 are true or false.
Assume that the Taylor series for a function converges to that
function. Give an explanation for your answer.

51. To find the Taylor series for sin x+cosx about any point,
add the Taylor series for sin x and cos x about that point.

52. The Taylor series for x3 cos x about x = 0 has only odd
powers.

53. The Taylor series for f(x)g(x) about x = 0 is

f(0)g(0) + f ′(0)g′(0)x+
f ′′(0)g′′(0)

2!
x2 + · · · .

54. If L1(x) is the linear approximation to f1(x) near x = 0
and L2(x) is the linear approximation to f2(x) near
x = 0, then L1(x) + L2(x) is the linear approximation
to f1(x) + f2(x) near x = 0.

55. If L1(x) is the linear approximation to f1(x) near x = 0
and L2(x) is the linear approximation to f2(x) near
x = 0, then L1(x)L2(x) is the quadratic approximation
to f1(x)f2(x) near x = 0.

56. Given that the radius of convergence of the Taylor se-
ries for ln(1 − x) about x = 0 is 1, what is the radius
of convergence of the Taylor series about x = 0 for the
following functions ?

(a) ln(4− x)
(b) ln(4 + x)
(c) ln(1 + 4x2)

57. Given that the Taylor series for tanx = x + x3/3 +
21x5/120 + · · ·, then that of 3 tan(x/3) is

(a) 3x+ x3 + 21x5/120 + · · ·
(b) 3x+ x3 + 21x5/40 + · · ·
(c) x+ x3/27 + 7x5/3240 + · · ·
(d) x+ x3/3 + 21x5/120 + · · ·

10.4 THE ERROR IN TAYLOR POLYNOMIAL APPROXIMATIONS

In order to use an approximation with confidence, we need to know how big the error could be. The
error is the difference between the exact answer and the approximate value. When we use Pn(x),
the nth-degree Taylor polynomial, to approximate f(x), the error is the difference

En(x) = f(x)− Pn(x).

We want to find a bound on the magnitude of the error, |En|; that is, we want a number that we are
sure is bigger than |En|. In practice, we want a bound which is reasonably close to the maximum
value of |En|.

Lagrange found an expression for the error bound whose form is similar to a term in the Taylor
series:

Theorem 10.1: The Lagrange Error Bound for Pn(x)

Suppose f and all its derivatives are continuous. If Pn(x) is the nth Taylor polynomial for
f(x) about a, then

|En(x)| = |f(x)− Pn(x)| ≤
M

(n+ 1)!
|x− a|n+1,

where
∣∣f (n+1)

∣∣ ≤ M on the interval between a and x.

To find M in practice, we often find the maximum of |f (n+1)| on the interval and pick any
larger value for M . See page 563 for a justification of Theorem 10.1.

Using the Lagrange Error Bound for Taylor Polynomials

Example 1 Give a bound on the error, E4, when ex is approximated by its fourth-degree Taylor polynomial
about 0 for −0.5 ≤ x ≤ 0.5.

Solution Let f(x) = ex. We need to find a bound for the fifth derivative, f (5)(x) = ex. Since ex is increasing,
its largest value is at the endpoint of the interval:

|f (5)
(x)| ≤ e0.5 =

√
e for −0.5 ≤ x ≤ 0.5.
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Since
√
e < 2, we can take M = 2 (or any larger value). Then

|E4| = |f(x)− P4(x)| ≤
2

5!
|x|5.

This means, for example, that on −0.5 ≤ x ≤ 0.5, the approximation

ex ≈ 1 + x+
x2

2!
+

x3

3!
+

x4

4!

has an error of at most 2
120 (0.5)

5 < 0.0006.

The Lagrange error bound for Taylor polynomials can be used to see how the accuracy of
the approximation depends on the value of x and the value of n. Observe that the error bound for a
Taylor polynomial of degree n is proportional to |x−a|n+1. That means, for example, with a Taylor
polynomial of degree n centered at 0, if we decrease x by a factor of 2, the error bound decreases
by a factor of 2n+1.

Example 2 Compare the errors in the approximations

e0.1 ≈ 1 + 0.1 +
1

2!
(0.1)2 and e0.05 ≈ 1 + (0.05) +

1

2!
(0.05)2.

Solution We are approximating ex by its second-degree Taylor polynomial about 0. We evaluate the poly-
nomial first at x = 0.1, and then at x = 0.05. Since we have decreased x by a factor of 2, the
error bound decreases by a factor of about 23 = 8. To see what actually happens to the errors, we
compute them:

e0.1 −

(
1 + 0.1 +

1

2!
(0.1)2

)
= 1.105171− 1.105000 = 0.000171

e0.05 −

(
1 + 0.05 +

1

2!
(0.05)2

)
= 1.051271− 1.051250 = 0.000021

Since (0.000171)/(0.000021) = 8.1, the error has also decreased by a factor of about 8.

Convergence of the Taylor Series for cos x

We have already seen that the Taylor polynomials centered at x = 0 for cosx are good approxima-
tions for x near 0. (See Figure 10.17.) In fact, for any value of x, if we take a Taylor polynomial
centered at x = 0 of high enough degree, its graph is nearly indistinguishable from the graph of the
cosine function near that point.

−π π
−1

1

x

cos xcos x

P8(x) P8(x)

P2(x) P2(x)

Figure 10.17: Graph of cos x and two Taylor polynomials for x near 0

Let’s see what happens numerically. Let x = π/2. The successive Taylor polynomial approxi-
mations to cos(π/2) = 0 about x = 0 are

P2(π/2) = 1− (π/2)2/2! = −0.23370 . . .

P4(π/2) = 1− (π/2)2/2! + (π/2)4/4! = 0.01997 . . .

P6(π/2) = · · · = −0.00089 . . .

P8(π/2) = · · · = 0.00002 . . . .
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It appears that the approximations converge to the true value, cos(π/2) = 0, very rapidly. Now take
a value of x somewhat farther away from 0, say x = π; then cosπ = −1 and

P2(π) = 1− (π)2/2! = −3.93480 . . .

P4(π) = · · · = 0.12391 . . .

P6(π) = · · · = −1.21135 . . .

P8(π) = · · · = −0.97602 . . .

P10(π) = · · · = −1.00183 . . .

P12(π) = · · · = −0.99990 . . .

P14(π) = · · · = −1.000004 . . . .

We see that the rate of convergence is somewhat slower; it takes a 14th-degree polynomial to ap-
proximate cosπ as accurately as an 8th-degree polynomial approximates cos(π/2). If x were taken
still farther away from 0, then we would need still more terms to obtain as accurate an approximation
of cosx.

Exercise 18 on page 527 uses the ratio test to show that the Taylor series for cosx converges
for all values of x. In addition, we will prove that it converges to cosx using Theorem 10.1. Thus,
we are justified in writing the equality:

cosx = 1−
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
− · · · for all x.

Showing that the Taylor Series for cosx Converges to cos x

The Lagrange error bound in Theorem 10.1 allows us to see if the Taylor series for a function
converges to that function. In the series for cosx, the odd powers are missing, so we assume n is
even and write

En(x) = cosx− Pn(x) = cosx−

(
1−

x2

2!
+ · · ·+ (−1)

n/2x
n

n!

)
,

giving

cosx = 1−
x2

2!
+ · · ·+ (−1)

n/2x
n

n!
+ En(x).

Thus, for the Taylor series to converge to cosx, we must have En(x) → 0 as n → ∞.

Showing En(x) → 0 as n → ∞

Proof Since f(x) = cosx, the (n+ 1)st derivative, f (n+1)(x), is ± cosx or ± sinx, no matter what n is.
So for all n, we have |f (n+1)(x)| ≤ 1 on the interval between 0 and x.

By the Lagrange error bound with M = 1, we have

|En(x)| = | cosx− Pn(x)| ≤
|x|n+1

(n+ 1)!
for every n.

To show that the errors go to zero, we must show that for a fixed x,

|x|n+1

(n+ 1)!
→ 0 as n → ∞.

To see why this is true, consider the ratio of successive terms of this sequence. We have

|x|n+2/(n+ 2)!

|x|n+1/(n+ 1)!
=

|x|

n+ 2
.

Therefore, we obtain the (n+1)st term of this sequence, |x|n+2/(n+2)!, by multiplying the previous
term, |x|n+1/(n + 1)!, by |x|/(n + 2). Since |x| is fixed and n + 2 is increasing, for sufficiently
large n, this ratio is less than 1/2 (or any other constant between 0 and 1). Thus eventually each
term in the sequence is less than 1/2 the previous term, so the sequence of errors approaches zero.
Therefore, the Taylor series 1− x2/2! + x4/4!− · · · does converge to cosx.
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Problems 21 and 22 ask you to show that the Taylor series for sinx and ex converge to the
original function for all x. In each case, you again need the following limit:

lim
n→∞

xn

n!
= 0.

Deriving the Lagrange Error Bound

Recall that we constructed Pn(x), the Taylor polynomial of f about 0, so that its first n derivatives
equal the corresponding derivatives of f(x). Therefore, En(0) = 0, E′

n(0) = 0, E′′
n(0) = 0,

· · ·, E(n)
n (0) = 0. Since Pn(x) is an nth-degree polynomial, its (n + 1)st derivative is 0, so

E
(n+1)
n (x) = f (n+1)(x). In addition, suppose that

∣∣f (n+1)(x)
∣∣ is bounded by a positive constant

M , for all positive values of x near 0, say for 0 ≤ x ≤ d, so that

−M ≤ f (n+1)
(x) ≤ M for 0 ≤ x ≤ d.

This means that
−M ≤ E(n+1)

n (x) ≤ M for 0 ≤ x ≤ d.

Writing t for the variable, we integrate this inequality from 0 to x, giving

−

∫ x

0

M dt ≤

∫ x

0

E(n+1)
n (t) dt ≤

∫ x

0

M dt for 0 ≤ x ≤ d,

so
−Mx ≤ E(n)

n (x) ≤ Mx for 0 ≤ x ≤ d.

We integrate this inequality again from 0 to x, giving

−

∫ x

0

Mtdt ≤

∫ x

0

E(n)
n (t) dt ≤

∫ x

0

Mtdt for 0 ≤ x ≤ d,

so

−
1

2
Mx2 ≤ E(n−1)

n (x) ≤
1

2
Mx2 for 0 ≤ x ≤ d.

By repeated integration, we obtain the following bound:

−
1

(n+ 1)!
Mxn+1 ≤ En(x) ≤

1

(n+ 1)!
Mxn+1 for 0 ≤ x ≤ d,

which means that

|En(x)| = |f(x)− Pn(x)| ≤
1

(n+ 1)!
Mxn+1 for 0 ≤ x ≤ d.

When x is to the left of 0, so −d ≤ x ≤ 0, and when the Taylor series is centered at a �= 0,
similar calculations lead to Theorem 10.1.

Exercises and Problems for Section 10.4
Exercises

In Exercises 1–8, use Theorem 10.1 to find a bound for the
error in approximating the quantity with a third-degree Taylor
polynomial for the given function f(x) about x = 0. Com-
pare the bound with the actual error.

1. e0.1, f(x) = ex

2. sin(0.2), f(x) = sin x

3. cos(−0.3), f(x) = cos x

4.
√
0.9, f(x) =

√
1 + x

5. ln(1.5), f(x) = ln(1 + x)

6. 1/
√
3, f(x) = (1 + x)−1/2

7. tan 1, f(x) = tan x

8. 0.51/3, f(x) = (1− x)1/3
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Problems

9. (a) Using a calculator, make a table of values to four
decimal places of sin x for

x = −0.5, −0.4, . . . , −0.1, 0, 0.1, . . . , 0.4, 0.5.

(b) Add to your table the values of the error E1 =
sin x− x for these x-values.

(c) Using a calculator or computer, draw a graph of the
quantity E1 = sin x− x showing that

|E1| < 0.03 for − 0.5 ≤ x ≤ 0.5.

10. Find a bound on the magnitude of the error if we approx-
imate

√
2 using the Taylor approximation of degree three

for
√
1 + x about x = 0.

11. (a) Let f(x) = ex. Find a bound on the magnitude of
the error when f(x) is approximated using P3(x),
its Taylor approximation of degree 3 around 0 over
the interval [−2, 2].

(b) What is the actual maximum error in approximating
f(x) by P3(x) over the interval [−2, 2]?

12. Let f(x) = cos x and let Pn(x) be the Taylor approxi-
mation of degree n for f(x) around 0. Explain why, for
any x, we can choose an n such that

|f(x) − Pn(x)| < 10−9.

13. Consider the error in using the approximation sin θ ≈ θ
on the interval [−1, 1].

(a) Reasoning informally, say where the approximation
is an overestimate and where it is an underestimate.

(b) Use Theorem 10.1 to bound the error. Check your
answer graphically on a computer or calculator.

14. Repeat Problem 13 for the approximation sin θ ≈ θ −
θ3/3!.

15. You approximate f(t) = et by a Taylor polynomial of
degree 0 about t = 0 on the interval [0, 0.5].

(a) Reasoning informally, say whether the approxima-
tion is an overestimate or an underestimate.

(b) Use Theorem 10.1 to bound the error. Check your
answer graphically on a computer or calculator.

16. Repeat Problem 15 using the second-degree Taylor ap-
proximation to et.

17. (a) Use the graphs of y = cosx and its Taylor polyno-
mials, P10(x) and P20(x), in Figure 10.18 to bound:

(i) The error in approximating cos 6 by P10(6)
and by P20(6).

(ii) The error in approximating cos x by P20(x) for
|x| ≤ 9.

(b) If we want to approximate cos x by P10(x) to an ac-
curacy of within 0.1, what is the largest interval of
x-values on which we can work? Give your answer
to the nearest integer.

−12 −6 −3 3 6 12

−3

3

P10(x) P10(x)

P20(x) P20(x)

x

Figure 10.18

18. Give a bound for the error for the nth-degree Taylor
polynomial about x = 0 approximating cos x on the
interval [0, 1]. What is the bound for sin x?

19. What degree Taylor polynomial about x = 0 do you
need to calculate cos 1 to four decimal places? To six
decimal places? Justify your answer using the results of
Problem 18.

20. For |x| ≤ 0.1, graph the error

E0 = cos x− P0(x) = cos x− 1.

Explain the shape of the graph, using the Taylor expan-
sion of cosx. Find a bound for |E0| for |x| ≤ 0.1.

21. Show that the Taylor series about 0 for ex converges to ex

for every x. Do this by showing that the error En(x) → 0
as n → ∞.

22. Show that the Taylor series about 0 for sin x converges
to sin x for every x.

23. To approximate π using a Taylor polynomial, we could
use the series for the arctangent or the series for the arc-
sine. In this problem, we compare the two methods.

(a) Using the fact that d(arctan x)/dx = 1/(1 + x2)
and arctan 1 = π/4, approximate the value of π us-
ing the third-degree Taylor polynomial of 4 arctan x
about x = 0.

(b) Using the fact that d(arcsin x)/dx = 1/
√
1− x2

and arcsin 1 = π/2, approximate the value of π us-
ing the third-degree Taylor polynomial of 2 arcsin x
about x = 0.

(c) Estimate the maximum error of the approximation
you found in part (a).

(d) Explain the problem in estimating the error in the
arcsine approximation.
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Strengthen Your Understanding

In Problems 24–25, explain what is wrong with the statement.

24. Let Pn(x) be a Taylor approximation of degree n for
a function f(x) about a, where a is a constant. Then
|f(a)− Pn(a)| > 0 for any n.

25. Let f(x) be a function whose Taylor series about x = 0
converges to f(x) for all x. Then there exists a posi-
tive integer n such that the nth-degree Taylor polynomial
Pn(x) for f(x) about x = 0 satisfies the inequality

|f(x)− Pn(x)| < 1 for all values of x.

In Problems 26–28, give an example of:

26. A function f(x) whose Taylor series converges to f(x)
for all values of x.

27. A polynomial P (x) such that |1/x−P (x)| < 0.1 for all
x in the interval [1, 1.5].

28. A function f(x) and an interval [−c, c] such that the
value of M in the error of the second-degree Taylor poly-

nomial of f(x) centered at 0 on the interval could be 4.

Decide if the statements in Problems 29–33 are true or false.
Assume that the Taylor series for a function converges to that
function. Give an explanation for your answer.

29. Let Pn(x) be the nth Taylor polynomial for a function f
near x = a. Although Pn(x) is a good approximation to
f near x = a, it is not possible to have Pn(x) = f(x)
for all x.

30. If |f (n)(x)| < 10 for all n > 0 and all x, then the Taylor
series for f about x = 0 converges to f(x) for all x.

31. If f (n)(0) ≥ n! for all n, then the Taylor series for f
near x = 0 diverges at x = 0.

32. If f (n)(0) ≥ n! for all n, then the Taylor series for f
near x = 0 diverges at x = 1.

33. If f (n)(0) ≥ n! for all n, then the Taylor series for f
near x = 0 diverges at x = 1/2.

10.5 FOURIER SERIES

We have seen how to approximate a function by a Taylor polynomial of fixed degree. Such a poly-
nomial is usually very close to the true value of the function near one point (the point at which the
Taylor polynomial is centered), but not necessarily at all close anywhere else. In other words, Tay-
lor polynomials are good approximations of a function locally, but not necessarily globally. In this
section, we take another approach: we approximate the function by trigonometric functions, called
Fourier approximations. The resulting approximation may not be as close to the original function at
some points as the Taylor polynomial. However, the Fourier approximation is, in general, close over
a larger interval. In other words, a Fourier approximation can be a better approximation globally.
In addition, Fourier approximations are useful even for functions that are not continuous. Unlike
Taylor approximations, Fourier approximations are periodic, so they are particularly useful for ap-
proximating periodic functions.

Many processes in nature are periodic or repeating, so it makes sense to approximate them by
periodic functions. For example, sound waves are made up of periodic oscillations of air molecules.
Heartbeats, the movement of the lungs, and the electrical current that powers our homes are all
periodic phenomena. Two of the simplest periodic functions are the square wave in Figure 10.19
and the triangular wave in Figure 10.20. Electrical engineers use the square wave as the model for
the flow of electricity when a switch is repeatedly flicked on and off.

−1 0 1 2 3 4

1

x

y

f(x)

Figure 10.19: Square wave

−1 0 1 2 3 4

1

x

y

g(x)

Figure 10.20: Triangular wave
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Fourier Polynomials
We can express the square wave and the triangular wave by the formulas

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

...
...

0 −1 ≤ x < 0

1 0 ≤ x < 1

0 1 ≤ x < 2

1 2 ≤ x < 3

0 3 ≤ x < 4
...

...

g(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

...
...

−x −1 ≤ x < 0

x 0 ≤ x < 1

2− x 1 ≤ x < 2

x− 2 2 ≤ x < 3

4− x 3 ≤ x < 4
...

...
However, these formulas are not particularly easy to work with. Worse, the functions are not dif-
ferentiable at various points. Here we show how to approximate such functions by differentiable,
periodic functions.

Since sine and cosine are the simplest periodic functions, they are the building blocks we use.
Because they repeat every 2π, we assume that the function f we want to approximate repeats every
2π. (Later, we deal with the case where f has some other period.) We start by considering the
square wave in Figure 10.21. Because of the periodicity of all the functions concerned, we only
have to consider what happens in the course of a single period; the same behavior repeats in any
other period.

−π 0 π

1

x

y
f(x)

f(x) =
{
0 −π ≤ x < 0
1 0 ≤ x < π

Figure 10.21: Square wave on [−π, π]

We will attempt to approximate f with a sum of trigonometric functions of the form

f(x) ≈ Fn(x)

= a0 + a1 cosx+ a2 cos(2x) + a3 cos(3x) + · · ·+ an cos(nx)

+ b1 sinx+ b2 sin(2x) + b3 sin(3x) + · · ·+ bn sin(nx)

= a0 +

n∑
k=1

ak cos(kx) +

n∑
k=1

bk sin(kx).

Fn(x) is known as a Fourier polynomial of degree n, named after the French mathematician Joseph
Fourier (1768–1830), who was one of the first to investigate it.5 The coefficients ak and bk are called
Fourier coefficients. Since each of the component functions cos(kx) and sin(kx), k = 1, 2, . . ., n,
repeats every 2π, Fn(x) must repeat every 2π and so is a potentially good match for f(x), which
also repeats every 2π. The problem is to determine values for the Fourier coefficients that achieve a
close match between f(x) and Fn(x). We choose the following values:

The Fourier Coefficients for a Periodic Function f of Period 2π

a0 =
1

2π

∫ π

−π

f(x) dx,

ak =
1

π

∫ π

−π

f(x) cos(kx) dx for k > 0,

bk =
1

π

∫ π

−π

f(x) sin(kx) dx for k > 0.

Notice that a0 is just the average value of f over the interval [−π, π].

5The Fourier polynomials are not polynomials in the usual sense of the word.
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For an informal justification for the use of these values, see page 573. In addition, the integrals over
[−π, π] for ak and bk can be replaced by integrals over any interval of length 2π.

Example 1 Construct successive Fourier polynomials for the square wave function f , with period 2π, given by

f(x) =
{
0 −π ≤ x < 0

1 0 ≤ x < π.

Solution Since a0 is the average value of f on [−π, π], we suspect from the graph of f that a0 = 1
2 . We can

verify this analytically:

a0 =
1

2π

∫ π

−π

f(x) dx =
1

2π

∫ 0

−π

0 dx+
1

2π

∫ π

0

1 dx = 0 +
1

2π
(π) =

1

2
.

Furthermore,

a1 =
1

π

∫ π

−π

f(x) cosx dx =
1

π

∫ π

0

1 cosx dx = 0

and

b1 =
1

π

∫ π

−π

f(x) sinx dx =
1

π

∫ π

0

1 sinxdx =
2

π
.

Therefore, the Fourier polynomial of degree 1 is given by

f(x) ≈ F1(x) =
1

2
+

2

π
sinx,

and the graphs of the function and the first Fourier approximation are shown in Figure 10.22.
We next construct the Fourier polynomial of degree 2. The coefficients a0, a1, b1 are the same

as before. In addition,

a2 =
1

π

∫ π

−π

f(x) cos(2x) dx =
1

π

∫ π

0

1 cos(2x) dx = 0

and

b2 =
1

π

∫ π

−π

f(x) sin(2x) dx =
1

π

∫ π

0

1 sin(2x) dx = 0.

Since a2 = b2 = 0, the Fourier polynomial of degree 2 is identical to the Fourier polynomial of
degree 1. Let’s look at the Fourier polynomial of degree 3:

a3 =
1

π

∫ π

−π

f(x) cos(3x) dx =
1

π

∫ π

0

1 cos(3x) dx = 0

and

b3 =
1

π

∫ π

−π

f(x) sin(3x) dx =
1

π

∫ π

0

1 sin(3x) dx =
2

3π
.

So the approximation is given by

f(x) ≈ F3(x) =
1

2
+

2

π
sinx+

2

3π
sin(3x).

−π π

1
2

1

x

f

F1

Figure 10.22: First Fourier approximation to
the square wave

π−π

1

1
2

x

F3

f

Figure 10.23: Third Fourier approximation to
the square wave
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π−π

1
2

1

x

F5

f

π−π

1
2

1

x

f

F7

Figure 10.24: Fifth and seventh Fourier approximations to the square wave

The graph of F3 is shown in Figure 10.23. This approximation is better than F1(x) =
1
2 + 2

π sinx,
as comparing Figure 10.23 to Figure 10.22 shows.

Without going through the details, we calculate the coefficients for higher-degree Fourier ap-
proximations:

F5(x) =
1

2
+

2

π
sinx+

2

3π
sin(3x) +

2

5π
sin(5x)

F7(x) =
1

2
+

2

π
sinx+

2

3π
sin(3x) +

2

5π
sin(5x) +

2

7π
sin(7x).

Figure 10.24 shows that higher-degree approximations match the step-like nature of the square wave
function more and more closely.

We could have used a Taylor series to approximate the square wave, provided we did not center
the series at a point of discontinuity. Since the square wave is a constant function on each interval,
all its derivatives are zero, and so its Taylor series approximations are the constant functions: 0 or 1,
depending on where the Taylor series is centered. They approximate the square wave perfectly on
each piece, but they do not do a good job over the whole interval of length 2π. That is what Fourier
polynomials succeed in doing: they approximate a curve fairly well everywhere, rather than just
near a particular point. The Fourier approximations above look a lot like square waves, so they ap-
proximate well globally. However, they may not give good values near points of discontinuity. (For
example, near x = 0, they all give values near 1/2, which are incorrect.) Thus Fourier polynomials
may not be good local approximations.

Taylor polynomials give good local approximations to a function;
Fourier polynomials give good global approximations to a function.

Fourier Series
As with Taylor polynomials, the higher the degree of the Fourier approximation, generally the more
accurate it is. Therefore, we carry this procedure on indefinitely by letting n → ∞, and we call the
resulting infinite series a Fourier series.

The Fourier Series for f on [–π, π]

f(x) = a0 + a1 cosx+ a2 cos 2x+ a3 cos 3x+ · · ·

+ b1 sinx+ b2 sin 2x+ b3 sin 3x+ · · ·

where ak and bk are the Fourier coefficients.

Thus, the Fourier series for the square wave is

f(x) =
1

2
+

2

π
sinx+

2

3π
sin 3x+

2

5π
sin 5x+

2

7π
sin 7x+ · · · .
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Harmonics
Let us start with a function f(x) that is periodic with period 2π, expanded in a Fourier series:

f(x) = a0 + a1 cosx+ a2 cos 2x+ a3 cos 3x+ · · ·

+ b1 sinx+ b2 sin 2x+ b3 sin 3x+ · · ·

The function
ak cos kx+ bk sin kx

is referred to as the kth harmonic of f , and it is customary to say that the Fourier series expresses f in
terms of its harmonics. The first harmonic, a1 cosx+b1 sinx, is sometimes called the fundamental
harmonic of f .

Example 2 Find a0 and the first four harmonics of a pulse train function f of period 2π shown in Figure 10.25:

−3π −2π − π 0 π/2 π 2π 3π

1

x

y

f(x) =
{
1 0 ≤ x < π/2
0 π/2 ≤ x < 2π

Figure 10.25: A train of pulses with period 2π

Solution First, a0 is the average value of the function, so

a0 =
1

2π

∫ π

−π

f(x) dx =
1

2π

∫ π/2

0

1 dx =
1

4
.

Next, we compute ak and bk, k = 1, 2, 3, and 4. The formulas

ak =
1

π

∫ π

−π

f(x) cos(kx) dx =
1

π

∫ π/2

0

cos (kx) dx

bk =
1

π

∫ π

−π

f(x) sin(kx) dx =
1

π

∫ π/2

0

sin (kx) dx

lead to the harmonics

a1 cosx+ b1 sinx =
1

π
cosx+

1

π
sinx

a2 cos(2x) + b2 sin(2x) =
1

π
sin(2x)

a3 cos(3x) + b3 sin(3x) = −
1

3π
cos(3x) +

1

3π
sin(3x)

a4 cos(4x) + b4 sin(4x) = 0.

Figure 10.26 shows the graph of the sum of a0 and these harmonics, which is the fourth Fourier
approximation of f .

−3π −2π − π π/2 π 2π 3π

1

x

� f(x)

� F4

Figure 10.26: Fourth Fourier approximation to pulse train f equals the sum of a0 and the first four harmonics
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Energy and the Energy Theorem

The quantity Ak =
√
a2k + b2k is called the amplitude of the kth harmonic. The square of the

amplitude has a useful interpretation. Adopting terminology from the study of periodic waves, we
define the energy E of a periodic function f of period 2π to be the number

E =
1

π

∫ π

−π

(f(x))2 dx.

Problem 19 on page 576 asks you to check that for all positive integers k,

1

π

∫ π

−π

(ak cos(kx) + bk sin(kx))
2 dx = a2k + b2k = A2

k.

This shows that the kth harmonic of f has energy A2
k . The energy of the constant term a0 of the

Fourier series is 1
π

∫ π
−π

a20 dx = 2a20, so we make the definition

A0 =
√
2a0.

It turns out that for all reasonable periodic functions f , the energy of f equals the sum of the energies
of its harmonics:

The Energy Theorem for a Periodic Function f of Period 2π

E =
1

π

∫ π

−π

(f(x))2 dx = A2
0 +A2

1 +A2
2 + · · ·

where A0 =
√
2a0 and Ak =

√
a2k + b2k (for all integers k ≥ 1).

The graph of A2
k against k is called the energy spectrum of f . It shows how the energy of f is

distributed among its harmonics.

Example 3 (a) Graph the energy spectrum of the square wave of Example 1.
(b) What fraction of the energy of the square wave is contained in the constant term and first three

harmonics of its Fourier series?

Solution (a) We know from Example 1 that a0 = 1/2, ak = 0 for k ≥ 1, bk = 0 for k even, and bk = 2/(kπ)
for k odd. Thus

A2
0 = 2a20 =

1

2

A2
k = 0 if k is even, k ≥ 1,

A2
k =

(
2

kπ

)2

=
4

k2π2
if k is odd, k ≥ 1.

The energy spectrum is graphed in Figure 10.27. Notice that it is customary to represent the
energyA2

k of the kth harmonic by a vertical line of lengthA2
k. The graph shows that the constant

term and first harmonic carry most of the energy of f .

0 1 2 3 4 5 6

1/2

k

A2
k

�

Height = 4/(π2)

�

4/(9π2)

�

4/(25π2)

Figure 10.27: The energy spectrum of a square
wave
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(b) The energy of the square wave f(x) is

E =
1

π

∫ π

−π

(f(x))2 dx =
1

π

∫ π

0

1 dx = 1.

The energy in the constant term and the first three harmonics of the Fourier series is

A2
0 +A2

1 +A2
2 +A2

3 =
1

2
+

4

π2
+ 0 +

4

9π2
= 0.950.

The fraction of energy carried by the constant term and the first three harmonics is

0.95/1 = 0.95, or 95%.

Musical Instruments

You may have wondered why different musical instruments sound different, even when playing the
same note. A first step might be to graph the periodic deviations from the average air pressure that
form the sound waves they produce. This has been done for clarinet and trumpet in Figure 10.28.6

However, it is more revealing to graph the energy spectra of these functions, as in Figure 10.29.
The most striking difference is the relative weakness of the second and fourth harmonics for the
clarinet, with the second harmonic completely absent. The trumpet sounds the second harmonic
with as much energy as it does the fundamental.

Waveform of clarinet Waveform of trumpet

time

deviations in
air pressure

from average
time

deviations in
air pressure

from average

Figure 10.28: Sound waves of a clarinet and trumpet

1 2 3 4 5 6 7 8 9 10
k

0

A2
k

Spectrum of clarinet

0 1 2 3 4 5 6 7 8 9 10
k

Spectrum of trumpet

A2
k

Figure 10.29: Energy spectra of a clarinet and trumpet

6Adapted from C.A. Culver, Musical Acoustics (New York: McGraw-Hill, 1956) pp. 204, 220.
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What Do We Do If Our Function Does Not Have Period 2π?
We can adapt our previous work to find the Fourier series for a function of period b. Suppose f(x)
is given on the interval [−b/2, b/2]. In Problem 31, we see how to use a change of variable to get
the following result:

The Fourier Series for f on [−b/2, b/2]

f(x) = a0 +

∞∑
k=1

(
ak cos

(
2πkx

b

)
+ bk sin

(
2πkx

b

))

where a0 =
1

b

∫ b/2

−b/2

f(x) dx and, for k ≥ 1,

ak =
2

b

∫ b/2

−b/2

f(x) cos

(
2πkx

b

)
dx and bk =

2

b

∫ b/2

−b/2

f(x) sin

(
2πkx

b

)
dx.

The constant 2πk/b is called the angular frequency of the kth harmonic; b is the period of f .

Note that the integrals over [−b/2, b/2] can be replaced by integrals over any interval of length b.

Example 4 Find the fifth-degree Fourier polynomial of the square wave f(x) graphed in Figure 10.30.

−3 −2 −1 1 2 3 4

1

x

F5

� f

Figure 10.30: Square wave f and its fifth Fourier approximation F5

Solution Since f(x) repeats outside the interval [−1, 1], we have b = 2. As an example of how the coefficients
are computed, we find b1. Since f(x) = 0 for −1 < x < 0,

b1 =
2

2

∫ 1

−1

f(x) sin

(
2πx

2

)
dx =

∫ 1

0

sin(πx)dx = −
1

π
cos(πx)

∣∣∣∣1
0

=
2

π
.

Finding the other coefficients by a similar method, we have

f(x) ≈
1

2
+

2

π
sin(πx) +

2

3π
sin(3πx) +

2

5π
sin(5πx).

Notice that the coefficients in this series are the same as those in Example 1. This is because the
graphs in Figures 10.24 and 10.30 are the same except with different scales on the x-axes.
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Seasonal Variation in the Incidence of Measles

Example 5 Fourier approximations have been used to analyze the seasonal variation in the incidence of dis-
eases. One study7 done in Baltimore, Maryland, for the years 1901–1931, studied I(t), the average
number of cases of measles per 10,000 susceptible children in the tth month of the year. The data
points in Figure 10.31 show f(t) = log I(t). The curve in Figure 10.31 shows the second Fourier
approximation of f(t). Figure 10.32 contains the graphs of the first and second harmonics of f(t),
plotted separately as deviations about a0, the average logarithmic incidence rate. Describe what
these two harmonics tell you about incidence of measles.

J F M A M J J A S O N D J F M A M

0.5

1.0

1.5

2.0

2.5

t

f(t)

Figure 10.31: Logarithm of incidence of measles per
month (dots) and second Fourier approximation

(curve)

J F M A M J J A S O N D J F M A M

a0 − 1.0

a0 − 0.5

a0

a0 + 0.5

a0 + 1.0

t

First harmonic Second harmonic

� �

Figure 10.32: First and second harmonics of f(t) plotted
as deviations from average log incidence rate, a0

Solution Taking the log of I(t) has the effect of reducing the amplitude of the oscillations. However, since the
log of a function increases when the function increases and decreases when it decreases, oscillations
in f(t) correspond to oscillations in I(t).

Figure 10.32 shows that the first harmonic in the Fourier series has a period of one year (the
same period as the original function); the second harmonic has a period of six months. The graph
in Figure 10.32 shows that the first harmonic is approximately a sine function with amplitude about
0.7; the second harmonic is approximately the negative of a sine function with amplitude about 0.2.
Thus, for t in months (t = 0 in January),

log I(t) = f(t) ≈ a0 + 0.7 sin
(π
6
t
)
− 0.2 sin

(π
3
t
)
,

where π/6 and π/3 are introduced to make the periods 12 and 6 months, respectively. We can
estimate a0 from the original graph of f : it is the average value of f , approximately 1.5. Thus

f(t) ≈ 1.5 + 0.7 sin
(π
6
t
)
− 0.2 sin

(π
3
t
)
.

Figure 10.31 shows that the second Fourier approximation of f(t) is quite good. The harmonics of
f(t) beyond the second must be rather insignificant. This suggests that the variation in incidence in
measles comes from two sources, one with a yearly cycle that is reflected in the first harmonic and
one with a half-yearly cycle reflected in the second harmonic. At this point the mathematics can tell
us no more; we must turn to the epidemiologists for further explanation.

Informal Justification of the Formulas for the Fourier Coefficients
Recall that the coefficients in a Taylor series (which is a good approximation locally) are found
by differentiation. In contrast, the coefficients in a Fourier series (which is a good approximation
globally) are found by integration.

7From C. I. Bliss and D. L. Blevins, The Analysis of Seasonal Variation in Measles (Am. J. Hyg. 70, 1959), reported by
Edward Batschelet, Introduction to Mathematics for the Life Sciences (Springer-Verlag, Berlin, 1979).
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We want to find the constants a0, a1, a2, . . . and b1, b2, . . . in the expression

f(x) = a0 +
∞∑
k=1

ak cos(kx) +
∞∑
k=1

bk sin(kx).

Consider the integral∫ π

−π

f(x) dx =

∫ π

−π

(
a0 +

∞∑
k=1

ak cos(kx) +
∞∑
k=1

bk sin(kx)

)
dx.

Splitting the integral into separate terms, and assuming we can interchange integration and summa-
tion, we get∫ π

−π

f(x) dx =

∫ π

−π

a0 dx+

∫ π

−π

∞∑
k=1

ak cos(kx) dx+

∫ π

−π

∞∑
k=1

bk sin(kx) dx

=

∫ π

−π

a0 dx+

∞∑
k=1

∫ π

−π

ak cos(kx) dx+

∞∑
k=1

∫ π

−π

bk sin(kx) dx.

But for k ≥ 1, thinking of the integral as an area shows that∫ π

−π

sin(kx) dx = 0 and
∫ π

−π

cos(kx) dx = 0,

so all terms drop out except the first, giving∫ π

−π

f(x) dx =

∫ π

−π

a0 dx = a0x

∣∣∣∣π
−π

= 2πa0.

Thus, we get the following result:

a0 =
1

2π

∫ π

−π

f(x) dx.

Thus a0 is the average value of f on the interval [−π, π].
To determine the values of any of the other ak or bk (for positive k), we use a rather clever

method that depends on the following facts. For all integers k and m,∫ π

−π

sin(kx) cos(mx) dx = 0,

and, provided k �= m,∫ π

−π

cos(kx) cos(mx) dx = 0 and
∫ π

−π

sin(kx) sin(mx) dx = 0.

(See Problems 26–30 on page 577.) In addition, provided m �= 0, we have∫ π

−π

cos
2
(mx) dx = π and

∫ π

−π

sin
2
(mx) dx = π.

To determine ak, we multiply the Fourier series by cos(mx), where m is any positive integer:

f(x) cos(mx) = a0 cos(mx) +

∞∑
k=1

ak cos(kx) cos(mx) +

∞∑
k=1

bk sin(kx) cos(mx).
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We integrate this between −π and π, term by term:

∫ π

−π

f(x) cos(mx) dx =

∫ π

−π

(
a0 cos(mx) +

∞∑
k=1

ak cos(kx) cos(mx) +

∞∑
k=1

bk sin(kx) cos(mx)

)
dx

= a0

∫ π

−π

cos(mx) dx+

∞∑
k=1

(
ak

∫ π

−π

cos(kx) cos(mx) dx

)

+

∞∑
k=1

(
bk

∫ π

−π

sin(kx) cos(mx) dx

)
.

Provided m �= 0, we have
∫ π
−π cos(mx) dx = 0. Since the integral

∫ π
−π sin(kx) cos(mx) dx = 0,

all the terms in the second sum are zero. Since
∫ π
−π cos(kx) cos(mx) dx = 0 provided k �= m, all

the terms in the first sum are zero except where k = m. Thus the right-hand side reduces to one
term: ∫ π

−π

f(x) cos(mx) dx = am

∫ π

−π

cos(mx) cos(mx) dx = πam.

This leads, for each value of m = 1, 2, 3 . . . , to the following formula:

am =
1

π

∫ π

−π

f(x) cos(mx) dx.

To determine bk, we multiply through by sin(mx) instead of cos(mx) and eventually obtain,
for each value of m = 1, 2, 3 . . . , the following result:

bm =
1

π

∫ π

−π

f(x) sin(mx) dx.

Exercises and Problems for Section 10.5
Exercises

Which of the series in Exercises 1–4 are Fourier series?

1. 1 + cos x+ cos2 x+ cos3 x+ cos4 x+ · · ·
2. sin x+ sin(x+ 1) + sin(x+ 2) + · · ·

3.
cosx

2
+ sin x − cos(2x)

4
− sin(2x)

2
+

cos(3x)

8
+

sin(3x)

3
− · · ·

4.
1

2
− 1

3
sin x+

1

4
sin(2x)− 1

5
sin(3x) + · · ·

5. Construct the first three Fourier approximations to the
square wave function

f(x) =
{−1 −π ≤ x < 0

1 0 ≤ x < π.

Use a calculator or computer to draw the graph of each
approximation.

6. Repeat Problem 5 with the function

f(x) =
{−x −π ≤ x < 0
x 0 ≤ x < π.

7. What fraction of the energy of the function in Problem 6
is contained in the constant term and first three harmonics
of its Fourier series?

For Exercises 8–10, find the nth Fourier polynomial for the
given functions, assuming them to be periodic with period 2π.
Graph the first three approximations with the original func-
tion.

8. f(x) = x2, −π < x ≤ π.

9. h(x) =
{
0 −π < x ≤ 0
x 0 < x ≤ π.

10. g(x) = x, −π < x ≤ π.
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Problems

11. Find the constant term of the Fourier series of the triangu-
lar wave function defined by f(x) = |x| for −1 ≤ x ≤ 1
and f(x+ 2) = f(x) for all x.

12. Using your result from Problem 10, write the Fourier se-
ries of g(x) = x. Assume that your series converges to
g(x) for −π < x < π. Substituting an appropriate value
of x into the series, show that

∞∑
k=1

(−1)k+1 1

2k − 1
=

π

4
.

13. (a) For −2π ≤ x ≤ 2π, use a calculator to sketch:
i) y = sin x+ 1

3
sin 3x

ii) y = sin x+ 1
3
sin 3x+ 1

5
sin 5x

(b) Each of the functions in part (a) is a Fourier approx-
imation to a function whose graph is a square wave.
What term would you add to the right-hand side of
the second function in part (a) to get a better approx-
imation to the square wave?

(c) What is the equation of the square wave function? Is
this function continuous?

14. (a) Find and graph the third Fourier approximation of
the square wave g(x) of period 2π:

g(x) =

{
0 −π ≤ x < −π/2
1 −π/2 ≤ x < π/2
0 π/2 ≤ x < π.

(b) How does the result of part (a) differ from that of the
square wave in Example 1?

15. Suppose we have a periodic function f with period 1 de-
fined by f(x) = x for 0 ≤ x < 1. Find the fourth-degree
Fourier polynomial for f and graph it on the interval
0 ≤ x < 1. [Hint: Remember that since the period is not
2π, you will have to start by doing a substitution. Notice
that the terms in the sum are not sin(nx) and cos(nx),
but instead turn out to be sin(2πnx) and cos(2πnx).]

16. Suppose f has period 2 and f(x) = x for 0 ≤ x < 2.
Find the fourth-degree Fourier polynomial and graph it
on 0 ≤ x < 2. [Hint: See Problem 15.]

17. Suppose that a spacecraft near Neptune has measured a
quantity A and sent it to earth in the form of a periodic
signal A cos t of amplitude A. On its way to earth, the
signal picks up periodic noise, containing only second
and higher harmonics. Suppose that the signal h(t) ac-
tually received on earth is graphed in Figure 10.33. De-
termine the signal that the spacecraft originally sent and
hence the value A of the measurement.

−π − 3π
4

−π
2

−π
4 π

3π
4

π
2

π
4

−50

−30

80

t

h(t)

Figure 10.33

18. Figures 10.34 and 10.35 show the waveforms and en-
ergy spectra for notes produced by flute and bassoon.8

Describe the principal differences between the two spec-
tra.

time

deviations in air pressure
from average

Waveform of flute

time

deviations in air pressure
from average

Waveform of bassoon

Figure 10.34

1 2 3 4 5 6 7 8
k

A2
k

Spectrum of flute

0

1 2 3 4 5 6 7 8 9
k

A2
k

Spectrum of bassoon

0

Figure 10.35

19. Show that for positive integers k, the periodic function
f(x) = ak cos kx + bk sin kx of period 2π has energy
a2
k + b2k.

8Adapted from C.A. Culver, Musical Acoustics (New York: McGraw-Hill, 1956), pp. 200, 213.
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20. Given the graph of f in Figure 10.36, find the first two
Fourier approximations numerically.

−2π −π π 2π

−2

1

2

x

y

y = f(x)

Figure 10.36

21. Justify the formula bk = 1
π

∫ π

−π
f(x) sin(kx) dx for the

Fourier coefficients, bk, of a periodic function of period
2π. The argument is similar to that in the text for ak.

In Problems 22–25, the pulse train of width c is the periodic
function f of period 2π given by

f(x) =

{
0 −π ≤ x < −c/2
1 −c/2 ≤ x < c/2
0 c/2 ≤ x < π.

22. Suppose that f is the pulse train of width 1.

(a) What fraction of the energy of f is contained in the
constant term of its Fourier series? In the constant
term and the first harmonic together?

(b) Find a formula for the energy of the kth harmonic of
f . Use it to sketch the energy spectrum of f .

(c) How many terms of the Fourier series of f are
needed to capture 90% of the energy of f?

(d) Graph f and its fifth Fourier approximation on the
interval [−3π, 3π].

23. Suppose that f is the pulse train of width 0.4.

(a) What fraction of the energy of f is contained in the
constant term of its Fourier series? In the constant
term and the first harmonic together?

(b) Find a formula for the energy of the kth harmonic of
f . Use it to sketch the energy spectrum of f .

(c) What fraction of the energy of f is contained in the
constant term and the first five harmonics of f? (The
constant term and the first thirteen harmonics are
needed to capture 90% of the energy of f .)

(d) Graph f and its fifth Fourier approximation on the
interval [−3π, 3π].

24. Suppose that f is the pulse train of width 2.

(a) What fraction of the energy of f is contained in the
constant term of its Fourier series? In the constant
term and the first harmonic together?

(b) How many terms of the Fourier series of f are
needed to capture 90% of the energy of f?

(c) Graph f and its third Fourier approximation on the
interval [−3π, 3π].

25. After working Problems 22– 24, write a paragraph about
the approximation of pulse trains by Fourier polynomi-
als. Explain how the energy spectrum of a pulse train of
width c changes as c gets closer and closer to 0 and how
this affects the number of terms required for an accurate
approximation.

For Problems 26–30, use the table of integrals inside the back
cover to show that the following statements are true for posi-
tive integers k and m.

26.

∫ π

−π

cos(kx) cos(mx) dx = 0, if k �= m.

27.

∫ π

−π

cos2(mx) dx = π.

28.

∫ π

−π

sin2(mx) dx = π.

29.

∫ π

−π

sin(kx) cos(mx) dx = 0.

30.

∫ π

−π

sin(kx) sin(mx) dx = 0, if k �= m.

31. Suppose that f(x) is a periodic function with period b.
Show that

(a) g(t) = f(bt/2π) is periodic with period 2π and
f(x) = g(2πx/b).

(b) The Fourier series for g is given by

g(t) = a0 +

∞∑
k=1

(
ak cos(kt) + bk sin(kt)

)
where the coefficients a0, ak, bk are given in the box
on page 572.

(c) The Fourier series for f is given by

f(x) = a0+

∞∑
k=1

(
ak cos

(
2πkx

b

)
+ bk sin

(
2πkx

b

))
where the coefficients are the same as in part (b).

Strengthen Your Understanding

In Problems 32–33, explain what is wrong with the statement.

32.
∫ π

−π
sin(kx) cos(mx) dx = π, where k,m are both pos-

itive integers.

33. In the Fourier series for f(x) given by

a0 +

∞∑
k=1

ak cos(kx) +

∞∑
k=1

bk sin(kx), we have a0 =

f(0).
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In Problems 34–35, give an example of:

34. A function, f(x), with period 2π whose Fourier series
has no sine terms.

35. A function, f(x), with period 2π whose Fourier series
has no cosine terms.

36. True or false? If f is an even function, then the Fourier
series for f on [−π, π] has only cosines. Explain your
answer.

37. The graph in Figure 10.37 is the graph of the first three
terms of the Fourier series of which of the following
functions?

(a) f(x) = 3(x/π)3 on −π < x < π and
f(x+ 2π) = f(x)

(b) f(t) = |x| on −π < x < π and f(x+ 2π) = f(x)

(c) f(x) =

{
−3 , −π < x < 0

3 , 0 < x < π
} and

f(x+ 2π) = f(x)

(d) f(x) =

{
π + x , −π < x < 0

π − x , 0 < x < π
} and

f(x+ 2π) = f(x)

−6 −4 −2 2 4 6

−4

−3

−2

−1

1

2

3

4

x

Figure 10.37

CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• Taylor series and polynomials
General expansion about x = 0 or x = a; specific series
for ex, sin x, cos x, (1 + x)p; using known Taylor series
to find others by substitution, multiplication, integration,
and differentiation; interval of convergence; error in Tay-

lor polynomial expansion

• Fourier series
Formula for coefficients on [−π, π], [−b, b];
Energy theorem

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER TEN

Exercises

For Exercises 1–4, find the second-degree Taylor polynomial
about the given point.

1. ex, x = 1 2. lnx, x = 2

3. sin x, x = −π/4 4. tan θ, θ = π/4

5. Find the third-degree Taylor polynomial for f(x) =
x3 + 7x2 − 5x+ 1 at x = 1.

For Exercises 6–8, find the Taylor polynomial of degree n for
x near the given point a.

6.
1

1− x
, a = 2, n = 4

7.
√
1 + x, a = 1, n = 3

8. ln x, a = 2, n = 4

9. Write out P7, the Taylor polynomial of degree n = 7
approximating g near x = 0, given that

g(x) =

∞∑
i=1

(−1)i+13i

(i− 1)!
x2i−1.

10. Find the first four nonzero terms of the Taylor series
around x = 0 for f(x) = cos2 x. [Hint: cos2 x =
0.5 (1 + cos 2x) .]

In Exercises 11–18, find the first four nonzero terms of the
Taylor series about the origin of the given functions.

11. t2et 12. cos(3y)

13. θ2 cos θ2 14. sin t2

15.
t

1 + t
16.

1

1− 4z2

17.
1√
4− x

18.
z2√
1− z2
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For Exercises 19–22, expand the quantity in a Taylor series
around 0 in terms of the variable given. Give four nonzero
terms.

19.
a

a+ b
in terms of

b

a

20.
1

(a+ r)3/2
in terms of

r

a

21. (B2 + y2)3/2 in terms of
y

B
, where B > 0

22.
√
R − r in terms of

r

R

Problems

23. A function f has f(3) = 1, f ′(3) = 5 and f ′′(3) =
−10. Find the best estimate you can for f(3.1).

Find the exact value of the sums in Problems 24–28.

24. 3 + 3 +
3

2!
+

3

3!
+

3

4!
+

3

5!
+ · · ·

25. 1− 1

3
+

1

9
− 1

27
+

1

81
− · · ·

26. 1− 2 +
4

2!
− 8

3!
+

16

4!
− · · ·

27. 2− 8

3!
+

32

5!
− 128

7!
+ · · ·

28. (0.1)2 − (0.1)4

3!
+

(0.1)6

5!
− (0.1)8

7!
+ · · ·

29. Find an exact value for each of the following sums.

(a) 7(1.02)3 + 7(1.02)2 + 7(1.02) + 7 +
7

(1.02)
+

7

(1.02)2
+ · · ·+ 7

(1.02)100
.

(b) 7 + 7(0.1)2 +
7(0.1)4

2!
+

7(0.1)6

3!
+ · · · .

30. Suppose all the derivatives of some function f exist at 0,
and the Taylor series for f about x = 0 is

x+
x2

2
+

x3

3
+

x4

4
+ · · ·+ xn

n
+ · · · .

Find f ′(0), f ′′(0), f ′′′(0), and f (10)(0).

31. Suppose x is positive but very small. Arrange the follow-
ing expressions in increasing order:

x , sin x, ln(1 + x), 1− cos x,

ex −1, arctan x, x
√
1− x.

32. By plotting several of its Taylor polynomials and the
function f(x) = 1/(1 + x), estimate graphically the
interval of convergence of the series expansion for this
function about x = 0. Compute the radius of conver-
gence analytically.

33. Find the radius of convergence of the Taylor series

around x = 0 for
1

1− 2x
.

34. Use Taylor series to evaluate lim
x→0

ln(1 + x+ x2)− x

sin2 x
.

35. Referring to the table, use a fourth-degree Taylor polyno-

mial to estimate the integral

∫ 0.6

0

f(x) dx.

f(0) f ′(0) f ′′(0) f ′′′(0) f(4)(0)

0 1 −3 7 −15

36. Let f(x) = e−x3

.

(a) Write the first five nonzero terms of the Taylor series
for f(x) centered at x = 0.

(b) Write the first four nonzero terms of the Taylor se-
ries for f ′′(x) centered at x = 0.

37. Use a Taylor polynomial of degree n = 8 to estimate∫ 1

0

cos
(
x2
)
dx.

38. (a) Find lim
θ→0

sin(2θ)

θ
. Explain your reasoning.

(b) Use series to explain why f(θ) =
sin(2θ)

θ
looks

like a parabola near θ = 0. What is the equation of
the parabola?

39. (a) Find the Taylor series expansion of arcsin x.
(b) Use Taylor series to find the limit as x → 0 of

arctan x

arcsin x
.

40. Let f(0) = 1 and f (n)(0) =
(n+ 1)!

2n
for n > 0.

(a) Write the Taylor series for f at x = 0 using sigma
sum notation. Simplify the general term. [Hint:
Write out the first few terms of the Taylor series.]

(b) Does the series you found in part (a) converge for
x = 3? Briefly explain your reasoning.

(c) Use the series you found in part (a) to evaluate∫ 1

0

f(x) dx. You may assume that

∫ 1

0

(
∞∑

n=1

anx
n

)
dx =

∞∑
n=1

(∫ 1

0

anx
n dx

)
.
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41. In this problem, you will investigate the error in the nth-
degree Taylor approximation to ex about 0 for various
values of n.

(a) Let E1 = ex − P1(x) = ex − (1 + x). Using a cal-
culator or computer, graph E1 for −0.1 ≤ x ≤ 0.1.
What shape is the graph of E1? Use the graph to
confirm that

|E1| ≤ x2 for − 0.1 ≤ x ≤ 0.1.

(b) Let E2 = ex−P2(x) = ex−(1+x+x2/2). Choose
a suitable range and graph E2 for −0.1 ≤ x ≤ 0.1.
What shape is the graph of E2? Use the graph to
confirm that

|E2| ≤ x3 for − 0.1 ≤ x ≤ 0.1.

(c) Explain why the graphs of E1 and E2 have the
shapes they do.

42. The table gives values of f (n)(0) where f is the inverse
hyperbolic tangent function. Note that f(0) = 0.

n 1 2 3 4 5 6 7

f(n)(0) 1 0 2! 0 4! 0 6!

(a) Find the Taylor polynomial of degree 7 for f about
x = 0.

(b) Assuming the pattern in the table continues, write
the Taylor series for this function.

43. A particle moving along the x-axis has potential energy
at the point x given by V (x). The potential energy has a
minimum at x = 0.

(a) Write the Taylor polynomial of degree 2 for V about
x = 0. What can you say about the signs of the co-
efficients of each of the terms of the Taylor polyno-
mial?

(b) The force on the particle at the point x is given by
−V ′(x). For small x, show that the force on the
particle is approximately proportional to its distance
from the origin. What is the sign of the proportion-
ality constant? Describe the direction in which the
force points.

44. Consider the functions y = e−x2

and y = 1/(1 + x2).

(a) Write the Taylor expansions for the two functions
about x = 0. What is similar about the two series?
What is different?

(b) Looking at the series, which function do you predict
will be greater over the interval (−1, 1)? Graph both
and see.

(c) Are these functions even or odd? How might you see
this by looking at the series expansions?

(d) By looking at the coefficients, explain why it is rea-

sonable that the series for y = e−x2

converges for
all values of x, but the series for y = 1/(1 + x2)
converges only on (−1, 1).

45. The Lambert W function has the following Taylor series
about x = 0:

W (x) =

∞∑
n=1

(−n)n−1

n!
xn.

Find P4, the fourth-degree Taylor polynomial for W (x)
about x = 0.

46. Using the table, estimate the value of

∫ 2

0

f(x) dx.

f(0) f ′(0) f ′′(0) f ′′′(0) f(4)(0) f(5)(0)

2 0 −1 0 −3 6

47. Let f(t) be the so called exponential integral, a spe-
cial function with applications to heat transfer and water
flow,9 which has the property that

f ′(t) = t−1et.

Use the series for et about t = 0 to show that

f(t) ≈ ln t+ P3(t) +C,

where P3 is a third-degree polynomial. Find P3. You
need not find the constant C.

48. The electric potential, V , at a distance R along the axis
perpendicular to the center of a charged disc with radius
a and constant charge density σ, is given by

V = 2πσ(
√

R2 + a2 −R).

Show that, for large R,

V ≈ πa2σ

R
.

49. The gravitational field at a point in space is the gravita-
tional force that would be exerted on a unit mass placed
there. We will assume that the gravitational field strength
at a distance d away from a mass M is

GM

d2

where G is constant. In this problem you will investigate
the gravitational field strength, F , exerted by a system
consisting of a large mass M and a small mass m, with a
distance r between them. (See Figure 10.38.)

��
R

��
r

P M m

Figure 10.38

(a) Write an expression for the gravitational field
strength, F , at the point P .

9http://en.wikipedia.org/wiki/Exponential integral.
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(b) Assuming r is small in comparison to R, expand F
in a series in r/R.

(c) By discarding terms in (r/R)2 and higher powers,
explain why you can view the field as resulting from
a single particle of mass M + m, plus a correction
term. What is the position of the particle of mass
M +m? Explain the sign of the correction term.

50. A thin disk of radius a and mass M lies horizontally; a
particle of mass m is at a height h directly above the cen-
ter of the disk. The gravitational force, F , exerted by the
disk on the mass m is given by

F =
2GMmh

a2

(
1

h
− 1

(a2 + h2)1/2

)
,

where G is a constant. Assume a < h and think of F as
a function of a, with the other quantities constant.

(a) Expand F as a series in a/h. Give the first two
nonzero terms.

(b) Show that the approximation for F obtained by us-
ing only the first nonzero term in the series is inde-
pendent of the radius, a.

(c) If a = 0.02h, by what percentage does the approx-
imation in part (a) differ from the approximation in
part (b)?

51. When a body is near the surface of the earth, we usually
assume that the force due to gravity on it is a constant
mg, where m is the mass of the body and g is the accel-
eration due to gravity at sea level. For a body at a distance
h above the surface of the earth, a more accurate expres-
sion for the force F is

F =
mgR2

(R+ h)2

where R is the radius of the earth. We will consider the
situation in which the body is close to the surface of the
earth so that h is much smaller than R.

(a) Show that F ≈ mg.
(b) Express F as mg multiplied by a series in h/R.
(c) The first-order correction to the approximation F ≈

mg is obtained by taking the linear term in the se-
ries but no higher terms. How far above the surface
of the earth can you go before the first-order correc-
tion changes the estimate F ≈ mg by more than
10%? (Assume R = 6400 km.)

52. Expand f(x+ h) and g(x+ h) in Taylor series and take
a limit to confirm the product rule:

d

dx
(f(x)g(x)) = f ′(x)g(x) + f(x)g′(x).

53. Use Taylor expansions for f(y+k) and g(x+h) to con-
firm the chain rule:

d

dx
(f(g(x))) = f ′(g(x)) · g′(x).

54. All the derivatives of g exist at x = 0 and g has a critical
point at x = 0.

(a) Write the nth Taylor polynomial for g at x = 0.
(b) What does the Second Derivative test for local max-

ima and minima say?
(c) Use the Taylor polynomial to explain why the Sec-

ond Derivative test works.

55. (Continuation of Problem 54) You may remember that
the Second Derivative test tells us nothing when the sec-
ond derivative is zero at the critical point. In this problem
you will investigate that special case.

Assume g has the same properties as in Problem 54,
and that, in addition, g′′(0) = 0. What does the Taylor
polynomial tell you about whether g has a local maxi-
mum or minimum at x = 0?

56. Use the Fourier series for the square wave

f(x) =
{−1 −π < x ≤ 0

1 0 < x ≤ π

to explain why the following sum must approach π/4 as
n → ∞:

1− 1

3
+

1

5
− 1

7
+ · · ·+ (−1)n

1

2n+ 1
.

You may assume that the Fourier series converges to
f(x) at x = π/2.

57. Suppose that f(x) is a differentiable periodic function
of period 2π. Assume the Fourier series of f is differen-
tiable term by term.

(a) If the Fourier coefficients of f are ak and bk, show
that the Fourier coefficients of its derivative f ′ are
kbk and −kak.

(b) How are the amplitudes of the harmonics of f and
f ′ related?

(c) How are the energy spectra of f and f ′ related?

58. If the Fourier coefficients of f are ak and bk, and the
Fourier coefficients of g are ck and dk, and if A and B
are real, show that the Fourier coefficients of Af + Bg
are Aak +Bck and Abk +Bdk.

59. Suppose that f is a periodic function of period 2π and
that g is a horizontal shift of f , say g(x) = f(x + c).
Show that f and g have the same energy.
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CAS Challenge Problems

60. (a) Use a computer algebra system to find P10(x) and
Q10(x), the Taylor polynomials of degree 10 about
x = 0 for sin2 x and cos2 x.

(b) What similarities do you observe between the two
polynomials? Explain your observation in terms of
properties of sine and cosine.

61. (a) Use your computer algebra system to find P7(x) and
Q7(x), the Taylor polynomials of degree 7 about
x = 0 for f(x) = sin x and g(x) = sin x cosx.

(b) Find the ratio between the coefficient of x3 in the
two polynomials. Do the same for the coefficients of
x5 and x7.

(c) Describe the pattern in the ratios that you computed
in part (b). Explain it using the identity sin(2x) =
2 sin x cos x.

62. (a) Calculate the equation of the tangent line to the func-
tion f(x) = x2 at x = 2. Do the same calculation
for g(x) = x3 − 4x2 + 8x − 7 at x = 1 and for
h(x) = 2x3 + 4x2 − 3x+ 7 at x = −1.

(b) Use a computer algebra system to divide f(x) by
(x− 2)2, giving your result in the form

f(x)

(x− 2)2
= q(x) +

r(x)

(x− 2)2
,

where q(x) is the quotient and r(x) is the remain-
der. In addition, divide g(x) by (x − 1)2 and h(x)
by (x+ 1)2.

(c) For each of the functions, f , g, h, compare your
answers to part (a) with the remainder, r(x). What
do you notice? Make a conjecture about the tangent
line to a polynomial p(x) at the point x = a and
the remainder, r(x), obtained from dividing p(x) by
(x− a)2.

(d) Use the Taylor expansion of p(x) about x = a to
prove your conjecture.10

63. Let f(x) =
x

ex − 1
+

x

2
. Although the formula for f is

not defined at x = 0, we can make f continuous by set-
ting f(0) = 1. If we do this, f has a Taylor series about
x = 0.

(a) Use a computer algebra system to find P10(x), the
Taylor polynomial of degree 10 about x = 0 for f .

(b) What do you notice about the degrees of the terms in
the polynomial? What property of f does this sug-
gest?

(c) Prove that f has the property suggested by part (b).

64. Let S(x) =
∫ x

0
sin(t2) dt.

(a) Use a computer algebra system to find P11(x), the
Taylor polynomial of degree 11 about x = 0, for
S(x).

(b) What is the percentage error in the approximation of
S(1) by P11(1)? What about the approximation of
S(2) by P11(2)?

PROJECTS FOR CHAPTER TEN

1. Shape of Planets
Rotation causes planets to bulge at the equator. Let α be the angle between the direction down-
ward perpendicular to the surface and the direction toward the center of the planet. At a point
on the surface with latitude θ, we have

cosα =
1−A cos2 θ

(1− 2A cos2 θ +A2 cos2 θ)1/2
,

where A is a small positive constant that depends on the particular planet. (For earth, A =

0.0034.)

(a) Expand cosα in powers of A to show that cosα ≈ 1− 1
2A

2 cos2 θ sin2 θ.
(b) Show that α ≈ 1

2A sin(2θ).
(c) By what percentage is the approximation in part (b) in error for the earth at latitudes θ = 0◦,

20◦, 40◦, 60◦, 80◦?

10See “Tangents Without Calculus” by Jorge Aarao, The College Mathematics Journal Vol. 31, No. 5, Nov. 2000 (Mathe-
matical Association of America).
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2. Machin’s Formula and the Value of π

(a) In the 17th century, Machin obtained the formula: π/4 = 4 arctan(1/5)− arctan(1/239).
Use a calculator to check this formula.

(b) Use the Taylor polynomial approximation of degree 5 to the arctangent function to approx-
imate the value of π. (Note: In 1873 William Shanks used this approach to calculate π to
707 decimal places. Unfortunately, in 1946 it was found that he made an error in the 528th

place. Currently, several billion decimal places are known.)
(c) Why do the two series for arctangent converge so rapidly here while the series used in

Example 6 on page 555 converges so slowly?
(d) Now we prove Machin’s formula using the tangent addition formula

tan(A+B) =
tanA+ tanB

1− tanA tanB
.

(i) Let A = arctan(120/119) and B = − arctan(1/239) and show that

arctan

(
120

119

)
− arctan

(
1

239

)
= arctan1.

(ii) Let A = B = arctan(1/5) and show that

2 arctan

(
1

5

)
= arctan

(
5

12

)
.

Use a similar method to show that

4 arctan

(
1

5

)
= arctan

(
120

119

)
.

(iii) Derive Machin’s formula.

3. Approximating the Derivative
In applications, the values of a function f(x) are frequently known only at discrete values

x0, x0 ± h, x0 ± 2h,. . . . Suppose we are interested in approximating the derivative f ′(x0).
The definition

f ′
(x0) = lim

h→0

f(x0 + h)− f(x0)

h

suggests that for small h we can approximate f ′(x) as follows:

f ′
(x0) ≈

f(x0 + h)− f(x0)

h
.

Such finite-difference approximations are used frequently in programming a computer to solve
differential equations.11

Taylor series can be used to analyze the error in this approximation. Substituting

f(x0 + h) = f(x0) + f ′
(x0)h+

f ′′(x0)

2
h2

+ · · ·

into the approximation for f ′(x0), we find

f(x0 + h)− f(x0)

h
= f ′

(x0) +
f ′′(x0)

2
h+ · · · .

This suggests (and it can be proved) that the error in the approximation is bounded as follows:∣∣∣∣f(x0 + h)− f(x0)

h
− f ′

(x0)

∣∣∣∣ ≤ Mh

2
,

11From Mark Kunka.
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where
|f ′′

(x)| ≤ M for |x− x0| ≤ |h|.

Notice that as h → 0, the error also goes to zero, provided M is bounded.
As an example, we take f(x) = ex and x0 = 0, so f ′(x0) = 1. The error for various values

of h are given in Table 10.2. We see that decreasing h by a factor of 10 decreases the error by a
factor of about 10, as predicted by the error bound Mh/2.

Table 10.2

h (f(x0 + h)− f(x0))/h Error

10−1 1.05171 5.171 × 10−2

10−2 1.00502 5.02 × 10−3

10−3 1.00050 5.0 × 10−4

10−4 1.00005 5.0 × 10−5

(a) Using Taylor series, suggest an error bound for each of the following finite-difference ap-
proximations.

(i) f ′
(x0) ≈

f(x0)− f(x0 − h)

h

(ii) f ′
(x0) ≈

f(x0 + h)− f(x0 − h)

2h

(iii) f ′
(x0) ≈

−f(x0 + 2h) + 8f(x0 + h)− 8f(x0 − h) + f(x0 − 2h)

12h
(b) Use each of the formulas in part (a) to approximate the first derivative of ex at x = 0 for

h = 10−1, 10−2, 10−3, 10−4. As h is decreased by a factor of 10, how does the error de-
crease? Does this agree with the error bounds found in part (a)? Which is the most accurate
formula?

(c) Repeat part (b) using f(x) = 1/x and x0 = 10−5. Why are these formulas not good
approximations anymore? Continue to decrease h by factors of 10. How small does h have
to be before formula (iii) is the best approximation? At these smaller values of h, what
changed to make the formulas accurate again?
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11.1 WHAT IS A DIFFERENTIAL EQUATION?

How Fast Does a Person Learn?
Suppose we are interested in how fast an employee learns a new task. One theory claims that the
more the employee already knows of the task, the slower he or she learns. In other words, if y% is
the percentage of the task that has already been mastered and dy/dt the rate at which the employee
learns, then dy/dt decreases as y increases.

What can we say about y as a function of time, t? Figure 11.1 shows three graphs whose slope,
dy/dt, decreases as y increases. Figure 11.1(a) represents an employee who starts learning at t = 0

and who eventually masters 100% of the task. Figure 11.1(b) represents an employee who starts
later but eventually masters 100% of the task. Figure 11.1(c) represents an employee who starts
learning at t = 0 but who does not master the whole task (since y levels off below 100%).

100

t

y (as a percent)(a)

100

t

y (as a percent)(b)
100

y (as a percent)

t

(c)

Figure 11.1: Possible graphs showing percentage of task learned, y, as a function of time, t

Setting up a Differential Equation to Model How a Person Learns

To describe more precisely how a person learns, we need more exact information about how dy/dt
depends on y. Suppose, if time is measured in weeks, that

Rate a person learns = Percentage of task not yet learned.

Since y is the percentage learned by time t (in weeks), the percentage not yet learned by that time
is 100− y. So we have

dy

dt
= 100− y.

Such an equation, which gives information about the rate of change of an unknown function, is
called a differential equation.

Solving the Differential Equation Numerically

Suppose that the person starts learning at time zero, so y = 0 when t = 0. Then initially the person
is learning at a rate

dy

dt
= 100− 0 = 100%perweek.

In other words, if the person were to continue learning at this rate, the task would be mastered in a
week. In fact, however, the rate at which the person learns decreases, so it takes more than a week
to get close to mastering the task. Let’s assume a five-day work week and that the 100% per week
learning rate holds for the whole first day. (It does not, but we assume this for now.) One day is 1/5
of a week, so during the first day the person learns 100(1/5) = 20% of the task. By the end of the
first day, the rate at which the person learns has therefore been reduced to

dy

dt
= 100− 20 = 80%perweek.

Thus, during the second day the person learns 80(1/5) = 16%, so by the end of the second day, the
person knows 20 + 16 = 36% of the task. Continuing in this fashion, we compute the approximate
y-values1 in Table 11.1.

1The values of y after 6, 7, 8, 9, . . . , 19 days were computed by the same method, but omitted from the table.
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Table 11.1 Approximate percentage of task learned as a function of time

Time (working days) 0 1 2 3 4 5 10 20

Percentage learned 0 20 36 48.8 59.0 67.2 89.3 98.8

A Formula for the Solution to the Differential Equation

A function y = f(t) that satisfies the differential equation is called a solution. Figure 11.1(a) shows
a possible solution, and Table 11.1 shows approximate numerical values of a solution to the equation

dy

dt
= 100− y.

Later in this chapter, we see how to obtain a formula for the solution:

y = 100 + Ce−t,

where C is a constant. To check that this formula is correct, we substitute into the differential
equation, giving:

Left side =
dy

dt
=

d

dt
(100 + Ce−t

) = −Ce−t

Right side = 100− y = 100− (100 + Ce−t
) = −Ce−t.

Since we get the same result on both sides, y = 100+Ce−t is a solution of this differential equation.

Finding the Arbitrary Constant: Initial Conditions

To find a value for the arbitrary constant C, we need an additional piece of information—usually
the initial value of y. If, for example, we are told that y = 0 when t = 0, then substituting into

y = 100 + Ce−t

shows us that
0 = 100 + Ce0, so C = −100.

So the function y = 100 − 100e−t satisfies the differential equation and the condition that y = 0

when t = 0.

The Family of Solutions

Any solution to this differential equation is of the form y = 100+Ce−t for some constant C. Like
a family of antiderivatives, this family contains an arbitrary constant, C. We say that the general
solution to the differential equation dy/dt = 100− y is the family of functions y = 100 + Ce−t.
The solution y = 100 − 100e−t that satisfies the differential equation together with the initial
condition that y = 0 when t = 0 is called a particular solution. The differential equation and
the initial condition together are called an initial value problem. Several members of the family
of solutions are graphed in Figure 11.2. The horizontal solution curve when C = 0 is called an
equilibrium solution.

100

y

t

�

C = 100

�
C = −200

�
C = −100

�

C = 0

�

C = −50

Figure 11.2: Solution curves for dy/dt = 100 − y:
Members of the family y = 100 + Ce−t
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First- and Second-Order Differential Equations
First, some more definitions. We often write y′ to represent the derivative of y. The differential
equation

y′ = 100− y

is called first-order because it involves the first derivative, but no higher derivatives. By contrast, if
s is the height (in meters) of a body moving under the force of gravity and t is time (in seconds),
then

d2s

dt2
= −9.8.

This is a second-order differential equation because it involves the second derivative of the unknown
function, s = f(t), but no higher derivatives.

Example 1 Show that y = e2t is not a solution to the second-order differential equation

d2y

dt2
+ 4y = 0.

Solution To decide whether the function y = e2t is a solution, substitute it into the differential equation:

d2y

dt2
+ 4y = 2(2e2t) + 4e2t = 8e2t.

Since 8e2t is not identically zero, y = e2t is not a solution.

How Many Arbitrary Constants Should We Expect in the Family of Solutions?

Since a differential equation involves the derivative of an unknown function, solving it usually in-
volves antidifferentiation, which introduces arbitrary constants. The solution to a first-order differ-
ential equation usually involves one antidifferentiation and one arbitrary constant (for example, the
C in y = 100 + Ce−t). Picking out one particular solution involves knowing one additional piece
of information, such as an initial condition. Solving a second-order differential equation generally
involves two antidifferentiations and so two arbitrary constants. Consequently, finding a particular
solution usually involves two initial conditions.

For example, if s is the height (in meters) of a body above the surface of the earth at time t (in
seconds), then

d2s

dt2
= −9.8.

Integrating gives
ds

dt
= −9.8t+ C1,

and integrating again gives

s = −4.9t2 + C1t+ C2.

Thus the general solution for s involves the two arbitrary constants C1 and C2. We can find C1 and
C2 if we are told, for example, that the initial velocity is 30 meters per second upward and that the
initial position is 5 meters above the ground. In this case, C1 = 30 and C2 = 5.
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Exercises and Problems for Section 11.1
Exercises

1. Is y = x3 a solution to the differential equation

xy′ − 3y = 0?

2. Determine whether each function is a solution to the dif-
ferential equation and justify your answer:

x
dy

dx
= 4y.

(a) y = x4 (b) y = x4 + 3

(c) y = x3 (d) y = 7x4

3. Determine whether each function is a solution to the dif-
ferential equation and justify your answer:

y
dy

dx
= 6x2.

(a) y = 4x3 (b) y = 2x3/2 (c) y = 6x3/2

4. Show that y(x) = Aeλx is a solution to the equation
y′ = λy for any value of A.

5. Show that y = sin 2t satisfies

d2y

dt2
+ 4y = 0.

6. Show that, for any constant P0, the function P = P0e
t

satisfies the equation

dP

dt
= P.

7. Use implicit differentiation to show that x2 + y2 = r2 is
a solution to the differential equation dy/dx = −x/y.

8. A quantity Q satisfies the differential equation

dQ

dt
=

t

Q
− 0.5.

(a) If Q = 8 when t = 2, use dQ/dt to determine
whether Q is increasing or decreasing at t = 2.

(b) Use your work in part (a) to estimate the value of Q
when t = 3. Assume the rate of change stays ap-
proximately constant over the interval from t = 2 to
t = 3.

9. Fill in the missing values in the table given if you know
that dy/dt = 0.5y. Assume the rate of growth given by
dy/dt is approximately constant over each unit time in-
terval and that the initial value of y is 8.

t 0 1 2 3 4

y 8

10. Use the method that generated the data in Table 11.1
on page 587 to fill in the missing y-values for t =
6, 7, . . . , 19 days.

In Exercises 11–14, find the particular solution to the differ-
ential equation, given the general solution and an initial con-
dition. (C is the constant of integration.)

11. x(t) = Ce3t; x(0) = 5

12. P = C/t; P = 5 when t = 3

13. y =
√
2t +C; the solution curve passes through (1, 3)

14. Q = 1/(Ct + C); Q = 4 when t = 2

Problems

15. Show that y = A+ Cekt is a solution to the equation

dy

dt
= k(y − A).

16. Find the value(s) of ω for which y = cosωt satisfies

d2y

dt2
+ 9y = 0.

17. Show that any function of the form

x = C1 coshωt+ C2 sinhωt

satisfies the differential equation

x′′ − ω2x = 0.

18. Suppose Q = Cekt satisfies the differential equation

dQ

dt
= −0.03Q.

What (if anything) does this tell you about the values of
C and k?

19. Find the values of k for which y = x2 + k is a solution
to the differential equation

2y − xy′ = 10.

20. For what values of k (if any) does y = 5 + 3ekx satisfy
the differential equation

dy

dx
= 10− 2y?
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21. (a) For what values of C and n (if any) is y = Cxn a
solution to the differential equation

x
dy

dx
− 3y = 0?

(b) If the solution satisfies y = 40 when x = 2, what
more (if anything) can you say about C and n?

22. (a) Find the value of A so that the equation y′−xy−x =

0 has a solution of the form y(x) = A+Bex
2/2 for

any constant B.
(b) If y(0) = 1, find B.

23. In Figure 11.3, the height, y, of the hanging cable above
the horizontal line satisfies

d2y

dx2
= k

√
1 +
(
dy

dx

)2
.

(a) Show that y =
ex + e−x

2
satisfies this differential

equation if k = 1.
(b) For general k, one solution to this differential equa-

tion is of the form

y =
eAx + e−Ax

2A
.

Substitute this expression for y into the differential
equation to find A in terms of k.

x

y Cable

Figure 11.3

24. Match solutions and differential equations. (Note: Each
equation may have more than one solution.)

(a) y′′ − y = 0 (I) y = ex

(b) x2y′′ + 2xy′ − 2y = 0 (II) y = x3

(c) x2y′′ − 6y = 0 (III) y = e−x

(IV) y = x−2

25. Pick out which functions are solutions to which differen-
tial equations. (Note: Functions may be solutions to more
than one equation or to none; an equation may have more
than one solution.)

(a)
dy

dx
= −2y (I) y = 2 sin x

(b)
dy

dx
= 2y (II) y = sin 2x

(c)
d2y

dx2
= 4y (III) y = e2x

(d)
d2y

dx2
= −4y (IV) y = e−2x

26. Families of curves often arise as solutions of differential
equations. Match the families of curves with the differ-
ential equations of which they are solutions.

(a)
dy

dx
=

y

x
(I) y = xekx

(b)
dy

dx
= ky (II) y = xk

(c)
dy

dx
= ky +

y

x
(III) y = ekx

(d)
dy

dx
=

ky

x
(IV) y = kx

27. Is y(x) = e3x the general solution of y′ = 3y?

28. (a) Let y = A+Be−2t. For what values of A and B, if
any, is y a solution to the differential equation

dy

dt
= 100 − 2y?

Give the general solution to the differential equation.
(b) If the solution satisfies y = 85 when t = 0, what

more (if anything) can you say about A and B?
Give the particular solution to the differential equa-
tion with this initial condition.

Strengthen Your Understanding

In Problems 29–30, explain what is wrong with the statement.

29. Q = 6e4t is the general solution to the differential equa-
tion dQ/dt = 4Q.

30. If dx/dt = 1/x and x = 3 when t = 0, then x is a
decreasing function of t.

In Problems 31–37, give an example of:

31. A differential equation with an initial condition.

32. A second-order differential equation.

33. A differential equation and two different solutions to the
differential equation.

34. A differential equation that has a trigonometric function
as a solution.

35. A differential equation that has a logarithmic function as
a solution.

36. A differential equation all of whose solutions are increas-
ing and concave up.

37. A differential equation all of whose solutions have their
critical points on the parabola y = x2.
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Are the statements in Problems 38–39 true or false? Give an
explanation for your answer.

38. If y = f(t) is a particular solution to a first-order differ-
ential equation, then the general solution is y = f(t)+C,
where C is an arbitrary constant.

39. Polynomials are never solutions to differential equations.

In Problems 40–47, is the statement true or false? Assume that
y = f(x) is a solution to the equation dy/dx = g(x). If the
statement is true, explain how you know. If the statement is
false, give a counterexample.

40. If g(x) is increasing for all x, then the graph of f is con-
cave up for all x .

41. If g(x) is increasing for x > 0, then so is f(x).

42. If g(0) = 1 and g(x) is increasing for x ≥ 0, then f(x)
is also increasing for x ≥ 0.

43. If g(x) is periodic, then f(x) is also periodic.

44. If limx→∞ g(x) = 0, then limx→∞ f(x) = 0.

45. If limx→∞ g(x) = ∞, then limx→∞ f(x) = ∞.

46. If g(x) is even, then so is f(x).

47. If g(x) is even, then f(x) is odd.

11.2 SLOPE FIELDS

In this section, we see how to visualize a first-order differential equation. We start with the equation

dy

dx
= y.

Any solution to this differential equation has the property that the slope at any point is equal to the
y-coordinate at that point. (That’s what the equation dy/dx = y is telling us!) If the solution goes
through the point (0, 0.5), its slope there is 0.5; if it goes through a point with y = 1.5, its slope
there is 1.5. See Figure 11.4.

In Figure 11.4 a small line segment is drawn at each of the marked points showing the slope of
the curve there. Imagine drawing many of these line segments, but leaving out the curves; this gives
the slope field for the equation dy/dx = y in Figure 11.5. From this picture, we can see that above
the x-axis, the slopes are all positive (because y is positive there), and they increase as we move
upward (as y increases). Below the x-axis, the slopes are all negative and get more so as we move
downward. On any horizontal line (where y is constant) the slopes are constant.

−2 −1 1 2

−2

−1

1

2

x

y

�
�

�

Slope = 0.5

Slope = 1

Slope = 1.5

Figure 11.4: Solutions to dy/dx = y

−2 2

−2

2

x

y

Figure 11.5: Slope field for dy/dx = y

In the slope field we can see the ghost of the solution curve lurking. Start anywhere on the plane
and move so that the slope lines are tangent to our path; we trace out one of the solution curves. We
think of the slope field as a set of signposts pointing in the direction we should go at each point. In
this case, the slope field should trace out exponential curves of the form y = Cex, the solutions to
the differential equation dy/dx = y.

Example 1 Figure 11.6 shows the slope field of the differential equation dy/dx = 2x.

(a) How does the slope field vary as we move around the xy-plane?
(b) Compare the solution curves sketched on the slope field with the formula for the solutions.
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−3 3

−3

3

x

y

Figure 11.6: Slope field for dy/dx = 2x

−3 3

−3

3

x

y

Figure 11.7: Some solutions to dy/dx = 2x

Solution (a) In Figure 11.6 we notice that on a vertical line (where x is constant) the slopes are constant.
This is because in this differential equation dy/dx depends on x only. (In the previous example,
dy/dx = y, the slopes depended on y only.)

(b) The solution curves in Figure 11.7 look like parabolas. By antidifferentiation, we see that the
solution to the differential equation dy/dx = 2x is

y =

∫
2x dx = x2

+ C,

so the solution curves really are parabolas.

Example 2 Using the slope field, guess the form of the solution curves of the differential equation

dy

dx
= −

x

y
.

Solution The slope field is shown in Figure 11.8. On the y-axis, where x is 0, the slope is 0. On the x-
axis, where y is 0, the line segments are vertical and the slope is infinite. At the origin the slope is
undefined, and there is no line segment.

The slope field suggests that the solution curves are circles centered at the origin. Later we
see how to obtain the solution analytically, but even without this, we can check that the circle is a
solution. We take the circle of radius r,

x2
+ y2 = r2,

and differentiate implicitly, thinking of y as a function of x. Using the chain rule, we get

2x+ 2y ·
dy

dx
= 0.

Solving for dy/dx gives our differential equation,

dy

dx
= −

x

y
.

This tells us that x2 + y2 = r2 is a solution to the differential equation.

−2 2

−2

2

x

y

Figure 11.8: Slope field for dy/dx = −x/y
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The previous example shows that the solution to a differential equation may be an implicit
function.

Example 3 The slope fields of dy/dt = 2− y and dy/dt = t/y are in Figures 11.9 and 11.10.

(a) On each slope field, sketch solution curves with initial conditions
(i) y = 1 when t = 0 (ii) y = 0 when t = 1 (iii) y = 3 when t = 0

(b) For each solution curve, what can you say about the long-run behavior of y? For example, does
lim
t→∞

y exist? If so, what is its value?

−4 4

2

4

6

t

y

Figure 11.9: Slope field for dy/dt = 2− y

−5 5

−5

5

t

y

Figure 11.10: Slope field for dy/dt = t/y

Solution (a) See Figures 11.11 and 11.12.
(b) For dy/dt = 2 − y, all solution curves have y = 2 as a horizontal asymptote, so lim

t→∞
y = 2.

For dy/dt = t/y, as t → ∞, it appears that either y → t or y → −t.

−4 4

2

4

6

t

y

(i) (ii)

(iii)

Figure 11.11: Solution curves for dy/dt = 2− y

−5 5

−5

5

t

y
(i) (iii)

(ii)

Figure 11.12: Solution curves for dy/dt = t/y

Existence and Uniqueness of Solutions
Since differential equations are used to model many real situations, the question of whether a so-
lution is unique can have great practical importance. If we know how the velocity of a satellite is
changing, can we know its velocity at any future time? If we know the initial population of a city
and we know how the population is changing, can we predict the population in the future? Com-
mon sense says yes: if we know the initial value of some quantity and we know exactly how it is
changing, we should be able to figure out its future value.
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x

y

Figure 11.13: There’s one and only one solution curve through each
point in the plane for this slope field (dots represent initial conditions).

In the language of differential equations, an initial value problem (that is, a differential equation
and an initial condition) almost always has a unique solution. One way to see this is by looking at
the slope field. Imagine starting at the point representing the initial condition. Through that point
there is usually a line segment pointing in the direction of the solution curve. By following these
line segments, we trace out the solution curve. See Figure 11.13. In general, at each point there is
one line segment and therefore only one direction for the solution curve to go. The solution curve
exists and is unique provided we are given an initial point. Notice that even though we can draw the
solution curves, we may have no simple formula for them.

It can be shown that if the slope field is continuous as we move from point to point in the
plane, we can be sure that a solution curve exists everywhere. Ensuring that each point has only one
solution curve through it requires a slightly stronger condition.

Exercises and Problems for Section 11.2
Exercises

1. (a) For dy/dx = x2−y2, find the slope at the following
points:

(1, 0), (0, 1), (1, 1), (2, 1), (1, 2), (2, 2)

(b) Sketch the slope field at these points.

2. Sketch the slope field for dy/dx = x/y at the points
marked in Figure 11.14.

−1 1

−1

1

x

y

Figure 11.14

3. Sketch the slope field for dy/dx = y2 at the points
marked in Figure 11.15.

−1 1

1

2

x

y

Figure 11.15
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4. Match each of the slope field segments in (I)–(VI) with
one or more of the differential equations in (a)–(f).

(a) y′ = e−x2

(b) y′ = cos y

(c) y′ = cos(4− y) (d) y′ = y(4− y)

(e) y′ = y(3− y) (f) y′ = x(3− x)

4

4

x

y(I)

4

4

x

y(II)

4

4

x

y(III)

4

4

x

y(IV)

4

4

x

y(V)

4

4

x

y(VI)

5. Sketch three solution curves for each of the slope fields
in Figures 11.16 and 11.17.

x

y

Figure 11.16

x

y

Figure 11.17

6. Sketch three solution curves for each of the slope fields
in Figure 11.18.

x

y

x

y

Figure 11.18

7. One of the slope fields in Figure 11.18 is the slope field
for y′ = x2 − y2. Which one? On this field, where is the
point (0, 1)? The point (1, 0)? (Assume that the x and y
scales are the same.) Sketch the line x = 1 and the solu-
tion curve passing through (0, 1) until it crosses x = 1.

8. The slope field for the equation y′ = x(y − 1) is shown
in Figure 11.19.

(a) Sketch the solutions that pass through the points

(i) (0, 1) (ii) (0,−1) (iii) (0, 0)

(b) From your sketch, write down the equation of the
solution with y(0) = 1.

(c) Check your solution to part (b) by substituting it into
the differential equation.

−2 2

−2

2

x

y

Figure 11.19

9. The slope field for the equation y′ = x + y is shown in
Figure 11.20.

(a) Sketch the solutions that pass through the points

(i) (0, 0) (ii) (−3, 1) (iii) (−1, 0)

(b) From your sketch, write the equation of the solution
passing through (−1, 0).

(c) Check your solution to part (b) by substituting it into
the differential equation.

−4 4

−4

4

x

y

Figure 11.20: Slope field for
y′ = x+ y
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Problems

10. Sketch a slope field with the following properties. (Draw
at least ten line segments, including some with x < 0,
with x > 0, and with x = 0.)

dy

dx
> 0 for x < 0,

dy

dx
< 0 for x > 0,

dy

dx
= 0 for x = 0.

11. Sketch a slope field with the following properties. (Draw
at least ten line segments, including some with P < 2,
with 2 < P < 5, and with P > 5.)

dP

dt
> 0 for 2 < P < 5,

dP

dt
< 0 for P < 2 or P > 5,

dP

dt
= 0 for P = 2 and P = 5.

12. (a) Sketch the slope field for the equation y′ = x− y in
Figure 11.21 at the points indicated.

(b) Find the equation for the solution that passes through
the point (1, 0) .

1

1

x

y

Figure 11.21

13. The slope field for the equation dP/dt = 0.1P (10−P ),
for P ≥ 0, is in Figure 11.22.

(a) Sketch the solutions that pass through the points

(i) (0, 0) (ii) (1, 4) (iii) (4, 1)
(iv) (−5, 1) (v) (−2, 12) (vi) (−2, 10)

(b) For which positive values of P are the solutions in-
creasing? Decreasing? If P (0) = 5, what is the lim-
iting value of P as t gets large?

−10 10

10

t

P

Figure 11.22

14. The slope field for y′ = 0.5(1 + y)(2 − y) is shown in
Figure 11.23.

(a) Plot the following points on the slope field:

(i) the origin (ii) (0, 1) (iii) (1, 0)
(iv) (0,−1) (v) (0,−5/2) (vi) (0, 5/2)

(b) Plot solution curves through the points in part (a).
(c) For which regions are all solution curves increasing?

For which regions are all solution curves decreas-
ing? When can the solution curves have horizontal
tangents? Explain why, using both the slope field and
the differential equation.

x

y

Figure 11.23: Note: x and y scales are equal

15. One of the slope fields in Figure 11.24 is the slope field
for y′ = (x+ y)/(x− y). Which one?

y

x

(a) y

x

(b)

y

x

(c)

Figure 11.24
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16. The slope field for y′ = (sin x)(sin y) is in Figure 11.25.

(a) Sketch the solutions that pass through the points

(i) (0,−2) (ii) (0, π)

(b) What is the equation of the solution that passes
through (0, nπ), where n is any integer?

−6 6

−6

6

x

y

Figure 11.25

17. Match the slope fields in Figure 11.26 with their differ-
ential equations. Explain your reasoning.

(a) y′ = −y (b) y′ = y (c) y′ = x

(d) y′ = 1/y (e) y′ = y2

x

y(I)

x

y(II)

x

y(III)

x

y(IV)

x

y(V)

Figure 11.26: Each slope field is graphed for
−5 ≤ x ≤ 5, −5 ≤ y ≤ 5

18. Match the slope fields in Figure 11.27 to the correspond-
ing differential equations:

(a) y′ = xe−x (b) y′ = sin x (c) y′ = cosx

(d) y′ = x2e−x (e) y′ = e−x2

(f) y′ = e−x

y

x

(I) y

x

(II)

y

x

(III) y

x

(IV)

y

x

(V) y

x

(VI)

Figure 11.27

In Problems 19–22, match an equation with the slope field.

(a) y′ = 0.05y(10 − y) (b) y′ = 0.05x(10 − x)
(c) y′ = 0.05y(5− y) (d) y′ = 0.05x(5 − x)
(e) y′ = 0.05y(y − 10) (f) y′ = 0.05x(x− 10)
(g) y′ = 0.05y(y − 5) (h) y′ = 0.05x(x − 5)
(i) y′ = 0.05x(y − 5)

19.

5 10 15 20
−5

5

10

15

x

y 20.

5 10 15 20
−5

5

10

15

x

y

21.

5 10 15 20
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x

y 22.
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15
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y
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23. Match the following differential equations with the slope
fields shown in Figure 11.28. Explain your reasoning.

(a)
dy

dx
= ex

2

(b)
dy

dx
= e−2x2

(c)
dy

dx
= e−x2/2 (d)

dy

dx
= e−0.5x cosx

(e)
dy

dx
=

1

(1 + 0.5 cos x)2

(f)
dy

dx
= −e−x2

x

y(I)

x

y(II)

x

y(III)

x

y(IV)

x

y(V)

x

y(VI)

Figure 11.28: Each slope field is graphed for −3 ≤ x ≤ 3,
−3 ≤ y ≤ 3

24. The Gompertz equation, which models growth of animal
tumors, is y′ = −ay ln(y/b), where a and b are pos-
itive constants. Use Figures 11.29 and 11.30 to write a
paragraph describing the similarities and/or differences
between solutions to the Gompertz equation with a = 1
and b = 2 and solutions to the equation y′ = y(2− y).

2 4

2

4

x

y

Figure 11.29: Slope field for y′ = −y ln(y/2)

2 4

2

4

x

y

Figure 11.30: Slope field for y′ = y(2− y)

Strengthen Your Understanding

In Problems 25–26, explain what is wrong with the statement.

25. There is a differential equation that has y = x as one of
its solutions and a slope field with a slope of 0 at the point
(1, 1).

26. Figure 11.31 shows the slope field of y′ = y.

x

y

Figure 11.31

In Problems 27–30, give an example of:

27. A differential equation whose slope field has all the
slopes positive.

28. A differential equation that has a slope field with all the
slopes above the x-axis positive and all the slopes below
the x-axis negative.

29. A slope field for a differential equation where the formula
for dy/dx depends on x but not y.

30. A slope field for a differential equation where the formula
for dy/dx depends on y but not x.
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Are the statements in Problems 31–35 true or false? Give an
explanation for your answer.

31. All solutions to the differential equation whose slope
field is in Figure 11.32 have limx→∞ y = ∞.

x

y

Figure 11.32

32. All solutions to the differential equation whose slope
field is in Figure 11.33 have limx→∞ y = 0.

x

y

Figure 11.33

33. All solutions to the differential equation whose slope
field is in Figure 11.34 have the same limiting value as
x → ∞.

x

y

Figure 11.34

34. The solutions of the differential equation dy/dx = x2 +
y2 + 1 are increasing at every point.

35. The solutions of the differential equation dy/dx = x2 +
y2 + 1 are concave up at every point.

In Problems 36–44, decide whether the statement is true or
false. Assume that y = f(x) is a solution to the equation
dy/dx = 2x− y. Justify your answer.

36. If f(a) = b, the slope of the graph of f at (a, b) is 2a−b.

37. f ′(x) = 2x− f(x).

38. There could be more than one value of x such that
f ′(x) = 1 and f(x) = 5.

39. If y = f(x), then d2y/dx2 = 2− (2x− y).

40. If f(1) = 5, then (1, 5) could be a critical point of f .

41. The graph of f is decreasing whenever it lies above the
line y = 2x and is increasing whenever it lies below the
line y = 2x.

42. All the inflection points of f lie on the line y = 2x− 2.

43. If g(x) is another solution to the differential equation
dy/dx = 2x− y, then g(x) = f(x) +C.

44. If g(x) is a different solution to the differential equation
dy/dx = 2x − y, then limx→∞(g(x) − f(x)) = 0.
[Hint: Show that w = g(x)− f(x) satisfies the differen-
tial equation dw/dx = −w.]

11.3 EULER’S METHOD

In the preceding section we saw how to sketch a solution curve to a differential equation using its
slope field. In this section we compute points on a solution curve numerically using Euler’s method.
(Leonhard Euler was an eighteenth-century Swiss mathematician.) In Section 11.4 we find formulas
for some solution curves.

Here’s the concept behind Euler’s method. Think of the slope field as a set of signposts directing
you across the plane. Pick a starting point (corresponding to the initial value), and calculate the
slope at that point using the differential equation. This slope is a signpost telling you the direction
to take. Head off a small distance in that direction. Stop and look at the new signpost. Recalculate
the slope from the differential equation, using the coordinates of the new point. Change direction to
correspond to the new slope, and move another small distance, and so on.
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Example 1 Use Euler’s method for dy/dx = y. Start at the point P0 = (0, 1) and take Δx = 0.1.

Solution The slope at the point P0 = (0, 1) is dy/dx = 1. (See Figure 11.35.) As we move from P0 to P1, y
increases by Δy, where

Δy = (slope at P0)Δx = 1(0.1) = 0.1.

So we have
y-value at P1 = (y value at P0) + Δy = 1 + 0.1 = 1.1.

Table 11.2 Euler’s method for dy/dx = y, starting at (0, 1)

x y Δy = (Slope)Δx

P0 0 1 0.1 = (1)(0.1)

P1 0.1 1.1 0.11 = (1.1)(0.1)

P2 0.2 1.21 0.121 = (1.21)(0.1)

P3 0.3 1.331 0.1331 = (1.331)(0.1)

P4 0.4 1.4641 0.14641 = (1.4641)(0.1)

P5 0.5 1.61051 0.161051 = (1.61051)(0.1)
x

y

P0 = (0, 1)

P1

P2

P3

Slope = 1 �

Slope = 1.1 �

Slope = 1.21 �

��0.1

�

�
0.1

��0.1

�

�
0.11

��0.1

�

�

0.121

Figure 11.35: Euler’s approximate solution to
dy/dx = y

Thus the point P1 is (0.1, 1.1). Now, using the differential equation again, we see that

slope at P1 = 1.1,

so if we move to P2, then y changes by

Δy = (slope at P1)Δx = (1.1)(0.1) = 0.11.

This means
y-value at P2 = (y value at P1) + Δy = 1.1 + 0.11 = 1.21.

Thus P2 is (0.2, 1.21). Continuing gives the results in Table 11.2.
Since the solution curves of dy/dx = y are exponentials, they are concave up and bend upward

away from the line segments of the slope field. Therefore, in this case, Euler’s method produces
y-values which are too small.

Notice that Euler’s method calculates approximate y-values for points on a solution curve; it
does not give a formula for y in terms of x.

Example 2 Show that Euler’s method for dy/dx = y starting at (0, 1) and using two steps with Δx = 0.05
gives y ≈ 1.1025 when x = 0.1.

Solution At (0, 1), the slope is 1 and Δy = (1)(0.05) = 0.05, so new y = 1 + 0.05 = 1.05. At (0.05, 1.05),
the slope is 1.05 and Δy = (1.05)(0.05) = 0.0525, so new y = 1.05+0.0525 = 1.1025 at x = 0.1.

In general, dy/dx may be a function of both x and y. Euler’s method still works, as the next
example shows.
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Example 3 Approximate four points on the solution curve to dy/dx = −x/y starting at (0, 1); use Δx = 0.1.
Are the approximate values overestimates or underestimates?

Solution The results from Euler’s method are in Table 11.3, along with the y-values (to two decimals) calcu-
lated from the equation of the circle x2 + y2 = 1, which is the solution curve through (0, 1). Since
the curve is concave down, the approximate y-values are above the exact ones. (See Figure 11.36.)

Table 11.3 Euler’s method for dy/dx = −x/y, starting at (0, 1)

x Approx. y-value Δy = (Slope)Δx True y-value

0 1 0 = (0)(0.1) 1

0.1 1 −0.01 = (−0.1/1)(0.1) 0.99

0.2 0.99 −0.02 = (−0.2/0.99)(0.1) 0.98

0.3 0.97 0.95

(0, 1)
(0.1, 1) (0.2, 0.99)

(0.3, 0.97)

�Solution
curve

�

Euler
approximation

x

y

Figure 11.36: Euler’s approximate solution to
dy/dx = −x/y

The Accuracy of Euler’s Method
To improve the accuracy of Euler’s method, we choose a smaller step size, Δx. Let’s go back to the
differential equation dy/dx = y and compare the exact and approximate values for different Δx’s.
The exact solution going through the point (0, 1) is y = ex, so the exact values are calculated using
this function. (See Figure 11.37.) Where x = 0.1,

Exact y-value = e0.1 ≈ 1.1051709.

In Example 1 we had Δx = 0.1, and where x = 0.1,

Approximate y-value = 1.1, so the error ≈ 0.005.

In Example 2 we decreased Δx to 0.05. After two steps, x = 0.1, and we had

Approximate y-value = 1.1025, so error ≈ 0.00267.

Thus, it appears that halving the step size has approximately halved the error.

(0, 1)

Solution
curve

�

Euler
approximation

�

y

x

��Δx

Figure 11.37: Euler’s approximate solution to dy/dx = y

The error in using Euler’s method over a fixed interval is Exact value − Approximate value.
If the number of steps used is n, the error is approximately proportional to 1/n.

Just as there are more accurate numerical integration methods than left and right Riemann sums,
there are more accurate methods than Euler’s for approximating solution curves. However, Euler’s
method is all we need.
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Exercises and Problems for Section 11.3
Exercises

1. Using Euler’s method, complete the following table for
y′ = (x− 2)(y − 3).

x y y′

0.0 4.0

0.1

0.2

2. Using Euler’s method, complete the following table for
y′ = 4xy.

x y y′

1.00 −3.0

1.01

1.02

3. A population, P , in millions, is 1500 at time t = 0 and
its growth is governed by

dP

dt
= 0.00008P (1900 − P ).

Use Euler’s method with Δt = 1 to estimate P at time
t = 1, 2, 3.

4. (a) Use Euler’s method to approximate the value of y
at x = 1 on the solution curve to the differential
equation dy/dx = 3 that passes through (0, 2). Use
Δx = 0.2.

(b) What is the solution to the differential equation
dy/dx = 3 with initial condition y = 2 when
x = 0?

(c) What is the error for the Euler’s method approxima-
tion at x = 1?

(d) Explain why Euler’s method is exact in this case.

5. (a) Use five steps of Euler’s method to determine an
approximate solution for the differential equation
dy/dx = y−x with initial condition y(0) = 10, us-
ing step size Δx = 0.2. What is the estimated value
of y at x = 1?

(b) Does the solution to the differential equation appear
to be concave up or concave down?

(c) Are the approximate values overestimates or under-
estimates?

6. (a) Use ten steps of Euler’s method to determine an
approximate solution for the differential equation
y′ = x3, y(0) = 0, using a step size Δx = 0.1.

(b) What is the exact solution? Compare it to the com-
puted approximation.

(c) Use a sketch of the slope field for this equation to
explain the results of part (b).

7. Consider the differential equation y′ = x + y whose
slope field is in Figure 11.20 on page 595. Use Euler’s
method with Δx = 0.1 to estimate y when x = 0.4 for
the solution curves satisfying

(a) y(0) = 1 (b) y(−1) = 0.

8. (a) Using Figure 11.38, sketch the solution curve that
passes through (0, 0) for the differential equation

dy

dx
= x3 − y3.

(b) Compute the points on the solution curve generated
by Euler’s method with 5 steps of Δx = 0.2.

(c) Is your answer to part (b) an overestimate or an un-
derestimate?

0.2 0.4 0.6 0.8 1

0.25

x

y

Figure 11.38: Slope field for dy/dx = x3 − y3

9. Consider the solution of the differential equation y′ = y
passing through y(0) = 1.

(a) Sketch the slope field for this differential equa-
tion, and sketch the solution passing through the
point (0, 1).

(b) Use Euler’s method with step size Δx = 0.1 to es-
timate the solution at x = 0.1, 0.2, . . . , 1.

(c) Plot the estimated solution on the slope field; com-
pare the solution and the slope field.

(d) Check that y = ex is the solution of y′ = y with
y(0) = 1.
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Problems

10. Consider the differential equation y′ = (sin x)(sin y).

(a) Calculate approximate y-values using Euler’s
method with three steps and Δx = 0.1, starting
at each of the following points:

(i) (0, 2) (ii) (0, π)

(b) Use the slope field in Figure 11.25 on page 597 to
explain your solution to part (a)(ii).

11. (a) Use Euler’s method with five subintervals to approx-
imate the solution curve to the differential equation
dy/dx = x2 − y2 passing through the point (0, 1)
and ending at x = 1. (Keep the approximate func-
tion values to three decimal places.)

(b) Repeat this computation using ten subintervals,
again ending with x = 1.

12. Why are the approximate results you obtained in Prob-
lem 11 smaller than the true values? (Note: The slope
field for this differential equation is one of those in Fig-
ure 11.18 on page 595.)

13. How do the errors of the five-step calculation and the ten-
step calculation in Problem 11 compare? Estimate the
true value of y on the solution through the point (0, 1)
when x = 1.

14. (a) Use ten steps of Euler’s method to approximate y-
values for dy/dt = 1/t, starting at (1, 0) and using
Δt = 0.1.

(b) Using integration, solve the differential equation to
find the exact value of y at the end of these ten steps.

(c) Is your approximate value of y at the end of ten steps
bigger or smaller than the exact value? Use a slope
field to explain your answer.

15. Consider the differential equation

dy

dx
= 2x, with initial condition y(0) = 1.

(a) Use Euler’s method with two steps to estimate y
when x = 1. Now use four steps.

(b) What is the formula for the exact value of y?
(c) Does the error in Euler’s approximation behave as

predicted in the box on page 601?

16. Consider the differential equation

dy

dx
= sin(xy), with initial condition y(1) = 1.

Estimate y(2), using Euler’s method with step sizes
Δx = 0.2, 0.1, 0.05. Plot the computed approximations
for y(2) against Δx. What do you conclude? Use your
observations to estimate the exact value of y(2).

17. Use Euler’s method to estimate B(1), given that

dB

dt
= 0.05B

and B = 1000 when t = 0. Take:

(a) Δt = 1 and 1 step (b) Δt = 0.5 and 2 steps

(c) Δt = 0.25 and 4 steps

(d) Suppose B is the balance in a bank account earning
interest. Explain why the result of your calculation
in part (a) is equivalent to compounding the interest
once a year instead of continuously.

(e) Interpret the result of your calculations in parts (b)
and (c) in terms of compound interest.

18. Consider the differential equation dy/dx = f(x) with
initial value y(0) = 0. Explain why using Euler’s method
to approximate the solution curve gives the same results
as using left Riemann sums to approximate

∫ x

0
f(t) dt.

Strengthen Your Understanding

In Problems 19–20, explain what is wrong with the statement.

19. Euler’s method never produces an exact solution to a dif-
ferential equation at a point. There is always some error.

20. If we use Euler’s method on the interval [0, 1] to estimate
the value of x(1) where dx/dt = x, then we get an un-
derestimate.

In Problems 21–22, give an example of:

21. A differential equation for which the approximate values
found using Euler’s method lie on a straight line.

22. A differential equation and initial condition such that for

any step size, the approximate y-value found after one
step of Euler’s method is an underestimate of the solu-
tion value.

Are the statements in Problems 23–24 true or false? Give an
explanation for your answer.

23. Euler’s method gives the arc length of a solution curve.

24. Using Euler’s method with five steps and Δx = 0.2 to
approximate y(1) when dy/dx = f(x) and y(0) = 0
gives the same answer as the left Riemann sum approxi-
mation to

∫ 1

0
f(x) dx.
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11.4 SEPARATION OF VARIABLES

We have seen how to sketch solution curves of a differential equation using a slope field and how to
calculate approximate numerical solutions. Now we see how to solve certain differential equations
analytically, finding an equation for the solution curve.

First, we look at a familiar example, the differential equation

dy

dx
= −

x

y
,

whose solution curves are the circles
x2

+ y2 = C.

We can check that these circles are solutions by differentiation; the question now is how they were
obtained. The method of separation of variables works by putting all the x-values on one side of
the equation and all the y-values on the other, giving

y dy = −x dx.

We then integrate each side separately:∫
y dy = −

∫
x dx,

y2

2
= −

x2

2
+ k.

This gives the circles we were expecting:

x2
+ y2 = C where C = 2k.

You might worry about whether it is legitimate to separate the dx and the dy. The reason it can
be done is explained at the end of this section.

Example 1 Using separation of variables, solve the differential equation:

dy

dx
= ky.

Solution Separating variables,
1

y
dy = k dx,

and integrating, ∫
1

y
dy =

∫
k dx,

gives
ln |y| = kx+ C for some constant C.

Solving for |y| leads to
|y| = ekx+C

= ekxeC = Aekx

where A = eC , so A is positive. Thus

y = (±A)ekx = Bekx

where B = ±A, so B is any nonzero constant. Even though there’s no C leading to B = 0, we can
have B = 0 because y = 0 is a solution to the differential equation. We lost this solution when we
divided through by y at the first step. Thus, the general solution is y = Bekx for any B.

The differential equation dy/dx = ky always leads to exponential growth (if k > 0) or expo-
nential decay (if k < 0). Graphs of solution curves for some fixed k > 0 are in Figure 11.39. For
k < 0, the graphs are reflected in the y-axis.
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B = −3 B = −2

B = −1

B = 1

B = 2B = 3

x

y

Figure 11.39: Graphs of y = Bekx, which are solutions to dy/dx = ky, for some fixed k > 0

Example 2 For k > 0, find and graph solutions of

dH

dt
= −k(H − 20).

Solution The slope field in Figure 11.40 shows the qualitative behavior of the solutions. To find the equation
of the solution curves, we separate variables and integrate:∫

1

H − 20
dH = −

∫
k dt.

This gives
ln |H − 20| = −kt+ C.

Solving for H leads to:
|H − 20| = e−kt+C

= e−kteC = Ae−kt

or
H − 20 = (±A)e−kt

= Be−kt

H = 20 +Be−kt.

Again, B = 0 also gives a solution. Graphs for k = 1 and B = −10, 0, 10, with t ≥ 0, are in
Figure 11.40.

10

20

30

H

t

H = 20 + 10e−t

�
H = 20�

H = 20− 10e−t
�

Figure 11.40: Slope field and some solution curves for dH/dt = −k(H − 20), with k = 1

This differential equation can be used to represent the temperature, H(t), in ◦C at time t of
a cup of water standing in a room at 20◦C. As Figure 11.40 shows, if the initial temperature is
10◦C, the water warms up; if the initial temperature is 30◦C, the water cools down. If the initial
temperature is 20◦C, the water remains 20◦C.

Example 3 Find and sketch the solution to

dP

dt
= 2P − 2Pt satisfying P = 5 when t = 0.
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Solution Factoring the right-hand side gives
dP

dt
= P (2− 2t).

Separating variables, we get ∫
dP

P
=

∫
(2− 2t) dt,

so
ln |P | = 2t− t2 + C.

Solving for P leads to
|P | = e2t−t2+C

= eCe2t−t2
= Ae2t−t2

with A = eC , so A > 0. In addition, A = 0 gives a solution. Thus the general solution to the
differential equation is

P = Be2t−t2 for any B.

To find the value of B, substitute P = 5 and t = 0 into the general solution, giving

5 = Be2·0−02
= B,

so
P = 5e2t−t2 .

The graph of this function is in Figure 11.41. Since the solution can be rewritten as

P = 5e1−1+2t−t2
= 5e1e−1+2t−t2

= (5e)e−(t−1)2 ,

the graph has the same shape as the graph of y = e−t2 , the bell-shaped curve of statistics. Here the
maximum, normally at t = 0, is shifted one unit to the right to t = 1.

0.5 1 1.5 2

5

t

P
P = 5e2t−t2

Figure 11.41: Bell-shaped solution curve

Justification for Separation of Variables
Suppose a differential equation can be written in the form

dy

dx
= g(x)f(y).

Provided f(y) �= 0, we write f(y) = 1/h(y), so the right-hand side can be thought of as a fraction,

dy

dx
=

g(x)

h(y)
.

If we multiply through by h(y), we get

h(y)
dy

dx
= g(x).

Thinking of y as a function of x, so y = y(x), and dy/dx = y′(x), we can rewrite the equation as

h(y(x)) · y′(x) = g(x).

Now integrate both sides with respect to x:∫
h(y(x)) · y′(x) dx =

∫
g(x) dx.
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The form of the integral on the left suggests that we use the substitution y = y(x). Since dy = y′(x) dx,
we get ∫

h(y) dy =

∫
g(x) dx.

If we can find antiderivatives of h and g, then this gives the equation of the solution curve.
Note that transforming the original differential equation,

dy

dx
=

g(x)

h(y)
,

into ∫
h(y) dy =

∫
g(x) dx

looks as though we have treated dy/dx as a fraction, cross-multiplied, and then integrated. Although
that’s not exactly what we have done, you may find this a helpful way of remembering the method.
In fact, the dy/dx notation was introduced by Leibniz to allow shortcuts like this (more specifically,
to make the chain rule look like cancellation).

Exercises and Problems for Section 11.4
Exercises

1. Determine which of the following differential equations
are separable. Do not solve the equations.

(a) y′ = y (b) y′ = x+ y

(c) y′ = xy (d) y′ = sin(x+ y)

(e) y′ − xy = 0 (f) y′ = y/x

(g) y′ = ln (xy) (h) y′ = (sin x)(cos y)

(i) y′ = (sin x)(cosxy) (j) y′ = x/y

(k) y′ = 2x (l) y′ = (x+y)/(x+2y)

In Exercises 2–28,use separation of variables to find the solu-
tions to the differential equations subject to the given initial
conditions.

2.
dP

dt
= −2P , P (0) = 1

3.
dP

dt
= 0.02P , P (0) = 20

4.
dL

dp
=

L

2
, L(0) = 100

5.
dQ

dt
=

Q

5
, Q = 50 when t = 0

6. P
dP

dt
= 1, P (0) = 1

7.
dm

dt
= 3m, m = 5 when t = 1

8.
dI

dx
= 0.2I , I = 6 where x = −1

9.
1

z

dz

dt
= 5, z(1) = 5

10.
dm

ds
= m, m(1) = 2

11. 2
du

dt
= u2, u(0) = 1

12.
dz

dy
= zy, z = 1 when y = 0

13.
dy

dx
+

y

3
= 0, y(0) = 10

14.
dy

dt
= 0.5(y − 200), y = 50 when t = 0

15.
dP

dt
= P + 4, P = 100 when t = 0

16.
dy

dx
= 2y − 4, through (2, 5)

17.
dQ

dt
= 0.3Q − 120, Q = 50 when t = 0

18.
dm

dt
= 0.1m + 200, m(0) = 1000

19.
dR

dy
+R = 1, R(1) = 0.1

20.
dB

dt
+ 2B = 50, B(1) = 100

21.
dy

dt
=

y

3 + t
, y(0) = 1

22.
dz

dt
= tez, through the origin

23.
dy

dx
=

5y

x
, y = 3 where x = 1

24.
dy

dt
= y2(1 + t), y = 2 when t = 1

25.
dz

dt
= z + zt2, z = 5 when t = 0

26.
dw

dθ
= θw2 sin θ2, w(0) = 1

27.
dw

dψ
= −w2 tanψ, w(0) = 2

28. x(x+ 1)
du

dx
= u2, u(1) = 1
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Problems

29. (a) Solve the differential equation

dy

dx
=

4x

y2
.

Write the solution y as an explicit function of x.
(b) Find the particular solution for each initial condition

below and graph the three solutions on the same co-
ordinate plane.

y(0) = 1, y(0) = 2, y(0) = 3.

30. (a) Solve the differential equation

dP

dt
= 0.2P − 10.

Write the solution P as an explicit function of t.
(b) Find the particular solution for each initial condition

below and graph the three solutions on the same co-
ordinate plane.

P (0) = 40, P (0) = 50, P (0) = 60.

31. (a) Find the general solution to the differential equation
modeling how a person learns:

dy

dt
= 100− y.

(b) Plot the slope field of this differential equation and
sketch solutions with y(0) = 25 and y(0) = 110.

(c) For each of the initial conditions in part (b), find the
particular solution and add to your sketch.

(d) Which of these two particular solutions could repre-
sent how a person learns?

32. A circular oil spill grows at a rate given by the differen-
tial equation dr/dt = k/r, where r represents the radius
of the spill in feet, and time is measured in hours. If the
radius of the spill is 400 feet 16 hours after the spill be-
gins, what is the value of k? Include units in your answer.

33. Figure 11.42 shows the slope field for dy/dx = y2.

(a) Sketch the solutions that pass through the points

(i) (0, 1) (ii) (0,−1) (iii) (0, 0)

(b) In words, describe the end behavior of the solution
curves in part (a).

(c) Find a formula for the general solution.
(d) Show that all solution curves except for y = 0 have

both a horizontal and a vertical asymptote.

−1

1

x

y

Figure 11.42

Solve the differential equations in Problems 34–43. Assume
a, b, and k are nonzero constants.

34.
dR

dt
= kR 35.

dQ

dt
− Q

k
= 0

36.
dP

dt
= P − a 37.

dQ

dt
= b−Q

38.
dP

dt
= k(P − a) 39.

dR

dt
= aR+ b

40.
dP

dt
− aP = b 41.

dy

dt
= ky2(1 + t2)

42.
dR

dx
= a(R2 + 1) 43.

dL

dx
= k(x+a)(L− b)

Solve the differential equations in Problems 44–47. Assume
x, y, t > 0.

44.
dy

dt
= y(2− y), y(0) = 1

45.
dx

dt
=

x ln x

t

46. t
dx

dt
= (1 + 2 ln t) tan x

47.
dy

dt
= −y ln

(
y

2

)
, y(0) = 1

48. Figure 11.43 shows the slope field for the equation

dy

dx
=

{
y2 if |y| ≥ 1
1 if −1 ≤ y ≤ 1.

(a) Sketch the solutions that pass through (0, 0).
(b) What can you say about the end behavior of the so-

lution curve in part (a)?
(c) For each of the following regions, find a formula for

the general solution

(i) −1 ≤ y ≤ 1 (ii) y ≤ −1
(iii) y ≥ 1

(d) Show that each solution curve has two vertical
asymptotes.
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(e) How far apart are the two asymptotes of a solution
curve?

−1

1

x

y

Figure 11.43

49. (a) Sketch the slope field for y′ = x/y.
(b) Sketch several solution curves.
(c) Solve the differential equation analytically.

50. (a) Sketch the slope field for y′ = −y/x.
(b) Sketch several solution curves.
(c) Solve the differential equation analytically.

51. Compare the slope field for y′ = x/y, Problem 49, with
that for y′ = −y/x, Problem 50. Show that the solu-
tion curves of Problem 49 intersect the solution curves of
Problem 50 at right angles.

Strengthen Your Understanding

In Problems 52–54, explain what is wrong with the statement.

52. Separating variables in dy/dx = x + y gives −y dy =
xdx.

53. The solution to dP/dt = 0.2t is P = Be0.2t.

54. Separating variables in dy/dx = ex+y gives −ey dy =
ex dx.

In Problems 55–58, give an example of:

55. A differential equation that is not separable.

56. An expression for f(x) such that the differential equation
dy/dx = f(x) + xy − cosx is separable.

57. A differential equation all of whose solutions form the
family of functions f(x) = x2 + C.

58. A differential equation all of whose solutions form the
family of hyperbolas x2 − y2 = C.

Are the statements in Problems 59–62 true or false? Give an
explanation for your answer.

59. For all constants k, the equation y′ + ky = 0 has expo-
nential functions as solutions.

60. The differential equation dy/dx = x + y can be solved
by separation of variables.

61. The differential equation dy/dx−xy = x can be solved
by separation of variables.

62. The only solution to the differential equation dy/dx =
3y2/3 passing through the point (0, 0) is y = x3.

11.5 GROWTH AND DECAY

In this section we look at exponential growth and decay equations. Consider the population of
a region. If there is no immigration or emigration, the rate at which the population is changing is
often proportional to the population. In other words, the larger the population, the faster it is growing
because there are more people to have babies. If the population at time t is P and its continuous
growth rate is 2% per unit time, then we know

Rate of growth of population = 2%(Current population),

and we can write this as
dP

dt
= 0.02P.

The 2% growth rate is called the relative growth rate to distinguish it from the absolute growth
rate, dP/dt. Notice they measure different quantities. Since

Relative growth rate = 2% =
1

P

dP

dt
,

the relative growth rate is a percent change per unit time, while

Absolute growth rate = Rate of change of population =
dP

dt
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is a change in population per unit time.
We showed in Section 11.4 that since the equation dP/dt = 0.02P is of the form dP/dt = kP

for k = 0.02, it has solution
P = P0e

0.02t.

Other processes are described by differential equations similar to that for population growth, but
with negative values for k. In summary, we have the following result from the preceding section:

Every solution to the equation

dP

dt
= kP

can be written in the form

P = P0e
kt,

where P0 is the value of P at t = 0, and k > 0 represents growth,
whereas k < 0 represents decay.

Recall that the doubling time of an exponentially growing quantity is the time required for it
to double. The half-life of an exponentially decaying quantity is the time required for half of it to
decay.

Continuously Compounded Interest
At a bank, continuous compounding means that interest is accrued at a rate that is a fixed percentage
of the balance at that moment. Thus, the larger the balance, the faster interest is earned and the faster
the balance grows.

Example 1 A bank account earns interest continuously at a rate of 5% of the current balance per year. Assume
that the initial deposit is $1000 and that no other deposits or withdrawals are made.

(a) Write the differential equation satisfied by the balance in the account.
(b) Solve the differential equation and graph the solution.

Solution (a) We are looking for B, the balance in the account in dollars, as a function of t, time in years.
Interest is being added to the account continuously at a rate of 5% of the balance at that moment.
Since no deposits or withdrawals are made, at any instant,

Rate balance increasing = Rate interest earned = 5%(Current balance),

which we write as
dB

dt
= 0.05B.

This is the differential equation that describes the process. It does not involve the initial condi-
tion $1000 because the initial deposit does not affect the process by which interest is earned.

(b) Solving the differential equation by separation of variables gives

B = B0e
0.05t,

where B0 is the value of B at t = 0, so B0 = 1000. Thus

B = 1000e0.05t
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and this function is graphed in Figure 11.44.

1000

t (years)

B (dollars)

B = 1000e0.05t

Figure 11.44: Bank balance against time

The Difference Between Continuous and Annual Percentage Growth Rates

If P = P0(1 + r)t with t in years, we say that r is the annual growth rate, while if P = P0e
kt, we

say that k is the continuous growth rate.
The constant k in the differential equation dP/dt = kP is not the annual growth rate, but the

continuous growth rate. In Example 1, with a continuous interest rate of 5%, we obtain a balance
of B = B0e

0.05t, where time, t, is in years. At the end of one year the balance is B0e
0.05. In

that one year, our balance has changed from B0 to B0e
0.05, that is, by a factor of e0.05 = 1.0513.

Thus the annual growth rate is 5.13%. This is what the bank means when it says “5% compounded
continuously for an effective annual yield of 5.13%.” Since P0e

0.05t = P0(1.0513)
t, we have two

different ways to represent the same function.
Since most growth is measured over discrete time intervals, a continuous growth rate is an

idealized concept. A demographer who says a population is growing at the rate of 2% per year
usually means that after t years the population is P = P0(1.02)

t. To find the continuous growth
rate, k, we express the population as P = P0e

kt. At the end of one year P = P0e
k, so ek = 1.02.

Thus k = ln 1.02 ≈ 0.0198. The continuous growth rate, k = 1.98%, is close to the annual growth
rate of 2%, but it is not the same. Again, we have two different representations of the same function
since P0(1.02)

t = P0e
0.0198t.

Pollution in the Great Lakes
In the 1960s pollution in the Great Lakes became an issue of public concern. We set up a model for
how long it would take for the lakes to flush themselves clean, assuming no further pollutants are
being dumped in the lakes.

Suppose Q is the total quantity of pollutant in a lake of volume V at time t. Suppose that clean
water is flowing into the lake at a constant rate r and that water flows out at the same rate. Assume
that the pollutant is evenly spread throughout the lake and that the clean water coming into the lake
immediately mixes with the rest of the water.

We investigate how Q varies with time. Since pollutants are being taken out of the lake but
not added, Q decreases, and the water leaving the lake becomes less polluted, so the rate at which
the pollutants leave decreases. This tells us that Q is decreasing and concave up. In addition, the
pollutants are never completely removed from the lake though the quantity remaining becomes
arbitrarily small: in other words, Q is asymptotic to the t-axis. (See Figure 11.45.)

Setting Up a Differential Equation for the Pollution

To model exactly how Q changes with time, we write an equation for the rate at which Q changes.
We know that

Rate Q

changes
= −

(
Rate pollutants

leave in outflow

)
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t (time)

Q (quantity of pollutant)

Figure 11.45: Pollutant in lake versus time

where the negative sign represents the fact that Q is decreasing. At time t, the concentration of
pollutants is Q/V , and water containing this concentration is leaving at rate r. Thus

Rate pollutants

leave in outflow
=

Rate of

outflow
× Concentration = r ·

Q

V
.

So the differential equation is
dQ

dt
= −

r

V
Q,

and its solution is
Q = Q0e

−rt/V .

Table 11.4 contains values of r and V for four of the Great Lakes.2 We use this data to calculate
how long it would take for certain fractions of the pollution to be removed.

Table 11.4 Volume and outflow in Great Lakes3

V (thousands of km3) r (km3/year)

Superior 12.2 65.2

Michigan 4.9 158

Erie 0.46 175

Ontario 1.6 209

Example 2 According to this model, how long will it take for 90% of the pollution to be removed from Lake
Erie? For 99% to be removed?

Solution Substituting r and V for Lake Erie into the differential equation for Q gives

dQ

dt
= −

r

V
Q =

−175

0.46× 103
Q = −0.38Q

where t is measured in years. Thus Q is given by

Q = Q0e
−0.38t.

When 90% of the pollution has been removed, 10% remains, so Q = 0.1Q0. Substituting gives

0.1Q0 = Q0e
−0.38t.

2Data from William E. Boyce and Richard C. DiPrima, Elementary Differential Equations, 9th Edition (New York: Wiley,
2009), pp. 63–64.

3www.epa.gov/greatlakes/
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Canceling Q0 and solving for t, we get

t =
− ln(0.1)

0.38
≈ 6 years.

When 99% of the pollution has been removed, Q = 0.01Q0, so t satisfies

0.01Q0 = Q0e
−0.38t.

Solving for t gives

t =
− ln(0.01)

0.38
≈ 12 years.

Newton’s Law of Heating and Cooling
Newton proposed that the temperature of a hot object decreases at a rate proportional to the differ-
ence between its temperature and that of its surroundings. Similarly, a cold object heats up at a rate
proportional to the temperature difference between the object and its surroundings.

For example, a hot cup of coffee standing on the kitchen table cools at a rate proportional
to the temperature difference between the coffee and the surrounding air. As the coffee cools, the
rate at which it cools decreases because the temperature difference between the coffee and the air
decreases. In the long run, the rate of cooling tends to zero, and the temperature of the coffee
approaches room temperature. See Figure 11.46.

time

temperature

� Room temperature

�

�
Initial

temperature

Figure 11.46: Temperature of two cups of coffee with different initial
temperatures

Example 3 When a murder is committed, the body, originally at 37◦C, cools according to Newton’s Law of
Cooling. Suppose that after two hours the temperature is 35◦C and that the temperature of the
surrounding air is a constant 20◦C.

(a) Find the temperature, H , of the body as a function of t, the time in hours since the murder was
committed.

(b) Sketch a graph of temperature against time.
(c) What happens to the temperature in the long run? Show this on the graph and algebraically.
(d) If the body is found at 4 pm at a temperature of 30◦C, when was the murder committed?

Solution (a) We first find a differential equation for the temperature of the body as a function of time. New-
ton’s Law of Cooling says that for some constant α,

Rate of change of temperature = α(Temperature difference).

If H is the temperature of the body, then

Temperature difference = H − 20,

so
dH

dt
= α(H − 20).
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What about the sign of α? If the temperature difference is positive (i.e., H > 20), then H is
falling, so the rate of change must be negative. Thus α should be negative, so we write:

dH

dt
= −k(H − 20), for some k > 0.

Separating variables and solving, as in Example 2 on page 605, gives:

H − 20 = Be−kt.

To find B, substitute the initial condition that H = 37 when t = 0:

37− 20 = Be−k(0)
= B,

so B = 17. Thus,
H − 20 = 17e−kt.

To find k, we use the fact that after 2 hours, the temperature is 35◦C, so

35− 20 = 17e−k(2).

Dividing by 17 and taking natural logs, we get:

ln

(
15

17

)
= ln(e−2k

)

−0.125 = −2k

k ≈ 0.063.

Therefore, the temperature is given by

H − 20 = 17e−0.063t

or
H = 20 + 17e−0.063t.

(b) The graph of H = 20 + 17e−0.063t has a vertical intercept of H = 37 because the temperature
of the body starts at 37◦C. The temperature decays exponentially with H = 20 as the horizontal
asymptote. (See Figure 11.47.)

10 20 30

20

37

t (hours)

H(◦C)

H = 20 + 17e−0.063t

Figure 11.47: Temperature of dead body

(c) “In the long run” means as t → ∞. The graph shows that as t → ∞, H → 20. Algebraically,
since e−0.063t → 0 as t → ∞, we have

H = 20 + 17e−0.063t︸ ︷︷ ︸
goes to 0 as t → ∞

−→ 20 as t → ∞.

(d) We want to know when the temperature reaches 30◦C. Substitute H = 30 and solve for t:

30 = 20 + 17e−0.063t

10

17
= e−0.063t.
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Taking natural logs:
−0.531 = −0.063t,

which gives
t ≈ 8.4 hours.

Thus the murder must have been committed about 8.4 hours before 4 pm. Since 8.4 hours
= 8 hours 24 minutes, the murder was committed at about 7:30 am.

Equilibrium Solutions
Figure 11.48 shows the temperature of several objects in a 20◦C room. One is initially hotter than
20◦C and cools down toward 20◦C; another is initially cooler and warms up toward 20◦C. All these
curves are solutions to the differential equation

dH

dt
= −k(H − 20)

for some fixed k > 0, and all the solutions have the form

H = 20 +Ae−kt

for some A. Notice that H → 20 as t → ∞ because e−kt → 0 as t → ∞. In other words, in the
long run, the temperature of the object always tends toward 20◦C, the temperature of the room. This
means that what happens in the long run is independent of the initial condition.

In the special case when A = 0, we have the equilibrium solution

H = 20

for all t. This means that if the object starts at 20◦C, it remains at 20◦C for all time. Notice that such
a solution can be found directly from the differential equation by solving dH/dt = 0:

dH

dt
= −k(H − 20) = 0

giving
H = 20.

Regardless of the initial temperature, H always gets closer and closer to 20 as t → ∞. As a
result, H = 20 is called a stable equilibrium4 for H .

10

20

30

H

t

�

H = 20 + 10e−kt

�
H = 20− 10e−kt

� H = 20

Figure 11.48: H = 20 is stable equilibrium (k > 0)

10

B

t

� B = 10 + ekt

� B = 10− ekt

B = 10

Figure 11.49: B = 10 is unstable equilibrium (k > 0)

A different situation is displayed in Figure 11.49, which shows solutions to the differential
equation

dB

dt
= k(B − 10)

for some fixed k > 0. Solving dB/dt = 0 gives the equilibrium B = 10, which is unstable because
if B starts near 10, it moves away as t → ∞.

In general, we have the following definitions.
4In more advanced work, this behavior is described as asymptotic stability.
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• An equilibrium solution is constant for all values of the independent variable. The graph
is a horizontal line.

• An equilibrium is stable if a small change in the initial conditions gives a solution that
tends toward the equilibrium as the independent variable tends to positive infinity.

• An equilibrium is unstable if a small change in the initial conditions gives a solution
curve that veers away from the equilibrium as the independent variable tends to positive
infinity.

Solutions that do not veer away from an equilibrium solution are also called stable. If the
differential equation is of the form y′ = f(y), equilibrium solutions can be found by setting y′ to
zero.

Example 4 Find the equilibrium solution to the differential equation dP/dt = −50+4P and determine whether
the equilibrium is stable or unstable.

Solution In order to find the equilibrium solution, we solve dP/dt = −50 + 4P = 0. Thus, we have one
equilibrium solution at P = 50/4 = 12.5. We can determine whether the equilibrium is stable or
unstable by analyzing the behavior of solutions with initial conditions near P = 12.5. For example,
the solution with initial value P = 13 has initial slope dP/dt = −50 + 4(13) = 2 > 0. Thus,
solutions above the equilibrium P = 12.5 will increase and move away from the equilibrium.

A solution with an initial value P = 12 has initial slope dP/dt = −50 + 4(12) = −2 < 0.
Thus, solutions that have an initial value less than P = 12.5 will decrease and veer away from the
equilibrium. Since a small change in the initial condition gives solutions that move away from the
equilibrium, P = 12.5 is an unstable equilibrium. Notice it is possible to find equilibrium and study
their stability without finding a formula for the general solution to the differential equation.

Exercises and Problems for Section 11.5
Exercises

1. Match the graphs in Figure 11.50 with the following de-
scriptions.

(a) The temperature of a glass of ice water left on the
kitchen table.

(b) The amount of money in an interest-bearing bank
account into which $50 is deposited.

(c) The speed of a constantly decelerating car.
(d) The temperature of a piece of steel heated in a fur-

nace and left outside to cool.

time

(I)

time

(II)

time

(III)

time

(IV)

Figure 11.50

2. Each curve in Figure 11.51 represents the balance in a
bank account into which a single deposit was made at
time zero. Assuming continuously compounded interest,
find:

(a) The curve representing the largest initial deposit.
(b) The curve representing the largest interest rate.
(c) Two curves representing the same initial deposit.
(d) Two curves representing the same interest rate.

time

bank
balance (IV) (III)

(II)

(I)

Figure 11.51
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3. The slope field for y′ = 0.5(1 + y)(2 − y) is given in
Figure 11.52.

(a) List equilibrium solutions and state whether each is
stable or unstable.

(b) Draw solution curves on the slope field through each
of the three marked points.

x

y

Figure 11.52

4. The slope field for a differential equation is given in Fig-
ure 11.53. Estimate all equilibrium solutions for this dif-
ferential equation, and indicate whether each is stable or
unstable.

−5 5

−5

5

t

y

Figure 11.53

For Exercises 5–6, sketch solution curves with a variety of
initial values for the differential equations. You do not need to
find an equation for the solution.

5.
dy

dt
= α− y,

where α is a positive constant.

6.
dw

dt
= (w − 3)(w − 7)

7. A yam is put in a 200◦C oven and heats up according to
the differential equation

dH

dt
= −k(H − 200), for k a positive constant.

(a) If the yam is at 20◦C when it is put in the oven, solve
the differential equation.

(b) Find k using the fact that after 30 minutes the tem-
perature of the yam is 120◦C.

8. (a) Find the equilibrium solution to the differential
equation

dy

dt
= 0.5y − 250.

(b) Find the general solution to this differential equa-
tion.

(c) Sketch the graphs of several solutions to this differ-
ential equation, using different initial values for y.

(d) Is the equilibrium solution stable or unstable?

9. (a) Find all equilibrium solutions for the differential
equation

dy

dx
= 0.5y(y − 4)(2 + y).

(b) Draw a slope field and use it to determine whether
each equilibrium solution is stable or unstable.

10. (a) A cup of coffee is made with boiling water and
stands in a room where the temperature is 20◦ C.
If H(t) is the temperature of the coffee at time t, in
minutes, explain what the differential equation

dH

dt
= −k(H − 20)

says in everyday terms. What is the sign of k?
(b) Solve this differential equation. If the coffee cools to

90◦C in 2 minutes, how long will it take to cool to
60◦C degrees?

11. In Example 2 on page 612, we saw that it would take
about 6 years for 90% of the pollution in Lake Erie to
be removed and about 12 years for 99% to be removed.
Explain why one time is double the other.

12. Using the model in the text and the data in Table 11.4 on
page 612, find how long it would take for 90% of the pol-
lution to be removed from Lake Michigan and from Lake
Ontario, assuming no new pollutants are added. Explain
how you can tell which lake will take longer to be puri-
fied just by looking at the data in the table.

13. Use the model in the text and the data in Table 11.4 on
page 612 to determine which of the Great Lakes would
require the longest time and which would require the
shortest time for 80% of the pollution to be removed, as-
suming no new pollutants are being added. Find the ratio
of these two times.
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Problems

In Problems 14–17,

(a) Define the variables.

(b) Write a differential equation to describe the relationship.

(c) Solve the differential equation.

14. In 2010, the population of India was 1.15 billion people
and increasing at a rate proportional to its population. If
the population is measured in billions of people and time
is measured in years, the constant of proportionality is
0.0135.

15. Nicotine leaves the body at a rate proportional to the
amount present, with constant of proportionality 0.347 if
the amount of nicotine is in mg and time is in hours. The
amount of nicotine in the body immediately after smok-
ing a cigarette is 0.4 mg.

16. In 2007, world solar photovoltaic (PV) market installa-
tions were 2826 megawatts and were growing exponen-
tially at a continuous rate of 48% per year.5

17. In 2007, Grinnell Glacier in Glacier National Park cov-
ered 142 acres and was estimated to be shrinking expo-
nentially at a continuous rate of 4.3% per year.6

18. Since 1980, textbook prices have increased at 6.7% per
year while inflation has been 3.3% per year.7 Assume
both rates are continuous growth rates and let time, t, be
in years since the start of 1980.

(a) Write a differential equation satisfied by B(t), the
price of a textbook at time t.

(b) Write a differential equation satisfied by P (t), the
price at time t of an item growing at the inflation
rate.

(c) Solve both differential equations.
(d) What is the doubling time of the price of a textbook?
(e) What is the doubling time of the price of an item

growing according to the inflation rate?
(f) How is the ratio of the doubling times related to the

ratio of the growth rates? Justify your answer.

19. Write a differential equation whose solution is the tem-
perature as a function of time of a bottle of orange juice
taken out of a 40◦F refrigerator and left in a 65◦F room.
Solve the equation and graph the solution.

20. A roast is taken from the refrigerator, where the tempera-
ture is 40◦F, and put in a 350◦F oven. One hour later, the
meat thermometer shows a temperature of 90◦F. If the
roast is done when its temperature reaches 140◦F, what
is the total time the roast should be in the oven?

21. Warfarin is a drug used as an anticoagulant. After admin-
istration of the drug is stopped, the quantity remaining
in a patient’s body decreases at a rate proportional to the

quantity remaining. The half-life of warfarin in the body
is 37 hours.

(a) Sketch the quantity, Q, of warfarin in a patient’s
body as a function of the time, t, since stopping ad-
ministration of the drug. Mark the 37 hours on your
graph.

(b) Write a differential equation satisfied by Q.
(c) How many days does it take for the drug level in the

body to be reduced to 25% of the original level?

22. The rate at which a drug leaves the bloodstream and
passes into the urine is proportional to the quantity of
the drug in the blood at that time. If an initial dose of Q0

is injected directly into the blood, 20% is left in the blood
after 3 hours.

(a) Write and solve a differential equation for the quan-
tity, Q, of the drug in the blood after t hours.

(b) How much of this drug is in a patient’s body after 6
hours if the patient is given 100 mg initially?

23. Oil is pumped continuously from a well at a rate propor-
tional to the amount of oil left in the well. Initially there
were 1 million barrels of oil in the well; six years later
500,000 barrels remain.

(a) At what rate was the amount of oil in the well de-
creasing when there were 600,000 barrels remain-
ing?

(b) When will there be 50,000 barrels remaining?

24. The radioactive isotope carbon-14 is present in small
quantities in all life forms, and it is constantly replen-
ished until the organism dies, after which it decays to
stable carbon-12 at a rate proportional to the amount of
carbon-14 present, with a half-life of 5730 years. Sup-
pose C(t) is the amount of carbon-14 present at time t.

(a) Find the value of the constant k in the differential
equation C′ = −kC.

(b) In 1988 three teams of scientists found that the
Shroud of Turin, which was reputed to be the burial
cloth of Jesus, contained 91% of the amount of
carbon-14 contained in freshly made cloth of the
same material.8 How old is the Shroud of Turin, ac-
cording to these data?

25. The amount of radioactive carbon-14 in a sample is mea-
sured using a Geiger counter, which records each dis-
integration of an atom. Living tissue disintegrates at a
rate of about 13.5 atoms per minute per gram of carbon.
In 1977 a charcoal fragment found at Stonehenge, Eng-
land, recorded 8.2 disintegrations per minute per gram of
carbon. Assuming that the half-life of carbon-14 is 5730

5www.solarbuzz.com/marketbuzz2008. Accessed February 2010.
6”Warming climate shrinking Glacier Park’s glaciers”, www.usatoday.com, October 15, 2007.
7Data from “Textbooks headed for ash heap of history”, http://educationtechnews.com, Vol. 5, 2010.
8The New York Times, October 18, 1988.
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years and that the charcoal was formed during the build-
ing of the site, estimate the date at which Stonehenge was
built.

26. A detective finds a murder victim at 9 am. The temper-
ature of the body is measured at 90.3◦F. One hour later,
the temperature of the body is 89.0◦F. The temperature
of the room has been maintained at a constant 68◦F.

(a) Assuming the temperature, T , of the body obeys
Newton’s Law of Cooling, write a differential equa-
tion for T .

(b) Solve the differential equation to estimate the time
the murder occurred.

27. At 1:00 pm one winter afternoon, there is a power failure
at your house in Wisconsin, and your heat does not work
without electricity. When the power goes out, it is 68◦F
in your house. At 10:00 pm, it is 57◦F in the house, and
you notice that it is 10◦F outside.

(a) Assuming that the temperature, T , in your home
obeys Newton’s Law of Cooling, write the differen-
tial equation satisfied by T .

(b) Solve the differential equation to estimate the tem-
perature in the house when you get up at 7:00 am
the next morning. Should you worry about your wa-
ter pipes freezing?

(c) What assumption did you make in part (a) about the
temperature outside? Given this (probably incorrect)
assumption, would you revise your estimate up or
down? Why?

28. Before Galileo discovered that the speed of a falling body
with no air resistance is proportional to the time since it
was dropped, he mistakenly conjectured that the speed
was proportional to the distance it had fallen.

(a) Assume the mistaken conjecture to be true and write
an equation relating the distance fallen, D(t), at time
t, and its derivative.

(b) Using your answer to part (a) and the correct initial
conditions, show that D would have to be equal to 0
for all t, and therefore the conjecture must be wrong.

29. (a) An object is placed in a 68◦F room. Write a differ-
ential equation for H , the temperature of the object
at time t.

(b) Find the equilibrium solution to the differential
equation. Determine from the differential equation
whether the equilibrium is stable or unstable.

(c) Give the general solution for the differential equa-
tion.

(d) The temperature of the object is 40◦F initially and
48◦F one hour later. Find the temperature of the ob-
ject after 3 hours.

30. Hydrocodone bitartrate is used as a cough suppressant.
After the drug is fully absorbed, the quantity of drug in
the body decreases at a rate proportional to the amount
left in the body. The half-life of hydrocodone bitartrate in
the body is 3.8 hours, and the usual oral dose is 10 mg.

(a) Write a differential equation for the quantity, Q, of
hydrocodone bitartrate in the body at time t, in hours
since the drug was fully absorbed.

(b) Find the equilibrium solution of the differential
equation. Based on the context, do you expect the
equilibrium to be stable or unstable?

(c) Solve the differential equation given in part (a).
(d) Use the half-life to find the constant of proportional-

ity, k.
(e) How much of the 10 mg dose is still in the body after

12 hours?

31. (a) Let B be the balance at time t of a bank account that
earns interest at a rate of r%, compounded contin-
uously. What is the differential equation describing
the rate at which the balance changes? What is the
constant of proportionality, in terms of r?

(b) Find the equilibrium solution to the differential
equation. Determine whether the equilibrium is sta-
ble or unstable and explain what this means about
the bank account.

(c) What is the solution to this differential equation?
(d) Sketch the graph of B as function of t for an ac-

count that starts with $1000 and earns interest at the
following rates:

(i) 4% (ii) 10% (iii) 15%

Strengthen Your Understanding

In Problems 32–34, explain what is wrong with the statement.

32. The line y = 2 is an equilibrium solution to the differen-
tial equation dy/dx = y3 − 4xy.

33. The function y = x2 is an equilibrium solution to the
differential equation dy/dx = y − x2.

34. At time t = 0, a roast is taken out of a 40◦F refrigerator
and put in a 350◦F oven. If H represents the temperature
of the roast at time t minutes after it is put in the oven,
we have dH/dt = k(H − 40).

In Problems 35–37, give an example of:

35. A differential equation for a quantity that is decaying ex-
ponentially at a continuous rate per unit time.

36. A differential equation with an equilibrium solution of
Q = 500.

37. A graph of three possible solutions, with initial P -values
of 20, 25, and 30, respectively, to a differential equation
that has an unstable equilibrium solution at P = 25.
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11.6 APPLICATIONS AND MODELING

Much of this book involves functions that represent real processes, such as how the temperature of
a yam or the population of the US is changing with time. You may wonder where such functions
come from. In some cases, we fit functions to experimental data by trial and error. In other cases, we
take a more theoretical approach, leading to a differential equation whose solution is the function
we want. In this section we give examples of the more theoretical approach.

How a Layer of Ice Forms
When ice forms on a lake, the water on the surface freezes first. As heat from the water travels up
through the ice and is lost to the air, more ice is formed. The question we will consider is: How
thick is the layer of ice as a function of time? Since the thickness of the ice increases with time, the
thickness function is increasing. In addition, as the ice gets thicker, it insulates better. Therefore,
we expect the layer of ice to form more slowly as time goes on. Hence, the thickness function is
increasing at a decreasing rate, so its graph is concave down.

A Differential Equation for the Thickness of the Ice

To get more detailed information about the thickness function, we have to make some assumptions.
Suppose y represents the thickness of the ice as a function of time, t. Since the thicker the ice, the
longer it takes the heat to get through it, we will assume that the rate at which ice is formed is
inversely proportional to the thickness. In other words, we assume that for some constant k,

Rate thickness

is increasing
=

k

Thickness
,

so
dy

dt
=

k

y
where k > 0.

This differential equation enables us to find a formula for y. Using separation of variables:∫
y dy =

∫
k dt

y2

2
= kt+ C.

If we measure time so that y = 0 when t = 0, then C = 0. Since y must be non-negative, we have

y =
√
2kt .

Graphs of y against t are in Figure 11.54. Notice that the larger y is, the more slowly y increases. In
addition, this model suggests that y increases indefinitely as time passes. (Of course, the value of y
cannot increase beyond the depth of the lake.)

t (time)

y (thickness)

Large k

y =
√
2kt

Small k

Figure 11.54: Thickness of ice as a function of time
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The Net Worth of a Company
In the preceding section, we saw an example in which money in a bank account was earning interest
(Example 1, page 610). Consider a company whose revenues are proportional to its net worth (like
interest on a bank account) but that must also make payroll payments. The question is: under what
circumstances does the company make money, and under what circumstances does it go bankrupt?

Common sense says that if the payroll exceeds the rate at which revenue is earned, the company
will eventually be in trouble, whereas if revenue exceeds payroll, the company should do well. We
assume that revenue is earned continuously and that payments are made continuously. (For a large
company, this is a good approximation.) We also assume that the only factors affecting net worth
are revenue and payroll.

Example 1 A company’s revenue is earned at a continuous annual rate of 5% of its net worth. At the same time,
the company’s payroll obligations amount to $200 million a year, paid out continuously.

(a) Write a differential equation that governs the net worth of the company, W million dollars.
(b) Solve the differential equation, assuming an initial net worth of W0 million dollars.
(c) Sketch the solution for W0 = 3000, 4000, and 5000.

Solution First, let’s see what we can learn without writing a differential equation. For example, we can ask
if there is any initial net worth W0 that will exactly keep the net worth constant. If there’s such an
equilibrium, the rate at which revenue is earned must exactly balance the payments made, so

Rate revenue is earned = Rate payments are made.

If net worth is a constant W0, revenue is earned at a constant rate of 0.05W0 per year, so we have

0.05W0 = 200 giving W0 = 4000.

Therefore, if the net worth starts at $4000 million, the revenue and payments are equal, and the net
worth remains constant. Therefore, $4000 million is an equilibrium solution.

Suppose, however, the initial net worth is above $4000 million. Then, the revenue earned is
more than the payroll expenses, and the net worth of the company increases, thereby increasing the
revenue still further. Thus the net worth increases more and more quickly. On the other hand, if
the initial net worth is below $4000 million, the revenue is not enough to meet the payments, and
the net worth of the company declines. This decreases the revenue, making the net worth decrease
still more quickly. The net worth will eventually go to zero, and the company goes bankrupt. See
Figure 11.55.

27.7

3000

4000

5000

t

W

Figure 11.55: Net worth as a function of time: Solutions to dW/dt = 0.05W − 200
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(a) Now we set up a differential equation for the net worth, using the fact that

Rate net worth

is increasing
=

Rate revenue

is earned
−

Rate payroll payments

are made
.

In millions of dollars per year, revenue is earned at a rate of 0.05W, and payments are made at
a rate of 200 per year, so for t in years,

dW

dt
= 0.05W − 200.

The equilibrium solution, W = 4000, is obtained by setting dW/dt = 0.
(b) We solve this equation by separation of variables. It is helpful to factor out 0.05 before separat-

ing, so that the W moves over to the left-hand side without a coefficient:

dW

dt
= 0.05(W − 4000).

Separating and integrating gives ∫
dW

W − 4000
=

∫
0.05 dt,

so
ln |W − 4000| = 0.05t+ C,

or
|W − 4000| = e0.05t+C

= eCe0.05t.

This means
W − 4000 = Ae0.05t where A = ±eC .

To find A, we use the initial condition that W = W0 when t = 0:

W0 − 4000 = Ae0 = A.

Substituting this value for A into W = 4000 +Ae0.05t gives

W = 4000 + (W0 − 4000)e0.05t.

(c) If W0 = 4000, then W = 4000, the equilibrium solution.
If W0 = 5000, then W = 4000 + 1000e0.05t.
If W0 = 3000, then W = 4000 − 1000e0.05t. Substituting t ≈ 27.7 gives W = 0, so the
company goes bankrupt in its twenty-eighth year. These solutions are shown in Figure 11.55.
Notice that if the net worth starts with W0 near, but not equal to, $4000 million, then W moves
further away. Thus, W = 4000 is an unstable equilibrium.

The Velocity of a Falling Body: Terminal Velocity
Think about the velocity of a sky-diver jumping out of a plane. When the sky-diver first jumps,
his velocity is zero. The pull of gravity then makes his velocity increase. As the sky-diver speeds
up, the air resistance also increases. Since the air resistance partly balances the pull of gravity, the
force causing him to accelerate decreases. Thus, the velocity is an increasing function of time, but
it is increasing at a decreasing rate. The air resistance increases until it balances gravity, when the
sky-diver’s velocity levels off. Thus, we expect the the graph of velocity against time to be concave
down with a horizontal asymptote.

A Differential Equation: Air Resistance Proportional to Velocity

In order to compute the velocity function, we need to know exactly how air resistance depends
on velocity. To decide whether air resistance is, say, proportional to the velocity, or is some other
function of velocity, requires either lab experiments or a theoretical idea of how the air resistance is
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created. We consider a very small object, such as a dust particle settling on a computer component
during manufacturing,9 and assume that air resistance is proportional to velocity. Thus, the net force
on the object is F = mg − kv, where mg is the gravitational force, which acts downward, and kv
is the air resistance, which acts upward, so k > 0. (See Figure 11.56.) Then, by Newton’s Second
Law of Motion,

Force = Mass · Acceleration,

we have

mg − kv = m
dv

dt
.

This differential equation can be solved by separation of variables. It is easier if we factor out −k/m
before separating, giving

dv

dt
= −

k

m

(
v −

mg

k

)
.

Separating and integrating gives ∫
dv

v −mg/k
= −

k

m

∫
dt

ln

∣∣∣v − mg

k

∣∣∣ = −
k

m
t+ C.

Solving for v, we have ∣∣∣v − mg

k

∣∣∣ = e−kt/m+C
= eCe−kt/m

v −
mg

k
= Ae−kt/m,

where A is an arbitrary constant. We find A from the initial condition that the object starts from rest,
so v = 0 when t = 0. Substituting

0−
mg

k
= Ae0

gives

A = −
mg

k
.

�

�

Force due to
gravity, mg

Air resistance, kv

Figure 11.56: Forces acting on a falling object

mg
k

v (velocity)

t (time)

v = mg
k
(1− e−kt/m)

Terminal velocity

Figure 11.57: Velocity of falling dust particle assuming
that air resistance is kv

Thus
v =

mg

k
−

mg

k
e−kt/m

=
mg

k
(1− e−kt/m

).

The graph of this function is in Figure 11.57. The horizontal asymptote represents the terminal
velocity, mg/k.

Notice that the terminal velocity can also be obtained from the differential equation by setting
dv/dt = 0 and solving for v:

m
dv

dt
= mg − kv = 0, so v =

mg

k
.

9Example suggested by Howard Stone.
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Compartmental Analysis: A Reservoir
Many processes can be modeled as a container with various solutions flowing in and out—for ex-
ample, drugs given intravenously or the discharge of pollutants into a lake. We consider a city’s
water reservoir, fed partly by clean water from a spring and partly by run-off from the surrounding
land. In New England and many other areas with much snow in the winter, the run-off contains salt
that has been put on the roads to make them safe for driving. We consider the concentration of salt
in the reservoir. If there is no salt in the reservoir initially, the concentration builds up until the rate
at which the salt is entering into the reservoir balances the rate at which salt flows out. If, on the
other hand, the reservoir starts with a great deal of salt in it, then initially, the rate at which the salt
is entering is less than the rate at which it is flowing out, and the quantity of salt in the reservoir
decreases. In either case, the salt concentration levels off at an equilibrium value.

A Differential Equation for Salt Concentration

A water reservoir holds 100 million gallons of water and supplies a city with 1 million gallons a day.
The reservoir is partly refilled by a spring that provides 0.9 million gallons a day, and the rest of the
water, 0.1 million gallons a day, comes from run-off from the surrounding land. The spring is clean,
but the run-off contains salt with a concentration of 0.0001 pound per gallon. There was no salt in
the reservoir initially, and the water is well mixed (that is, the outflow contains the concentration
of salt in the tank at that instant). We find the concentration of salt in the reservoir as a function of
time.

It is important to distinguish between the total quantity, Q, of salt in pounds and the concentra-
tion, C, of salt in pounds/gallon where

Concentration = C =
Quantity of salt
Volume of water

=
Q

100million

(
lb

gal

)
.

(The volume of the reservoir is 100 million gallons.) We will find Q first, and then C. We know that

Rate of change of

quantity of salt
= Rate salt entering − Rate salt leaving.

Salt is entering through the run-off of 0.1 million gallons per day, with each gallon containing 0.0001
pound of salt. Therefore,

Rate salt entering = Concentration · Volume per day

= 0.0001

(
lb

gal

)
· 0.1

(
million gal

day

)

= 0.00001

(
million lb

day

)
= 10 lb/day.

Salt is leaving in the million gallons of water used by the city each day . Thus

Rate salt leaving = Concentration · Volume per day

=
Q

100 million

(
lb

gal

)
· 1

(
million gal

day

)
=

Q

100
lb/day.

Therefore, Q satisfies the differential equation

dQ

dt
= 10−

Q

100
.

We factor out −1/100 = −0.01 and separate variables, giving

dQ

dt
= −0.01(Q− 1000)
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dQ

Q− 1000
= −

∫
0.01 dt

ln |Q − 1000| = −0.01t+ k

Q− 1000 = Ae−0.01t.

There is no salt initially, so we substitute Q = 0 when t = 0:

0− 1000 = Ae0 giving A = −1000.

Thus
Q− 1000 = −1000e−0.01t,

so
Q = 1000(1− e−0.01t

) pounds.

Therefore

Concentration = C =
Q

100 million
=

1000

108
(1− e−0.01t

) = 10
−5

(1− e−0.01t
) lb/gal.

A sketch of concentration against time is in Figure 11.58.

10−5

C (lb/gal)

t (days)

C = 10−5
(
1− e−0.01t

)

Figure 11.58: Concentration of salt in reservoir

Exercises and Problems for Section 11.6
Exercises

1. Match the graphs in Figure 11.59 with the following de-
scriptions.

(a) The population of a new species introduced onto a
tropical island.

(b) The temperature of a metal ingot placed in a furnace
and then removed.

(c) The speed of a car traveling at uniform speed and
then braking uniformly.

(d) The mass of carbon-14 in a historical specimen.
(e) The concentration of tree pollen in the air over the

course of a year.

t

(I)

t

(II)

t

(III)

t

(IV)

t

(V)

Figure 11.59

In Exercises 2–5, write a differential equation for the balance
B in an investment fund with time, t, measured in years.

2. The balance is earning interest at a continuous rate of 5%
per year, and payments are being made out of the fund at
a continuous rate of $12,000 per year.

3. The balance is earning interest at a continuous rate of
3.7% per year, and money is being added to the fund at a
continuous rate of $5000 per year.

4. The balance is losing value at a continuous rate of 8%
per year, and money is being added to the fund at a con-
tinuous rate of $2000 per year.

5. The balance is losing value at a continuous rate of 6.5%
per year, and payments are being made out of the fund at
a continuous rate of $50,000 per year.

6. A bank account that earns 10% interest compounded con-
tinuously has an initial balance of zero. Money is de-
posited into the account at a constant rate of $1000 per
year.

(a) Write a differential equation that describes the rate
of change of the balance B = f(t).

(b) Solve the differential equation to find the balance as
a function of time.
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7. At time t = 0, a bottle of juice at 90◦F is stood in
a mountain stream whose temperature is 50◦F. After 5
minutes, its temperature is 80◦F. Let H(t) denote the
temperature of the juice at time t, in minutes.

(a) Write a differential equation for H(t) using New-
ton’s Law of Cooling.

(b) Solve the differential equation.
(c) When will the temperature of the juice have dropped

to 60◦F?

8. The velocity, v, of a dust particle of mass m and acceler-
ation a satisfies the equation

ma = m
dv

dt
= mg − kv, where g, k are constant.

By differentiating this equation, find a differential equa-
tion satisfied by a. (Your answer may contain m, g, k,
but not v.) Solve for a, given that a(0) = g.

Problems

9. A deposit is made to a bank account paying 8% interest
compounded continuously. Payments totaling $2000 per
year are made from this account.

(a) Write a differential equation for the balance, B, in
the account after t years.

(b) Find the equilibrium solution of the differential
equation. Is the equilibrium stable or unstable? Ex-
plain what happens to an account that begins with
slightly more money or slightly less money than the
equilibrium value.

(c) Write the solution to the differential equation.
(d) How much is in the account after 5 years if the initial

deposit is (i) $20,000? (ii) $30,000?

10. Dead leaves accumulate on the ground in a forest at a
rate of 3 grams per square centimeter per year. At the
same time, these leaves decompose at a continuous rate
of 75% per year. Write a differential equation for the total
quantity of dead leaves (per square centimeter) at time t.
Sketch a solution showing that the quantity of dead leaves
tends toward an equilibrium level. What is that equilib-
rium level?

11. A stream flowing into a lake brings with it a pollutant at
a rate of 8 metric tons per year. The river leaving the lake
removes the pollutant at a rate proportional to the quan-
tity in the lake, with constant of proportionality −0.16 if
time is measured in years.

(a) Is the quantity of pollutant in the lake increasing or
decreasing at a moment at which the quantity is 45
metric tons? At which the quantity is 55 metric tons?

(b) What is the quantity of pollutant in the lake after a
long time?

12. Caffeine is metabolized and excreted at a continuous rate
of about 17% per hour. A person with no caffeine in the
body starts drinking coffee, containing 130 mg of caf-
feine per cup, at 7 am. The person drinks coffee contin-
uously all day at the rate of one cup an hour. Write a
differential equation for A, the amount of caffeine in the
body t hours after 7 am and give the particular solution
to this differential equation. How much caffeine is in the
person’s body at 5 pm?

13. The rate (per foot) at which light is absorbed as it passes
through water is proportional to the intensity, or bright-
ness, at that point.

(a) Find the intensity as a function of the distance the
light has traveled through the water.

(b) If 50% of the light is absorbed in 10 feet, how much
is absorbed in 20 feet? 25 feet?

14. In 2010, the world population was 6.9 billion. The birth
rate had stabilized to 140 million per year and is pro-
jected to remain constant. The death rate is projected to
increase from 57 million per year in 2010 to 80 million
per year in 2040 and to continue increasing at the same
rate.

(a) Assuming the death rate increases linearly, write a
differential equation for P (t), the world population
in billions t years from 2010.

(b) Solve the differential equation.
(c) Find the population predicted for 2050.

15. The rate at which barometric pressure decreases with al-
titude is proportional to the barometric pressure at that
altitude. If the barometric pressure is measured in inches
of mercury, and the altitude in feet, then the constant of
proportionality is 3.7 · 10−5. The barometric pressure at
sea level is 29.92 inches of mercury.

(a) Calculate the barometric pressure at the top of
Mount Whitney, 14,500 feet (the highest mountain
in the US outside Alaska), and at the top of Mount
Everest, 29,000 feet (the highest mountain in the
world).

(b) People cannot easily survive at a pressure below 15
inches of mercury. What is the highest altitude to
which people can safely go?

16. According to a simple physiological model, an athletic
adult male needs 20 calories per day per pound of body
weight to maintain his weight. If he consumes more or
fewer calories than those required to maintain his weight,
his weight changes at a rate proportional to the difference
between the number of calories consumed and the num-
ber needed to maintain his current weight; the constant
of proportionality is 1/3500 pounds per calorie. Suppose
that a particular person has a constant caloric intake of
I calories per day. Let W (t) be the person’s weight in
pounds at time t (measured in days).

(a) What differential equation has solution W (t)?
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(b) Find the equilibrium solution of the differential
equation. Based on the context, do you expect the
equilibrium to be stable or unstable?

(c) Solve this differential equation.
(d) Graph W (t) if the person starts out weighing 160

pounds and consumes 3000 calories a day.

17. Morphine is often used as a pain-relieving drug. The half-
life of morphine in the body is 2 hours. Suppose mor-
phine is administered to a patient intravenously at a rate
of 2.5 mg per hour, and the rate at which the morphine is
eliminated is proportional to the amount present.

(a) Use the half-life to show that, to three decimal
places, the constant of proportionality for the rate
at which morphine leaves the body (in mg/hour) is
k = −0.347.

(b) Write a differential equation for the quantity, Q, of
morphine in the blood after t hours.

(c) Use the differential equation to find the equilibrium
solution. (This is the long-term amount of morphine
in the body, once the system has stabilized.)

18. Water leaks out of a barrel at a rate proportional to the
square root of the depth of the water at that time. If the
water level starts at 36 inches and drops to 35 inches in 1
hour, how long will it take for all of the water to leak out
of the barrel?

19. When a gas expands without gain or loss of heat, the rate
of change of pressure with respect to volume is propor-
tional to pressure divided by volume. Find a law connect-
ing pressure and volume in this case.

20. A spherical snowball melts at a rate proportional to its
surface area.

(a) Write a differential equation for its volume, V .
(b) If the initial volume is V0, solve the differential

equation and graph the solution.
(c) When does the snowball disappear?

21. Water leaks from a vertical cylindrical tank through a
small hole in its base at a rate proportional to the square
root of the volume of water remaining. If the tank ini-
tially contains 200 liters and 20 liters leak out during the
first day, when will the tank be half empty? How much
water will there be after 4 days?

22. As you know, when a course ends, students start to for-
get the material they have learned. One model (called the
Ebbinghaus model) assumes that the rate at which a stu-
dent forgets material is proportional to the difference be-
tween the material currently remembered and some pos-
itive constant, a.

(a) Let y = f(t) be the fraction of the original material
remembered t weeks after the course has ended. Set
up a differential equation for y. Your equation will
contain two constants; the constant a is less than y
for all t.

(b) Solve the differential equation.
(c) Describe the practical meaning (in terms of the

amount remembered) of the constants in the solution
y = f(t).

23. An item is initially sold at a price of $p per unit. Over
time, market forces push the price toward the equilibrium
price, $p∗, at which supply balances demand. The Evans
Price Adjustment model says that the rate of change in
the market price, $p, is proportional to the difference be-
tween the market price and the equilibrium price.

(a) Write a differential equation for p as a function of t.
(b) Solve for p.
(c) Sketch solutions for various different initial prices,

both above and below the equilibrium price.
(d) What happens to p as t → ∞?

24. Let L, a constant, be the number of people who would
like to see a newly released movie, and let N(t) be the
number of people who have seen it during the first t
days since its release. The rate that people first go see
the movie, dN/ dt (in people/day), is proportional to the
number of people who would like to see it but haven’t yet.
Write and solve a differential equation describing dN/ dt
where t is the number of days since the movie’s release.
Your solution will involve L and a constant of propor-
tionality, k.

25. A drug is administered intravenously at a constant rate
of r mg/hour and is excreted at a rate proportional to the
quantity present, with constant of proportionality α > 0.

(a) Solve a differential equation for the quantity, Q, in
milligrams, of the drug in the body at time t hours.
Assume there is no drug in the body initially. Your
answer will contain r and α. Graph Q against t.
What is Q∞, the limiting long-run value of Q?

(b) What effect does doubling r have on Q∞? What ef-
fect does doubling r have on the time to reach half
the limiting value, 1

2
Q∞ ?

(c) What effect does doubling α have on Q∞? On the
time to reach 1

2
Q∞?

26. When people smoke, carbon monoxide is released into
the air. In a room of volume 60 m3, air containing 5%
carbon monoxide is introduced at a rate of 0.002 m3/min.
(This means that 5% of the volume of the incoming air is
carbon monoxide.) The carbon monoxide mixes immedi-
ately with the rest of the air, and the mixture leaves the
room at the same rate as it enters.

(a) Write a differential equation for c(t), the concentra-
tion of carbon monoxide at time t, in minutes.

(b) Solve the differential equation, assuming there is no
carbon monoxide in the room initially.

(c) What happens to the value of c(t) in the long run?

27. (Continuation of Problem 26.) Government agencies
warn that exposure to air containing 0.02% carbon
monoxide can lead to headaches and dizziness.10 How

10www.lni.wa.gov/Safety/Topics/AtoZ/CarbonMonoxide/, accessed on June 14, 2007.
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long does it take for the concentration of carbon monox-
ide in the room in Problem 26 to reach this level?

28. An aquarium pool has volume 2 ·106 liters. The pool ini-
tially contains pure fresh water. At t = 0 minutes, water
containing 10 grams/liter of salt is poured into the pool at
a rate of 60 liters/minute. The salt water instantly mixes
with the fresh water, and the excess mixture is drained
out of the pool at the same rate (60 liters/minute).

(a) Write a differential equation for S(t), the mass of
salt in the pool at time t.

(b) Solve the differential equation to find S(t).
(c) What happens to S(t) as t → ∞?

29. In 1692, Johann Bernoulli was teaching the Marquis de
l’Hopital calculus in Paris. Solve the following problem,
which is similar to the one that they did. What is the equa-
tion of the curve which has subtangent (distance BC in
Figure 11.60) equal to twice its abscissa (distance OC)?

B O C

A



Tangent

Curve

�

x

y

Figure 11.60

30. An object of mass m is thrown vertically upward from
the surface of the earth with initial velocity v0. We will
calculate the value of v0, called the escape velocity, with
which the object can escape the pull of the gravity and
never return to earth. Since the object is moving far from
the surface of the earth, we must take into account the
variation of gravity with altitude. If the acceleration due
to gravity at sea level is g, and R is the radius of the earth,
the gravitational force, F , on the object of mass m at an
altitude h above the surface of the earth is given by

F =
mgR2

(R+ h)2
.

(a) The velocity of the object (measured upward) is v
at time t. Use Newton’s Second Law of Motion to
show that

dv

dt
= − gR2

(R+ h)2
.

(b) Rewrite this equation with h instead of t as the inde-
pendent variable using the chain rule dv

dt
= dv

dh
· dh

dt
.

Hence, show that

v
dv

dh
= − gR2

(R + h)2
.

(c) Solve the differential equation in part (b).
(d) Find the escape velocity, the smallest value of v0

such that v is never zero.

31. A bank account earns 5% annual interest, compounded
continuously. Money is deposited in a continuous cash
flow at a rate of $1200 per year into the account.

(a) Write a differential equation that describes the rate
at which the balance B = f(t) is changing.

(b) Solve the differential equation given an initial bal-
ance B0 = 0.

(c) Find the balance after 5 years.

32. (Continuation of Problem 31.) Now suppose the money
is deposited once a month (instead of continuously) but
still at a rate of $1200 per year.

(a) Write down the sum that gives the balance after 5
years, assuming the first deposit is made one month
from today, and today is t = 0.

(b) The sum you wrote in part (a) is a Riemann sum ap-
proximation to the integral∫ 5

0

1200e0.1tdt.

Determine whether it is a left sum or right sum, and
determine what Δt and n are. Then use your calcu-
lator to evaluate the sum.

(c) Compare your answer in part (b) to your answer to
Problem 31(c).

Strengthen Your Understanding

In Problems 33–34, explain what is wrong with the statement.

33. At a time when a bank balance $B, which satisfies
dB/dt = 0.08B − 250, is $5000, the balance is going
down.

34. The differential equation dQ/dt = −0.15Q + 25 rep-
resents the quantity of a drug in the body if the drug is
metabolized at a continuous rate of 15% per day and an
IV line is delivering the drug at a constant rate of 25 mg
per hour.

In Problems 35–37, give an example of:

35. A differential equation for the quantity of a drug in a pa-
tient’s body if the patient is receiving the drug at a con-
stant rate through an IV line and is metabolizing the drug
at a rate proportional to the quantity present.

36. A differential equation for any quantity which grows in
two ways simultaneously: on its own at a rate propor-
tional to the cube root of the amount present and from an
external contribution at a constant rate.

37. A differential equation for a quantity that is increasing
and grows fastest when the quantity is small and grows
more slowly as the quantity gets larger.



11.7 THE LOGISTIC MODEL 629

11.7 THE LOGISTIC MODEL

Oil prices have a significant impact on the world’s economies. In the eighteen months preceding
July 2008, the price of oil more than doubled from about $60 a barrel to about $140 a barrel.11

The impact of the increase was significant, from the auto industry, to family budgets, to how people
commute. Even the threat of a price hike can send stock markets tumbling.

Many reasons are suggested for the increase, but one fact is inescapable: there is a finite supply
of oil in the world. To fuel its expanding economy, the world consumes more oil each succeeding
year. This cannot go on indefinitely. Economists and geologists are interested in estimating the
remaining oil reserves and the date at which annual oil production is expected to peak (that is, reach
a maximum).

US oil production has already peaked—and the date was predicted in advance. In 1956, geolo-
gist M. King Hubbert predicted that annual US oil production would peak some time in the period
1965–1970. Although many did not take his prediction seriously, US oil production did in fact peak
in 1970. The economic impact was blunted by the US’s increasing reliance on foreign oil.

In this section we introduce the logistic differential equation and use it, as Hubbert did, to pre-
dict the peak of US oil production.12 Problems 29–32 investigate the peak of world oil production.

The Logistic Model
The logistic differential equation describes growth subject to a limit. For oil, the limit is the total oil
reserves; for a population, the limit is the largest population that the environment can support; for
the spread of information or a disease, the limit is the number of people that could be affected. The
solution to this differential equation is the family of logistic functions introduced in Section 4.4.

Suppose P is growing logistically toward a limiting value of L, and the relative growth rate,
(1/P )dP/dt, is k when P = 0. In the exponential model, the relative growth rate remains constant
at k. But in the logistic model, the relative growth rate decreases linearly to 0 as P approaches L;
see Figure 11.61.

L

k

P

1

P

dP

dt

Figure 11.61: Logistic model: Relative
growth rate is a linear function of P

So we have
1

P

dP

dt
= k −

k

L
P = k

(
1−

P

L

)
.

The logistic differential equation can also be written

dP

dt
= kP

(
1−

P

L

)
.

This equation was first proposed as a model for population growth by the Belgian mathematician P.
F. Verhulst in the 1830s. In Verhulst’s model,L represents the carrying capacity of the environment,
which is determined by the supply of food and arable land along with the available technology.

11http://www.nyse.tv/crude-oil-price-history.htm. Accessed February 2012.
12Based on an undergraduate project by Brad Ernst, Colgate University.



630 Chapter Eleven DIFFERENTIAL EQUATIONS

Qualitative Solution to the Logistic Equation

Figure 11.62 shows the slope field and characteristic sigmoid, or S-shaped, solution curve for the
logistic model. Notice that for each fixed value of P , that is, along each horizontal line, the slopes
are constant because dP/dt depends only on P and not on t. The slopes are small near P = 0 and
near P = L; they are steepest around P = L/2. For P > L, the slopes are negative, so if the
population is above the carrying capacity, the population decreases.

L

P

t

Figure 11.62: Slope field for
dP/dt = kP (1− P/L)

L
2
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P

dP
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Figure 11.63: dP/dt = kP (1− P/L)

We can locate the inflection point where the slope is greatest using Figure 11.63. This graph is
a parabola because dP/dt is a quadratic function of P . The horizontal intercepts are at P = 0 and
P = L, so the maximum, where the slope is greatest, is at P = L/2. Figure 11.63 also tells us that
for 0 < P < L/2, the slope dP/dt is positive and increasing, so the graph of P against t is concave
up. (See Figure 11.64.) For L/2 < P < L, the slope dP/dt is positive and decreasing, so the graph
of P is concave down. For P > L, the slope dP/dt is negative, so P is decreasing.
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Figure 11.64: Logistic growth with inflection point

P0

L
2

L

P

t

Figure 11.65: Solutions to the logistic equation

If P = 0 or P = L, there is an equilibrium solution. Figure 11.65 shows that P = 0 is an
unstable equilibrium because solutions which start near 0 move away. However, P = L is a stable
equilibrium.

The Analytic Solution to the Logistic Equation

We have already obtained a lot of information about logistic growth without finding a formula for
the solution. However, the equation can be solved analytically by separating variables:

dP

dt
= kP

(
1−

P

L

)
= kP

(
L− P

L

)
giving ∫

dP

P (L− P )
=

∫
k

L
dt.

We can integrate the left side using the integral tables (Formula V 26) or by partial fractions:∫
1

L

(
1

P
+

1

L− P

)
dP =

∫
k

L
dt.
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Canceling the constant L, we integrate to get

ln |P | − ln |L− P | = kt+ C.

Multiplying through by (−1) and using properties of logarithms, we have

ln

∣∣∣∣L− P

P

∣∣∣∣ = −kt− C.

Exponentiating both sides gives∣∣∣∣L− P

P

∣∣∣∣ = e−kt−C
= e−Ce−kt, so

L− P

P
= ±e−Ce−kt.

Then, writing A = ±e−C , we have
L− P

P
= Ae−kt.

We find A by substituting P = P0 when t = 0, which gives

L− P0

P0
= Ae0 = A.

Since (L − P )/P = (L/P )− 1, we have

L

P
= 1 +Ae−kt,

which gives the following result:

The solution to the logistic differential equation:

dP

dt
= kP

(
1−

P

L

)
with initial condition P0 when t = 0

is the logistic function

P =
L

1 +Ae−kt
with A =

L− P0

P0
.

The parameter L represents the limiting value. The parameter k represents the relative growth
rate when P is small relative to L. The parameter A depends on the initial condition P0.

Peak Oil: US Production
We apply the logistic model to US oil production as Hubbert did in 1956. To make predictions, we
need the values of k and L. We calculate these values from the oil production data Hubbert had
available to him in the 1950s; see Table 11.5.

We define P to be the total amount of oil, in billions of barrels, produced in the US since 1859,
the year the first oil well was built. See Table 11.5. With time, t, in years, dP/dt approximates the
annual oil production in billions of barrels per year. Peak oil production occurs when dP/dt is a
maximum.
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Table 11.5 US oil production13 for 1931–1950 (billions of barrels)

Year dP/dt P Year dP/dt P Year dP/dt P

1931 0.851 13.8 1938 1.21 21.0 1945 1.71 31.5

1932 0.785 14.6 1939 1.26 22.3 1946 1.73 33.2

1933 0.906 15.5 1940 1.50 23.8 1947 1.86 35.1

1934 0.908 16.4 1941 1.40 25.2 1948 2.02 37.1

1935 0.994 17.4 1942 1.39 26.6 1949 1.84 38.9

1936 1.10 18.5 1943 1.51 28.1 1950 1.97 40.9

1937 1.28 19.8 1944 1.68 29.8

Figure 11.66 shows a scatterplot of the relative growth rate (dP/dt)/P versus P . If the data
follow a logistic differential equation, we see a linear relationship with intercept k and slope −k/L:

1

P

dP

dt
= k

(
1−

P

L

)
= k −

k

L
P.

Figure 11.66 shows a line fitted to the data.14 The vertical intercept gives the value k = 0.0649.
The slope of the line is −k/L = −0.00036, so we have L = 0.0649/0.00036 = 180 billion

barrels of oil. Thus, the model predicts that the total oil reserves in the US (the total amount in the
ground before drilling started in 1859) were 180 billion barrels of oil.15
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Figure 11.66: US oil production 1931–1950: Scatterplot and line for 1/P (dP/dt) versus P

If we let t = 0 be 1950, then P0 = 40.9 billion barrels and A = (180 − 40.9)/40.9 = 3.401.
The logistic function representing US oil production is

P =
180

1 + 3.401e−0.0649t
.

Predicting Peak Oil Production

To predict, as Hubbert did, the year when annual US oil production would peak, we use the fact that
the maximum value for dP/dt occurs when P = L/2. We derive a formula for the peak year (used
again in Problems 29–32 to find peak production in world oil). The crucial observation is that, at the
peak, the denominator of the expression for P must equal 2. Since

P =
L

2
=

L

1 +Ae−kt
, we have Ae−kt

= 1.

Using logarithms to solve the equation Ae−kt = 1, we get t = (1/k) lnA. Since A = (L−P0)/P0,
we see that the time to peak oil production is an example of the following result:

13Data from http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=MCRFPUS1&f=A. Accessed Feb, 2012.
14The line is a least-squares regression line.
15If the same analysis is repeated for other time periods, for example 1900–1950 or 1900–2000, the value for L varies

between 120 and 220 billion barrels, while the value of k varies between 0.060 and 0.075.
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For a logistic function, the maximum value of dP/dt occurs when P = L/2, and

Time to the maximum rate of change =
1

k
lnA =

1

k
ln

L− P0

P0
.

Thus, for the US,

Time to peak oil production =
1

0.0649
ln

180− 40.9

40.9
≈ 19 years;

that is, oil production was predicted to peak in the year 1950+19 = 1969. That year, P = L/2 and
annual production was expected to be

dP

dt
= kP

(
1−

P

L

)
= 0.0649 ·

180

2

(
1−

1

2

)
≈ 3 billion barrels.

The actual peak in US oil production was 3.5 billion barrels in 1970. Repeating the analysis using
other time periods gives peak oil years in the range 1965-1970, as Hubbert predicted.

Figure 11.67 shows annual US production data and the parabola predicting its peak around
1970. Figure 11.68 shows P as a logistic function of t, with the limiting value of P = 180 and
maximum production at P = 90. In fact, the first major oil crisis hit the US in the 1970s, with
spiraling gas prices and long lines at service stations. The decline in US oil production since 1970
was partly mitigated by the opening of the Alaskan oil fields, which led to a second but lower peak
in 1985. However, the US has increasingly depended on foreign oil.

Although Hubbert’s predictions of the peak year proved to be accurate, extrapolation into the
future is risky. Figure 11.67 and Figure 11.68 show that since 1970, oil production has slowed,
though not as much as predicted.
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Figure 11.67: US oil production: dP/dt versus P , predicted
(parabola) and actual
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Figure 11.68: US oil production: P versus t, predicted
(logistic) and actual

Interestingly, Hubbert used the logistic model only to estimate k; for L, he relied on geological
studies. It is remarkable that using only annual oil production for 1930-1950, we get an estimate for
L that is in such close agreement with the geological estimates.

US Population Growth
The logistic equation is often used to model population growth. Table 11.6 gives the annual census
figures in millions for the US population from 1790 to 2010.16 Since we have the population, P (t),
of the US at ten-year intervals, we compute the relative growth rate using averages of estimates of
the form:

1

P

dP

dt
in 1860 =

1

P (1860)
·
P (1870)− P (1860)

10
.

(See Problem 19 for details.) If we focus on the period 1790–1940, a line fitted to the scatterplot of
(1/P )dP/dt versus P has intercept k = 0.0317 and slope −k/L = −0.000165, so L ≈ 192. Thus
the differential equation modeling the US population during this period is

16www.census.gov.Accessed February 12, 2012.
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dP

dt
= 0.0317P

(
1−

P

192

)
.

Using 1790 as t = 0, we get

A =
L− P0

P0
=

192− 3.9

3.9
≈ 48.

Thus the solution to the logistic differential equation is

P =
192

1 + 48e−0.0317t
.

Table 11.6 shows the actual census data for 1790–1940 with projected values from a logistic model;
the largest deviations are 4% in 1840 and 1870 (the Civil War accounts for the second one).17

Table 11.6 US population, in millions, for 1790–2010, actual data and logistic predictions

Year Actual Logistic Year Actual Logistic Year Actual Logistic Year Actual Logistic

1790 3.9 3.9 1850 23.2 23.6 1910 92.2 92.9 1970 203.2 165.7

1800 5.3 5.4 1860 31.4 30.9 1920 106.0 108.0 1980 226.5 172.2

1810 7.2 7.3 1870 38.6 40.1 1930 123.2 122.6 1990 248.7 177.2

1820 9.6 9.8 1880 50.2 51.0 1940 132.2 136.0 2000 281.4 181.0

1830 12.9 13.3 1890 63.0 63.7 1950 151.3 147.7 2010 308.7 183.9

1840 17.1 17.8 1900 76.2 77.9 1960 179.3 157.6

After 1940, the actual figures leave the logistic model in the dust. The model predicts an in-
crease of 9.9 million from 1950 to 1960 versus the actual change of 28 million. By 1970 the actual
population of 203.2 million exceeded the predicted limiting population of L = 192 million. The
unprecedented surge in US population between 1945 and 1965 is referred to as the baby boom.

Exercises and Problems for Section 11.7
Exercises

1. (a) Show that P = 1/(1 + e−t) satisfies the logistic
equation

dP

dt
= P (1− P ).

(b) What is the limiting value of P as t → ∞?

2. A quantity P satisfies the differential equation

dP

dt
= kP

(
1− P

100

)
.

Sketch approximate solutions satisfying each of the fol-
lowing initial conditions:

(a) P0 = 8 (b) P0 = 70 (c) P0 = 125

3. A quantity Q satisfies the differential equation

dQ

dt
= kQ(1− 0.0004Q).

Sketch approximate solutions satisfying each of the fol-
lowing initial conditions:

(a) Q0 = 300 (b) Q0 = 1500 (c) Q0 = 3500

4. A quantity P satisfies the differential equation

dP

dt
= kP

(
1− P

250

)
, with k > 0.

Sketch a graph of dP/dt as a function of P .

5. A quantity A satisfies the differential equation

dA

dt
= kA(1− 0.0002A), with k > 0.

Sketch a graph of dA/dt as a function of A.

17Calculations were done with more precise values of the population data and the constants k, L, and A than those shown.
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6. Figure 11.69 shows a graph of dP/dt against P for a
logistic differential equation. Sketch several solutions of
P against t, using different initial conditions. Include a
scale on your vertical axis.

45
P

dP/dt

Figure 11.69

7. Figure 11.70 shows a slope field of a differential equation
for a quantity Q growing logistically. Sketch a graph of
dQ/dt against Q. Include a scale on the horizontal axis.

800

t

Q

Figure 11.70

8. (a) On the slope field for dP/dt = 3P − 3P 2 in Fig-
ure 11.71, sketch three solution curves showing dif-
ferent types of behavior for the population, P .

(b) Is there a stable value of the population? If so, what
is it?

(c) Describe the meaning of the shape of the solution
curves for the population: Where is P increasing?
Decreasing? What happens in the long run? Are
there any inflection points? Where? What do they
mean for the population?

(d) Sketch a graph of dP/dt against P . Where is dP/dt
positive? Negative? Zero? Maximum? How do your
observations about dP/dt explain the shapes of your
solution curves?

1 2

1

t

P

Figure 11.71

Exercises 9–10 give a graph of dP/dt against P .

(a) What are the equilibrium values of P ?

(b) If P = 500, is dP/dt positive or negative? Is P increas-
ing or decreasing?

9.

2000
P

dP/dt 10.

400
P

dP/dt

For the logistic differential equations in Exercises 11–12,

(a) Give values for k and for L and interpret the meaning of
each in terms of the growth of the quantity P .

(b) Give the value of P when the rate of change is at its peak.

11.
dP

dt
= 0.035P

(
1− P

6000

)
12.

dP

dt
= 0.1P − 0.00008P 2

In Exercises 13–16, give the general solution to the logistic
differential equation.

13.
dP

dt
= 0.05P

(
1− P

2800

)
14.

dP

dt
= 0.012P

(
1− P

5700

)
15.

dP

dt
= 0.68P (1 − 0.00025P )

16.
dP

dt
= 0.2P − 0.0008P 2

In Exercises 17–20, give k, L, A, a formula for P as a func-
tion of time t, and the time to the peak value of dP/dt.

17.
dP

dt
= 10P − 5P 2, P0 = L/4

18.
dP

dt
= 0.02P − 0.0025P 2 , P0 = 1

19.
1

P

dP

dt
= 0.3

(
1− P

100

)
, P0 = 75

20.
1

10P

dP

dt
= 0.012 − 0.002P, P0 = 2

In Exercises 21–22, give the solution to the logistic differen-
tial equation with initial condition.

21.
dP

dt
= 0.8P

(
1− P

8500

)
with P0 = 500

22.
dP

dt
= 0.04P (1 − 0.0001P ) with P0 = 200
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Problems

23. A rumor spreads among a group of 400 people. The num-
ber of people, N(t), who have heard the rumor by time t
in hours since the rumor started is approximated by

N(t) =
400

1 + 399e−0.4t
.

(a) Find N(0) and interpret it.
(b) How many people will have heard the rumor after 2

hours? After 10 hours?
(c) Graph N(t).
(d) Approximately how long will it take until half the

people have heard the rumor? 399 people?
(e) When is the rumor spreading fastest?

24. The Tojolobal Mayan Indian community in southern
Mexico has available a fixed amount of land. The pro-
portion, P , of land in use for farming t years after 1935
is modeled with the logistic function in Figure 11.72:18

P =
1

1 + 2.968e−0.0275t
.

(a) What proportion of the land was in use for farming
in 1935?

(b) What is the long-run prediction of this model?
(c) When was half the land in use for farming?
(d) When is the proportion of land used for farming in-

creasing most rapidly?

40 80 120 160 200

0.5

1

t (years
since 1935)

P
(proportion of land in use)

Figure 11.72

25. A model for the population, P , of carp in a landlocked
lake at time t is given by the differential equation

dP

dt
= 0.25P (1− 0.0004P ).

(a) What is the long-term equilibrium population of
carp in the lake?

(b) A census taken ten years ago found there were 1000
carp in the lake. Estimate the current population.

(c) Under a plan to join the lake to a nearby river, the
fish will be able to leave the lake. A net loss of 10%
of the carp each year is predicted, but the patterns of
birth and death are not expected to change. Revise
the differential equation to take this into account.
Use the revised differential equation to predict the
future development of the carp population.

26. Table 11.7 gives values for a logistic function P = f(t).

(a) Estimate the maximum rate of change of P and es-
timate the value of t when it occurs.

(b) If P represents the growth of a population, estimate
the carrying capacity of the population.

Table 11.7

t 0 10 20 30 40 50 60 70

P 120 125 135 155 195 270 345 385

27. Figure 11.73 shows the spread of the Code-red computer
virus during July 2001. Most of the growth took place
starting at midnight on July 19; on July 20, the virus at-
tacked the White House, trying (unsuccessfully) to knock
its site off-line. The number of computers infected by the
virus was a logistic function of time.

(a) Estimate the limiting value of f(t) as t increased.
What does this limiting value represent in terms of
Code-red?

(b) Estimate the value of t at which f ′′(t) = 0. Estimate
the value of n at this time.

(c) What does the answer to part (b) tell us about Code-
red?

(d) How are the answers to parts (a) and (b) related?

8 16 24 32
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t (hours
since midnight)

n (thousands of
infected computers)

Figure 11.73

28. According to an article in The New York Times,19 pig-
weed has acquired resistance to the weedkiller Roundup.
Let N be the number of acres, in millions, where
Roundup-resistant pigweed is found. Suppose the rela-
tive growth rate, (1/N)dN/ dt, was 15% when N = 5
and 14.5% when N = 10. Assuming the relative growth
rate is a linear function of N , write a differential equa-
tion to model N as a function of time, and predict how
many acres will eventually be afflicted before the spread
of Roundup-resistant pigweed halts.

18Adapted from J. S. Thomas and M. C. Robbins, “The Limits to Growth in a Tojolobal Maya Ejido,” Geoscience and
Man 26 (Baton Rouge: Geoscience Publications, 1988), pp. 9–16.

19http://www.nytimes.com/2010/05/04/business/energy-environment/04weed.html, accessed May 3, 2010.
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In Problems 29–33, we analyze world oil production.20 When
annual world oil production peaks and starts to decline, major
economic restructuring will be needed. We investigate when
this slowdown is projected to occur.

29. We define P to be the total oil production worldwide
since 1859 in billions of barrels. In 1993, annual world
oil production was 22.0 billion barrels and the total pro-
duction was P = 724 billion barrels. In 2008, annual
production was 26.9 billion barrels and the total produc-
tion was P = 1100 billion barrels. Let t be time in years
since 1993.

(a) Estimate the rate of production, dP/dt, for 1993 and
2008.

(b) Estimate the relative growth rate, (1/P )(dP/dt),
for 1993 and 2008.

(c) Find an equation for the relative growth rate,
(1/P )(dP/dt), as a function of P , assuming that
the function is linear.

(d) Assuming that P increases logistically and that all
oil in the ground will ultimately be extracted, esti-
mate the world oil reserves in 1859 to the nearest
billion barrels.

(e) Write and solve the logistic differential equation
modeling P .

30. In Problem 29 we used a logistic function to model P ,
total world oil production since 1859, as a function of
time, t, in years since 1993. Use this function to answer
the following questions:

(a) When does peak annual world oil production occur?
(b) Geologists have estimated world oil reserves to be

as high as 3500 billion barrels.21 When does peak
world oil production occur with this assumption?
(Assume k and P0 are unchanged.)

31. As in Problem 29, let P be total world oil production
since 1859. In 1998, annual world production was 24.4
billion barrels and total production was P = 841 billion
barrels. In 2003, annual production was 25.3 billion bar-
rels and total production was P = 964 billion barrels.

(a) Graph dP/dt versus P from Problem 29 and show
the data for 1998 and 2003. How well does the
model fit the data?

(b) Graph the logistic function modeling worldwide oil
production (P versus t) from Problem 29 and show
the data for 1998 and 2003. How well does the
model fit the data?

32. Use the logistic function obtained in Problem 29 to
model the growth of P , the total oil produced worldwide
in billions of barrels since 1859:

(a) Find the projected value of P for 2010.
(b) Estimate the annual world oil production during

2010.

(c) How much oil is projected to remain in the ground
in 2010?

(d) Compare the projected production in part (b) with
the actual figure of 26.9 billion barrels.

33. With P , the total oil produced worldwide since 1859, in
billions of barrels, modeled as a function of time t in
years since 1993 as in Problem 29:

(a) Predict the total quantity of oil produced by 2020.
(b) In what year does the model predict that only 300

billion barrels remain?

34. The total number of people infected with a virus often
grows like a logistic curve. Suppose that time, t, is in
weeks and that 10 people originally have the virus. In the
early stages, the number of people infected is increasing
exponentially with k = 1.78. In the long run, 5000 peo-
ple are infected.

(a) Find a logistic function to model the number of peo-
ple infected.

(b) Sketch a graph of your answer to part (a).
(c) Use your graph to estimate the length of time until

the rate at which people are becoming infected starts
to decrease. What is the vertical coordinate at this
point?

35. Policy makers are interested in modeling the spread of
information through a population. For example, agricul-
tural ministries use models to understand the spread of
technical innovations or new seed types through their
countries. Two models, based on how the information is
spread, follow. Assume the population is of a constant
size M .

(a) If the information is spread by mass media (TV, ra-
dio, newspapers), the rate at which information is
spread is believed to be proportional to the number
of people not having the information at that time.
Write a differential equation for the number of peo-
ple having the information by time t. Sketch a solu-
tion assuming that no one (except the mass media)
has the information initially.

(b) If the information is spread by word of mouth, the
rate of spread of information is believed to be pro-
portional to the product of the number of people who
know and the number who don’t. Write a differential
equation for the number of people having the infor-
mation by time t. Sketch the solution for the cases in
which

(i) No one (ii) 5% of the population
(iii) 75% of the population

knows initially. In each case, when is the informa-
tion spreading fastest?

20Data from http://cta.ornl.gov/data/chapter1.shtml. Accessed February 2012.
21http://www.hoodriver.k12.or.us/169320618135056660/lib/169320618135056660/peak oil.pdf. Accessed Feb 2012.
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36. In the 1930s, the Soviet ecologist G. F. Gause22 stud-
ied the population growth of yeast. Fit a logistic curve,
dP/dt = kP (1 − P/L), to his data below using the
method outlined below.

Time (hours) 0 10 18 23 34 42 47

Yeast pop 0.37 8.87 10.66 12.50 13.27 12.87 12.70

(a) Plot the data and use it to estimate (by eye) the car-
rying capacity, L.

(b) Use the first two pieces of data in the table and your
value for L to estimate k.

(c) On the same axes as the data points, use your values
for k and L to sketch the solution curve

P =
L

1 + Ae−kt
where A =

L− P0

P0
.

37. The population data from another experiment on yeast by
the ecologist G. F. Gause is given.

Time (hours) 0 13 32 56 77 101 125

Yeast pop 1.00 1.70 2.73 4.87 5.67 5.80 5.83

(a) Do you think the population is growing exponen-
tially or logistically? Give reasons for your answer.

(b) Estimate the value of k (for either model) from the
first two pieces of data. If you chose a logistic model
in part (a), estimate the carrying capacity, L, from
the data.

(c) Sketch the data and the approximate growth curve
given by the parameters you estimated.

38. The spread of a non-fatal disease through a population
of fixed size M can be modeled as follows. The rate
that healthy people are infected, in people per day, is
proportional to the product of the numbers of healthy
and infected people. The constant of proportionality is
0.01/M . The rate of recovery, in people per day, is 0.009
times the number of people infected. Construct a differ-
ential equation that models the spread of the disease. As-
suming that initially only a small number of people are
infected, plot a graph of the number of infected people
against time. What fraction of the population is infected
in the long run?

39. Many organ pipes in old European churches are made
of tin. In cold climates such pipes can be affected with
tin pest, when the tin becomes brittle and crumbles into
a gray powder. This transformation can appear to take
place very suddenly because the presence of the gray
powder encourages the reaction to proceed. The rate of
the reaction is proportional to the product of the amount
of tin left and the quantity of gray powder, p, present at
time t. Assume that when metallic tin is converted to gray
powder, its mass does not change.

(a) Write a differential equation for p. Let the total
quantity of metallic tin present originally be B.

(b) Sketch a graph of the solution p = f(t) if there is a
small quantity of powder initially. How much metal-
lic tin has crumbled when it is crumbling fastest?

(c) Suppose there is no gray powder initially. (For exam-
ple, suppose the tin is completely new.) What does
this model predict will happen? How do you recon-
cile this with the fact that many organ pipes do get
tin pest?

40. The logistic model can be applied to a renewable re-
source that is harvested, like fish. If a fraction c of the
population is harvested each year, we have

dP

dt
= kP

(
1− P

L

)
− cP.

Figure 11.74 assumes c < k and shows two graphs of
dP/dt versus P : the parabola dP/dt = kP (1 − P/L)
and the line dP/dt = cP .

(a) Show that there is an equilibrium at P = (k−c)L/k
and that the annual harvest is then H = c(k−c)L/k.

(b) If k and L are constant and the population is at
the equilibrium in part (a), show that the maximum
possible annual harvest is kL/4 and occurs when
c = k/2.

(c) How can the population and the annual harvest at
equilibrium be identified on the graph? Explain what
happens as c increases beyond k/2 toward k. (As-
sume k and L are constant.)

P

dP/dt = kP (1− P/L)

dP/dt = cPdP/dt

Figure 11.74
41. Federal or state agencies control hunting and fishing by

setting a quota on how many animals can be harvested
each season. Determining the appropriate quota means
achieving a balance between environmental concerns and
the interests of hunters and fishers. For example, when a
June 8, 2007 decision by the Delaware Superior Court in-
validated a two-year moratorium on catching horseshoe
crabs, the Delaware Department of Natural Resources
and Environmental Control imposed instead an annual
quota of 100,000 on male horseshoe crabs. Environmen-
talists argued this would exacerbate a decrease in the pro-
tected Red Knot bird population that depends on the crab
for food. For a population P that satisfies the logistic
model with harvesting,

dP

dt
= kP

(
1− P

L

)
−H,

show that the quota, H , must satisfy H ≤ kL/4, or else
the population P may die out. (In fact, H should be kept
much less than kL/4 to be safe.)

22Data adapted from G. F. Gause, The Struggle for Existence (New York: Hafner Publishing Company, 1969).
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Strengthen Your Understanding

In Problems 42–44, explain what is wrong with the statement.

42. The differential equation dP/dt = 0.08P − 0.0032P 2

has one equilibrium solution, at P = 25.

43. The maximum rate of change occurs at t = 25 for a
quantity Q growing according to the logistic equation

dQ

dt
= 0.13Q(1− 0.02Q).

44. Figure 11.75 shows a quantity growing logistically.

60

100

t

P

Figure 11.75

In Problems 45–48, give an example of:

45. A quantity that increases logistically.

46. A logistic differential equation for a quantity P such that
the maximum rate of change of P occurs when P = 75.

47. A graph of dQ/dt against Q if Q is growing logistically
and has an equilibrium value at Q = 500.

48. A graph of dP/dt against P if P is a logistic function
which increases when 0 < P < 20 and which decreases
when P < 0 or P > 20.

Are the statements in Problems 49–50 true or false? Give an
explanation for your answer.

49. There is a solution curve for the logistic differential equa-
tion dP/dt = P (2 − P ) that goes through the points
(0, 1) and (1, 3).

50. For any positive values of the constant k and any positive
values of the initial value P (0), the solution to the differ-
ential equation dP/dt = kP (L− P ) has limiting value
L as t → ∞.

11.8 SYSTEMS OF DIFFERENTIAL EQUATIONS

In Section 11.7 we modeled the growth of a single population over time. We now consider the
growth of two populations that interact, such as a population of sick people infecting the healthy
people around them. This involves not just one differential equation, but a system of two.

Diseases and Epidemics
Differential equations can be used to predict when an outbreak of a disease will become so severe
that it is called an epidemic23 and to decide what level of vaccination is necessary to prevent an
epidemic. Let’s consider a specific example.

Flu in a British Boarding School

In January 1978, 763 students returned to a boys’ boarding school after their winter vacation. A
week later, one boy developed the flu, followed by two others the next day. By the end of the month,
nearly half the boys were sick. Most of the school had been affected by the time the epidemic was
over in mid-February.24

Being able to predict how many people will get sick, and when, is an important step toward con-
trolling an epidemic. This is one of the responsibilities of Britain’s Communicable Disease Surveil-
lance Centre and the US’s Center for Disease Control and Prevention.

23Exactly when a disease should be called an epidemic is not always clear. The medical profession generally classifies
a disease an epidemic when the frequency is higher than usually expected—leaving open the question of what is usually
expected. See, for example, Epidemiology in Medicine by C. H. Hennekens and J. Buring (Boston: Little, Brown, 1987).

24Data from the Communicable Disease Surveillance Centre (UK); reported in “Influenza in a Boarding School,” British
Medical Journal, March 4, 1978, and by J. D. Murray in Mathematical Biology (New York: Springer Verlag, 1990).
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The S-I-R Model
We apply one of the most commonly used models for an epidemic, called the S-I-R model, to the
boarding school flu example. The population of the school is divided into three groups:

S = the number of susceptibles, the people who are not yet sick
but who could become sick

I = the number of infecteds, the people who are currently sick

R = the number of recovered, or removed, the people who have
been sick and can no longer infect others or be reinfected.

The number of susceptibles decreases with time as people become infected. We assume that the
rate at which people become infected is proportional to the number of contacts between susceptible
and infected people. We expect the number of contacts between the two groups to be proportional
to both S and I . (If S doubles, we expect the number of contacts to double; similarly, if I dou-
bles, we expect the number of contacts to double.) Thus we assume that the number of contacts is
proportional to the product, SI . In other words, we assume that for some constant a > 0,

dS

dt
= −

(
Rate susceptibles

get sick

)
= −aSI.

(The negative sign is used because S is decreasing.)
The number of infecteds is changing in two ways: newly sick people are added to the infected

group, and others are removed. The newly sick people are exactly those people leaving the suscep-
tible group and so accrue at a rate of aSI (with a positive sign this time). People leave the infected
group either because they recover (or die), or because they are physically removed from the rest of
the group and can no longer infect others. We assume that people are removed at a rate proportional
to the number of sick, or bI , where b is a positive constant. Thus,

dI

dt
=

Rate susceptibles

get sick
−

Rate infecteds

get removed
= aSI − bI.

Assuming that those who have recovered from the disease are no longer susceptible, the recov-
ered group increases at the rate of bI , so

dR

dt
= bI.

We are assuming that having the flu confers immunity on a person, that is, that the person cannot
get the flu again. (This is true for a given strain of flu, at least in the short run.)

In analyzing the flu, we can use the fact that the total population S + I + R is not changing.
(The total population, the total number of boys in the school, did not change during the epidemic.)
Thus, once we know S and I , we can calculate R. So we restrict our attention to the two equations

dS

dt
= −aSI

dI

dt
= aSI − bI.

The Constants a and b

The constant a measures how infectious the disease is—that is, how quickly it is transmitted from
the infecteds to the susceptibles. In the case of the flu, we know from medical accounts that the
epidemic started with one sick boy, with two more becoming sick a day later. Thus, when I = 1 and
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S = 762, we have dS/dt ≈ −2, enabling us to roughly25 approximate a:

a = −
dS/dt

SI
=

2

(762)(1)
= 0.0026.

The constant b represents the rate at which infected people are removed from the infected
population. In this case of the flu, boys were generally taken to the infirmary within one or two days
of becoming sick. About half the infected population was removed each day, so we take b ≈ 0.5.
Thus, our equations are:

dS

dt
= −0.0026SI

dI

dt
= 0.0026SI − 0.5I.

The Phase Plane
We can get a good idea of the progress of the disease from graphs. You might expect that we would
look for graphs of S and I against t, and eventually we will. However, we first look at a graph of
I against S. If we plot a point (S, I) representing the number of susceptibles and the number of
infecteds at any moment in time, then, as the numbers of susceptibles and infecteds change, the
point moves. The SI-plane on which the point moves is called the phase plane. The path along
which the point moves is called the phase trajectory, or orbit, of the point.

To find the phase trajectory, we need a differential equation relating S and I directly. Thinking
of I as a function of S, and S as a function of t, we use the chain rule to get

dI

dt
=

dI

dS
·
dS

dt
,

giving
dI

dS
=

dI/dt

dS/dt
.

Substituting for dI/dt and dS/dt, we get

dI

dS
=

0.0026SI − 0.5I

−0.0026SI
.

Assuming I is not zero, this equation simplifies to approximately

dI

dS
= −1 +

192

S
.

The slope field of this differential equation is shown in Figure 11.76. The trajectory with initial
condition S0 = 762, I0 = 1 is shown in Figure 11.77. Time is represented by the arrow showing
the direction that a point moves on the trajectory. The disease starts at the point S0 = 762, I0 = 1.
At first, more people become infected and fewer are susceptible. In other words, S decreases and I
increases. Later, I decreases as S continues to decrease.

400 800

200

400

S
(susceptibles)

I (infecteds)

Figure 11.76: Slope field for dI/dS = −1 + 192/S

192 400

200

400

S
(susceptibles)

I (infecteds)

�
(762, 1)

Figure 11.77: Trajectory for S0 = 762, I0 = 1

25The values of a and b are close to those obtained by J. D. Murray in Mathematical Biology (New York: Springer Verlag,
1990).
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What Does the SI-Phase Plane Tell Us?

To learn how the disease progresses, look at the shape of the curve in Figure 11.77. The value of
I increases to about 300 (the maximum number infected and infectious at any one time); then I
decreases to zero. This peak value of I occurs when S ≈ 200. We can determine exactly when the
peak value occurs by solving

dI

dS
= −1 +

192

S
= 0,

which gives
S = 192.

Notice that the peak value for I always occurs at the same value of S, namely S = 192. The
graph shows that if a trajectory starts with S0 > 192, then I first increases and then decreases to
zero. On the other hand, if S0 < 192, there is no peak as I decreases right away.

For this example, the value S0 = 192 is called a threshold value. If S0 is around or below
192, there is no epidemic. If S0 is significantly greater than 192, an epidemic occurs.26

The phase diagram makes clear that the maximum value of I is about 300. Another question
answered by the phase plane diagram is the total number of students who are expected to get sick
during the epidemic. (This is not the maximum value reached by I , which gives the maximum
number infected at any one time.) The point at which the trajectory crosses the S-axis represents
the time when the epidemic has passed (since I = 0). The S-intercept shows how many boys never
get the flu and thus, how many do get it.

How Many People Should Be Vaccinated?

An epidemic can sometimes be avoided by vaccination. How many boys would have had to be
vaccinated to prevent the flu epidemic? To answer this, think of vaccination as removing people from
the S category (without increasing I), which amounts to moving the initial point on the trajectory
to the left, parallel to the S-axis. To avoid an epidemic, the initial value of S0 should be at or below
the threshold value. Therefore, all but 192 boys would need to be vaccinated.

Graphs of S and I Against t

To find out exactly when I reaches its maximum, we need numerical methods. A modification of
Euler’s method was used to generate the solution curves of S and I against t in Figure 11.78. Notice
that the number of susceptibles drops throughout the disease as healthy people get sick. The number
of infecteds peaks after about 6 days and then drops. The epidemic has run its course in 20 days.

Analytical Solution for the SI-Phase Trajectory

The differential equation
dI

dS
= −1 +

192

S
can be integrated, giving

I = −S + 192 lnS + C.

Using S0 = 762 and I0 = 1 gives 1 = −762 + 192 ln762 + C, so we get C = 763− 192 ln 762.
Substituting this value for C, we get:

I = −S + 192 lnS − 192 ln 762 + 763

I = −S + 192 ln

(
S

762

)
+ 763.

This is the equation of the solution curve in Figure 11.77.
26Here we are using J. D. Murray’s definition of an epidemic as an outbreak in which the number of infecteds increases

from the initial value, I0. See Mathematical Biology (New York: Springer Verlag, 1990).
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5 10 15 20
1

762

t (days)

number of people

Susceptibles

Infecteds

Figure 11.78: Progress of the flu over time

Two Interacting Populations: Predator-Prey
We now consider two populations which interact. They may compete for food, one may prey on
the other, or they may enjoy a symbiotic relationship in which each helps the other. We model a
predator-prey system using the Lotka-Volterra equations.

Robins and Worms

Let’s look at an idealized case27 in which robins are the predators and worms are the prey. There
are r thousand robins and w million worms. If there were no robins, the worms would increase
exponentially according to the equation

dw

dt
= aw where a is a constant and a > 0.

If there were no worms, the robins would have no food and their population would decrease accord-
ing to the equation28

dr

dt
= −br where b is a constant and b > 0.

Now we account for the effect of the two populations on one another. Clearly, the presence of
the robins is bad for the worms, so

dw

dt
= aw − Effect of robins on worms.

On the other hand, the robins do better with the worms around, so

dr

dt
= −br + Effect of worms on robins.

How exactly do the two populations interact? Let’s assume the effect of one population on the other
is proportional to the number of “encounters.” (An encounter is when a robin eats a worm.) The
number of encounters is likely to be proportional to the product of the populations because the more
there are of either population, the more encounters there will be. So we assume

dw

dt
= aw − cwr and

dr

dt
= −br + kwr,

where c and k are positive constants.
To analyze this system of equations, let’s look at the specific example with a = b = c = k = 1:

dw

dt
= w − wr and

dr

dt
= −r + wr.

27Based on ideas from Thomas A. McMahon.
28You might criticize this assumption because it predicts that the number of robins will decay exponentially, rather than

die out in finite time.
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To visualize the solutions to these equations, we look for trajectories in the phase plane. First we
use the chain rule,

dr

dw
=

dr/dt

dw/dt
,

to obtain
dr

dw
=

−r + wr

w − wr
.

The Slope Field and Equilibrium Points

We can get an idea of what solutions of this equation look like from the slope field in Figure 11.79.
At the point (1, 1) there is no slope drawn because at this point the rate of change of the worm
population with respect to time is zero:

dw

dt
= 1− (1)(1) = 0.

The rate of change of the robin population with respect to time is also zero:

dr

dt
= −1 + (1)(1) = 0.

Thus dr/dw is undefined. In terms of worms and robins, this means that if at some moment
w = 1 and r = 1 (that is, there are 1 million worms and 1 thousand robins), then w and r remain
constant forever. The point w = 1, r = 1 is therefore an equilibrium solution. The slope field
suggests that there are no other equilibrium points except the origin.

At an equilibrium point, both w and r are constant, so

dw

dt
= 0 and

dr

dt
= 0.

Therefore, we look for equilibrium points by solving

dw

dt
= w − wr = 0 and

dr

dt
= −r + rw = 0,

which has w = 0, r = 0 and w = 1, r = 1 as the only solutions.

1 2 3

1

2

3

w (prey)

r (predator)

Figure 11.79: Slope field for
dr

dw
=

−r + wr

w − wr
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Figure 11.80: Solution curve is closed
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Figure 11.81: Trajectory in the phase plane

Trajectories in the wr-Phase Plane

Let’s look at the trajectories in the phase plane. Remember that a point on a curve represents a pair
of populations (w, r) existing at the same time t (though t is not shown on the graph). A short time
later, the pair of populations is represented by a nearby point. As time passes, the point traces out a
trajectory. The direction is marked on the curve by an arrow. (See Figure 11.80.)

How do we figure out which way to move on the trajectory? Approximating the solution nu-
merically shows that the trajectory is traversed counterclockwise. Alternatively, look at the original
pair of differential equations. At the point P0 in Figure 11.81, where w > 1 and r = 1,

dr

dt
= −r + wr = −1 + w > 0.

Therefore, r is increasing, so the point is moving counterclockwise around the closed curve.
Now let’s think about why the solution curves are closed curves (that is, why they come back

and meet themselves). Notice that the slope field is symmetric about the line w = r. We can confirm
this by observing that interchanging w and r does not alter the differential equation for dr/dw. This
means that if we start at point P on the line w = r and travel once around the point (1, 1), we
arrive back at the same point P . The reason is that the second half of the path, from Q to P , is the
reflection of the first half, from P to Q, in the line w = r. (See Figure 11.80.) If we did not end up
at P again, the second half of our path would have a different shape from the first half.

The Populations as Functions of Time

The shape of the trajectories tells us how the populations vary with time. We start at t = 0 at the
point P0 in Figure 11.81. Then we move to P1 at time t1, to P2 at time t2, to P3 at time t3, and
so on. At time t4 we are back at P0, and the whole cycle repeats. Since the trajectory is a closed
curve, both populations oscillate periodically with the same period. The worms (the prey) are at
their maximum a quarter of a cycle before the robins. (See Figure 11.82.)

P0 P2 P0 P2 P0 P2 P0P1 P3 P1 P3 P1 P3

t

population

�

Robins

�

Worms

Figure 11.82: Populations of robins (in thousands) and
worms (in millions) over time
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Exercises and Problems for Section 11.8
Exercises

For Exercises 1–4, suppose x and y are the populations of
two different species. Describe in words how each population
changes with time.

1.

x

y 2.

x

y

3.

x

y 4.

x

y

In Exercises 5–8, find all equilibrium points. Give answers as
ordered pairs (x, y).

5.
dx

dt
= −3x+ xy

dy

dt
= 5y − xy

6.
dx

dt
= −2x+ 4xy

dy

dt
= −8y + 2xy

7.
dx

dt
= 15x − 5xy

dy

dt
= 10y + 2xy

8.
dx

dt
= x2 − xy

dy

dt
= 15y − 3y2

9. Given the system of differential equations

dx

dt
= 5x− 3xy

dy

dt
= −8y + xy

determine whether x and y are increasing or decreasing
at the point

(a) x = 3, y = 2 (b) x = 5, y = 1

10. Given the system of differential equations

dP

dt
= 2P − 10

dQ

dt
= Q− 0.2PQ

determine whether P and Q are increasing or decreasing
at the point

(a) P = 2, Q = 3 (b) P = 6, Q = 5

Problems

11. Figure 11.83 shows the trajectory through the SI phase
plane of a 50-day epidemic.

(a) Make an approximate table of values for the number
of susceptibles and infecteds on the days marked on
the trajectory.

(b) When is the epidemic at its peak? How many people
are infected then?

(c) During the course of the epidemic, how many catch
the disease and how many are spared?

400 800 1200 1600 2000

100

200

300

400

500

8

12

16

2024

28

32

36
40

44

22

susceptibles

infecteds

Figure 11.83: Days 8 through 44 of an
epidemic

12. Figure 11.84 shows the number of susceptibles and in-
fecteds in a population of 4000 through the course of a
60-day epidemic.

(a) How many are infected on day 20?
(b) How many have had the disease by day 20?
(c) How many have had the disease by the time the epi-

demic is over?

10 20 30 40 50 60
0

1000

2000

3000

4000

time (days)

susceptibles

10 20 30 40 50 60
0

200

400
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1000

time (days)

infecteds

Figure 11.84
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13. Humans vs Zombies29 is a game in which one player
starts as a zombie and turns human players into zombies
by tagging them. Zombies have to “eat” on a regular ba-
sis by tagging human players, or they die of starvation
and are out of the game. The game is usually played over
a period of about five days. If we let H represent the size
of the human population and Z represent the size of the
zombie population in the game, then, for constant param-
eters a, b, and c, we have:

dH

dt
= aHZ

dZ

dt
= bZ + cHZ

(a) Decide whether each of the parameters a, b, c is pos-
itive or negative.

(b) What is the relationship, if any, between a and c?

14. Four pairs of species are given, with descriptions of how
they interact.

I. Bees/flowers: each needs the other to survive
II. Owls/trees: owls need trees but trees are indifferent

III. Elk/buffalo: in competition and would do fine alone
IV. Fox/hare: fox eats the hare and needs it to survive

Match each system of differential equations with a
species pair, and indicate which species is x and which is
y.

(a)
dx

dt
= −0.2x + 0.03xy

dy

dt
= 0.4y − 0.08xy

(b)
dx

dt
= 0.18x

dy

dt
= −0.4y + 0.3xy

(c)
dx

dt
= −0.6x + 0.18xy

dy

dt
= −0.1y + 0.09xy

(d) Write a possible system of differential equations for
the species pair that does not have a match.

15. Show that if S, I , and R satisfy the differential equations
on page 640, the total population, S+ I+R, is constant.

For Problems 16–24, let w be the number of worms (in mil-
lions) and r the number of robins (in thousands) living on
an island. Suppose w and r satisfy the following differential
equations, which correspond to the slope field in Figure 11.85.

dw

dt
= w − wr,

dr

dt
= −r + wr.

1 2 3 4

1

2

3

4

w (prey)

r (predator)

Figure 11.85: dr
dw

= r(w−1)
w(1−r)

16. Explain why these differential equations are a reasonable
model for interaction between the two populations. Why
have the signs been chosen this way?

17. Solve these differential equations in the two special cases
when there are no robins and when there are no worms
living on the island.

18. Describe and explain the symmetry you observe in the
slope field. What consequences does this symmetry have
for the solution curves?

19. Assume w = 2 and r = 2 when t = 0. Do the numbers
of robins and worms increase or decrease at first? What
happens in the long run?

20. For the case discussed in Problem 19, estimate the max-
imum and the minimum values of the robin population.
How many worms are there at the time when the robin
population reaches its maximum?

21. On the same axes, graph w and r (the worm and the robin
populations) against time. Use initial values of 1.5 for w
and 1 for r. You may do this without units for t.

22. People on the island like robins so much that they de-
cide to import 200 robins all the way from England, to
increase the initial population from r = 2 to r = 2.2
when t = 0. Does this make sense? Why or why not?

23. Assume that w = 3 and r = 1 when t = 0. Do the num-
bers of robins and worms increase or decrease initially?
What happens in the long run?

24. For the case discussed in Problem 23, estimate the max-
imum and minimum values of the robin population. Es-
timate the number of worms when the robin population
reaches its minimum.

The systems of differential equations in Problems 25–27
model the interaction of two populations x and y. In each case,
answer the following two questions:
(a) What kinds of interaction (symbiosis,30 competition,

predator-prey) do the equations describe?

29http://humansvszombies.org
30Symbiosis takes place when the interaction of two species benefits both. An example is the pollination of plants by

insects.
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(b) What happens in the long run? (For one of the systems,
your answer will depend on the initial populations.) Use
a calculator or computer to draw slope fields.

25.
1

x

dx

dt
= y − 1

1

y

dy

dt
= x− 1

26.
1

x

dx

dt
= 1− x

2
− y

2

1

y

dy

dt
= 1 − x − y

27.
1

x

dx

dt
= y − 1− 0.05x

1

y

dy

dt
= 1 − x − 0.05y

For Problems 28–31, consider a conflict between two armies
of x and y soldiers, respectively. During World War I, F. W.
Lanchester assumed that if both armies are fighting a conven-
tional battle within sight of one another, the rate at which sol-
diers in one army are put out of action (killed or wounded) is
proportional to the amount of fire the other army can concen-
trate on them, which is in turn proportional to the number of
soldiers in the opposing army. Thus Lanchester assumed that
if there are no reinforcements and t represents time since the
start of the battle, then x and y obey the differential equations

dx

dt
= −ay

dy

dt
= −bx a, b > 0.

28. Near the end of World War II a fierce battle took place
between US and Japanese troops over the island of Iwo
Jima, off the coast of Japan. Applying Lanchester’s anal-
ysis to this battle, with x representing the number of US
troops and y the number of Japanese troops, it has been
estimated31 that a = 0.05 and b = 0.01.

(a) Using these values for a and b and ignoring rein-
forcements, write a differential equation involving
dy/dx and sketch its slope field.

(b) Assuming that the initial strength of the US forces
was 54,000 and that of the Japanese was 21,500,
draw the trajectory which describes the battle. What
outcome is predicted? (That is, which side do the
differential equations predict will win?)

(c) Would knowing that the US in fact had 19,000 re-
inforcements, while the Japanese had none, alter the
outcome predicted?

29. (a) For two armies of strengths x and y fighting a con-
ventional battle governed by Lanchester’s differen-
tial equations, write a differential equation involving
dy/dx and the constants of attrition a and b.

(b) Solve the differential equation and hence show that
the equation of the phase trajectory is

ay2 − bx2 = C

for some constant C. This equation is called Lanch-
ester’s square law. The value of C depends on the
initial sizes of the two armies.

30. Consider the battle of Iwo Jima, described in Problem 28.
Take a = 0.05, b = 0.01 and assume the initial strength
of the US troops to be 54,000 and that of the Japanese
troops to be 21,500. (Again, ignore reinforcements.)

(a) Using Lanchester’s square law derived in Prob-
lem 29, find the equation of the trajectory describing
the battle.

(b) Assuming that the Japanese fought without surren-
dering until they had all been killed, as was the case,
how many US troops does this model predict would
be left when the battle ended?

31. In this problem we adapt Lanchester’s model for a con-
ventional battle to the case in which one or both of the
armies is a guerrilla force. We assume that the rate at
which a guerrilla force is put out of action is proportional
to the product of the strengths of the two armies.

(a) Give a justification for the assumption that the rate
at which a guerrilla force is put out of action is pro-
portional to the product of the strengths of the two
armies.

(b) Write the differential equations which describe a
conflict between a guerrilla army of strength x and
a conventional army of strength y, assuming all the
constants of proportionality are 1.

(c) Find a differential equation involving dy/dx and
solve it to find equations of phase trajectories.

(d) Describe which side wins in terms of the constant of
integration. What happens if the constant is zero?

(e) Use your solution to part (d) to divide the phase
plane into regions according to which side wins.

32. To model a conflict between two guerrilla armies, we as-
sume that the rate that each one is put out of action is
proportional to the product of the strengths of the two
armies.

(a) Write the differential equations which describe a
conflict between two guerrilla armies of strengths x
and y, respectively.

(b) Find a differential equation involving dy/dx and
solve to find equations of phase trajectories.

(c) Describe which side wins in terms of the constant of
integration. What happens if the constant is zero?

(d) Use your solution to part (c) to divide the phase
plane into regions according to which side wins.

33. The predator-prey model on page 643 for the number of
robins, r, in thousands, and the number of worms, w, in
millions, was for some positive constants a, b, c, k:

dw

dt
= aw − cwr and

dr

dt
= −br + kwr.

(a) Find the equilibrium points of this system of equa-
tions.

31See Martin Braun, Differential Equations and Their Applications, 2nded. (New York: Springer Verlag, 1975).
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(b) An insecticide is applied to the ground, causing a
decline in the number of worms proportional to their
population. What effect does this have on the equi-

librium point? Interpret this in terms of the equilib-
rium population of worms and robins.

Strengthen Your Understanding

In Problems 34–35, explain what is wrong with the statement.

34. If dx/dt = 3x − 0.4xy and dy/dt = 4y − 0.5xy, then
an increase in x corresponds to a decrease in y.

35. For a system of differential equations for x and y, at the
point (2, 3), we have dx/dt < 0 and dy/dt > 0 and
dy/dx > 0.

In Problems 36–38, give an example of:

36. A system of differential equations for two populations X
and Y such that Y needs X to survive and X is indif-
ferent to Y and thrives on its own. Let x represent the
size of the X population and y represent the size of the
Y population.

37. A system of differential equations for the profits of two

companies if each would thrive on its own but the two
companies compete for business. Let x and y represent
the profits of the two companies.

38. Two diseases D1 and D2 such that the parameter a in the
S-I-R model on page 640 is larger for disease D1 than
it is for disease D2. Explain your reasoning.

Are the statements in Problems 39–40 true or false? Give an
explanation for your answer.

39. The system of differential equations dx/dt = −x+ xy2

and dy/dt = y−x2y requires initial conditions for both
x(0) and y(0) to determine a unique solution.

40. Populations modeled by a system of differential equa-
tions never die out.

11.9 ANALYZING THE PHASE PLANE

In the previous section we analyzed a system of differential equations using a slope field. In this
section we analyze a system of differential equations using nullclines. We consider two species
having similar niches, or ways of living, and that are in competition for food and space. In such
cases, one species often becomes extinct. This phenomenon is called the Principle of Competitive
Exclusion. We see how differential equations predict this in a particular case.

Competitive Exclusion: Citrus Tree Parasites
The citrus farmers of Southern California are interested in controlling the insects that live on their
trees. Some of these insects can be controlled by parasites that live on the trees too. Scientists are,
therefore, interested in understanding under what circumstances these parasites flourish or die out.
One such parasite was introduced accidentally from the Mediterranean; later, other parasites were
introduced from China and India; in each case the previous parasite became extinct over part of
its habitat. In 1963 a lab experiment was carried out to determine which one of a pair of species
became extinct when they were in competition with each other. The data on one pair of species,
called A. fisheri and A. melinus, with populations P1 and P2 respectively, is given in Table 11.8 and
shows that A. melinus (P2) became extinct after 8 generations.32

Table 11.8 Population (in thousands) of two species of parasite as a function of time

Generation number 1 2 3 4 5 6 7 8

Population P1 (thousands) 0.193 1.093 1.834 5.819 13.705 16.965 18.381 16.234

Population P2 (thousands) 0.083 0.229 0.282 0.378 0.737 0.507 0.13 0

Data from the same experimenters indicates that, when alone, each population grows logisti-
cally. In fact, their data suggests that, when alone, the population of P1 might grow according to the

32Data adapted from Paul DeBach and Ragnhild Sundby, “Competitive Displacement Between Ecological Homologues,”
Hilgardia 34:17 (1963).



650 Chapter Eleven DIFFERENTIAL EQUATIONS

equation

dP1

dt
= 0.05P1

(
1−

P1

20

)
,

and when alone, the population of P2 might grow according to the equation

dP2

dt
= 0.09P2

(
1−

P2

15

)
.

Now suppose both parasites are present. Each tends to reduce the growth rate of the other, so each
differential equation is modified by subtracting a term on the right. The experimental data shows
that together P1 and P2 can be well described by the equations

dP1

dt
= 0.05P1

(
1−

P1

20

)
− 0.002P1P2

dP2

dt
= 0.09P2

(
1−

P2

15

)
− 0.15P1P2.

The fact that P2 dies out with time is reflected in these equations: the coefficient of P1P2 is
much larger in the equation for P2 than in the equation for P1. This indicates that the interaction has
a much more devastating effect upon the growth of P2 than on the growth of P1.

The Phase Plane and Nullclines
We consider the phase plane with the P1 axis horizontal and the P2 axis vertical. To find the trajec-
tories in the P1P2 phase plane, we could draw a slope field as in the previous section. Instead, we
use a method that gives a good qualitative picture of the behavior of the trajectories even without a
calculator or computer. We find the nullclines or curves along which dP1/dt = 0 or dP2/dt = 0.
At points where dP2/dt = 0, the population P2 is momentarily constant, so only population P1 is
changing with time. Therefore, at this point the trajectory is horizontal. (See Figure 11.86.) Simi-
larly, at points where dP1/dt = 0, the population P1 is momentarily constant and population P2

is the only one changing, so the trajectory is vertical there. A point where both dP1/dt = 0 and
dP2/dt = 0 is called an equilibrium point because P1 and P2 both remain constant if they reach
these values.

P1

P2

dP1

dt
= 0

dP2

dt
= 0

Figure 11.86: Points on a trajectory where
dP1/dt = 0 or dP2/dt = 0
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On the P1P2 phase plane:

• If
dP1

dt
= 0, the trajectory is vertical.

• If
dP2

dt
= 0, the trajectory is horizontal.

• If
dP1

dt
=

dP2

dt
= 0, there is an equilibrium point.

Using Nullclines to Analyze the Parasite Populations
In order to see where dP1/dt = 0 or dP2/dt = 0, we factor the right side of our differential
equations:

dP1

dt
= 0.05P1

(
1−

P1

20

)
− 0.002P1P2 = 0.001P1(50− 2.5P1 − 2P2)

dP2

dt
= 0.09P2

(
1−

P2

15

)
− 0.15P1P2 = 0.001P2(90− 150P1 − 6P2).

Thus dP1/dt = 0 where P1 = 0 or where 50− 2.5P1 − 2P2 = 0. Graphing these equations in the
phase plane gives two lines, which are nullclines. Since the trajectory is vertical where dP1/dt = 0,
in Figure 11.87 we draw small vertical line segments on these nullclines to represent the direction
of the trajectories as they cross the nullcline. Similarly dP2/dt = 0 where P2 = 0 or where 90 −

150P1−6P2 = 0. These equations are graphed in Figure 11.87 with small horizontal line segments
on them.

The equilibrium points are where both dP1/dt = 0 and dP2/dt = 0, namely the points P1 =

0, P2 = 0 (meaning that both species die out); P1 = 0, P2 = 15 (where P1 is extinct); and P1 =

20, P2 = 0 (where P2 is extinct).

What Happens in the Regions Between the Nullclines?

Nullclines are useful because they divide the plane into regions in which the signs of dP1/dt and
dP2/dt are constant. In each region, the direction of every trajectory remains roughly the same.

In Region I, for example, we might try the point P1 = 20, P2 = 25. Then

dP1

dt
= 0.001(20)(50− 2.5(20)− 2(25)) < 0

dP2

dt
= 0.001(25)(90− 150(20)− 6(25)) < 0.

0.6 20

15

25

P1

P2

Region I

��

�

Region II

��
�

Region III

���
�

�
{

50− 2.5P1 − 2P2 = 0
dP1/dt = 0

�
{

90− 150P1 − 6P2 = 0
dP2/dt = 0

P1 = 0, dP1/dt = 0 �

P2 = 0, dP2/dt = 0
�

Figure 11.87: Analyzing three regions in the phase plane using nullclines (axes distorted)
with equilibrium points represented by dots
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Now dP1/dt < 0, so P1 is decreasing, which can be represented by an arrow in the direction ←.
Also, dP2/dt < 0, so P2 is decreasing, as represented by the arrow ↓. Combining these directions,
we know that the trajectories in this region go approximately in the diagonal direction

�
�� (See

Region I in Figure 11.87.)
In Region II, try, for example, P1 = 1, P2 = 1. Then we have

dP1

dt
= 0.001(1)(50− 2.5− 2) > 0

dP2

dt
= 0.001(1)(90− 150− 6) < 0.

So here, P1 is increasing while P2 is decreasing. (See Region II in Figure 11.87.)
In Region III, try P1 = 0.1, P2 = 0.1:

dP1

dt
= 0.001(0.1)(50− 2.5(0.1)− 2(0.1)) > 0

dP2

dt
= 0.001(0.1)(90− 150(0.1)− 6(0.1)) > 0.

So here, both P1 and P2 are increasing. (See Region III in Figure 11.87.)
Notice that the behavior of the populations in each region makes biological sense. In region

I both populations are so large that overpopulation is a problem, so both populations decrease. In
Region III both populations are so small that they are effectively not in competition, so both grow.
In Region II competition between the species comes into play. The fact that P1 increases while P2

decreases in Region II means that P1 wins.

Solution Trajectories

Suppose the system starts with some of each population. This means that the initial point of the
trajectory is not on one of the axes, and so it is in Region I, II, or III. Then the point moves on a
trajectory like one of those computed numerically and shown in Figure 11.88. Notice that all these
trajectories tend toward the point P1 = 20, P2 = 0, corresponding to a population of 20,000 for P1

and extinction for P2. Consequently, this model predicts that no matter what the initial populations
are, providedP1 �= 0, the population of P2 is excluded by P1, and P1 tends to a constant value. This
makes biological sense: in the absence of P2, we would expect P1 to settle down to the carrying
capacity of the niche, which is 20,000.

0.6

15

20

25

P1

P2

Figure 11.88: Trajectories showing exclusion of population P2 (not to scale)
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Exercises and Problems for Section 11.9
Exercises

In Exercises 1–5, use Figure 11.89.

2 4 6

5

10

15

x

y

Region III

�
�
�

Region IV

���

Region II

�
�
�

Region I

���

Figure 11.89: Nullclines in the phase
plane of a system of differential

equations

1. Give the coordinates for each equilibrium point.

2. At each point, give the signs of dx/dt and dy/dt.

(a) (4, 7) (b) (4, 10) (c) (6, 15)

3. Draw a possible trajectory that starts at the point (2, 5).

4. Draw a possible trajectory that starts at the point (2, 10).

5. What is the long-run behavior of a trajectory that starts at
any point in the first quadrant?

In Exercises 6–10, use Figure 11.90.

5 10 15

2

4

6

x

y

���
�

�

����

Figure 11.90: Nullclines in the phase plane of a
system of differential equations

6. Give the approximate coordinates for each equilibrium
point.

7. At each point, give the signs of dx/dt and dy/dt.

(a) (5, 2) (b) (10, 2) (c) (10, 1)

8. Draw a possible trajectory that starts at the point (2, 5).

9. Draw a possible trajectory that starts at the point (10, 4).

10. What is the long-run behavior of a trajectory that starts at
any point in the first quadrant?

11. Figure 11.91 shows a phase plane for a system of differ-
ential equations. Draw the nullclines.

1 2 3 4 5 6

1

2

3

4

5

x

y

Figure 11.91

12. (a) Find the equilibrium points for the following system
of equations

dx

dt
= 20x− 10xy

dy

dt
= 25y − 5xy.

(b) Explain why x = 2, y = 4 is not an equilibrium
point for this system.

Problems

For Problems 13–18, analyze the phase plane of the differen-
tial equations for x, y ≥ 0. Show the nullclines and equilib-
rium points, and sketch the direction of the trajectories in each
region.

13.
dx

dt
= x(2− x− y)

dy

dt
= y(1− x− y)

14.
dx

dt
= x(2− x− 3y)

dy

dt
= y(1− 2x)

15.
dx

dt
= x(2− x− 2y)

dy

dt
= y(1− 2x− y)

16.
dx

dt
= x(1− y − x

3
)

dy

dt
= y(1− y

2
− x)

17.
dx

dt
= x
(
1− x− y

3

)
dy

dt
= y
(
1− y − x

2

) 18.
dx

dt
= x
(
1− x

2
− y
)

dy

dt
= y
(
1− y

3
− x
)
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19. The equations describing the flu epidemic in a boarding
school are

dS

dt
= −0.0026SI

dI

dt
= 0.0026SI − 0.5I.

(a) Find the nullclines and equilibrium points in the SI
phase plane.

(b) Find the direction of the trajectories in each region.
(c) Sketch some typical trajectories and describe their

behavior in words.

20. Use the idea of nullclines dividing the plane into sec-
tors to analyze the equations describing the interactions
of robins and worms:

dw

dt
= w − wr

dr

dt
= −r + rw.

21. Two companies share the market for a new technology.
They have no competition except each other. Let A(t) be
the net worth of one company and B(t) the net worth of
the other at time t. Suppose that net worth cannot be neg-
ative and that A and B satisfy the differential equations

A′ = 2A−AB

B′ = B − AB.

(a) What do these equations predict about the net worth
of each company if the other were not present? What
effect do the companies have on each other?

(b) Are there any equilibrium points? If so, what are
they?

(c) Sketch a slope field for these equations (using a com-
puter or calculator), and hence describe the different
possible long-run behaviors.

22. In the 1930s L. F. Richardson proposed that an arms race
between two countries could be modeled by a system of
differential equations. One arms race that can be reason-
ably well described by differential equations is the US-
Soviet Union arms race between 1945 and 1960. If $x
represents the annual Soviet expenditures on armaments
(in billions of dollars) and $y represents the correspond-
ing US expenditures, it has been suggested33 that x and
y obey the following differential equations:

dx

dt
= −0.45x + 10.5

dy

dt
= 8.2x − 0.8y − 142.

(a) Find the nullclines and equilibrium points for these
differential equations. Which direction do the trajec-
tories go in each region?

(b) Sketch some typical trajectories in the phase plane.
(c) What do these differential equations predict will be

the long-term outcome of the US-Soviet arms race?

(d) Discuss these predictions in the light of the actual
expenditures in Table 11.9.

Table 11.9 Arms budgets of the United
States and the Soviet Union for the years
1945–1960 (billions of dollars)

USSR USA USSR USA

1945 14 97 1953 25.7 71.4

1946 14 80 1954 23.9 61.6

1947 15 29 1955 25.5 58.3

1948 20 20 1956 23.2 59.4

1949 20 22 1957 23.0 61.4

1950 21 23 1958 22.3 61.4

1951 22.7 49.6 1959 22.3 61.7

1952 26.0 69.6 1960 22.1 59.6

23. In the 1930s, the Soviet ecologist G. F. Gause performed
a series of experiments on competition among two yeasts
with populations P1 and P2, respectively. By perform-
ing population studies at low density in large volumes,
he determined what he called the coefficients of geomet-
ric increase (and we would call continuous exponential
growth rates). These coefficients described the growth of
each yeast alone:

1

P1

dP1

dt
= 0.2

1

P2

dP2

dt
= 0.06

where P1 and P2 are measured in units that Gause estab-
lished.

He also determined that, in his units, the carrying
capacity of P1 was 13 and the carrying capacity of P2

was 6. He then observed that one P2 occupies the niche
space of 3 P1 and that one P1 occupied the niche space
of 0.4 P2. This led him to the following differential equa-
tions to describe the interaction of P1 and P2:

dP1

dt
= 0.2P1

(
13− (P1 + 3P2)

13

)
dP2

dt
= 0.06P2

(
6− (P2 + 0.4P1)

6

)
.

When both yeasts were growing together, Gause
recorded the data in Table 11.10.

Table 11.10 Gause’s yeast populations

Time (hours) 6 16 24 29 48 53

P1 0.375 3.99 4.69 6.15 7.27 8.30

P2 0.29 0.98 1.47 1.46 1.71 1.84

(a) Carry out a phase plane analysis of Gause’s equa-
tions.

(b) Mark the data points on the phase plane and describe
what would have happened had Gause continued the
experiment.

33R. Taagepera, G. M. Schiffler, R. T. Perkins and D. L. Wagner, Soviet-American and Israeli-Arab Arms Races and the
Richardson Model (General Systems, XX, 1975).
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Strengthen Your Understanding

In Problems 24–25, explain what is wrong with the statement.

24. A solution trajectory and nullclines for a system of dif-
ferential equations are shown in Figure 11.92.

192
x

y

Figure 11.92

25. The nullclines for a system of differential equations are
shown in Figure 11.93. The system has an equilibrium at
the point (6, 6).

6

6

x

y

Figure 11.93

In Problems 26–28, give an example of:

26. A graph of the nullclines of a system of differential equa-
tions with exactly two equilibrium points in the first
quadrant. Label the nullclines to show whether trajecto-
ries pass through the nullcline vertically or horizontally.

27. The nullclines of a system of differential equations with
the trajectory shown in Figure 11.94.

1 2 3

1

2

3

x

y

Figure 11.94

28. A trajectory for a system of differential equations with
nullclines in Figure 11.95 and initial conditions x = 1
and y = 2.

1 2 3 4

1

2

3

4

� 

x

y

Figure 11.95

CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• Differential equations terminology
Order, initial conditions, families of solutions, sta-
ble/unstable equilibrium solutions.

• Solving first-order differential equations
Slope fields (graphical), Euler’s method (numerical), sep-
aration of variables (analytical).

• Modeling with differential equations
Growth and decay, Newton’s Law of Heating and Cool-
ing, compartment models, logistic model.

• Systems of differential equations
S-I-R model, predator-prey model, phase plane.

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER ELEVEN

Exercises

1. Which of the differential equations are satisfied by the
functions on the right?

(a) y′′ + 2y = 0 (I) y = xex

(b) y′′ − 2y = 0 (II) y = xe−x

(c) y′′ + 2y′ + y = 0

(d) y′′ − 2y′ + y = 0
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2. Match the slope fields in Figure 11.96 with their differ-
ential equations:

(a) y′ = 1 + y2 (b) y′ = x (c) y′ = sin x

(d) y′ = y (e) y′ = x− y (f) y′ = 4− y

(I) y

x

(III) y

x

(IV) y

x

(V) y

x

(II)

y

x

(VI) y

x

Figure 11.96: Each slope field is graphed for
−5 ≤ x ≤ 5, −5 ≤ y ≤ 5

3. The graphs in Figure 11.97 represent the temperature,
H(◦C), of four eggs as a function of time, t, in minutes.
Match three of the graphs with the descriptions (a)–(c).
Write a similar description for the fourth graph, including
an interpretation of any intercepts and asymptotes.

(a) An egg is taken out of the refrigerator (just above
0◦C) and put into boiling water.

(b) Twenty minutes after the egg in part (a) is taken out
of the fridge and put into boiling water, the same
thing is done with another egg.

(c) An egg is taken out of the refrigerator at the same
time as the egg in part (a) and left to sit on the
kitchen table.

100

H (◦C)

t

(I)

20

H (◦C)

t
2

(II)

20

H (◦C)

t

(III)

100

H (◦C)

t
20

(IV)

Figure 11.97

Find a general solution to the differential equations in Exer-
cises 4–9.

4.
dP

dt
= t 5.

dy

dx
= 0.2y − 8

6.
dP

dt
= 10− 2P 7.

dH

dt
= 0.5H + 10

8.
dR

dt
= 2R − 6R2

9.
dP

dt
= 0.4P (1− 0.01P )

For the differential equations in Exercises 10–25, find a solu-
tion which passes through the given point.

10.
dy

dx
+ xy2 = 0 , y(1) = 1

11.
dP

dt
= 0.03P + 400 , P (0) = 0

12. 1 + y2 − dy

dx
= 0 , y(0) = 0

13. 2 sin x− y2 dy

dx
= 0 , y(0) = 3

14.
dk

dt
= (1 + ln t)k , k(1) = 1

15.
dy

dx
=

y(3− x)

x(0.5y − 4)
, y(1) = 5

16.
dy

dx
=

0.2y(18 + 0.1x)

x(100 + 0.5y)
, (10, 10)

17.
dz

dt
= z(z − 1), z(0) = 10

18.
dy

dt
= y(10− y) , y(0) = 1

19.
dy

dx
=

y(100− x)

x(20− y)
, (1, 20)

20.
df

dx
=
√

xf(x) , f(1) = 1

21.
dy

dx
= ex−y , y(0) = 1

22.
dy

dx
= ex+y, y = 0 where x = 1

23. e− cos θ dz

dθ
=
√

1− z2 sin θ, z(0) = 1
2

24. (1 + t2)y
dy

dt
= 1− y, y(1) = 0

25.
dy

dt
= 2y sin3 t, y(0) = 0
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Problems

26. A population satisfies dP/dt = 0.025P − 0.00005P 2 .

(a) What are the equilibrium values for P ?
(b) For each of the following initial conditions, will P

increase, decrease, or stay the same? Will the pop-
ulation increase or decrease without bound or to a
limiting value? If to a limiting value, what is it?

(a) P0 = 100 (b) P0 = 400
(c) P0 = 500 (d) P0 = 800

27. (a) What are the equilibrium solutions for the differen-
tial equation

dy

dt
= 0.2(y − 3)(y + 2)?

(b) Use a slope field to determine whether each equilib-
rium solution is stable or unstable.

In Problems 28–29, is the function a solution to

y′ = xy − y,

given that y = f(x) satisfies this equation?

28. y = 2f(x) 29. y = 2 + f(x)

30. Find y when x = 1/2 on the solution passing through
(0, 0) of the differential equation

dy

dx
=

1

(cosx)(cos y)
.

(a) Use Euler’s method with

(i) Δx = 1/2 (1 step) (ii) Δx = 1/4 (2 steps)
(iii) Δx = 1/8 (4 steps)

(b) Use separation of variables. Compare with your re-
sults in part (a).

31. Consider the initial value problem

y′ = 5− y, y(0) = 1.

(a) Use Euler’s method with five steps to estimate y(1).
(b) Sketch the slope field for this differential equation

in the first quadrant, and use it to decide if your esti-
mate is an over- or underestimate.

(c) Find the exact solution to the differential equation
and hence find y(1) exactly.

(d) Without doing the calculation, roughly what would
you expect the approximation for y(1) to be with ten
steps?

32. In 2007, the population of Switzerland was 7.5 million
and was growing at a continuous rate of 0.38% per
year.34 Write an expression for the population as a func-
tion of time, t, in years since 2007.

33. The amount of land in use for growing crops increases
as the world’s population increases. Suppose A(t) repre-
sents the total number of hectares of land in use in year
t. (A hectare is about 2 1

2
acres.)

(a) Explain why it is plausible that A(t) satisfies the
equation A′(t) = kA(t). What assumptions are you
making about the world’s population and its relation
to the amount of land used?

(b) In 1966 about 4.55 billion hectares of land were in
use; in 1996 the figure was 4.93 billion hectares.35 If
the total amount of land available for growing crops
is thought to be 6 billion hectares, when does this
model predict it will be exhausted? (Let t = 0 in
1966.)

34. The rate of growth of a tumor is proportional to the size
of the tumor.

(a) Write a differential equation satisfied by S, the size
of the tumor, in mm, as a function of time, t.

(b) Find the general solution to the differential equation.
(c) If the tumor is 5 mm across at time t = 0, what does

that tell you about the solution?
(d) If, in addition, the tumor is 8 mm across at time

t = 3, what does that tell you about the solution?

35. Money in a bank account grows continuously at an an-
nual rate of r (when the interest rate is 5%, r = 0.05, and
so on). Suppose $2000 is put into the account in 2010.

(a) Write a differential equation satisfied by M , the
amount of money in the account at time t, measured
in years since 2010.

(b) Solve the differential equation.
(c) Sketch the solution until the year 2040 for interest

rates of 5% and 10%.

36. Radioactive carbon (carbon-14) decays at a rate of ap-
proximately 1 part in 10,000 a year. For an initial quantity
Q0, write and solve a differential equation for the quan-
tity of carbon-14 as a function of time. Sketch a graph of
the solution.

37. Suppose $1000 is put into a bank account and earns in-
terest continuously at a rate of i per year, and in addition,
continuous payments are made out of the account at a rate
of $100 a year. Find a formula and sketch the amount of
money in the account as a function of time if the interest
rate is

(a) 5% (b) 10% (c) 15%

34http://www.un.org/esa/population/publications/wpp2006/WPP2006 Highlights rev.pdf, accessed April 24, 2012.
35http://www.farmingsolutions.org/facts/factscontent det.asp, accessed June 6, 2011.
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38. A cell contains a chemical (the solute) dissolved in it at
a concentration c(t), and the concentration of the same
substance outside the cell is a constant k. By Fick’s law,
if c(t) and k are unequal, solute moves across the cell
wall at a rate proportional to the difference between c(t)
and k, toward the region of lower concentration.

(a) Write a differential equation satisfied by c(t).
(b) Solve the differential equation with the initial condi-

tion c(0) = c0.
(c) Sketch the solution for c0 = 0.

39. A bank account earns 5% annual interest compounded
continuously. Continuous payments are made out of the
account at a rate of $12,000 per year for 20 years.

(a) Write a differential equation describing the balance
B = f(t), where t is in years.

(b) Solve the differential equation given an initial bal-
ance of B0.

(c) What should the initial balance be such that the ac-
count has zero balance after precisely 20 years?

40. In some chemical reactions, the rate at which the amount
of a substance changes with time is proportional to the
amount present. For example, this is the case as δ-
glucono-lactone changes into gluconic acid.

(a) Write a differential equation satisfied by y, the quan-
tity of δ-glucono-lactone present at time t.

(b) If 100 grams of δ-glucono-lactone is reduced to 54.9
grams in one hour, how many grams will remain af-
ter 10 hours?

41. When the electromotive force (emf) is removed from a
circuit containing inductance and resistance but no ca-
pacitors, the rate of decrease of current is proportional to
the current. If the initial current is 30 amps but decays
to 11 amps after 0.01 seconds, find an expression for the
current as a function of time.

42. A mothball is in the shape of a sphere and starts with ra-
dius 1 cm. The material in the mothball evaporates at a
rate proportional to the surface area. After one month, the
radius is 0.5 cm. How many months (from the start) is it
before the radius is 0.2 cm?

43. Let P be the number of animals in a colony at time t. The
growth of the population satisfies

1000

P

dP

dt
= 100− P.

The initial population is 200 individuals. Sketch a graph
of P against t. Will there ever be more than 200 indi-
viduals in the colony? Will there ever be fewer than 100
individuals? Explain.

44. Table 11.11 gives the percentage, P , of households with
a DVD player as a function of year.

(a) Explain why a logistic model is a reasonable one to
fit to this data.

(b) Use the data to estimate the point of inflection of P .
What limiting value L does this point of inflection
predict?

(c) The best logistic equation for this data, using t as
years since 1997, turns out to be

P =
86.395

1 + 72.884.75e−0.786t
.

What limiting value does this model predict?

Table 11.11 Percentage of households with a
DVD player

Year 1998 1999 2000 2001 2002

P (%) 1 5 13 21 35

Year 2003 2004 2005 2006

P (%) 50 70 75 81

45. A chemical reaction involves one molecule of a sub-
stance A combining with one molecule of substance B to
form one molecule of substance C, written A+B → C.
The Law of Mass Action states that the rate at which C
is formed is proportional to the product of the quantities
of A and B present. Assume a and b are the initial quan-
tities of A and B and x is the quantity of C present at
time t.

(a) Write a differential equation for x.
(b) Solve the equation with x(0) = 0.

46. If the initial quantities, a and b, in Problem 45 are the
same, write and solve a differential equation for x, with
x(0) = 0.

The differential equations in Problems 47–49 describe the
rates of growth of two populations x and y (both measured
in thousands) of species A and B, respectively. For each set:

(a) Describe in words what happens to the population of
each species in the absence of the other.

(b) Describe in words how the species interact with one an-
other. Give reasons why the populations might behave as
described by the equations. Suggest species that might
interact as described by the equations.

47.
dx

dt
= 0.01x − 0.05xy

dy

dt
= −0.2y + 0.08xy

48.
dx

dt
= 0.01x − 0.05xy

dy

dt
= 0.2y − 0.08xy

49.
dx

dt
= 0.2x

dy

dt
= 0.4xy − 0.1y



REVIEW EXERCISES AND PROBLEMS FOR CHAPTER ELEVEN 659

50. A shrimp population P in a bay grows according to the
logistic equation

dP

dt
= 0.8P (1− 0.01P ),

with P in tons of shrimp and t in years.

(a) Sketch a graph of dP/dt against P .
(b) What is the predicted long-term population of

shrimp in the bay, given any positive initial condi-
tion?

(c) If shrimp are harvested out of the bay by fishermen
at a rate of 10 tons per year, what is the new dif-
ferential equation showing both the natural logistic
growth and the constant harvesting?

(d) Sketch a graph of dP/dt against P for the differen-
tial equation given in part (c).

(e) What are the equilibrium values for the differential
equation given in part (c)?

(f) Use the graph in part (d) to determine whether the
shrimp population increases or decreases from each
of the following populations:

P = 12; P = 25; P = 75.

51. The concentrations of two chemicals A and B as func-
tions of time are denoted by x and y respectively. Each
alone decays at a rate proportional to its concentration.
Put together, they also interact to form a third substance,
at a rate proportional to the product of their concentra-
tions. All this is expressed in the equations:

dx

dt
= −2x− xy,

dy

dt
= −3y − xy.

(a) Find a differential equation describing the relation-
ship between x and y, and solve it.

(b) Show that the only equilibrium state is x = y = 0.
(Note that the concentrations are nonnegative.)

(c) Show that when x and y are positive and very small,
y2/x3 is roughly constant. [Hint: When x is small,
x is negligible compared to ln x.]

If now the initial concentrations are x(0) = 4, y(0) = 8:

(d) Find the equation of the phase trajectory.
(e) What would be the concentrations of each substance

if they become equal?
(f) If x = e−10, find an approximate value for y.

52. We apply Lanchester’s model to the Battle of Trafalgar
(1805), when a fleet of 40 British ships expected to face
a combined French and Spanish fleet of 46 ships. Sup-
pose that there were x British ships and y opposing ships
at time t. We assume that all the ships are identical so
that constants in the differential equations in Lanchester’s
model are equal:

dx

dt
= −ay

dy

dt
= −ax.

(a) Write a differential equation involving dy/dx, and
solve it using the initial sizes of the two fleets.

(b) If the battle were fought until all the British ships
were put out of action, how many French/Spanish
ships does this model predict would be left at the
end of the battle?

Admiral Nelson, who was in command of the British
fleet, did not in fact send his 40 ships against the 46
French and Spanish ships. Instead he split the battle
into two parts, sending 32 of his ships against 23 of the
French/Spanish ships and his other 8 ships against their
other 23.

(c) Analyze each of these two sub-battles using Lanch-
ester’s model. Find the solution trajectory for each
sub-battle. Which side is predicted to win each one?
How many ships from each fleet are expected to be
left at the end?

(d) Suppose, as in fact happened, that the remaining
ships from each sub-battle then fought each other.
Which side is predicted to win, and with how many
ships remaining?

53. The following equations describe the rates of growth of
an insect and bird population in a particular region, where
x is the insect population in millions at time t and y is the
bird population in thousands:

dx

dt
= 3x− 0.02xy

dy

dt
= −10y + 0.001xy.

(a) Describe in words the growth of each population in
the absence of the other, and describe in words their
interaction.

(b) Find the two points (x, y) at which the populations
are in equilibrium.

(c) When the populations are at the nonzero equilib-
rium, 10 thousand additional birds are suddenly in-
troduced. Let A be the point in the phase plane rep-
resenting these populations. Find a differential equa-
tion in terms of just x and y (i.e., eliminate t), and
find an equation for the particular solution passing
through the point A.

(d) Show that the following points lie on the trajectory
in the phase plane that passes through point A:

(i) B (9646.91, 150) (ii) C (10,000, 140.43)
(iii) D (10,361.60, 150)

(e) Sketch this trajectory in the phase plane, with x on
the horizontal axis, y on the vertical. Show the equi-
librium point.

(f) In what order are the points A, B, C, D traversed?
[Hint: Find dy/dt, dx/dt at each point.]

(g) On another graph, sketch x and y versus time, t. Use
the same initial value as in part (c). You do not need
to indicate actual numerical values on the t-axis.
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(h) Find dy/dx at points A and C. Find dx/dy at points
B and D. [Hint: dx/dy = 1/(dy/dx). Notice that
the points A and C are the maximum and minimum
values of y, respectively, and B and D are the max-
imum and minimum values of x, respectively.]

54. When two countries are in an arms race, the rate at which
each one spends money on arms is determined by its own
current level of spending and by its opponent’s level of
spending. We expect that the more a country is already
spending on armaments, the less willing it will be to in-
crease its military expenditures. On the other hand, the
more a country’s opponent spends on armaments, the
more rapidly the country will arm. If $x billion is the
country’s yearly expenditure on arms, and $y billion is
its opponent’s, then the Richardson arms race model pro-
poses that x and y are determined by differential equa-
tions. Suppose that for some particular arms race the
equations are

dx

dt
= −0.2x + 0.15y + 20

dy

dt
= 0.1x − 0.2y + 40.

(a) Explain the signs of the three terms on the right side
of the equations for dx/dt.

(b) Find the equilibrium points for this system.
(c) Analyze the direction of the trajectories in each re-

gion.
(d) Are the equilibrium points stable or unstable?
(e) What does this model predict will happen if both

countries disarm?
(f) What does this model predict will happen in the case

of unilateral disarmament (one country disarms, and
the other country does not)?

(g) What does the model predict will happen in the long
run?

In Problems 55–57, a population P (t) of animals satisfies

dP

dt
= −kP

(
1− P

L

)(
1− P

2L

)
, with k, L > 0.

For the given initial condition, what happens to the animal
population over time? [Hint: The equation has equilibrium so-
lutions at P = 0, L, 2L.]

55. Initially, there are fewer than L animals.

56. Initially, there are between L and 2L animals.

57. Initially, there are more than 2L animals.

CAS Challenge Problems

58. Consider the differential equation

dP

dt
= P (P − 1)(2− P ).

(a) Find all the equilibrium solutions.
(b) Show that the following two functions are solutions:

P1(t) = 1− et√
3 + e2t

and P2(t) = 1+
et√

3 + e2t
.

[Hint: Use a computer algebra system to simplify the
difference between the right and left-hand sides.]

(c) Find P1(0), P2(0), limt→∞ P1(t), and
limt→∞ P2(t). Explain how you could have pre-
dicted the limits as t → ∞ from the values at t = 0
without knowing the solutions explicitly.

59. In this problem we investigate Picard’s method for ap-
proximating the solutions of differential equations. Con-
sider the differential equation

y′(t) = y(t)2 + t2, y(a) = b.

Integrating both sides with respect to t gives

y(s)− y(a) =

∫ s

a

y′(t) dt =

∫ s

a

(y(t)2 + t2) dt.

Since y(a) = b, we have

y(s) = b+

∫ s

a

(y(t)2 + t2) dt.

We have put the differential equation into the form of
an integral equation. If we have an approximate solution
y0(s), we can use the integral form to make a new ap-
proximation

y1(s) = b+

∫ s

a

(y0(t)
2 + t2) dt.

Continuing this process, we get a sequence of approxi-
mations y0(s), y1(s), . . . , yn(s), . . . where each term in
the sequence is defined in terms of the previous one by
the equation

yn+1(s) = b+

∫ s

a

(yn(t)
2 + t2) dt.

(a) Show that yn satisfies the initial condition yn(a) =
b for all n.

(b) Using the initial condition y(1) = 0, start with the
approximation y0(s) = 0 and use a computer alge-
bra system to find the next three approximations y1,
y2, and y3.

(c) Use a computer algebra system to find the solution
y satisfying y(1) = 0, and sketch y, y1, y2, y3 on
the same axes. On what domain do the approxima-
tions appear to be accurate? [The solution y can-
not be expressed in terms of elementary functions.
If your computer algebra system cannot solve the
equation exactly, use a numerical method such as
Euler’s method.]
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60. Figure 11.98 shows the slope field for the differential
equation36

dy

dx
=
√

1− y2.

(a) Sketch the solution with y(0) = 0 for −3 ≤ x ≤ 3.
(b) Use a computer algebra system to find the solution

in part (a).
(c) Compare the computer algebra system’s solution

with your sketch. Do they agree? If not, which one
is right?

x

y

Figure 11.98

PROJECTS FOR CHAPTER ELEVEN

1. Medical Case Study: Anaphylaxis37

During surgery, a patient’s blood pressure was observed to be dangerously low. One possi-
ble cause is a severe allergic reaction called anaphylaxis. A diagnosis of anaphylaxis is based in
part on a blood test showing the elevation of the serum tryptase, a molecule released by allergic
cells. In anaphylaxis, the concentration of tryptase in the blood rises rapidly and then decays
back to baseline in a few hours.

However, low blood pressure from an entirely different cause (say from a heart problem)
can also lead to an elevation in tryptase. Before diagnosing anaphylaxis, the medical team
needs to make sure that the observed tryptase elevation is the result of an allergy problem, not a
heart problem. To do this, they need to know the peak level reached by the serum tryptase. The
normal range for the serum tryptase is 0–15 ng/ml (nanograms per milliliter). Mild to moderate
elevations from low blood pressure are common, but if the peak were three times the normal
maximum (that is, above 45 ng/ml), then a diagnosis of anaphylaxis would be made.

The surgeons who resuscitated this patient ran two blood tests to measure Tr, the serum
tryptase concentration; the results are in Table 11.12. Use the test results to estimate the peak
serum tryptase level at the time of surgery by making an assumption of first-order kinetics:
the rate of tryptase decay, dTr/dt, is proportional to the concentration of tryptase, Tr. Did this
patient experience anaphylaxis?

Table 11.12 Serum tryptase levels

t, hours since surgery 4 19.5

Tr , concentration in ng/ml 37 13

The Spread of SARS
In the spring of 2003, SARS (Severe Acute Respiratory Syndrome) spread rapidly in several

Asian countries and Canada. Predicting the course of the disease—how many people would be
infected, how long it would last—was important to officials trying to minimize the impact of the
disease.

2. SARS Predictions for Hong Kong
This project compares three predictions about the spread of SARS in Hong Kong. We

measure time, t, in days since March 17, 2003, the date the World Health Organization (WHO)
started to publish daily SARS reports.38 Let P be the total number of cases reported in Hong
Kong by day t. On March 17, Hong Kong reported 95 cases.

36Adapted from David Lomen and David Lovelock, Differential Equations (New York: John Wiley & Sons, Inc., 1999).
37From David E. Sloane, M.D., drawing from an actual episode in his clinic.
38www.who.int/csr/country/en, accessed July 13, 2003.
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The constants in the three differential equations whose predictions are analyzed in this
project were determined using WHO data available in March 2003. We compare predictions
from the three models for June 12, 2003, the last day a new case was reported in Hong Kong.

(a) (i) A Linear Model. Suppose P satisfies

dP

dt
= 30.2, with P (0) = 95.

Solve the differential equation and use your solution to predict the number of cases of
SARS in Hong Kong by June 12 (t = 87).

(ii) An Exponential Model. Suppose P satisfies

1

P

dP

dt
= 0.12, with P (0) = 95.

Solve the differential equation and use your solution to predict the number of cases of
SARS in Hong Kong by June 12 (t = 87).

(iii) A Logistic Model. Suppose P satisfies

1

P

dP

dt
= 0.19− 0.0002P, with P (0) = 95.

Solve the differential equation and use your solution to predict the number of cases of
SARS in Hong Kong by June 12 (t = 87).

(b) (i) Comment on the June 12 predictions from the three models.
(ii) What do each of the three models in part (a) predict about the trend in the number of

new cases each day?
(iii) In May 2003, The Lancet published39 a graph like Figure 11.99. What trend do you

see in the data? What does this trend suggest about which model fits the data best?
(c) Assume that the data follow a logistic model, which is the only one in part (a) to predict

that the total number of cases will level off:
(i) Use your answer to part (a) (iii) to predict the maximum number of SARS cases.

(ii) Assume that the data follow a logistic model, but not necessarily with the parameters
given in part (a) (iii). Use Figure 11.99 and the fact that there had been a total of 998
cases of SARS by April 10 to predict the maximum number of SARS cases.

(d) To see how well the three models worked in practice, plot the data in Table 11.13 and each
of the three solution curves from part (a).

Table 11.13 Total number of SARS cases reported in Hong Kong
by day t (where t = 0 is March 17, 2003)

t P t P t P t P

0 95 26 1108 54 1674 75 1739

5 222 33 1358 61 1710 81 1750

12 470 40 1527 68 1724 87 1755

19 800 47 1621
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daily increase

Figure 11.99: Daily increase in Hong
Kong SARS cases

39“SARS, Lay Epidemiology and Fear,” by O. Razum, H. Beecher, A. Kapuan, T. Junghauss, The Lancet, May 2, 2003.
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3. An S-I-R Model for SARS
This project analyzes the spread of SARS through interaction between infected and sus-

ceptible people.
The variables are S, the number of susceptibles, I , the number of infecteds who can infect

others, and R, the number removed (this group includes those in quarantine and those who die,
as well as those who have recovered and acquired immunity). Time, t, is in days since March
17, 2003, the date the World Health Organization (WHO) started to publish daily SARS reports.
On March 17, Hong Kong reported 95 cases. In this model

dS

dt
= −aSI

dI

dt
= aSI − bI,

and S + I + R = 6.8 million, the population of Hong Kong in 2003.40 Estimates based on
WHO data give a = 1.25 · 10−8.

(a) What are S0 and I0, the initial values of S and I?
(b) During March 2003, the value of b was about 0.06. Using a calculator or computer, sketch

the slope field for this system of differential equations and the solution trajectory corre-
sponding to the initial conditions. (Use 0 ≤ S ≤ 7 · 106, 0 ≤ I ≤ 0.4 · 106.)

(c) What does your graph tell you about the total number of people infected over the course of
the disease if b = 0.06? What is the threshold value? What does this value tell you?

(d) During April, as public health officials worked to get the disease under control, people who
had been in contact with the disease were quarantined. Explain why quarantining has the
effect of raising the value of b.

(e) Using the April value, b = 0.24, sketch the slope field. (Use the same value of a and the
same window.)

(f) What is the threshold value for b = 0.24? What does this tell you? Comment on the quar-
antine policy.

(g) Comment on the effectiveness of each of the following policies intended to prevent an
epidemic and protect a city from an outbreak of SARS in a nearby region.

I Close off the city from contact with the infected region. Shut down roads, airports,
trains, and other forms of direct contact.

II Install a quarantine policy. Isolate anyone who has been in contact with a SARS patient
or anyone who shows symptoms of SARS.

40www.census.gov, International Data Base (IDB), accessed June 8, 2004.
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4. Pareto’s Law
In analyzing a society, sociologists are often interested in how incomes are distributed

through the society. Pareto’s law asserts that each society has a constant k such that the average
income of all people wealthier than you is k times your income (k > 1). If p(x) is the number
of people in the society with an income of x or above, we define Δp = p(x+Δx) − p(x), for
small Δx.

(a) Explain why the number of people with incomes between x and x +Δx is represented by
−Δp. Then show that the total amount of money earned by people with incomes between
x and x+Δx is approximated by −xΔp.

(b) Use Pareto’s law to show that the total amount of money earned by people with incomes
of x or above is kxp(x). Then show that the total amount of money earned by people with
incomes between x and x+Δx is approximated by −kpΔx− kxΔp.

(c) Using your answers to parts (a) and (b), show that p satisfies the differential equation

(1− k)xp′ = kp.

(d) Solve this differential equation for p(x).
(e) Sketch a graph of p(x) for various values of k, some large and some near 1. How does the

value of k alter the shape of the graph?

5. Vibrations in a Molecule
Suppose the force, F , between two atoms a distance r apart in a molecule is given by

F (r) = b

(
a2

r3
−

a

r2

)

where a and b are positive constants.

(a) Find the equilibrium distance, r, at which F = 0.
(b) Expand F in a series about the equilibrium position. Give the first two nonzero terms.
(c) Suppose one atom is fixed. Let x be the displacement of the other atom from the equilibrium

position. Give the first two nonzero terms of the series for F in terms of x.
(d) Using Newton’s Second Law of Motion, show that if x is small, the second atom oscillates

about the equilibrium position. Find the period of the oscillation.
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12.1 FUNCTIONS OF TWO VARIABLES

Function Notation
Suppose you want to calculate your monthly payment on a five-year car loan; this depends on both
the amount of money you borrow and the interest rate. These quantities can vary separately: the loan
amount can change while the interest rate remains the same, or the interest rate can change while
the loan amount remains the same. To calculate your monthly payment you need to know both. If
the monthly payment is $m, the loan amount is $L, and the interest rate is r%, then we express the
fact that m is a function of L and r by writing:

m = f(L, r).

This is just like the function notation of one-variable calculus. The variable m is called the depen-
dent variable, and the variables L and r are called the independent variables. The letter f stands
for the function or rule that gives the value of m corresponding to given values of L and r.

A function of two variables can be represented graphically, numerically by a table of values, or
algebraically by a formula. In this section, we give examples of each.

Graphical Example: A Weather Map
Figure 12.1 shows a weather map from a newspaper. What information does it convey? It displays
the predicted high temperature, T , in degrees Fahrenheit (◦F), throughout the US on that day. The
curves on the map, called isotherms, separate the country into zones, according to whether T is in
the 60s, 70s, 80s, 90s, or 100s. (Iso means same and therm means heat.) Notice that the isotherm
separating the 80s and 90s zones connects all the points where the temperature is exactly 90◦F.

60s

70s

70s
Boise

80s

90s
90s

60s

90s

100s

Topeka

90s

70s

80s

Buffalo60s

70s
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60s
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90s

70s

80s

Buffalo

Figure 12.1: Weather map showing predicted high temperatures, T , on a summer day

Example 1 Estimate the predicted value of T in Boise, Idaho; Topeka, Kansas; and Buffalo, New York.

Solution Boise and Buffalo are in the 70s region, and Topeka is in the 80s region. Thus, the predicted tem-
perature in Boise and Buffalo is between 70 and 80 while the predicted temperature in Topeka is
between 80 and 90. In fact, we can say more. Although both Boise and Buffalo are in the 70s, Boise
is quite close to the T = 70 isotherm, whereas Buffalo is quite close to the T = 80 isotherm. So we
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estimate the temperature to be in the low 70s in Boise and in the high 70s in Buffalo. Topeka is about
halfway between the T = 80 isotherm and the T = 90 isotherm. Thus, we guess the temperature in
Topeka to be in the mid-80s. In fact, the actual high temperatures for that day were 71◦F for Boise,
79◦F for Buffalo, and 86◦F for Topeka.

The predicted high temperature, T , illustrated by the weather map is a function of (that is,
depends on) two variables, often longitude and latitude, or miles east-west and miles north-south
of a fixed point, say, Topeka. The weather map in Figure 12.1 is called a contour map or contour
diagram of that function. Section 12.2 shows another way of visualizing functions of two variables
using surfaces; Section 12.3 looks at contour maps in detail.

Numerical Example: Beef Consumption
Suppose you are a beef producer and you want to know how much beef people will buy. This
depends on how much money people have and on the price of beef. The consumption of beef, C (in
pounds per week per household) is a function of household income, I (in thousands of dollars per
year), and the price of beef, p (in dollars per pound). In function notation, we write:

C = f(I, p).

Table 12.1 contains values of this function. Values of p are shown across the top, values of I
are down the left side, and corresponding values of f(I, p) are given in the table.1 For example, to
find the value of f(40, 3.50), we look in the row corresponding to I = 40 under p = 3.50, where
we find the number 4.05. Thus,

f(40, 3.50) = 4.05.

This means that, on average, if a household’s income is $40,000 a year and the price of beef is
$3.50/lb, the family will buy 4.05 lbs of beef per week.

Table 12.1 Quantity of beef bought (pounds/household/week)

Household
income

per year,
I

($1000)

Price of beef ($/lb)

3.00 3.50 4.00 4.50

20 2.65 2.59 2.51 2.43

40 4.14 4.05 3.94 3.88

60 5.11 5.00 4.97 4.84

80 5.35 5.29 5.19 5.07

100 5.79 5.77 5.60 5.53

Notice how this differs from the table of values of a one-variable function, where one row or
one column is enough to list the values of the function. Here many rows and columns are needed
because the function has a value for every pair of values of the independent variables.

Algebraic Examples: Formulas
In both the weather map and beef consumption examples, there is no formula for the underlying
function. That is usually the case for functions representing real-life data. On the other hand, for
many idealized models in physics, engineering, or economics, there are exact formulas.

1Adapted from Richard G. Lipsey, An Introduction to Positive Economics, 3rd ed, (London: Weidenfeld and Nicolson,
1971).
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Example 2 Give a formula for the function M = f(B, t) where M is the amount of money in a bank account
t years after an initial investment of B dollars, if interest is accrued at a rate of 1.2% per year
compounded annually.

Solution Annual compounding means that M increases by a factor of 1.012 every year, so

M = f(B, t) = B(1.012)t.

Example 3 A cylinder with closed ends has radius r and height h. If its volume is V and its surface area is A,
find formulas for the functions V = f(r, h) and A = g(r, h).

Solution Since the area of the circular base is πr2, we have

V = f(r, h) = Area of base · Height = πr2h.

The surface area of the side is the circumference of the bottom, 2πr, times the height h, giving
2πrh. Thus,

A = g(r, h) = 2 · Area of base + Area of side = 2πr2 + 2πrh.

A Tour of 3-Space
In Section 12.2 we see how to visualize a function of two variables as a surface in space. Now we
see how to locate points in three-dimensional space (3-space).

Imagine three coordinate axes meeting at the origin: a vertical axis, and two horizontal axes at
right angles to each other. (See Figure 12.2.) Think of the xy-plane as being horizontal, while the
z-axis extends vertically above and below the plane. The labels x, y, and z show which part of each
axis is positive; the other side is negative. We generally use right-handed axes in which looking
down the positive z-axis gives the usual view of the xy-plane. We specify a point in 3-space by
giving its coordinates (x, y, z) with respect to these axes. Think of the coordinates as instructions
telling you how to get to the point: start at the origin, go x units along the x-axis, then y units
in the direction parallel to the y-axis, and finally z units in the direction parallel to the z-axis. The
coordinates can be positive, zero or negative; a zero coordinate means “don’t move in this direction,”
and a negative coordinate means “go in the negative direction parallel to this axis.” For example, the
origin has coordinates (0, 0, 0), since we get there from the origin by doing nothing at all.

z

y

x

O

Figure 12.2: Coordinate axes
in three-dimensional space

x

y

z

(1, 2, 3)

Figure 12.3: The point
(1, 2, 3) in 3-space

x

y

z

(0, 0,−1)

Figure 12.4: The point
(0, 0,−1) in 3-space

Example 4 Describe the position of the points with coordinates (1, 2, 3) and (0, 0,−1).

Solution We get to the point (1, 2, 3) by starting at the origin, going 1 unit along the x-axis, 2 units in the
direction parallel to the y-axis, and 3 units up in the direction parallel to the z-axis. (See Figure 12.3.)

To get to (0, 0,−1), we don’t move at all in the x- and the y-direction, but move 1 unit in the
negative z-direction. So the point is on the negative z-axis. (See Figure 12.4.) You can check that
the position of the point is independent of the order of the x, y, and z displacements.

Example 5 You start at the origin, go along the y-axis a distance of 2 units in the positive direction, and then
move vertically upward a distance of 1 unit. What are the coordinates of your final position?
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Solution You started at the point (0, 0, 0). When you went along the y-axis, your y-coordinate increased to 2.
Moving vertically increased your z-coordinate to 1; your x-coordinate did not change because you
did not move in the x-direction. So your final coordinates are (0, 2, 1). (See Figure 12.5.)

x

y

z

(0, 2, 1)

Figure 12.5: The point (0, 2, 1) is reached by moving 2 along the y-axis and 1 upward

It is often helpful to picture a three-dimensional coordinate system in terms of a room. The
origin is a corner at floor level where two walls meet the floor. The z-axis is the vertical intersection
of the two walls; the x- and the y-axis are the intersections of each wall with the floor. Points with
negative coordinates lie behind a wall in the next room or below the floor.

Graphing Equations in 3-Space
We can graph an equation involving the variables x, y, and z in 3-space; such a graph is a picture of
all points (x, y, z) that satisfy the equation.

Example 6 What do the graphs of the equations z = 0, z = 3, and z = −1 look like?

Solution To graph z = 0, we visualize the set of points whose z-coordinate is zero. If the z-coordinate is
0, then we must be at the same vertical level as the origin, that is, we are in the horizontal plane
containing the origin. So the graph of z = 0 is the middle plane in Figure 12.6. The graph of z = 3

is a plane parallel to the graph of z = 0, but three units above it. The graph of z = −1 is a plane
parallel to the graph of z = 0, but one unit below it.

x

y

z

� z = 3

� z = 0

� z = −1

Figure 12.6: The planes z = −1, z = 0, and z = 3

The plane z = 0 contains the x- and the y-coordinate axis, and is called the xy-plane. There
are two other coordinate planes. The yz-plane contains both the y- and the z-axis, and the xz-plane
contains the x- and the z-axis. (See Figure 12.7.)
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Figure 12.7: The three coordinate planes
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Example 7 Which of the points A = (1,−1, 0), B = (0, 3, 4), C = (2, 2, 1), and D = (0,−4, 0) lies closest to
the xz-plane? Which point lies on the y-axis?

Solution The magnitude of the y-coordinate gives the distance to the xz-plane. The point A lies closest to
that plane, because it has the smallest y-coordinate in magnitude. To get to a point on the y-axis,
we move along the y-axis, but we don’t move at all in the x- or the z-direction. Thus, a point on the
y-axis has both its x- and z-coordinate equal to zero. The only point of the four that satisfies this is
D. (See Figure 12.8.)

In general, if a point has one of its coordinates equal to zero, it lies in one of the coordinate
planes. If a point has two of its coordinates equal to zero, it lies on one of the coordinate axes.

x

y

z

D

A

C

B

Figure 12.8: Which point lies closest to the xz-plane?
Which point lies on the y-axis?

z

x

y

x = 0, z = −2

Figure 12.9: The line x = 0, z = −2

Example 8 You are 2 units below the xy-plane and in the yz-plane. What are your coordinates?

Solution Since you are 2 units below the xy-plane, your z-coordinate is −2. Since you are in the yz-plane,
your x-coordinate is 0; your y-coordinate can be anything. Thus, you are at the point (0, y,−2).
The set of all such points forms a line parallel to the y-axis, 2 units below the xy-plane, and in the
yz-plane. (See Figure 12.9.)

Example 9 You are standing at the point (4, 5, 2), looking at the point (0.5, 0, 3). Are you looking up or down?

Solution The point you are standing at has z-coordinate 2, whereas the point you are looking at has z-
coordinate 3; hence you are looking up.

Example 10 Imagine that the yz-plane in Figure 12.7 is a page of this book. Describe the region behind the page
algebraically.

Solution The positive part of the x-axis pokes out of the page; moving in the positive x-direction brings you
out in front of the page. The region behind the page corresponds to negative values of x, so it is the
set of all points in 3-space satisfying the inequality x < 0.

Distance Between Two Points
In 2-space, the formula for the distance between two points (x, y) and (a, b) is given by

Distance =
√

(x− a)2 + (y − b)2.

The distance between two points (x, y, z) and (a, b, c) in 3-space is represented by PG in
Figure 12.10. The side PE is parallel to the x-axis, EF is parallel to the y-axis, and FG is parallel
to the z-axis.
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Figure 12.10: The diagonal PG gives the distance between the points (x, y, z) and (a, b, c)

Using Pythagoras’ theorem twice gives

(PG)
2
= (PF )

2
+ (FG)

2
= (PE)

2
+ (EF )

2
+ (FG)

2
= (x− a)2 + (y − b)2 + (z − c)2.

Thus, a formula for the distance between the points (x, y, z) and (a, b, c) in 3-space is

Distance =
√
(x− a)2 + (y − b)2 + (z − c)2.

Example 11 Find the distance between (1, 2, 1) and (−3, 1, 2).

Solution Distance =
√
(−3− 1)2 + (1 − 2)2 + (2− 1)2 =

√
18 = 4.24.

Example 12 Find an expression for the distance from the origin to the point (x, y, z).

Solution The origin has coordinates (0, 0, 0), so the distance from the origin to (x, y, z) is given by

Distance =
√
(x− 0)2 + (y − 0)2 + (z − 0)2 =

√
x2 + y2 + z2.

Example 13 Find an equation for a sphere of radius 1 with center at the origin.

Solution The sphere consists of all points (x, y, z) whose distance from the origin is 1, that is, which satisfy
the equation √

x2 + y2 + z2 = 1.

This is an equation for the sphere. If we square both sides we get the equation in the form

x2
+ y2 + z2 = 1.

Note that this equation represents the surface of the sphere. The solid ball enclosed by the sphere is
represented by the inequality x2 + y2 + z2 ≤ 1.

Exercises and Problems for Section 12.1
Exercises

1. Which of the points P = (1, 2, 1) and Q = (2, 0, 0) is
closest to the origin?

2. Which two of the three points P1 = (1, 2, 3), P2 =
(3, 2, 1) and P3 = (1, 1, 0) are closest to each other?



672 Chapter Twelve FUNCTIONS OF SEVERAL VARIABLES

3. Which of the points A = (1.3,−2.7, 0), B =
(0.9, 0, 3.2), C = (2.5, 0.1,−0.3) is closest to the yz-
plane? Which one lies on the xz-plane? Which one is
farthest from the xy-plane?

4. You are at the point (3, 1, 1), standing upright and fac-
ing the yz-plane. You walk 2 units forward, turn left, and
walk another 2 units. What is your final position? From
the point of view of an observer looking at the coordi-
nate system in Figure 12.2 on page 668, are you in front
of or behind the yz-plane? To the left or to the right of
the xz-plane? Above or below the xy-plane?

5. On a set of x, y and z axes oriented as in Figure 12.5 on
page 669, draw a straight line through the origin, lying
in the yz-plane and such that if you move along the line
with your y-coordinate increasing, your z-coordinate is
increasing.

6. What is the midpoint of the line segment joining the
points (−1, 3, 9) and (5, 6,−3)?

In Exercises 7–10 sketch graphs of the equations in 3-space.

7. z = 4 8. x = −3

9. y = 1 10. z = 2 and y = 4

11. With the z-axis vertical, a sphere has center (2, 3, 7) and
lowest point (2, 3,−1). What is the highest point on the
sphere?

12. Find an equation of the sphere with radius 5 centered at
the origin.

13. Find the equation of the sphere with radius 2 and centered
at (1, 0, 0).

14. Find the equation of the vertical plane perpendicular to
the y-axis and through the point (2, 3, 4).

Exercises 15–17 refer to the map in Figure 12.1 on page 666.

15. Give the range of daily high temperatures for:

(a) Pennsylvania (b) North Dakota

(c) California

16. Sketch a possible graph of the predicted high temperature
T on a line north-south through Topeka.

17. Sketch possible graphs of the predicted high temperature
on a north-south line and an east-west line through Boise.

For Exercises 18–20, refer to Table 12.1 on page 667, where
p is the price of beef and I is annual household income.

18. Give tables for beef consumption as a function of p, with
I fixed at I = 20 and I = 100. Give tables for beef con-
sumption as a function of I , with p fixed at p = 3.00 and
p = 4.00. Comment on what you see in the tables.

19. Make a table of the proportion, P , of household income
spent on beef per week as a function of price and income.
(Note that P is the fraction of income spent on beef.)

20. How does beef consumption vary as a function of house-
hold income if the price of beef is held constant?

Problems

21. The temperature adjusted for wind chill is a temperature
which tells you how cold it feels, as a result of the com-
bination of wind and temperature.2 See Table 12.2.

Table 12.2 Temperature adjusted for wind chill (◦F) as a
function of wind speed and temperature

Wind
Speed
(mph)

Temperature (◦F)

35 30 25 20 15 10 5 0

5 31 25 19 13 7 1 −5 −11

10 27 21 15 9 3 −4 −10 −16

15 25 19 13 6 0 −7 −13 −19

20 24 17 11 4 −2 −9 −15 −22

25 23 16 9 3 −4 −11 −17 −24

(a) If the temperature is 0◦F and the wind speed is 15
mph, how cold does it feel?

(b) If the temperature is 35◦F, what wind speed makes
it feel like 24◦F?

(c) If the temperature is 25◦F, what wind speed makes
it feel like 12◦F?

(d) If the wind is blowing at 20 mph, what temperature
feels like 0◦F?

In Problems 22–23, use Table 12.2 to make tables with the
given properties.

22. The temperature adjusted for wind chill as a function of
wind speed for temperatures of 20◦F and 0◦F.

23. The temperature adjusted for wind chill as a function of
temperature for wind speeds of 5 mph and 20 mph.

24. A car rental company charges $40 a day and 15 cents a
mile for its cars.

(a) Write a formula for the cost, C, of renting a car as a
function, f , of the number of days, d, and the num-
ber of miles driven, m.

(b) If C = f(d,m), find f(5, 300) and interpret it.

25. The gravitational force, F newtons, exerted on an object
by the earth depends on the object’s mass, m kilograms,
and its distance, r meters, from the center of the earth, so
F = f(m, r). Interpret the following statement in terms
of gravitation: f(100, 7000000) ≈ 820.

2Data from www.nws.noaa.gov/om/windchill, accessed on May 30, 2004.
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26. Consider the acceleration due to gravity, g, at a distance
h from the center of a planet of mass m.

(a) If m is held constant, is g an increasing or decreas-
ing function of h? Why?

(b) If h is held constant, is g an increasing or decreasing
function of m? Why?

27. A cube is located such that its top four corners have the
coordinates (−1, −2, 2), (−1, 3, 2), (4, −2, 2) and
(4, 3, 2). Give the coordinates of the center of the cube.

28. Describe the set of points whose distance from the x-axis
is 2.

29. Describe the set of points whose distance from the x-axis
equals the distance from the yz-plane.

30. Find a formula for the shortest distance between a point
(a, b, c) and the y-axis.

31. Find the equations of planes that just touch the sphere
(x− 2)2 +(y− 3)2 +(z− 3)2 = 16 and are parallel to

(a) The xy-plane (b) The yz-plane

(c) The xz-plane

32. Find an equation of the largest sphere contained in the
cube determined by the planes x = 2, x = 6; y = 5, y =
9; and z = −1, z = 3.

33. A cube has edges parallel to the axes. One corner is at
A = (5, 1, 2) and the corner at the other end of the
longest diagonal through A is B = (12, 7, 4).

(a) What are the coordinates of the other three vertices
on the bottom face?

(b) What are the coordinates of the other three vertices
on the top face?

34. Which of the points P1 = (−3, 2, 15), P2 =
(0,−10, 0), P3 = (−6, 5, 3) and P4 = (−4, 2, 7) is
closest to P = (6, 0, 4)?

35. (a) Find the equations of the circles (if any) where the
sphere (x−1)2+(y+3)2+(z−2)2 = 4 intersects
each coordinate plane.

(b) Find the points (if any) where this sphere intersects
each coordinate axis.

36. A rectangular solid lies with its length parallel to the y-
axis, and its top and bottom faces parallel to the plane
z = 0. If the center of the object is at (1, 1,−2) and it
has a length of 13, a height of 5 and a width of 6, give
the coordinates of all eight corners and draw the figure
labeling the eight corners.

37. An equilateral triangle is standing vertically with a vertex
above the xy-plane and its two other vertices at (7, 0, 0)
and (9, 0, 0). What is its highest point?

38. (a) Find the midpoint of the line segment joining A =
(1, 5, 7) to B = (5, 13, 19).

(b) Find the point one quarter of the way along the line
segment from A to B.

(c) Find the point one quarter of the way along the line
segment from B to A.

Strengthen Your Understanding

In Problems 39–41, explain what is wrong with the statement.

39. In 3-space, y = 1 is a line parallel to the x-axis.

40. The xy-plane has equation xy = 0.

41. The distance from (2, 3, 4) to the x-axis is 2.

In Problems 42–43, give an example of:

42. A formula for a function f(x, y) that is increasing in x
and decreasing in y.

43. A point in 3-space with all its coordinates negative and
farther from the xz-plane than from the plane z = −5.

Are the statements in Problems 44–57 true or false? Give rea-
sons for your answer.

44. If f(x, y) is a function of two variables defined for all x
and y, then f(10, y) is a function of one variable.

45. The volume V of a box of height h and square base of
side length s is a function of h and s.

46. If H = f(t, d) is the function giving the water temper-
ature H◦C of a lake at time t hours after midnight and
depth d meters, then t is a function of d and H .

47. A table for a function f(x, y) cannot have any values of
f appearing twice.

48. If f(x) and g(y) are both functions of a single variable,
then the product f(x) · g(y) is a function of two vari-
ables.

49. The point (1, 2, 3) lies above the plane z = 2.

50. The graph of the equation z = 2 is a plane parallel to the
xz-plane.

51. The points (1, 0, 1) and (0,−1, 1) are the same distance
from the origin.

52. The point (2,−1, 3) lies on the graph of the sphere
(x− 2)2 + (y + 1)2 + (z − 3)2 = 25.

53. There is only one point in the yz-plane that is a distance
3 from the point (3, 0, 0).

54. There is only one point in the yz-plane that is distance 5
from the point (3, 0, 0).

55. If the point (0, b, 0) has distance 4 from the plane y = 0,
then b must be 4.

56. A line parallel to the z-axis can intersect the graph of
f(x, y) at most once.

57. A line parallel to the y-axis can intersect the graph of
f(x, y) at most once.
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12.2 GRAPHS AND SURFACES

The weather map on page 666 is one way of visualizing a function of two variables. In this section
we see how to visualize a function of two variables in another way, using a surface in 3-space.

Visualizing a Function of Two Variables Using a Graph
For a function of one variable, y = f(x), the graph of f is the set of all points (x, y) in 2-space such
that y = f(x). In general, these points lie on a curve in the plane. When a computer or calculator
graphs f , it approximates by plotting points in the xy-plane and joining consecutive points by line
segments. The more points, the better the approximation.

Now consider a function of two variables.

The graph of a function of two variables, f , is the set of all points (x, y, z) such that
z = f(x, y). In general, the graph of a function of two variables is a surface in 3-space.

Plotting the Graph of the Function f(x, y) = x
2 + y

2

To sketch the graph of f we connect points as for a function of one variable. We first make a table
of values of f , such as in Table 12.3.

Table 12.3 Table of values of f(x, y) = x2 + y2

x

y

−3 −2 −1 0 1 2 3

−3 18 13 10 9 10 13 18

−2 13 8 5 4 5 8 13

−1 10 5 2 1 2 5 10

0 9 4 1 0 1 4 9

1 10 5 2 1 2 5 10

2 13 8 5 4 5 8 13

3 18 13 10 9 10 13 18

Now we plot points. For example, we plot (1, 2, 5) because f(1, 2) = 5 and we plot (0, 2, 4)
because f(0, 2) = 4. Then, we connect the points corresponding to the rows and columns in the
table. The result is called a wire-frame picture of the graph. Filling in between the wires gives a
surface. That is the way a computer drew the graphs in Figure 12.11 and 12.12. As more points are
plotted, we get the surface in Figure 12.13, called a paraboloid.

You should check to see if the sketches make sense. Notice that the graph goes through the
origin since (x, y, z) = (0, 0, 0) satisfies z = x2 + y2. Observe that if x is held fixed and y is
allowed to vary, the graph dips down and then goes back up, just like the entries in the rows of
Table 12.3. Similarly, if y is held fixed and x is allowed to vary, the graph dips down and then goes
back up, just like the columns of Table 12.3.
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x

y

z

Figure 12.11: Wire frame
picture of f(x, y) = x2 + y2

for −3 ≤ x ≤ 3, −3 ≤ y ≤ 3

x

y

z

Figure 12.12: Wire frame
picture of f(x, y) = x2 + y2

with more points plotted

x y

z

Figure 12.13: Graph of
f(x, y) = x2 + y2 for

−3 ≤ x ≤ 3,−3 ≤ y ≤ 3

New Graphs from Old
We can use the graph of a function to visualize the graphs of related functions.

Example 1 Let f(x, y) = x2 + y2. Describe in words the graphs of the following functions:
(a) g(x, y) = x2+ y2+3, (b) h(x, y) = 5−x2− y2, (c) k(x, y) = x2+(y− 1)2.

Solution We know from Figure 12.13 that the graph of f is a paraboloid, or bowl with its vertex at the origin.
From this we can work out what the graphs of g, h, and k will look like.

(a) The function g(x, y) = x2+y2+3 = f(x, y)+3, so the graph of g is the graph of f , but raised
by 3 units. See Figure 12.14.

(b) Since −x2 − y2 is the negative of x2 + y2, the graph of −x2 − y2 is a paraboloid opening
downward. Thus, the graph of h(x, y) = 5 − x2 − y2 = 5 − f(x, y) looks like a downward-
opening paraboloid with vertex at (0, 0, 5), as in Figure 12.15.

(c) The graph of k(x, y) = x2+(y−1)2 = f(x, y−1) is a paraboloid with vertex at x = 0, y = 1,
since that is where k(x, y) = 0, as in Figure 12.16.

x
y

z

�
(0, 0, 3)

Figure 12.14: Graph of
g(x, y) = x2 + y2 + 3

x y

z
� (0, 0, 5)

Figure 12.15: Graph of
h(x, y) = 5− x2 − y2

x
y

z

(0, 1, 0)

Figure 12.16: Graph of
k(x, y) = x2 + (y − 1)2

Example 2 Describe the graph of G(x, y) = e−(x2+y2). What symmetry does it have?

Solution Since the exponential function is always positive, the graph lies entirely above the xy-plane. From
the graph of x2 + y2 we see that x2 + y2 is zero at the origin and gets larger as we move farther
from the origin in any direction. Thus, e−(x2+y2) is 1 at the origin, and gets smaller as we move
away from the origin in any direction. It can’t go below the xy-plane; instead it flattens out, getting
closer and closer to the plane. We say the surface is asymptotic to the xy-plane. (See Figure 12.17.)
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x
y

z

� (0, 0, 1)

Figure 12.17: Graph of G(x, y) = e−(x2+y2)

Now consider a point (x, y) on the circle x2 + y2 = r2. Since

G(x, y) = e−(x2+y2)
= e−r2 ,

the value of the function G is the same at all points on this circle. Thus, we say the graph of G has
circular symmetry.

Cross-Sections and the Graph of a Function
We have seen that a good way to analyze a function of two variables is to let one variable vary while
the other is kept fixed.

For a function f(x, y), the function we get by holding x fixed and letting y vary is called a
cross-section of f with x fixed. The graph of the cross-section of f(x, y) with x = c is the
curve, or cross-section, we get by intersecting the graph of f with the plane x = c. We define
a cross-section of f with y fixed similarly.

For example, the cross-section of f(x, y) = x2+ y2 with x = 2 is f(2, y) = 4+ y2. The graph
of this cross-section is the curve we get by intersecting the graph of f with the plane perpendicular
to the x-axis at x = 2. (See Figure 12.18.)

x

y

z

Figure 12.18: Cross-section of
the surface z = f(x, y) by

the plane x = 2

x

y

z

�
Curve
f(a, y)

Surface
f(x, y)

Figure 12.19: The curves
z = f(a, y) with a constant:
cross-sections with x fixed

x

y

z

�
Curve
f(x, b)

Surface
f(x, y)

Figure 12.20: The curves
z = f(x, b) with b constant:
cross-sections with y fixed

Figure 12.19 shows graphs of other cross-sections of f with x fixed; Figure 12.20 shows graphs
of cross-sections with y fixed.

Example 3 Describe the cross-sections of the function g(x, y) = x2 − y2 with y fixed and then with x fixed.
Use these cross-sections to describe the shape of the graph of g.

Solution The cross-sections with y fixed at y = b are given by

z = g(x, b) = x2 − b2.
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Thus, each cross-section with y fixed gives a parabola opening upward, with minimum z = −b2.
The cross-sections with x fixed are of the form

z = g(a, y) = a2 − y2,

which are parabolas opening downward with a maximum of z = a2. (See Figures 12.21 and 12.22.)
The graph of g is shown in Figure 12.23. Notice the upward-opening parabolas in the x-direction
and the downward-opening parabolas in the y-direction. We say that the surface is saddle-shaped.

−4

−1

z

x

�
{
y = ±2

z = x2 − 4

�
{
y = ±1

z = x2 − 1

�
{
y = 0

z = x2

Figure 12.21: Cross-sections of
g(x, y) = x2 − y2 with y fixed

�
{
x = ±2

z = 4− y2

�
{
x = ±1

z = 1− y2

�
{
x = 0

z = −y2

y

z

1

4

Figure 12.22: Cross-sections of
g(x, y) = x2 − y2 with x fixed

x

y

z

Figure 12.23: Graph of
g(x, y) = x2 − y2

showing cross sections

Linear Functions
Linear functions are central to single-variable calculus; they are equally important in multivariable
calculus. You may be able to guess the shape of the graph of a linear function of two variables. (It’s
a plane.) Let’s look at an example.

Example 4 Describe the graph of f(x, y) = 1 + x− y.

Solution The plane x = a is vertical and parallel to the yz-plane. Thus, the cross-section with x = a is
the line z = 1 + a − y which slopes downward in the y-direction. Similarly, the plane y = b is
parallel to the xz-plane. Thus, the cross-section with y = b is the line z = 1 + x− b which slopes
upward in the x-direction. Since all the cross-sections are lines, you might expect the graph to be a
flat plane, sloping down in the y-direction and up in the x-direction. This is indeed the case. (See
Figure 12.24.)

x

y

z



Plane x = a

�Line
z = 1 + a− y

� Plane
z = 1 + x− y

Figure 12.24: Graph of the plane z = 1 + x− y showing
cross-section with x = a

When One Variable is Missing: Cylinders
Suppose we graph an equation like z = x2 which has one variable missing. What does the surface
look like? Since y is missing from the equation, the cross-sections with y fixed are all the same
parabola, z = x2. Letting y vary up and down the y-axis, this parabola sweeps out the trough-
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shaped surface shown in Figure 12.25. The cross-sections with x fixed are horizontal lines obtained
by cutting the surface by a plane perpendicular to the x-axis. This surface is called a parabolic
cylinder, because it is formed from a parabola in the same way that an ordinary cylinder is formed
from a circle; it has a parabolic cross-section instead of a circular one.

x

y

z

Figure 12.25: A parabolic
cylinder z = x2

x y

z

Figure 12.26: Circular cylinder
x2 + y2 = 1

Example 5 Graph the equation x2 + y2 = 1 in 3-space.

Solution Although the equation x2 + y2 = 1 does not represent a function, the surface representing it can be
graphed by the method used for z = x2. The graph of x2 + y2 = 1 in the xy-plane is a circle. Since
z does not appear in the equation, the intersection of the surface with any horizontal plane will be
the same circle x2 + y2 = 1. Thus, the surface is the cylinder shown in Figure 12.26.

Exercises and Problems for Section 12.2
Exercises

1. Figure 12.27 shows the graph of z = f(x, y).

(a) Suppose y is fixed and positive. Does z increase or
decrease as x increases? Graph z against x.

(b) Suppose x is fixed and positive. Does z increase or
decrease as y increases? Graph z against y.

x

y

z

Figure 12.27

2. Without a calculator or computer, match the functions
with their graphs in Figure 12.28.

(a) z = 2 + x2 + y2 (b) z = 2− x2 − y2

(c) z = 2(x2 + y2) (d) z = 2 + 2x− y

(e) z = 2

x y

z(I)

x y

z(II)

x y

z(III)

x y

z(IV)

y

x

z(V)

Figure 12.28

3. Without a calculator or computer, match the functions
with their graphs in Figure 12.29.

(a) z =
1

x2 + y2
(b) z = −e−x2

−y2

(c) z = x+ 2y + 3 (d) z = −y2

(e) z = x3 − sin y.
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z(II)
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z(III)
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z(IV)

x
y

z(V)

Figure 12.29

In Exercises 4–11, sketch a graph of the surface and briefly
describe it in words.

4. z = 3 5. x2 + y2 + z2 = 9

6. z = x2 + y2 + 4 7. z = 5− x2 − y2

8. z = y2 9. 2x+ 4y + 3z = 12

10. x2 + y2 = 4 11. x2 + z2 = 4

In Exercises 12–14, find the equation of the surface.

12. A cylinder of radius
√
7 with its axis along the y-axis.

13. A sphere of radius 3 centered at (0,
√
7, 0).

14. The paraboloid obtained by moving the surface z =
x2+ y2 so that its vertex is at (1, 3, 5), its axis is parallel
to the x-axis, and the surface opens towards negative x
values.

Problems

15. Consider the function f given by f(x, y) = y3 + xy.
Draw graphs of cross-sections with:

(a) x fixed at x = −1, x = 0, and x = 1.
(b) y fixed at y = −1, y = 0, and y = 1.

Problems 16–18 concern the concentration, C, in mg per liter,
of a drug in the blood as a function of x, the amount, in mg, of
the drug given and t, the time in hours since the injection. For
0 ≤ x ≤ 4 and t ≥ 0, we have C = f(x, t) = te−t(5−x).

16. Find f(3, 2). Give units and interpret in terms of drug
concentration.

17. Graph the following single-variable functions and ex-
plain their significance in terms of drug concentration.

(a) f(4, t) (b) f(x, 1)

18. Graph f(a, t) for a = 1, 2, 3, 4 on the same axes. De-
scribe how the graph changes as a increases and explain
what this means in terms of drug concentration.

19. Without a computer or calculator, match the equations
(a)–(i) with the graphs (I)–(IX).

(a) z = xye−(x2+y2) (b) z = cos(
√

x2 + y2)

(c) z = sin y (d) z = − 1

x2 + y2

(e) z = cos2 x cos2 y (f) z =
sin(x2 + y2)

x2 + y2

(g) z = cos(xy) (h) z = |x||y|
(i) z = (2x2+y2)e1−x2

−y2

x y

z(I)

x
y

z(II)

x y

z(III)

x
y

z(IV)

x

y

z(V)

x y

z(VI)

x

y

z(VII)

x y

z(VIII)

x
y

z(IX)
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20. Decide whether the graph of each of the following equa-
tions is the shape of a bowl, a plate, or neither. Consider
a plate to be any flat surface and a bowl to be anything
that could hold water, assuming the positive z-axis is up.

(a) z = x2 + y2 (b) z = 1− x2 − y2

(c) x+ y + z = 1 (d) z = −
√

5− x2 − y2

(e) z = 3

21. Sketch cross-sections for each function in Problem 20.

22. You like pizza and you like cola. Which of the graphs in
Figure 12.30 represents your happiness as a function of
how many pizzas and how much cola you have if

(a) There is no such thing as too many pizzas and too
much cola?

(b) There is such a thing as too many pizzas or too much
cola?

(c) There is such a thing as too much cola but no such
thing as too many pizzas?

pizza

cola

happiness(I)

pizza

cola
happiness(II)

pizza

cola

happiness(III)

pizza

cola

happiness(IV)

Figure 12.30

For Problems 23–26, give a formula for a function whose
graph is described. Sketch it using a computer or calculator.

23. A bowl which opens upward and has its vertex at 5 on the
z-axis.

24. A plane which has its x-, y-, and z-intercepts all positive.

25. A parabolic cylinder opening upward from along the line
y = x in the xy-plane.

26. A cone of circular cross-section opening downward and
with its vertex at the origin.

27. Sketch cross-sections of f(r, h) = πr2h, first keeping h
fixed, then keeping r fixed.

28. By setting one variable constant, find a plane that inter-
sects the graph of z = 4x2 − y2 + 1 in a:

(a) Parabola opening upward
(b) Parabola opening downward
(c) Pair of intersecting straight lines

29. For each of the graphs I-IV in Problem 22 draw:

(a) Two cross-sections with pizza fixed
(b) Two cross-sections with cola fixed.

30. A wave travels along a canal. Let x be the distance along
the canal, t be the time, and z be the height of the water
above the equilibrium level. The graph of z as a function
of x and t is in Figure 12.31.

(a) Draw the profile of the wave for t = −1, 0, 1, 2. (Put
the x-axis to the right and the z-axis vertical.)

(b) Is the wave traveling in the direction of increasing or
decreasing x?

(c) Sketch a surface representing a wave traveling in the
opposite direction.

t

x

z

Figure 12.31

31. At time t, the displacement of a point on a vibrating gui-
tar string stretched between x = 0 and x = π is given
by

f(x, t) = cos t sin x, 0 ≤ x ≤ π, 0 ≤ t ≤ 2π.

(a) Sketch the cross-sections of this function with t fixed
at t = 0, π/4 and the cross-sections with x fixed at
x = π/4, π/2.

(b) What is the value of f if x = 0 or x = π? Explain
why this is to be expected.

(c) Explain the relation of the cross-sections to the sur-
face representing f .

Strengthen Your Understanding

In Problems 32–33, explain what is wrong with the statement.

32. The graph of the function f(x, y) = x2 + y2 is a circle.

33. Cross-sections of the function f(x, y) = x2 with x fixed
are parabolas.

In Problems 34–36, give an example of:

34. A function whose graph lies above the xy-plane and in-
tersects the plane z = 2 in a single point.

35. A function which intersects the xz-plane in a parabola
and the yz-plane in a line.

36. A function which intersects the xy-plane in a circle.
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Are the statements in Problems 37–50 true or false? Give rea-
sons for your answer.

37. The function given by the formula f(v, w) = ev/w is an
increasing function of v when w is a nonzero constant.

38. A function f(x, y) can be an increasing function of x
with y held fixed, and be a decreasing function of y with
x held fixed.

39. A function f(x, y) can have the property that g(x) =
f(x, 5) is increasing, whereas h(x) = f(x, 10) is de-
creasing.

40. The plane x+ 2y − 3z = 1 passes through the origin.

41. The plane x + y + z = 3 intersects the x-axis when
x = 3.

42. The sphere x2 + y2 + z2 = 10 intersects the plane
x = 10.

43. The cross-section of the function f(x, y) = x+ y2 with
y = 1 is a line.

44. The function g(x, y) = 1 − y2 has identical parabolas
for all cross-sections with x constant.

45. The function g(x, y) = 1 − y2 has lines for all cross-
sections with y constant.

46. The graphs of f(x, y) = sin(xy) and g(x, y) =
sin(xy) + 2 never intersect.

47. The graphs of f(x, y) = x2+y2 and g(x, y) = 1−x2−
y2 intersect in a circle.

48. If all the cross-sections of the graph of f(x, y) with x
constant are lines, then the graph of f is a plane.

49. The only point of intersection of the graphs of f(x, y)
and −f(x, y) is the origin.

50. The point (0, 0, 10) is the highest point on the graph of
the function f(x, y) = 10− x2 − y2.

51. The object in 3-space described by x = 2 is

(a) A point (b) A line

(c) A plane (d) Undefined.

12.3 CONTOUR DIAGRAMS

The surface which represents a function of two variables often gives a good idea of the function’s
general behavior—for example, whether it is increasing or decreasing as one of the variables in-
creases. However it is difficult to read numerical values off a surface and it can be hard to see all
of the function’s behavior from a surface. Thus, functions of two variables are often represented by
contour diagrams like the weather map on page 666. Contour diagrams have the additional advan-
tage that they can be extended to functions of three variables.

Topographical Maps

One of the most common examples of a contour diagram is a topographical map like that shown in
Figure 12.32. It gives the elevation in the region and is a good way of getting an overall picture of the
terrain: where the mountains are, where the flat areas are. Such topographical maps are frequently
colored green at the lower elevations and brown, red, or white at the higher elevations.
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Figure 12.32: A topographical map showing the region around South Hamilton, NY
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The curves on a topographical map that separate lower elevations from higher elevations are
called contour lines because they outline the contour or shape of the land.3 Because every point
along the same contour has the same elevation, contour lines are also called level curves or level
sets. The more closely spaced the contours, the steeper the terrain; the more widely spaced the
contours, the flatter the terrain (provided, of course, that the elevation between contours varies by
a constant amount). Certain features have distinctive characteristics. A mountain peak is typically
surrounded by contour lines like those in Figure 12.33. A pass in a range of mountains may have
contours that look like Figure 12.34. A long valley has parallel contour lines indicating the rising
elevations on both sides of the valley (see Figure 12.35); a long ridge of mountains has the same type
of contour lines, only the elevations decrease on both sides of the ridge. Notice that the elevation
numbers on the contour lines are as important as the curves themselves. We usually draw contours
for equally spaced values of z.
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Figure 12.33: Mountain peak
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Figure 12.34: Pass between
two mountains
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Figure 12.35: Long valley
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0
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Figure 12.36: Impossible
contour lines

Notice that two contours corresponding to different elevations cannot cross each other as shown
in Figure 12.36. If they did, the point of intersection of the two curves would have two different
elevations, which is impossible (assuming the terrain has no overhangs).

Corn Production

Contour maps can display information about a function of two variables without reference to a
surface. Consider the effect of weather conditions on US corn production. Figure 12.37 gives corn
production C = f(R, T ) as a function of the total rainfall, R, in inches, and average temperature,
T , in degrees Fahrenheit, during the growing season.4 At the present time, R = 15 inches and
T = 76◦F. Production is measured as a percentage of the present production; thus, the contour
through R = 15, T = 76, has value 100, that is, C = f(15, 76) = 100.

Example 1 Use Figure 12.37 to estimate f(18, 78) and f(12, 76) and interpret in terms of corn production.

110

100
908070

60

5
0

4
0 113

Present

80

78

76

74

72

6 9 12 15 18 21 24

T (temperature in ◦F)

R (rainfall in inches)

Figure 12.37: Corn production, C, as a function of rainfall and temperature

3In fact they are usually not straight lines, but curves. They may also be in disconnected pieces.
4Adapted from S. Beaty and R. Healy, “The Future of American Agriculture,” Scientific American 248, No. 2, February

1983.
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Solution The point with R-coordinate 18 and T -coordinate 78 is on the contour C = 100, so f(18, 78) =
100. This means that if the annual rainfall were 18 inches and the temperature were 78◦F, the country
would produce about the same amount of corn as at present, although it would be wetter and warmer
than it is now.

The point with R-coordinate 12 and T -coordinate 76 is about halfway between the C = 80 and
the C = 90 contours, so f(12, 76) ≈ 85. This means that if the rainfall fell to 12 inches and the
temperature stayed at 76◦, then corn production would drop to about 85% of what it is now.

Example 2 Use Figure 12.37 to describe in words the cross-sections with T and R constant through the point
representing present conditions. Give a common-sense explanation of your answer.

Solution To see what happens to corn production if the temperature stays fixed at 76◦F but the rainfall
changes, look along the horizontal line T = 76. Starting from the present and moving left along
the line T = 76, the values on the contours decrease. In other words, if there is a drought, corn
production decreases. Conversely, as rainfall increases, that is, as we move from the present to the
right along the line T = 76, corn production increases, reaching a maximum of more than 110%

when R = 21, and then decreases (too much rainfall floods the fields).
If, instead, rainfall remains at the present value and temperature increases, we move up the

vertical line R = 15. Under these circumstances corn production decreases; a 2◦ increase causes a
10% drop in production. This makes sense since hotter temperatures lead to greater evaporation and
hence drier conditions, even with rainfall constant at 15 inches. Similarly, a decrease in temperature
leads to a very slight increase in production, reaching a maximum of around 102% when T = 74,
followed by a decrease (the corn won’t grow if it is too cold).

Contour Diagrams and Graphs
Contour diagrams and graphs are two different ways of representing a function of two variables.
How do we go from one to the other? In the case of the topographical map, the contour diagram
was created by joining all the points at the same height on the surface and dropping the curve into
the xy-plane.

How do we go the other way? Suppose we wanted to plot the surface representing the corn
production functionC = f(R, T ) given by the contour diagram in Figure 12.37. Along each contour
the function has a constant value; if we take each contour and lift it above the plane to a height equal
to this value, we get the surface in Figure 12.38.

110
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10090
80

70605040

� 110 contour raised 110 units


100 contour raised 100 units

Figure 12.38: Getting the graph of the corn yield function from the contour diagram

Notice that the raised contours are the curves we get by slicing the surface horizontally. In
general, we have the following result:
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Contour lines, or level curves, are obtained from a surface by slicing it with horizontal planes.
A contour diagram is a collection of level curves labeled with function values.

Finding Contours Algebraically
Algebraic equations for the contours of a function f are easy to find if we have a formula for f(x, y).
Suppose the surface has equation

z = f(x, y).

A contour is obtained by slicing the surface with a horizontal plane with equation z = c. Thus, the
equation for the contour at height c is given by:

f(x, y) = c.

Example 3 Find equations for the contours of f(x, y) = x2 + y2 and draw a contour diagram for f . Relate the
contour diagram to the graph of f .

Solution The contour at height c is given by

f(x, y) = x2
+ y2 = c.

This is a contour only for c ≥ 0, For c > 0 it is a circle of radius
√
c. For c = 0, it is a single point

(the origin). Thus, the contours at an elevation of c = 1, 2, 3, 4, . . . are all circles centered at the
origin of radius 1,

√
2,
√
3, 2, . . .. The contour diagram is shown in Figure 12.39. The bowl–shaped

graph of f is shown in Figure 12.40. Notice that the graph of f gets steeper as we move further
away from the origin. This is reflected in the fact that the contours become more closely packed as
we move further from the origin; for example, the contours for c = 6 and c = 8 are closer together
than the contours for c = 2 and c = 4.

321−1−2−3

3

2

1

−1

−2

−3

x

y

4

4

2

2

6

6

8

8

Figure 12.39: Contour diagram for
f(x, y) = x2 + y2 (even values of c only)

x
y

z

z = x2 + y2

z = 6

z = 2

� x2 + y2 = 6

� x2 + y2 = 2

Figure 12.40: The graph of f(x, y) = x2 + y2

Example 4 Draw a contour diagram for f(x, y) =
√
x2 + y2 and relate it to the graph of f .
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Solution The contour at level c is given by

f(x, y) =
√

x2 + y2 = c.

For c > 0 this is a circle, just as in the previous example, but here the radius is c instead of
√
c.

For c = 0, it is the origin. Thus, if the level c increases by 1, the radius of the contour increases by
1. This means the contours are equally spaced concentric circles (see Figure 12.41) which do not
become more closely packed further from the origin. Thus, the graph of f has the same constant
slope as we move away from the origin (see Figure 12.42), making it a cone rather than a bowl.

1

2

3

x

y

Figure 12.41: A contour diagram for
f(x, y) =

√
x2 + y2

x y

z

Figure 12.42: The graph of
f(x, y) =

√
x2 + y2

In both of the previous examples the level curves are concentric circles because the surfaces
have circular symmetry. Any function of two variables which depends only on the quantity (x2+y2)

has such symmetry: for example, G(x, y) = e−(x2+y2) or H(x, y) = sin(
√

x2 + y2).

Example 5 Draw a contour diagram for f(x, y) = 2x+ 3y + 1.

Solution The contour at level c has equation 2x+ 3y + 1 = c. Rewriting this as y = −(2/3)x+ (c − 1)/3,
we see that the contours are parallel lines with slope −2/3. The y-intercept for the contour at level
c is (c − 1)/3; each time c increases by 3, the y-intercept moves up by 1. The contour diagram is
shown in Figure 12.43.
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y

1 2 3 4 5 6
−3

−2

−1

0

1

2

3

−5

−2

1

4

7

10

13

16

19

Figure 12.43: A contour diagram for f(x, y) = 2x+ 3y + 1
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Contour Diagrams and Tables
Sometimes we can get an idea of what the contour diagram of a function looks like from its table.

Example 6 Relate the values of f(x, y) = x2 − y2 in Table 12.4 to its contour diagram in Figure 12.44.

Table 12.4 Table of values of f(x, y) = x2 − y2

y

3 0 −5 −8 −9 −8 −5 0

2 5 0 −3 −4 −3 0 5

1 8 3 0 −1 0 3 8

0 9 4 1 0 1 4 9

−1 8 3 0 −1 0 3 8

−2 5 0 −3 −4 −3 0 5

−3 0 −5 −8 −9 −8 −5 0

−3 −2 −1 0 1 2 3

x 321−1−2−3

3

2

1

−1

−2

−3

x

y

0

00

0

2

4

2

4

−2

−4

−2

−4

Figure 12.44: Contour map of f(x, y) = x2 − y2

Solution One striking feature of the values in Table 12.4 is the zeros along the diagonals. This occurs because
x2 − y2 = 0 along the lines y = x and y = −x. So the z = 0 contour consists of these two lines.
In the triangular region of the table that lies to the right of both diagonals, the entries are positive.
To the left of both diagonals, the entries are also positive. Thus, in the contour diagram, the positive
contours lie in the triangular regions to the right and left of the lines y = x and y = −x. Further,
the table shows that the numbers on the left are the same as the numbers on the right; thus, each
contour has two pieces, one on the left and one on the right. See Figure 12.44. As we move away
from the origin along the x-axis, we cross contours corresponding to successively larger values. On
the saddle-shaped graph of f(x, y) = x2 − y2 shown in Figure 12.45, this corresponds to climbing
out of the saddle along one of the ridges. Similarly, the negative contours occur in pairs in the top
and bottom triangular regions; the values get more and more negative as we go out along the y-axis.
This corresponds to descending from the saddle along the valleys that are submerged below the
xy-plane in Figure 12.45. Notice that we could also get the contour diagram by graphing the family
of hyperbolas x2 − y2 = 0, ±2, ±4, . . ..

x

y

z

Figure 12.45: Graph of f(x, y) = x2 − y2 showing plane z = 0

Using Contour Diagrams: The Cobb-Douglas Production Function
Suppose you decide to expand your small printing business. Should you start a night shift and hire
more workers? Should you buy more expensive but faster computers which will enable the current
staff to keep up with the work? Or should you do some combination of the two?
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Obviously, the way such a decision is made in practice involves many other considerations—
such as whether you could get a suitably trained night shift, or whether there are any faster comput-
ers available. Nevertheless, you might model the quantity, P , of work produced by your business
as a function of two variables: your total number, N , of workers, and the total value, V , of your
equipment. What might the contour diagram of the production function look like?

Example 7 Explain why the contour diagram in Figure 12.46 does not model the behavior expected of the
production function, whereas the contour diagram in Figure 12.47 does.

N

V

P = 1

P = 2

P = 3

Figure 12.46: Incorrect contours
for printing production

V

N

�
P = 3

�
P = 2

�
P = 1

Figure 12.47: Correct contours for
printing production

Solution Look at Figure 12.46. Notice that the contour P = 1 intersects the N - and the V - axis, suggesting
that it is possible to produce work with no workers or with no equipment; this is unreasonable.
However, no contours in Figure 12.47 intersect either the N - or the V -axis.

In Figure 12.47, fixing V and letting N increase corresponds to moving to the right, cross-
ing contours less and less frequently. Production increases more and more slowly because hiring
additional workers does little to boost production if the machines are already used to capacity.

Similarly, if we fix N and let V increase, Figure 12.47 shows production increasing, but at a
decreasing rate. Buying machines without enough people to use them does not increase production
much. Thus Figure 12.47 fits the expected behavior of the production function best.

Formula for a Production Function

Production functions are often approximated by formulas of the form

P = f(N, V ) = cNαV β

where P is the quantity produced and c, α, and β are positive constants, 0 < α < 1 and 0 < β < 1.

Example 8 Show that the contours of the function P = cNαV β have approximately the shape of the contours
in Figure 12.47.

Solution The contours are the curves where P is equal to a constant value, say P0, that is, where

cNαV β
= P0.

Solving for V we get

V =

(
P0

c

)1/β

N−α/β.

Thus, V is a power function of N with a negative exponent, so its graph has the shape shown in
Figure 12.47.
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The Cobb-Douglas Production Model

In 1928, Cobb and Douglas used a similar function to model the production of the entire US econ-
omy in the first quarter of this century. Using government estimates of P , the total yearly production
between 1899 and 1922, of K , the total capital investment over the same period, and of L, the total
labor force, they found that P was well approximated by the Cobb-Douglas production function

P = 1.01L0.75K0.25.

This function turned out to model the US economy surprisingly well, both for the period on which
it was based, and for some time afterward.

Exercises and Problems for Section 12.3
Exercises

In Exercises 1–4, sketch a possible contour diagram for each
surface, marked with reasonable z-values. (Note: There are
many possible answers.)

1.

x y

z 2.

x

y

z

3.

x

y

z 4.

x
y

z

In Exercises 5–13, sketch a contour diagram for the function
with at least four labeled contours. Describe in words the con-
tours and how they are spaced.

5. f(x, y) = x+ y 6. f(x, y) = 3x+ 3y

7. f(x, y) = x2 + y2 8. f(x, y) = −x2−y2+1

9. f(x, y) = xy 10. f(x, y) = y − x2

11. f(x, y) = x2 + 2y2 12. f(x, y) =
√

x2 + 2y2

13. f(x, y) = cos
√

x2 + y2

14. Let f(x, y) = 3x2y + 7x+ 20. Find an equation for the
contour that goes through the point (5, 10).

15. (a) For z = f(x, y) = xy, sketch and label the level
curves z = ±1, z = ±2.

(b) Sketch and label cross-sections of f with x = ±1,
x = ±2.

(c) The surface z = xy is cut by a vertical plane con-
taining the line y = x. Sketch the cross-section.

16. Match the surfaces (a)–(e) in Figure 12.48 with the con-
tour diagrams (I)–(V) in Figure 12.49.

x y

z(a)

x y

z(b)

x

y

z(c)

x

y

z(d)

x

y

z
(e)

Figure 12.48



12.3 CONTOUR DIAGRAMS 689

y

x

−3

−1

0

1

3

(I) y

x
1

3

(II)

x

y

�

� 0

−4(III) y

x

�

�

1

6

(IV)

y

x
1 6 1

(V)

Figure 12.49

17. Match Tables 12.5–12.8 with contour diagrams (I)–(IV)
in Figure 12.50.

Table 12.5

y\x −1 0 1

−1 2 1 2

0 1 0 1

1 2 1 2

Table 12.6

y\x −1 0 1

−1 0 1 0

0 1 2 1

1 0 1 0

Table 12.7

y\x −1 0 1

−1 2 0 2

0 2 0 2

1 2 0 2

Table 12.8

y\x −1 0 1

−1 2 2 2

0 0 0 0

1 2 2 2

(I)

x

y

3
2

1

0

1
2
3

(II)

x

y

0

1
2
3
4

(III)

x

y

2

1
0
−
1

−
2

(IV)

x

y

3 2 1 0 1 2 3

Figure 12.50

18. Figure 12.51 shows a graph of f(x, y) = (sin x)(cos y)
for −2π ≤ x ≤ 2π, −2π ≤ y ≤ 2π. Use the surface
z = 1/2 to sketch the contour f(x, y) = 1/2.

x
y

z

Figure 12.51

Problems

19. Total sales, Q, of a product are a function of its price and
the amount spent on advertising. Figure 12.52 shows a
contour diagram for total sales. Which axis corresponds
to the price of the product and which to the amount spent
on advertising? Explain.

1 2 3 4 5 6

1

2

3

4

5
6

� Q = 5000

� Q = 4000

� Q = 3000

Q = 2000

x

y

Figure 12.52

20. Figure 12.53 shows contours of f(x, y) = 100ex−50y2.
Find the values of f on the contours. They are equally
spaced multiples of 10.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

Figure 12.53
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21. Match the functions (a)–(f) with the level curves (I)–(VI):

(a) f(x, y) = x2 − y2 − 2x+ 4y − 3
(b) g(x, y) = x2 + y2 − 2x− 4y + 15
(c) h(x, y) = −x2 − y2 + 2x+ 4y − 8
(d) j(x, y) = −x2 + y2 + 2x− 4y + 3

(e) k(x, y) =
√

(x− 1)2 + (y − 2)2

(f) l(x, y) = −
√

(x− 1)2 + (y − 2)2

−7

−6

−5

−4

x

y(I)

2

1.5

1

0.5

x

y(II)

−2
−1

0

−1
−2

x

y(III)

2
1

0

1
2

x

y(IV)

−2

−1.5

−1

−0.5

x

y(V)

14
13
12
11

x

y(VI)

22. The wind chill tells you how cold it feels as a function
of the air temperature and wind speed. Figure 12.54 is a
contour diagram of wind chill (◦F).

(a) If the wind speed is 15 mph, what temperature feels
like −20◦F?

(b) Estimate the wind chill if the temperature is 0◦F and
the wind speed is 10 mph.

(c) Humans are at extreme risk when the wind chill is
below −50◦F. If the temperature is −20◦F, estimate
the wind speed at which extreme risk begins.

(d) If the wind speed is 15 mph and the temperature
drops by 20◦F, approximately how much colder do
you feel?

−60 −40 −20 0 20 40

10

20

30

−80

−60
−40

−20 0 20

air temp, ◦F

wind speed, mph

Figure 12.54

23. Figure 12.55 shows contour diagrams of f(x, y)
and g(x, y). Sketch the smooth curve with equation
f(x, y) = g(x, y).

10

10

2

4

6

8

10 12 14 16 18

0

2

4

6

8

10

12

14

16

x

y

Figure 12.55: Black: f(x, y). Blue: g(x, y)

24. Figure 12.56 shows the level curves of the temperature H
in a room near a recently opened window. Label the three
level curves with reasonable values of H if the house is
in the following locations.

(a) Minnesota in winter (where winters are harsh).
(b) San Francisco in winter (where winters are mild).
(c) Houston in summer (where summers are hot).
(d) Oregon in summer (where summers are mild).

Window

Room

Figure 12.56

25. You are in a room 30 feet long with a heater at one end.
In the morning the room is 65◦F. You turn on the heater,
which quickly warms up to 85◦F. Let H(x, t) be the tem-
perature x feet from the heater, t minutes after the heater
is turned on. Figure 12.57 shows the contour diagram for
H . How warm is it 10 feet from the heater 5 minutes after
it was turned on? 10 minutes after it was turned on?
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5 10 15 20 25 30
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20
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40
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x (feet)

85

80

75

70

65

t (minutes)

Figure 12.57

26. Using the contour diagram in Figure 12.57, sketch
the graphs of the one-variable functions H(x, 5) and
H(x, 20). Interpret the two graphs in practical terms, and
explain the difference between them.

27. Figure 12.58 shows a contour map of a hill with two
paths, A and B.

(a) On which path, A or B, will you have to climb more
steeply?

(b) On which path, A or B, will you probably have
a better view of the surrounding countryside? (As-
sume trees do not block your view.)

(c) Alongside which path is there more likely to be a
stream?

A

�

B

�

z = 100

z = 200

z = 300
Goal

Figure 12.58

28. Figure 12.59 is a contour diagram of the monthly pay-
ment on a 5-year car loan as a function of the interest
rate and the amount you borrow. The interest rate is 13%
and you borrow $6000 for a used car.

(a) What is your monthly payment?
(b) If interest rates drop to 11%, how much more can

you borrow without increasing your monthly pay-
ment?

(c) Make a table of how much you can borrow, without
increasing your monthly payment, as a function of
the interest rate.

2,000

3,000

4,000

5,000

6,000

7,000

8,000

1 3 5 7 9 11 13 15

60

80

100

120

140

loan amount ($)

interest
rate (%)

Figure 12.59

29. Hiking on a level trail going due east, you decide to leave
the trail and climb toward the mountain on your left. The
farther you go along the trail before turning off, the gen-
tler the climb. Sketch a possible topographical map show-
ing the elevation contours.

30. Match the functions (a)–(d) with the shapes of their level
curves (I)–(IV). Sketch each contour diagram.

(a) f(x, y) = x2 (b) f(x, y) = x2 + 2y2

(c) f(x, y) = y − x2 (d) f(x, y) = x2 − y2

I. Lines II. Parabolas
III. Hyperbolas IV. Ellipses

31. Figure 12.60 shows the density of the fox population P
(in foxes per square kilometer) for southern England.
Draw two different cross-sections along a north-south
line and two different cross-sections along an east-west
line of the population density P .
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Figure 12.60

32. A manufacturer sells two goods, one at a price of $3000 a
unit and the other at a price of $12,000 a unit. A quantity
q1 of the first good and q2 of the second good are sold at
a total cost of $4000 to the manufacturer.

(a) Express the manufacturer’s profit, π, as a function of
q1 and q2.

(b) Sketch curves of constant profit in the q1q2-plane for
π = 10,000, π = 20,000, and π = 30,000 and the
break-even curve π = 0.
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33. Match each Cobb-Douglas production function (a)–(c)
with a graph in Figure 12.61 and a statement (D)–(G).

(a) F (L,K) = L 0.25K 0.25

(b) F (L,K) = L 0.5K 0.5

(c) F (L,K) = L 0.75K 0.75

(D) Tripling each input triples output.
(E) Quadrupling each input doubles output.
(G) Doubling each input almost triples output.

1 2 3

1

2

3

F = 1

F = 2

F = 3

L

K(I)

1 2 3

1

2

3

F = 1

F = 1.5

L

K(II)

1 2 3

1

2

3

F = 4

F = 3
F = 2
F = 1
L

K(III)

Figure 12.61

34. A Cobb-Douglas production function has the form

P = cLαKβ with α, β > 0.

What happens to production if labor and capital are both
scaled up? For example, does production double if both
labor and capital are doubled? Economists talk about

• increasing returns to scale if doubling L and K
more than doubles P ,

• constant returns to scale if doubling L and K ex-
actly doubles P ,

• decreasing returns to scale if doubling L and K less
than doubles P .

What conditions on α and β lead to increasing, constant,
or decreasing returns to scale?

35. (a) Match f(x, y) = x0.2y0.8 and g(x, y) = x0.8y0.2

with the level curves in Figures (I) and (II). All
scales on the axes are the same.

(b) Figure (III) shows the level curves of h(x, y) =
xαy1−α for 0 < α < 1. Find the range of possi-
ble values for α. Again, the scales are the same on
both axes.

x

y(I)

x

y(II)

x

y(III)

36. Match the functions (a)–(d) with the contour diagrams in
Figures I–IV.

(a) f(x, y) = 0.7 ln x+ 0.3 ln y
(b) g(x, y) = 0.3 ln x+ 0.7 ln y
(c) h(x, y) = 0.3x2 + 0.7y2

(d) j(x, y) = 0.7x2 + 0.3y2

4

4

x

y(I)

4

4

x

y(II)

4

4

x

y(III)

4

4

x

y(IV)

37. Figure 12.62 is the contour diagram of f(x, y). Sketch
the contour diagram of each of the following functions.

(a) 3f(x, y) (b) f(x, y)− 10

(c) f(x− 2, y − 2) (d) f(−x, y)

−2
−1
0
1
2

x

y

Figure 12.62
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38. Figure 12.63 shows part of the contour diagram of
f(x, y). Complete the diagram for x < 0 if

(a) f(−x, y) = f(x, y) (b) f(−x, y) = −f(x, y)

0
1

2
3
4
5 x

y

Figure 12.63

39. Let f(x, y) = x2−y2 = (x−y)(x+y). Use the factored
form to sketch the contour f(x, y) = 0 and to find the re-
gions in the xy-plane where f(x, y) > 0 and the regions
where f(x, y) < 0. Explain how this sketch shows that
the graph of f(x, y) is saddle-shaped at the origin.

40. Use Problem 39 to find a formula for a “monkey sad-
dle” surface z = g(x, y) which has three regions with
g(x, y) > 0 and three with g(x, y) < 0.

41. Use the contour diagram for f(x, t) = cos t sin x in Fig-
ure 12.64 to describe in words the cross-sections of f

with t fixed and the cross-sections of f with x fixed. Ex-
plain what you see in terms of the behavior of the string.
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π
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−
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0

−
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5

Figure 12.64
42. The power P produced by a windmill is proportional to

the square of the diameter d of the windmill and to the
cube of the speed v of the wind.5

(a) Write a formula for P as a function of d and v.
(b) A windmill generates 100 kW of power at a cer-

tain wind speed. If a second windmill is built hav-
ing twice the diameter of the original, what fraction
of the original wind speed is needed by the second
windmill to produce 100 kW?

(c) Sketch a contour diagram for P .

Strengthen Your Understanding

In Problems 43–44, explain what is wrong with the statement.

43. A contour diagram for z = f(x, y) is a surface in xyz-
space.

44. The functions f(x, y) =
√

x2 + y2 and g(x, y) =
x2 + y2 have the same contour diagram.

In Problems 45–46, give an example of:

45. A function f(x, y) whose z = 10 contour consists of
two or more parallel lines.

46. A function whose contours are all parabolas.

Decide if the statements in Problems 47–51 must be true,
might be true, or could not be true. The function z = f(x, y)
is defined everywhere.

47. The level curves corresponding to z = 1 and z = −1
cross at the origin.

48. The level curve z = 1 consists of the circle x2 + y2 = 2
and the circle x2 + y2 = 3, but no other points.

49. The level curve z = 1 consists of two lines which inter-
sect at the origin.

50. If z = e−(x2+y2), there is a level curve for every value
of z.

51. If z = e−(x2+y2), there is a level curve through every
point (x, y).

Are the statements in Problems 52–59 true or false? Give rea-
sons for your answer.

52. Two isotherms representing distinct temperatures on a
weather map cannot intersect.

53. A weather map can have two isotherms representing the
same temperature that do not intersect.

54. The contours of the function f(x, y) = y2 + (x − 2)2

are either circles or a single point.

55. If the contours of g(x, y) are concentric circles, then the
graph of g is a cone.

56. If the contours for f(x, y) get closer together in a certain
direction, then f is increasing in that direction.

57. If all of the contours of f(x, y) are parallel lines, then the
graph of f is a plane.

58. If the f = 10 contour of the function f(x, y) is identi-
cal to the g = 10 contour of the function g(x, y), then
f(x, y) = g(x, y) for all (x, y).

59. The f = 5 contour of the function f(x, y) is identical to
the g = 0 contour of the function g(x, y) = f(x, y)−5.

5From www.ecolo.org/documents/documents in english/WindmillFormula.htm, accessed on October 9, 2011.
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12.4 LINEAR FUNCTIONS

What is a Linear Function of Two Variables?
Linear functions played a central role in one-variable calculus because many one-variable functions
have graphs that look like a line when we zoom in. In two-variable calculus, a linear function is one
whose graph is a plane. In Chapter 14, we see that many two-variable functions have graphs which
look like planes when we zoom in.

What Makes a Plane Flat?

What makes the graph of the function z = f(x, y) a plane? Linear functions of one variable have
straight line graphs because they have constant slope. On a plane, the situation is a bit more com-
plicated. If we walk around on a tilted plane, the slope is not always the same: it depends on the
direction in which we walk. However, at every point on the plane, the slope is the same as long as
we choose the same direction. If we walk parallel to the x-axis, we always find ourselves walking
up or down with the same slope;6 the same is true if we walk parallel to the y-axis. In other words,
the slope ratios Δz/Δx (with y fixed) and Δz/Δy (with x fixed) are each constant.

Example 1 A plane cuts the z-axis at z = 5 and has slope 2 in the x-direction and slope −1 in the y-direction.
What is the equation of the plane?

Solution Finding the equation of the plane means constructing a formula for the z-coordinate of the point on
the plane directly above the point (x, y) in the xy-plane. To get to that point start from the point
above the origin, where z = 5. Then walk x units in the x-direction. Since the slope in the x-
direction is 2, the height increases by 2x. Then walk y units in the y-direction; since the slope in the
y-direction is −1, the height decreases by y units. Since the height has changed by 2x− y units, the
z-coordinate is 5 + 2x− y. Thus, the equation for the plane is

z = 5 + 2x− y.

For any linear function, if we know its value at a point (x0, y0), its slope in the x-direction,
and its slope in the y-direction, then we can write the equation of the function. This is just like the
equation of a line in the one-variable case, except that there are two slopes instead of one.

If a plane has slope m in the x-direction, has slope n in the y-direction, and passes through
the point (x0, y0, z0), then its equation is

z = z0 +m(x− x0) + n(y − y0).

This plane is the graph of the linear function

f(x, y) = z0 +m(x− x0) + n(y − y0).

If we write c = z0 −mx0 − ny0, then we can write f(x, y) in the equivalent form

f(x, y) = c+mx+ ny.

Just as in 2-space a line is determined by two points, so in 3-space a plane is determined by
three points, provided they do not lie on a line.

6To be precise, walking in a vertical plane parallel to the x-axis while rising or falling with the plane you are on.
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Example 2 Find the equation of the plane passing through the points (1, 0, 1), (1,−1, 3), and (3, 0,−1).

Solution The first two points have the same x-coordinate, so we use them to find the slope of the plane
in the y-direction. As the y-coordinate changes from 0 to −1, the z-coordinate changes from 1

to 3, so the slope in the y-direction is n = Δz/Δy = (3 − 1)/(−1 − 0) = −2. The first and
third points have the same y-coordinate, so we use them to find the slope in the x-direction; it is
m = Δz/Δx = (−1− 1)/(3− 1) = −1. Because the plane passes through (1, 0, 1), its equation is

z = 1− (x− 1)− 2(y − 0) or z = 2− x− 2y.

You should check that this equation is also satisfied by the points (1,−1, 3) and (3, 0,−1).

Example 2 was made easier by the fact that two of the points had the same x-coordinate and two
had the same y-coordinate. An alternative method, which works for any three points, is to substitute
the x, y, and z-values of each of the three points into the equation z = c+mx+ ny. The resulting
three equations in c, m, n are then solved simultaneously.

Linear Functions from a Numerical Point of View
To avoid flying planes with empty seats, airlines sell some tickets at full price and some at a discount.
Table 12.9 shows an airline’s revenue in dollars from tickets sold on a particular route, as a function
of the number of full-price tickets sold, f , and the number of discount tickets sold, d.

Table 12.9 Revenue from ticket sales (dollars)

Discount
tickets (d)

Full-price tickets (f )

100 200 300 400

200 39,700 63,600 87,500 111,400

400 55,500 79,400 103,300 127,200

600 71,300 95,200 119,100 143,000

800 87,100 111,000 134,900 158,800

1000 102,900 126,800 150,700 174,600

In every column, the revenue jumps by $15,800 for each extra 200 discount tickets. Thus, each
column is a linear function of the number of discount tickets sold. In addition, every column has the
same slope, 15,800/200 = 79 dollars/ticket. This is the price of a discount ticket. Similarly, each
row is a linear function and all the rows have the same slope, 239, which is the price in dollars of a
full-fare ticket. Thus, R is a linear function of f and d, given by:

R = 239f + 79d.

We have the following general result:

A linear function can be recognized from its table by the following features:
• Each row and each column is linear.

• All the rows have the same slope.

• All the columns have the same slope (although the slope of the rows and the slope of the
columns are generally different).
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Example 3 The table contains values of a linear function. Fill in the blank and give a formula for the function.

x\y 1.5 2.0

2 0.5 1.5

3 −0.5 ?

Solution In the first column the function decreases by 1 (from 0.5 to −0.5) as x goes from 2 to 3. Since
the function is linear, it must decrease by the same amount in the second column. So the missing
entry must be 1.5 − 1 = 0.5. The slope of the function in the x-direction is −1. The slope in the
y-direction is 2, since in each row the function increases by 1 when y increases by 0.5. From the
table we get f(2, 1.5) = 0.5. Therefore, the formula is

f(x, y) = 0.5− (x− 2) + 2(y − 1.5) = −0.5− x+ 2y.

What Does the Contour Diagram of a Linear Function Look Like?
The formula for the airline revenue function in Table 12.9 is R = 239f + 79d, where f is the
number of full-fares and d is the number of discount fares sold.

Notice that the contours of this function in Figure 12.65 are parallel straight lines. What is the
practical significance of the slope of these contour lines? Consider the contour R = 100,000; that
means we are looking at combinations of ticket sales that yield $100,000 in revenue. If we move
down and to the right on the contour, the f -coordinate increases and the d-coordinate decreases,
so we sell more full-fares and fewer discount fares. This is because to receive a fixed revenue of
$100,000, we must sell more full-fares if we sell fewer discount fares. The exact trade-off depends
on the slope of the contour; the diagram shows that each contour has a slope of about −3. This
means that for a fixed revenue, we must sell three discount fares to replace one full-fare. This can
also be seen by comparing prices. Each full fare brings in $239; to earn the same amount in discount
fares we need to sell 239/79 ≈ 3.03 ≈ 3 fares. Since the price ratio is independent of how many of
each type of fare we sell, this slope remains constant over the whole contour map; thus, the contours
are all parallel straight lines.

Notice also that the contours are evenly spaced. Thus, no matter which contour we are on, a
fixed increase in one of the variables causes the same increase in the value of the function. In terms
of revenue, no matter how many fares we have sold, an extra fare, whether full or discount, brings
the same revenue as before.
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Figure 12.65: Revenue as a function of full
and discount fares, R = 239f + 79d
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Figure 12.66: Contour map of linear
function f(x, y)
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Example 4 Find the equation of the linear function whose contour diagram is in Figure 12.66.

Solution Suppose we start at the origin on the z = 0 contour. Moving 2 units in the y-direction takes us to
the z = 6 contour; so the slope in the y-direction is Δz/Δy = 6/2 = 3. Similarly, a move of 2
in the x-direction from the origin takes us to the z = 2 contour, so the slope in the x-direction is
Δz/Δx = 2/2 = 1. Since f(0, 0) = 0, we have f(x, y) = x+ 3y.

Exercises and Problems for Section 12.4
Exercises

Exercises 1–2 each contain a partial table of values for a linear
function. Fill in the blanks.

1.
x\y 0.0 1.0

0.0 1.0

2.0 3.0 5.0

2.
x\y −1.0 0.0 1.0

2.0 4.0

3.0 3.0 5.0

In Exercises 3–6, could the tables of values represent a linear
function?

3.

x

y

0 1 2

0 0 1 4

1 1 0 1

2 4 1 0

4.

x

y

0 1 2

0 10 13 16

1 6 9 12

2 2 5 8

5.

x

y

0 1 2

0 0 5 10

1 2 7 12

2 4 9 14

6.

x

y

0 1 2

0 5 7 9

1 6 9 12

2 7 11 15

In Exercises 7–8, could the contour diagram represent a linear
function?

7.

28

24

20

16

12

8

4

0

−4

−8

x

y

8.

16
14

12
10

8
6

4

2

0

2

x

y

9. Find the equation of the linear function z = c+mx+ny
whose graph contains the points (0, 0, 0), (0, 2,−1), and
(−3, 0,−4).

10. Find the linear function whose graph is the plane through
the points (4, 0, 0), (0, 3, 0) and (0, 0, 2).

11. Find an equation for the plane containing the line in the
xy-plane where y = 1, and the line in the xz-plane
where z = 2.

12. Find the equation of the linear function z = c+mx+ny
whose graph intersects the xz-plane in the line z =
3x+ 4 and intersects the yz-plane in the line z = y+ 4.

13. Suppose that z is a linear function of x and y with slope
2 in the x-direction and slope 3 in the y-direction.

(a) A change of 0.5 in x and −0.2 in y produces what
change in z?

(b) If z = 2 when x = 5 and y = 7, what is the value
of z when x = 4.9 and y = 7.2?

14. (a) Find a formula for the linear function whose graph is
a plane passing through point (4, 3,−2) with slope
5 in the x-direction and slope −3 in the y-direction.

(b) Sketch the contour diagram for this function.
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Problems

15. A store sells CDs at one price and DVDs at another price.
Figure 12.67 shows the revenue (in dollars) of the music
store as a function of the number, c, of CDs and the num-
ber, d, of DVDs that it sells. What is the price of a CD?
What is the price of a DVD?

50 100 150 200

100

200

300

400

c

d

1000

2000

3000

4000

5000

Figure 12.67

16. The charge, C, in dollars, to use an Internet service is a
function of m, the number of months of use, and t, the
total number of minutes on-line:

C = f(m, t) = 35 + 15m+ 0.05t.

(a) Is f a linear function?
(b) Give units for the coefficients of m and t, and inter-

pret them as charges.
(c) Interpret the intercept 35 as a charge.
(d) Find f(3, 800) and interpret your answer.

17. A manufacturer makes two products out of two raw mate-
rials. Let q1, q2 be the quantities sold of the two products,
p1, p2 their prices, and m1, m2 the quantities purchased
of the two raw materials. Which of the following func-
tions do you expect to be linear, and why? In each case,
assume that all variables except the ones mentioned are
held fixed.

(a) Expenditure on raw materials as a function of m1

and m2.
(b) Revenue as a function of q1 and q2.
(c) Revenue as a function of p1 and q1.

Problems 18–20 concern Table 12.10, which gives the number
of calories burned per minute for someone roller-blading, as a
function of the person’s weight and speed.7

Table 12.10

Calories burned per minute

Weight 8 mph 9 mph 10 mph 11 mph

120 lbs 4.2 5.8 7.4 8.9

140 lbs 5.1 6.7 8.3 9.9

160 lbs 6.1 7.7 9.2 10.8

180 lbs 7.0 8.6 10.2 11.7

200 lbs 7.9 9.5 11.1 12.6

18. Does the data in Table 12.10 look approximately linear?
Give a formula for B, the number of calories burned per
minute in terms of the weight, w, and the speed, s. Does
the formula make sense for all weights or speeds?

19. Who burns more total calories to go 10 miles: A 120 lb
person going 10 mph or a 180 lb person going 8 mph?
Which of these two people burns more calories per pound
for the 10-mile trip?

20. Use Problem 18 to give a formula for P , the number of
calories burned per pound, in terms of w and s, for a per-
son weighing w lbs roller-blading 10 miles at s mph.

For Problems 21–22, find possible equations for linear func-
tions with the given contour diagrams.

21.
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22.
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For Problems 23–24, find an equation for the linear function
with the given values.

23.
x\y −1 0 1 2

0 1.5 1 0.5 0

1 3.5 3 2.5 2

2 5.5 5 4.5 4

3 7.5 7 6.5 6

24.
x\y 10 20 30 40

100 3 6 9 12

200 2 5 8 11

300 1 4 7 10

400 0 3 6 9

7From the August 28, 1994, issue of Parade Magazine.
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It is difficult to graph a linear function by hand. One method
that works if the x, y, and z-intercepts are positive is to plot
the intercepts and join them by a triangle as shown in Fig-
ure 12.68; this shows the part of the plane in the octant where
x ≥ 0, y ≥ 0, z ≥ 0. If the intercepts are not all positive,
the same method works if the x, y, and z-axes are drawn from
a different perspective. Use this method to graph the linear
functions in Problems 25–28.

x y

z

Figure 12.68

25. z = 2− 2x+ y 26. z = 2− x− 2y

27. z = 4 + x− 2y 28. z = 6− 2x− 3y

29. Let f be the linear function f(x, y) = c + mx + ny,
where c,m, n are constants and n �= 0.

(a) Show that all the contours of f are lines of slope
−m/n.

(b) For all x and y, show f(x+ n, y −m) = f(x, y).
(c) Explain the relation between parts (a) and (b).

Problems 30–31 refer to the linear function z = f(x, y)
whose values are in Table 12.11.

Table 12.11

x

y

4 6 8 10 12

5 3 6 9 12 15

10 7 10 13 16 19

15 11 14 17 20 23

20 15 18 21 24 27

25 19 22 25 28 31

30. Each column of Table 12.11 is linear with the same slope,
m = Δz/Δx = 4/5. Each row is linear with the same
slope, n = Δz/Δy = 3/2. We now investigate the slope
obtained by moving through the table along lines that are
neither rows nor columns.

(a) Move down the diagonal of the table from the up-
per left corner (z = 3) to the lower right corner
(z = 31). What do you notice about the changes
in z? Now move diagonally from z = 6 to z = 27.
What do you notice about the changes in z now?

(b) Move in the table along a line right one step, up two
steps from z = 19 to z = 9. Then move in the same
direction from z = 22 to z = 12. What do you no-
tice about the changes in z?

(c) Show that Δz = mΔx+ nΔy. Use this to explain
what you observed in parts (a) and (b).

31. If we hold y fixed, that is we keep Δy = 0, and step in
the positive x-direction, we get the x-slope, m. If instead
we keep Δx = 0 and step in the positive y-direction, we
get the y-slope, n. Fix a step in which neither Δx = 0
nor Δy = 0. The slope in the Δx,Δy direction is

Slope =
Rise

Run
=

Δz

Length of step

=
Δz√

(Δx)2 + (Δy)2
.

(a) Compute the slopes for the linear function in Ta-
ble 12.11 in the direction of Δx = 5,Δy = 2.

(b) Compute the slopes for the linear function in Ta-
ble 12.11 in the direction of Δx = −10,Δy = 2.

32. For the contour diagrams (I)–(IV) on −2 ≤ x, y ≤ 2,
pick the corresponding function.

f(x, y) = 2x+ 3y + 10 k(x, y) = −2x+ 3y + 12

g(x, y) = 2x+ 3y + 60 m(x, y) = −2x+ 3y + 60

h(x, y) = 2x− 3y + 12 n(x, y) = −2x− 3y + 14

j(x, y) = 2x− 3y + 60 p(x, y) = −2x− 3y + 60

10
12

14
x

y(I)

12
10

8

x

y(II)

12
14

16

x

y(III)

64
62

60

x

y(IV)

Strengthen Your Understanding

In Problems 33–34, explain what is wrong with the statement.

33. If the contours of f are all parallel lines, then f is linear.

34. A function f(x, y) with linear cross-sections for x fixed
and linear cross-sections for y fixed is a linear function.
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In Problems 35–36, give an example of:

35. A table of values, with three rows and three columns, for
a nonlinear function that is linear in each row and in each
column.

36. A linear function whose contours are lines with slope 2.

Are the statements in Problems 37–48 true or false? Give rea-
sons for your answer.

37. The planes z = 3 + 2x + 4y and z = 5 + 2x + 4y
intersect.

38. The function represented in Table 12.12 is linear.

Table 12.12

u\v 1.1 1.2 1.3 1.4

3.2 11.06 12.06 13.06 14.06

3.4 11.75 12.82 13.89 14.96

3.6 12.44 13.58 14.72 15.86

3.8 13.13 14.34 15.55 16.76

4.0 13.82 15.10 16.38 17.66

39. Contours of f(x, y) = 3x+ 2y are lines with slope 3.

40. If f is linear, then the contours of f are parallel lines.

41. If f(0, 0) = 1, f(0, 1) = 4, f(0, 3) = 5, then f cannot
be linear.

42. The graph of a linear function is always a plane.

43. The cross-section x = c of a linear function f(x, y) is
always a line.

44. There is no linear function f(x, y) with a graph parallel
to the xy-plane.

45. There is no linear function f(x, y) with a graph parallel
to the xz-plane.

46. A linear function f(x, y) = 2x+3y−5, has exactly one
point (a, b) satisfying f(a, b) = 0.

47. In a table of values of a linear function, the columns have
the same slope as the rows.

48. There is exactly one linear function f(x, y) whose f = 0
contour is y = 2x+ 1.

12.5 FUNCTIONS OF THREE VARIABLES

In applications of calculus, functions of any number of variables can arise. The density of matter in
the universe is a function of three variables, since it takes three numbers to specify a point in space.
Models of the US economy often use functions of ten or more variables. We need to be able to apply
calculus to functions of arbitrarily many variables.

One difficulty with functions of more than two variables is that it is hard to visualize them. The
graph of a function of one variable is a curve in 2-space, the graph of a function of two variables is
a surface in 3-space, so the graph of a function of three variables would be a solid in 4-space. Since
we can’t easily visualize 4-space, we won’t use the graphs of functions of three variables. On the
other hand, it is possible to draw contour diagrams for functions of three variables, only now the
contours are surfaces in 3-space.

Representing a Function of Three Variables Using a Family of Level Surfaces
A function of two variables, f(x, y), can be represented by a family of level curves of the form
f(x, y) = c for various values of the constant, c.

A level surface, or level set of a function of three variables, f(x, y, z), is a surface of the
form f(x, y, z) = c, where c is a constant. The function f can be represented by the family
of level surfaces obtained by allowing c to vary.

The value of the function, f , is constant on each level surface.

Example 1 The temperature, in ◦C, at a point (x, y, z) is given by T = f(x, y, z) = x2 + y2 + z2. What do the
level surfaces of the function f look like and what do they mean in terms of temperature?

Solution The level surface corresponding to T = 100 is the set of all points where the temperature is 100◦C.
That is, where f(x, y, z) = 100, so

x2
+ y2 + z2 = 100.
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This is the equation of a sphere of radius 10, with center at the origin. Similarly, the level surface
corresponding to T = 200 is the sphere with radius

√
200. The other level surfaces are concentric

spheres. The temperature is constant on each sphere. We may view the temperature distribution
as a set of nested spheres, like concentric layers of an onion, each one labeled with a different
temperature, starting from low temperatures in the middle and getting hotter as we go out from the
center. (See Figure 12.69.) The level surfaces become more closely spaced as we move farther from
the origin because the temperature increases more rapidly the farther we get from the origin.

y

z

x �

T = 100◦C

�T = 200◦C



T = 300◦C

Figure 12.69: Level surfaces of T = f(x, y, z) = x2 + y2 + z2, each one having a constant temperature

Example 2 What do the level surfaces of f(x, y, z) = x2 + y2 and g(x, y, z) = z − y look like?

Solution The level surface of f corresponding to the constant c is the surface consisting of all points satisfying
the equation

x2
+ y2 = c.

Since there is no z-coordinate in the equation, z can take any value. For c > 0, this is a circular
cylinder of radius

√
c around the z-axis. The level surfaces are concentric cylinders; on the narrow

ones near the z-axis, f has small values; on the wider ones, f has larger values. See Figure 12.70.
The level surface of g corresponding to the constant c is the plane

z − y = c.

Since there is no x variable in the equation, these plane are parallel to the x-axis and cut the yz-plane
in the line z − y = c. See Figure 12.71.
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�
c = 2

�

c = 3

Figure 12.70: Level surfaces of f(x, y, z) = x2 + y2
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� c = 2
� c = 1

� c = 0

Figure 12.71: Level surfaces of g(x, y, z) = z − y

Example 3 What do the level surfaces of f(x, y, z) = x2 + y2 − z2 look like?

Solution In Section 12.3, we saw that the two-variable quadratic function g(x, y) = x2 − y2 has a saddle-
shaped graph and three types of contours. The contour equation x2 − y2 = c gives a hyperbola
opening right-left when c > 0, a hyperbola opening up-down when c < 0, and a pair of intersecting
lines when c = 0. Similarly, the three-variable quadratic function f(x, y, z) = x2 + y2 − z2 has
three types of level surfaces depending on the value of c in the equation x2 + y2 − z2 = c.
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Suppose that c > 0, say c = 1. Rewrite the equation as x2 + y2 = z2 + 1 and think of what
happens as we cut the surface perpendicular to the z-axis by holding z fixed. The result is a circle,
x2 + y2 = constant, of radius at least 1 (since the constant z2 + 1 ≥ 1). The circles get larger as z
gets larger. If we take the x = 0 cross-section instead, we get the hyperbola y2 − z2 = 1. The result
is shown in Figure 12.75, with a = b = c = 1.

Suppose instead c < 0, say c = −1. Then the horizontal cross-sections of x2 + y2 = z2 − 1

are again circles except that the radii shrink to 0 at z = ±1 and between z = −1 and z = 1 there
are no cross-sections at all. The result is shown in Figure 12.76 with a = b = c = 1.

When c = 0, we get the equation x2 + y2 = z2. Again the horizontal cross-sections are circles,
this time with the radius shrinking down to exactly 0 when z = 0. The resulting surface, shown in
Figure 12.77 with a = b = c = 1, is the cone z =

√
x2 + y2 studied in Section 12.3, together with

the lower cone z = −
√
x2 + y2.

A Catalog of Surfaces
For later reference, here is a small catalog of the surfaces we have encountered.

x

y

z

Figure 12.72: Elliptical

paraboloid z = x2

a2 + y2

b2

x
y

z

Figure 12.73: Hyperbolic

paraboloid z = −x2

a2 + y2

b2

x y

z

Figure 12.74: Ellipsoid
x2

a2 + y2

b2
+ z2

c2
= 1

x y

z

Figure 12.75: Hyperboloid of

one sheet x2

a2 + y2

b2
− z2

c2
= 1

x y

z

Figure 12.76: Hyperboloid of two

sheets x2

a2 + y2

b2
− z2

c2
= −1

x y

z

Figure 12.77: Cone
x2

a2 + y2

b2
− z2

c2
= 0

x

z

y

Figure 12.78: Plane
ax+ by + cz = d

x y

z

Figure 12.79: Cylindrical
surface x2 + y2 = a2

x
y

z

Figure 12.80: Parabolic
cylinder y = ax2

(These are viewed as equations in three variables x, y, and z)
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How Surfaces Can Represent Functions of Two Variables and Functions of Three Variables
You may have noticed that we have used surfaces to represent functions in two different ways. First,
we used a single surface to represent a two-variable function f(x, y). Second, we used a family of
level surfaces to represent a three-variable function g(x, y, z). These level surfaces have equation
g(x, y, z) = c.

What is the relation between these two uses of surfaces? For example, consider the function

f(x, y) = x2
+ y2 + 3.

Define
g(x, y, z) = x2

+ y2 + 3− z

The points on the graph of f satisfy z = x2 + y2 + 3, so they also satisfy x2 + y2 + 3 − z = 0.
Thus the graph of f is the same as the level surface

g(x, y, z) = x2
+ y2 + 3− z = 0.

In general, we have the following result:

A single surface that is the graph of a two-variable function f(x, y) can be thought of as one
member of the family of level surfaces representing the three-variable function

g(x, y, z) = f(x, y)− z.

The graph of f is the level surface g = 0.

Conversely, a single level surface g(x, y, z) = c can be regarded as the graph of a function
f(x, y) if it is possible to solve for z. Sometimes the level surface is pieced together from the
graphs of two or more two-variable functions. For example, if g(x, y, z) = x2 + y2 + z2, then one
member of the family of level surfaces is the sphere

x2
+ y2 + z2 = 1.

This equation defines z implicitly as a function of x and y. Solving it gives two functions

z =
√
1− x2 − y2 and z = −

√
1− x2 − y2.

The graph of the first function is the top half of the sphere and the graph of the second function is
the bottom half.

Exercises and Problems for Section 12.5
Exercises

1. Match the following functions with the level surfaces in
Figure 12.81.

(a) f(x, y, z) = y2 + z2 (b) h(x, y, z) = x2 + z2.

x

y

z(I)

x

y

z(II)

Figure 12.81

2. Match the functions with the level surfaces in Fig-
ure 12.82.

(a) f(x, y, z) = x2 + y2 + z2

(b) g(x, y, z) = x2 + z2.

x

y

z(I)

y

z

x

(II)

Figure 12.82
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3. Write the level surface x+ 2y + 3z = 5 as the graph of
a function f(x, y).

4. Find a formula for a function f(x, y, z) whose level sur-
face f = 4 is a sphere of radius 2, centered at the origin.

5. Write the level surface x2 + y +
√
z = 1 as the graph of

a function f(x, y).

6. Find a formula for a function f(x, y, z) whose level sur-
faces are spheres centered at the point (a, b, c).

7. Which of the graphs in the catalog of surfaces on
page 702 is the graph of a function of x and y?

Use the catalog on page 702 to identify the surfaces in Exer-
cises 8–11.

8. x2 + y2 − z = 0 9. −x2 − y2 + z2 = 1

10. x+ y = 1 11. x2 + y2/4 + z2 = 1

In Exercises 12–15, decide if the given level surface can be
expressed as the graph of a function, f(x, y).

12. z − x2 − 3y2 = 0 13. 2x+ 3y − 5z − 10 = 0

14. x2 + y2 + z2 − 1 = 0 15. z2 = x2 + 3y2

Problems

In Problems 16–18, represent the surface whose equation is
given as the graph of a two-variable function, f(x, y), and as
the level surface of a three-variable function, g(x, y, z) = c.
There are many possible answers.

16. The plane 4x− y − 2z = 6

17. The top half of the sphere x2 + y2 + z2 − 10 = 0

18. The bottom half of the ellipsoid x2 + y2 + z2/2 = 1

19. Suppose the function f(x, y, z) = 2x − 3y + z − 20
gives the temperature, in degrees Fahrenheit, at a point
(x, y, z).

(a) Describe the isothermal surfaces of f .
(b) Calculate and interpret fz(0, 0, 0).
(c) If you are standing at the point (0, 0, 0), in what di-

rection should you move to increase your tempera-
ture the fastest?

(d) Is f(x, y) = −2x+ 3y + 17 an isothermal surface
of f? If so, what is the temperature on this isotherm?

20. The balance, B, in dollars, in a bank account depends
on the amount deposited, A dollars, the annual interest
rate, r%, and the time, t, in months since the deposit, so
B = f(A, r, t).

(a) Is f an increasing or decreasing function of A? Of
r? Of t?

(b) Interpret the statement f(1250, 1, 25) ≈ 1276. Give
units.

21. The monthly payments, P dollars, on a mortgage in
which A dollars were borrowed at an annual interest rate
of r% for t years is given by P = f(A, r, t). Is f an
increasing or decreasing function of A? Of r? Of t?

22. Find a function f(x, y, z) whose level surface f = 1 is
the graph of the function g(x, y) = x+ 2y.

23. Find two functions f(x, y) and g(x, y) so that the graphs
of both together form the ellipsoid x2+y2/4+z2/9 = 1.

24. Find a formula for a function g(x, y, z) whose level sur-
faces are planes parallel to the plane z = 2x+ 3y − 5.

25. The surface S is the graph of f(x, y) =
√

1− x2 − y2.

(a) Explain why S is the upper hemisphere of radius 1,
with equator in the xy-plane, centered at the origin.

(b) Find a level surface g(x, y, z) = c representing S.

26. The surface S is the graph of f(x, y) =
√

1− y2.

(a) Explain why S is the upper half of a circular cylinder
of radius 1, centered along the x-axis.

(b) Find a level surface g(x, y, z) = c representing S.

27. A cone C, with height 1 and radius 1, has its base in
the xz-plane and its vertex on the positive y-axis. Find a
function g(x, y, z) such that C is part of the level sur-
face g(x, y, z) = 0. [Hint: The graph of f(x, y) =√

x2 + y2 is a cone which opens up and has vertex at
the origin.]

28. Describe the level surface f(x, y, z) = x2/4 + z2 = 1
in words.

29. Describe the level surface g(x, y, z) = x2+y2/4+z2 =
1 in words. [Hint: Look at cross-sections with constant x,
y, and z values.]

30. Describe in words the level surfaces of the function
g(x, y, z) = x+ y + z.

31. Describe in words the level surfaces of f(x, y, z) =
sin(x+ y + z).

32. Describe the surface x2 + y2 = (2+ sin z)2. In general,
if f(z) ≥ 0 for all z, describe the surface x2 + y2 =
(f(z))2.

33. What do the level surfaces of f(x, y, z) = x2 − y2 + z2

look like? [Hint: Use cross-sections with y constant in-
stead of cross-sections with z constant.]

34. Describe in words the level surfaces of g(x, y, z) =

e−(x2+y2+z2).

35. Sketch and label level surfaces of h(x, y, z) = ez−y for
h = 1, e, e2.

36. Sketch and label level surfaces of f(x, y, z) = 4− x2 −
y2 − z2 for f = 0, 1, 2.

37. Sketch and label level surfaces of g(x, y, z) = 1− x2 −
y2 for g = 0,−1,−2.
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Strengthen Your Understanding

In Problems 38–40, explain what is wrong with the statement.

38. The graph of a function f(x, y, z) is a surface in 3-
space.

39. The level surfaces of f(x, y, z) = x2−y2 are all saddle-
shaped.

40. The level surfaces of f(x, y, z) = x2 + y2 are
paraboloids.

In Problems 41–44, give an example of:

41. A function f(x, y, z) whose level surfaces are equally
spaced planes perpendicular to the yz-plane.

42. A function f(x, y, z) whose level sets are concentric
cylinders centered on the y-axis.

43. A nonlinear function f(x, y, z) whose level sets are par-
allel planes.

44. A function f(x, y, z) whose level sets are paraboloids.

Are the statements in Problems 45–54 true or false? Give rea-
sons for your answer.

45. The graph of the function f(x, y) = x2 + y2 is the same
as the level surface g(x, y, z) = x2 + y2 − z = 0.

46. The graph of f(x, y) =
√

1− x2 − y2 is the same as
the level surface g(x, y, z) = x2 + y2 + z2 = 1.

47. Any surface which is the graph of a two-variable function
f(x, y) can also be represented as the level surface of a
three-variable function g(x, y, z).

48. Any surface which is the level surface of a three-variable
function g(x, y, z) can also be represented as the graph
of a two-variable function f(x, y).

49. The level surfaces of the function g(x, y, z) = x+2y+z
are parallel planes.

50. The level surfaces of g(x, y, z) = x2 + y+ z2 are cylin-
ders with axis along the y-axis.

51. A level surface of a function g(x, y, z) cannot be a single
point.

52. If g(x, y, z) = ax + by + cz + d, where a, b, c, d are
nonzero constants, then the level surfaces of g are planes.

53. If the level surfaces of g are planes, then g(x, y, z) =
ax+ by + cz + d, where a, b, c, d are constants.

54. If the level surfaces g(x, y, z) = k1 and g(x, y, z) = k2
are the same surface, then k1 = k2.

12.6 LIMITS AND CONTINUITY

The sheer face of Half Dome, in Yosemite National Park in California, was caused by glacial
activity during the Ice Age. (See Figure 12.83.) As we scale the rock from the west, the height of
the terrain rises abruptly by nearly 5000 feet from the valley floor, 2000 feet of it vertical.

If we consider the function h giving the height of the terrain above sea level in terms of lon-
gitude and latitude, then h has a discontinuity along the path at the base of the cliff of Half Dome.
Looking at the contour map of the region in Figure 12.84, we see that in most places a small change
in position results in a small change in height, except near the cliff. There, no matter how small a
step we take, we get a large change in height. (You can see how crowded the contours get near the
cliff; some end abruptly along the discontinuity.)

This geological feature illustrates the ideas of continuity and discontinuity. Roughly speaking,
a function is said to be continuous at a point if its values at places near the point are close to the
value at the point. If this is not the case, the function is said to be discontinuous.

Figure 12.83: Half Dome in Yosemite
National Park

Figure 12.84: A contour map of Half
Dome
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The property of continuity is one that, practically speaking, we usually assume of the functions
we are studying. Informally, we expect (except under special circumstances) that values of a function
do not change drastically when making small changes to the input variables. Whenever we model a
one-variable function by an unbroken curve, we are making this assumption. Even when functions
come to us as tables of data, we usually make the assumption that the missing function values
between data points are close to the measured ones.

In this section we study limits and continuity a bit more formally in the context of functions
of several variables. For simplicity we study these concepts for functions of two variables, but our
discussion can be adapted to functions of three or more variables.

One can show that sums, products, and compositions of continuous functions are continuous,
while the quotient of two continuous functions is continuous everywhere the denominator function
is nonzero. Thus, each of the functions

cos(x2y), ln(x2
+ y2),

ex+y

x+ y
, ln(sin(x2

+ y2))

is continuous at all points (x, y) where it is defined. As for functions of one variable, the graph of a
continuous function over an unbroken domain is unbroken—that is, the surface has no holes or rips
in it.

Example 1 From Figures 12.85–12.88, which of the following functions appear to be continuous at (0, 0)?

(a) f(x, y) =

⎧⎨
⎩

x2y

x2 + y2
, (x, y) �= (0, 0),

0, (x, y) = (0, 0).
(b) g(x, y) =

⎧⎨
⎩

x2

x2 + y2
, (x, y) �= (0, 0),

0, (x, y) = (0, 0).

x

y

z

Figure 12.85: Graph of z = x2y/(x2 + y2)
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Figure 12.87: Graph of z = x2/(x2 + y2)
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Solution (a) The graph and contour diagram of f in Figures 12.85 and 12.86 suggest that f is close to 0

when (x, y) is close to (0, 0). That is, the figures suggest that f is continuous at the point (0, 0);
the graph appears to have no rips or holes there.

However, the figures cannot tell us for sure whether f is continuous. To be certain we must
investigate the limit analytically, as is done in Example 2(a) on page 707.

(b) The graph of g and its contours near (0, 0) in Figure 12.87 and 12.88 suggest that g behaves
differently from f : The contours of g seem to “crash” at the origin and the graph rises rapidly
from 0 to 1 near (0, 0). Small changes in (x, y) near (0, 0) can yield large changes in g, so we
expect that g is not continuous at the point (0, 0). Again, a more precise analysis is given in
Example 2(b) on page 707.

The previous example suggests that continuity at a point depends on a function’s behavior near
the point. To study behavior near a point more carefully we need the idea of a limit of a function
of two variables. Suppose that f(x, y) is a function defined on a set in 2-space, not necessarily
containing the point (a, b), but containing points (x, y) arbitrarily close to (a, b); suppose that L is
a number.

The function f has a limit L at the point (a, b), written

lim
(x,y)→(a,b)

f(x, y) = L,

if f(x, y) is as close to L as we please whenever the distance from the point (x, y) to the
point (a, b) is sufficiently small, but not zero.

We define continuity for functions of two variables in the same way as for functions of one
variable:

A function f is continuous at the point (a, b) if

lim
(x,y)→(a,b)

f(x, y) = f(a, b).

A function is continuous on a region R in the xy-plane if it is continuous at each point in R.

Thus, if f is continuous at the point (a, b), then f must be defined at (a, b) and the limit,
lim(x,y)→(a,b) f(x, y), must exist and be equal to the value f(a, b). If a function is defined at a point
(a, b) but is not continuous there, then we say that f is discontinuous at (a, b).

We now apply the definition of continuity to the functions in Example 1, showing that f is
continuous at (0, 0) and that g is discontinuous at (0, 0).

Example 2 Let f and g be the functions in Example 1. Use the definition of the limit to show that:
(a) lim

(x,y)→(0,0)
f(x, y) = 0 (b) lim

(x,y)→(0,0)
g(x, y) does not exist.

Solution To investigate these limits of f and g, we consider values of these functions near, but not at, the
origin, where they are given by the formulas

f(x, y) =
x2y

x2 + y2
g(x, y) =

x2

x2 + y2
.

(a) The graph and contour diagram of f both suggest that lim(x,y)→(0,0) f(x, y) = 0. To use the
definition of the limit, we estimate |f(x, y)− L| with L = 0:

|f(x, y)− L| =

∣∣∣∣ x2y

x2 + y2
− 0

∣∣∣∣ =
∣∣∣∣ x2

x2 + y2

∣∣∣∣ |y| ≤ |y| ≤
√
x2 + y2.
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Now
√
x2 + y2 is the distance from (x, y) to (0, 0). Thus, to make |f(x, y)− 0| < 0.001,

for example, we need only require (x, y) be within 0.001 of (0, 0). More generally, for any
positive number u, no matter how small, we are sure that |f(x, y) − 0| < u whenever (x, y) is
no farther than u from (0, 0). This is what we mean by saying that the difference |f(x, y) − 0|

can be made as small as we wish by choosing the distance to be sufficiently small. Thus, we
conclude that

lim
(x,y)→(0,0)

f(x, y) = lim
(x,y)→(0,0)

x2y

x2 + y2
= 0.

Notice that since this limit equals f(0, 0), the function f is continuous at (0, 0).
(b) Although the formula defining the function g looks similar to that of f , we saw in Example 1

that g’s behavior near the origin is quite different. If we consider points (x, 0) lying along the
x-axis near (0, 0), then the values g(x, 0) are equal to 1, while if we consider points (0, y) lying
along the y-axis near (0, 0), then the values g(0, y) are equal to 0. Thus, within any distance
(no matter how small) from the origin, there are points where g = 0 and points where g = 1.
Therefore the limit lim(x,y)→(0,0) g(x, y) does not exist, and thus g is not continuous at (0, 0).

While the notions of limit and continuity look formally the same for one- and two-variable
functions, they are somewhat more subtle in the multivariable case. The reason for this is that on the
line (1-space), we can approach a point from just two directions (left or right) but in 2-space there
are an infinite number of ways to approach a given point.

Exercises and Problems for Section 12.6
Exercises

In Exercises 1–6, is the function continuous at all points in the
given region?

1.
1

x2 + y2
on the square −1 ≤ x ≤ 1,−1 ≤ y ≤ 1

2.
1

x2 + y2
on the square 1 ≤ x ≤ 2, 1 ≤ y ≤ 2

3.
y

x2 + 2
on the disk x2 + y2 ≤ 1

4.
esinx

cos y
on the rectangle −π

2
≤ x ≤ π

2
, 0 ≤ y ≤ π

4

5. tan(xy) on the square −2 ≤ x ≤ 2,−2 ≤ y ≤ 2

6.
√
2x− y on the disk x2 + y2 ≤ 4

In Exercises 7–11, find the limit as (x, y) → (0, 0) of
f(x, y). Assume that polynomials, exponentials, logarithmic,
and trigonometric functions are continuous.

7. f(x, y) = e−x−y

8. f(x, y) = x2 + y2

9. f(x, y) =
x

x2 + 1

10. f(x, y) =
x+ y

(sin y) + 2

11. f(x, y) =
sin(x2 + y2)

x2 + y2
[Hint: lim

t→0

sin t

t
= 1.]

Problems

In Problems 12–13, show that the function f(x, y) does not
have a limit as (x, y) → (0, 0). [Hint: Use the line y = mx.]

12. f(x, y) =
x+ y

x− y
, x �= y

13. f(x, y) =
x2 − y2

x2 + y2

14. By approaching the origin along the positive x-axis and
the positive y-axis, show that the following limit does not
exist:

lim
(x,y)→(0,0)

2x− y2

2x+ y2
.

15. Show that f(x, y) has no limit as (x, y) → (0, 0) if

f(x, y) =
xy

|xy| , x �= 0 and y �= 0.

16. Show that the function f does not have a limit at (0, 0)
by examining the limits of f as (x, y) → (0, 0) along the
curve y = kx2 for different values of k:

f(x, y) =
x2

x2 + y
, x2 + y �= 0.
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17. Let f(x, y) =

{ |x|
x

y for x �= 0

0 for x = 0.
Is f(x, y) continuous

(a) On the x-axis? (b) On the y-axis?

(c) At (0, 0)?

In Problems 18–19, determine whether there is a value for c
making the function continuous everywhere. If so, find it. If
not, explain why not.

18. f(x, y) =

{
c+ y, x ≤ 3,

5− x, x > 3.

19. f(x, y) =

{
c+ y, x ≤ 3,

5− y, x > 3.

20. Is the following function continuous at (0, 0)?

f(x, y) =

{
x2 + y2 if (x, y) �= (0, 0)

2 if (x, y) = (0, 0)

21. What value of c makes the following function continuous
at (0, 0)?

f(x, y) =

{
x2 + y2 + 1 if (x, y) �= (0, 0)

c if (x, y) = (0, 0)

22. (a) Use a computer to draw the graph and the contour
diagram of the following function:

f(x, y) =

{
xy(x2 − y2)

x2 + y2
, (x, y) �= (0, 0),

0, (x, y) = (0, 0).

(b) Do your answers to part (a) suggest that f is contin-
uous at (0, 0)? Explain your answer.

23. The function f , whose graph and contour diagram are in
Figures 12.89 and 12.90, is given by

f(x, y) =

{
xy

x2 + y2
, (x, y) �= (0, 0),

0, (x, y) = (0, 0).

(a) Show that f(0, y) and f(x, 0) are each continuous
functions of one variable.

(b) Show that rays emanating from the origin are con-
tained in contours of f .

(c) Is f continuous at (0, 0)?

x

y

z

Figure 12.89: Graph of z = xy/(x2 + y2)
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Figure 12.90: Contour diagram of
z = xy/(x2 + y2)

Strengthen Your Understanding

In Problems 24–25, explain what is wrong with the statement.

24. If a function f(x, y) has a limit as (x, y) approaches
(a, b), then it is continuous at (a, b).

25. If both f and g are continuous at (a, b), then so are
f + g, fg and f/g.

In Problems 26–27, give an example of:

26. A function f(x, y) which is continuous everywhere ex-
cept at (0, 0) and (1, 2).

27. A function f(x, y) that approaches 1 as (x, y) ap-
proaches (0, 0) along the x-axis and approaches 2 as

(x, y) approaches (0, 0) along the y-axis.

In Problems 28–30, construct a function f(x, y) with the
given property.

28. Not continuous along the line x = 2; continuous every-
where else.

29. Not continuous at the point (2, 0); continuous every-
where else.

30. Not continuous along the curve x2+ y2 = 1; continuous
everywhere else.
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CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• 3-Space
Cartesian coordinates, x-, y- and z-axes, xy-, xz- and
yz-planes, distance formula.

• Functions of Two Variables
Represented by: tables, graphs, formulas, cross-sections
(one variable fixed), contours (function value fixed);
cylinders (one variable missing).

• Linear Functions

Recognizing linear functions from tables, graphs, con-
tour diagrams, formulas. Converting from one represen-
tation to another.

• Functions of Three Variables
Sketching level surfaces (function value fixed) in 3-
space; graph of z = f(x, y) is same as level surface
g(x, y, z) = f(x, y)− z = 0.

• Continuity

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER TWELVE

Exercises

1. Which of the points A = (23, 92, 48), B = (−60, 0, 0),
C = (60, 1,−92) is closest to the yz-plane? Which lies
on the xz-plane? Which is farthest from the xy-plane?

2. You are at the point (−1,−3,−3), standing upright and
facing the yz-plane. You walk 2 units forward, turn left,
and walk for another 2 units. What is your final position?
From the point of view of an observer looking at the co-
ordinate system in Figure 12.2 on page 668, are you in
front of or behind the yz-plane? To the left or to the right
of the xz-plane? Above or below the xy-plane?

3. On a set of x, y, and z axes oriented as in Figure 12.5 on
page 669, draw a straight line through the origin, lying
in the xz-plane and such that if you move along the line
with your x-coordinate increasing, your z-coordinate is
decreasing.

In Exercises 4–6, determine if z is a function of x and y. If so,
find a formula for the function.

4. 6x− 4y + 2z = 10

5. x2 + y2 + z2 = 100

6. 3x2 − 5y2 + 5z = 10 + x+ y

7. Figure 12.91 shows the parabolas z = f(x, b) for
b = −2,−1, 0, 1, 2. Which of the graphs of z = f(x, y)
in Figure 12.92 best fits this information?

z

x

�f(x, 2) � f(x, 1)

f(x, 0)

� f(x,−1)�f(x,−2)

Figure 12.91

x

y

z(I)

x

y

z(II)

x

y

z(III)

x

y

z(IV)

Figure 12.92

8. Match the pairs of functions (a)–(d) with the contour dia-
grams (I)–(IV). In each case, which contours represent f
and which represent g? (The x- and y-scales are equal.)

(a) f(x, y) = x+ y, g(x, y) = x− y
(b) f(x, y) = 2x+ 3y, g(x, y) = 2x− 3y
(c) f(x, y) = x2 − y, g(x, y) = 2y + ln |x|
(d) f(x, y) = x2 − y2, g(x, y) = xy

x

y(I)

x

y(II)

x

y(III)

x

y(IV)
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9. Match the contour diagrams (a)–(d) with the surfaces (I)–
(IV). Give reasons for your choice.

1

3

5
7

x

y(a)

−1

−9

−25
−49

x

y(b)

−1

−3

−5
−7

x

y(c)

1

9

25
49

x

y(d)

x

y

z(I)

x
y

z(II)

x
y

z(III)

x
y

z(IV)

In Exercises 10–13, make a contour plot for the function in the
region −2 < x < 2 and −2 < y < 2. What is the equation
and the shape of the contours?

10. z = 3x− 5y + 1 11. z = sin y

12. z = 2x2 + y2 13. z = e−2x2
−y2

14. Describe the set of points whose x coordinate is 2 and
whose y coordinate is 1.

15. Find the equation of the sphere of radius 5 centered at
(1, 2, 3).

16. Find the equation of the plane through the points
(0, 0, 2), (0, 3, 0), (5, 0, 0).

17. Find the center and radius of the sphere with equation
x2 + 4x+ y2 − 6y + z2 + 12z = 0.

Which of the contour diagrams in Exercises 18–19 could rep-
resent linear functions?

18.

16
10 4

2

0

x

y

19.

−12

−8

−4

0

4

8

12

16

20

24

x

y

20. (a) Complete the table with values of a linear function
f(x, y).

(b) Find a formula for f(x, y).

x

y

2.5 3.0 3.50

−1 6 8

1 1 2

3 −6

21. Find a formula for a function f(x, y, z) whose level sur-
faces look like those in Figure 12.93.

x y

z

Figure 12.93
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In Exercises 22–25, represent the surface as the graph of
a function, f(x, y), and by level surfaces of the form
g(x, y, z) = c. (There are many possible answers.)

22. Paraboloid obtained by shifting z = x2 + y2 vertically 5
units

23. Plane with intercepts x = 2, y = 3, z = 4.

24. Upper half of unit sphere centered at the origin.

25. Lower half of sphere of radius 2 centered at (3, 0, 0).

26. Describe in words the level surfaces of the function
g(x, y, z) = cos(x+ y + z).

Use the catalog on page 702 to identify the surfaces in Exer-
cises 27–28.

27. x2 + z2 = 1 28. −x2 + y2 − z2 = 0

29. (a) What features of the contour diagram of g(x, y) in
Figure 12.94 suggest that g is linear?

(b) Assuming g is linear, find a formula for g(x, y).

−100 100

−100

100

−25000

−20000

−15000

−10000

−5000

0

25000

20000

15000
10000

5000
x

y

Figure 12.94

Problems

30. Use a computer or calculator to draw the graph of the
vibrating guitar string function:

g(x, t) = cos t sin 2x, 0 ≤ x ≤ π, 0 ≤ t ≤ 2π.

Relate the shape of the graph to the cross-sections with t
fixed and those with x fixed.

31. Consider the Cobb-Douglas production function P =
f(L,K) = 1.01L0.75K0.25. What is the effect on pro-
duction of doubling both labor and capital?

32. (a) Sketch level curves of f(x, y) =
√

x2 + y2+x for
f = 1, 2, 3.

(b) For what values of c can level curves f = c be
drawn?

33. Values of f(x, y) = 1
2
(x+ y− 2)(x+ y− 1)+ y are in

Table 12.13.

(a) Find a pattern in the table. Make a conjecture and
use it to complete Table 12.13 without computation.
Check by using the formula for f .

(b) Using the formula, check that the pattern holds for
all x ≥ 1 and y ≥ 1.

Table 12.13

x

y

1 2 3 4 5 6

1 1 3 6 10 15 21

2 2 5 9 14 20

3 4 8 13 19

4 7 12 18

5 11 17

6 16

34. Show that the function f does not have a limit at (0, 0)
by examining the limits of f as (x, y) → (0, 0) along the
line y = x and along the parabola y = x2:

f(x, y) =
x2y

x4 + y2
, (x, y) �= (0, 0).

35. By approaching the origin along the positive x-axis and
the positive y-axis, show that the following limit does not
exist:

lim
(x,y)→(0,0)

x+ y2

2x+ y
.

36. Explain why the following function is not continuous
along the line y = 0:

f(x, y) =

{
1− x, y ≥ 0,

−2, y < 0.

37. A college admissions office uses the following equation
to predict the grade point average of an incoming student:

z = 0.003x + 0.8y − 4,

where z is the predicted college GPA on a scale of 0 to
4.3, and x is the sum of the student’s SAT Math and SAT
Verbal on a scale of 400 to 1600, and y is the student’s
high school GPA on a scale of 0 to 4.3. The college ad-
mits students whose predicted GPA is at least 2.3.

(a) Will a student with SATs of 1050 and high school
GPA of 3.0 be admitted?
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(b) Will every student with SATs of 1600 be admitted?
(c) Will every student with a high school GPA of 4.3 be

admitted?
(d) Draw a contour diagram for the predicted GPA z

with 400 ≤ x ≤ 1600 and 0 ≤ y ≤ 4.3. Shade
the points corresponding to students who will be ad-
mitted.

(e) Which is more important, an extra 100 points on the
SAT or an extra 0.5 of high school GPA?

38. By setting one variable constant, find a plane that inter-
sects the graph of z = (x2 + 1) sin y + xy2 in a:

(a) Parabola
(b) Straight line
(c) Sine curve

39. The temperature T (in ◦C) at any point in the region
−10 ≤ x ≤ 10, −10 ≤ y ≤ 10 is given by the function

T (x, y) = 100− x2 − y2.

(a) Sketch isothermal curves (curves of constant tem-
perature) for T = 100◦C, T = 75◦C, T = 50◦C,
T = 25◦C, and T = 0◦C.

(b) A heat-seeking bug is put down at a point on the xy-
plane. In which direction should it move to increase
its temperature fastest? How is that direction related
to the level curve through that point?

40. Find a linear function whose graph is the plane that inter-
sects the xy-plane along the line y = 2x+2 and contains
the point (1, 2, 2).

41. (a) Sketch the level curves of z = cos
√

x2 + y2.
(b) Sketch a cross-section through the surface z =

cos
√

x2 + y2 in the plane containing the x- and z-
axes. Put units on your axes.

(c) Sketch the cross-section through the surface z =

cos
√

x2 + y2 in the plane containing the z-axis and
the line y = x in the xy-plane.

Problems 42–45 concern a vibrating guitar string. Snapshots
of the guitar string at millisecond intervals are in Figure 12.95.

π

−1
−0.54

0.54
1

x

y

�

f(x, 0)

�

f(x, 1)

Figure 12.95: A vibrating guitar string:
f(x, t) = cos t sin x for four t values.

The guitar string is stretched tight along the x-axis from x = 0
to x = π. Each point on the string has an x-value, 0 ≤ x ≤ π.
As the string vibrates, each point on the string moves back and
forth on either side of the x-axis. Let y = f(x, t) be the dis-
placement at time t of the point on the string located x units
from the left end. A possible formula is

y = f(x, t) = cos t sin x, 0 ≤ x ≤ π, t in milliseconds.

42. Explain what the functions f(x, 0) and f(x, 1) represent
in terms of the vibrating string.

43. Explain what the functions f(0, t) and f(1, t) represent
in terms of the vibrating string.

44. (a) Sketch graphs of y versus x for fixed t values, t = 0,
π/4, π/2, 3π/4, π.

(b) Use your graphs to explain why this function could
represent a vibrating guitar string.

45. Describe the motion of the guitar strings whose displace-
ments are given by the following:

(a) y = g(x, t) = cos 2t sin x
(b) y = h(x, t) = cos t sin 2x

CAS Challenge Problems

46. Let A = (0, 0, 0) and B = (2, 0, 0).

(a) Find a point C in the xy-plane that is a distance 2
from both A and B.

(b) Find a point D in 3-space that is a distance 2 from
each of A, B, and C.

(c) Describe the figure obtained by joining A, B, C, and
D with straight lines.

47. Let f(x, y) = 3 + x+ 2y.

(a) Find formulas for f(x, f(x, y)), f(x, f(x, f(x, y)))
by hand.

(b) Consider f(x, f(x, f(x, f(x, f(x, f(x, y)))))).
Conjecture a formula for this function and check
your answer with a computer algebra system.

48. A function f(x, y, z) has the property that f(1, 0, 1) =
20, f(1, 1, 1) = 16, and f(1, 1, 2) = 21.

(a) Estimate f(1, 1, 3) and f(1, 2, 1), assuming f is a
linear function of each variable with the other vari-
ables held fixed.

(b) Suppose in fact that f(x, y, z) = ax2+byz+czx3+
d2x−y , for constants a, b, c and d. Which of your es-
timates in part (a) do you expect to be exact?

(c) Suppose in addition that f(0, 0, 1) = 6. Find an ex-
act formula for f by solving for a, b, c, and d.

(d) Use the formula in part (c) to evaluate f(1, 1, 3) and
f(1, 2, 1) exactly. Do the values confirm your an-
swer to part (b)?
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PROJECTS FOR CHAPTER TWELVE

1. Noise Levels at London’s Heathrow Airport
The measure used by the UK government to monitor aircraft noise is called the Loudness Equiv-
alent or Leq.8 This takes the sound energy from each aircraft in decibels or dB and averages
it over a 16-hour day for several months. Based on the official noise output of each aircraft
type and historical data on aircraft movements and flight paths, the Leq is calculated for a wide
area around Heathrow Airport, London. The results are shown as noise contour maps such as
Figure 12.96, where contours are labeled in dB. The 57 dB contour is significant since a major
study indicated that community annoyance generally becomes significant at this noise level.

(a) Identify the position of the main runways at Heathrow and estimate the noise level in dB
on the runways.

(b) Planes prefer to take off and land facing into the wind. Using the fact that the wind is
generally from the west, explain the shape of the contours at the western and eastern ends
of the runways.

(c) In which direction does the sound level fall most rapidly? Explain.
(d) A sound can be measured by the physical intensity of the sound, L. The decibel measure of

the sound, B, is obtained from the ratio of the sound intensity, L, to a base intensity, L0:

B = 10 log10

(
L

L0

)
.

The contour levels are show at 3 dB intervals. How do sound intensity levels (L) compare
on adjacent contours?

(e) If the noise level of the next generation of aircraft is 50% of current values, how will the
contour map change?

Figure 12.96: Contours, in decibels (dB), showing noise levels around Heathrow
Airport, London

2. A Heater in a Room
Figure 12.97 shows the contours of the temperature along one wall of a heated room through
one winter day, with time indicated as on a 24-hour clock. The room has a heater located at the
leftmost corner of the wall and one window in the wall. The heater is controlled by a thermostat
about 2 feet from the window.

(a) Where is the window?
8ERCD Report 1001, Environmental Research and Consultancy Department, CAA report March 2010.
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(b) When is the window open?
(c) When is the heat on?
(d) Draw graphs of the temperature along the wall of the room at 6 am, at 11 am, at 3 pm (15

hours) and at 5 pm (17 hours).
(e) Draw a graph of the temperature as a function of time at the heater, at the window and

midway between them.
(f) The temperature at the window at 5 pm (17 hours) is less than at 11 am. Why do you think

this might be?
(g) To what temperature do you think the thermostat is set? How do you know?
(h) Where is the thermostat?

5 10 15 20 25 30

4

8

12

16

20

24

feet

hours

80

65 65

70
75

75

70
65

70

70 65

60

60 65

80

80

75

55

Figure 12.97:
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3. Light in a Wave-guide
Figure 12.98 shows the contours of light intensity as a function of location and time in a micro-
scopic wave-guide.

−10 −5 5 10

2

4

6

8

10

12

distance from center
of wave-guide (microns)

time (nanoseconds)

0
.3

0
.6

0
.6

0
.3

0
.3

0
.6 0
.6

0
.3

0.
9

0.
9

1.
2

Figure 12.98

(a) Draw graphs showing intensity as a function of location at times 0, 2, 4, 6, 8, and 10
nanoseconds.

(b) If you could create an animation showing how the graph of intensity as a function of loca-
tion varies as time passes, what would it look like?

(c) Draw a graph of intensity as a function of time at locations −5, 0, and 5 microns from
center of wave-guide.

(d) Describe what the light beams are doing in this wave-guide.
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13.1 DISPLACEMENT VECTORS

Suppose you are a pilot planning a flight from Dallas to Pittsburgh. There are two things you must
know: the distance to be traveled (so you have enough fuel to make it) and in what direction to go (so
you don’t miss Pittsburgh). Both these quantities together specify the displacement or displacement
vector between the two cities.

The displacement vector from one point to another is an arrow with its tail at the first point
and its tip at the second. The magnitude (or length) of the displacement vector is the dis-
tance between the points and is represented by the length of the arrow. The direction of the
displacement vector is the direction of the arrow.

Figure 13.1 shows a map with the displacement vectors from Dallas to Pittsburgh, from Albu-
querque to Oshkosh, and from Los Angeles to Buffalo, SD. These displacement vectors have the
same length and the same direction. We say that the displacement vectors between the corresponding
cities are the same, even though they do not coincide. In other words

Displacement vectors which point in the same direction and have the same magnitude are
considered to be the same, even if they do not coincide.

Dallas

Pittsburgh
OshkoshBuffalo, SD

Los Angeles
Albuquerque

Figure 13.1: Displacement vectors between cities

Notation and Terminology

The displacement vector is our first example of a vector. Vectors have both magnitude and direction;
in comparison, a quantity specified only by a number, but no direction, is called a scalar.1 For
instance, the time taken by the flight from Dallas to Pittsburgh is a scalar quantity. Displacement is
a vector since it requires both distance and direction to specify it.

In this book, vectors are written with an arrow over them, �v , to distinguish them from scalars.
Other books use a bold v to denote a vector. We use the notation

−−→
PQ to denote the displacement

vector from a point P to a point Q. The magnitude, or length, of a vector �v is written ‖�v ‖.

Addition and Subtraction of Displacement Vectors
Suppose NASA commands a robot on Mars to move 75 meters in one direction and then 50 meters
in another direction. (See Figure 13.2.) Where does the robot end up? Suppose the displacements
are represented by the vectors �v and �w , respectively. Then the sum �v + �w gives the final position.

1So named by W. R. Hamilton because they are merely numbers on the scale from −∞ to ∞.
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The sum, �v + �w , of two vectors �v and �w is the combined displacement resulting from first
applying �v and then �w . (See Figure 13.3.) The sum �w + �v gives the same displacement.

Combined
displacement

75 m

50 m

Start

Finish

Figure 13.2: Sum of displacements of robots on Mars

�v

�w

�v + �w

�v

�w

Start

Finish

Figure 13.3: The sum �v + �w = �w + �v

Suppose two different robots start from the same location. One moves along a displacement
vector �v and the second along a displacement vector �w . What is the displacement vector, �x , from
the first robot to the second? (See Figure 13.4.) Since �v + �x = �w , we define �x to be the difference
�x = �w − �v . In other words, �w − �v gets you from the first robot to the second.

The difference, �w − �v , is the displacement vector that, when added to �v , gives �w . That is,
�w = �v + (�w − �v ). (See Figure 13.4.)

�w

�v

�x = �w − �v

First robot

Second robot

Start

Figure 13.4: The difference �w − �v

If the robot ends up where it started, then its total displacement vector is the zero vector,�0 . The
zero vector has no direction.

The zero vector, �0 , is a displacement vector with zero length.

Scalar Multiplication of Displacement Vectors
If �v represents a displacement vector, the vector 2�v represents a displacement of twice the magni-
tude in the same direction as �v . Similarly, −2�v represents a displacement of twice the magnitude
in the opposite direction. (See Figure 13.5.)

�v

0.5�v

2�v

−2�v

Figure 13.5: Scalar multiples of the vector �v
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If λ is a scalar and �v is a displacement vector, the scalar multiple of �v by λ, written λ�v , is
the displacement vector with the following properties:
• The displacement vector λ�v is parallel to �v , pointing in the same direction if λ > 0 and

in the opposite direction if λ < 0.

• The magnitude of λ�v is |λ| times the magnitude of �v , that is, ‖λ�v ‖ = |λ| ‖�v ‖ .

Note that |λ| represents the absolute value of the scalar λ while ‖λ�v ‖ represents the magnitude
of the vector λ�v .

Example 1 Explain why �w − �v = �w + (−1)�v .

Solution The vector (−1)�v has the same magnitude as �v , but points in the opposite direction. Figure 13.6
shows that the combined displacement �w + (−1)�v is the same as the displacement �w − �v .

�v

�w

�w

(−1)�v

�w − �v
Finish

Start

Figure 13.6: Explanation for
why �w − �v = �w + (−1)�v

Parallel Vectors

Two vectors �v and �w are parallel if one is a scalar multiple of the other, that is, if �w = λ�v , for
some scalar λ.

Components of Displacement Vectors: The Vectors −→

i , −→j , and −→

k

Suppose that you live in a city with equally spaced streets running east-west and north-south and
that you want to tell someone how to get from one place to another. You’d be likely to tell them how
many blocks east-west and how many blocks north-south to go. For example, to get from P to Q in
Figure 13.7, we go 4 blocks east and 1 block south. If�i and�j are as shown in Figure 13.7, then the
displacement vector from P to Q is 4�i −�j .

4�i

−�j
�j

�i

P

Q

Figure 13.7: The displacement
vector from P to Q is 4�i −�j
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We extend the same idea to 3 dimensions. First we choose a Cartesian system of coordinate
axes. The three vectors of length 1 shown in Figure 13.8 are the vector �i , which points along the
positive x-axis, the vector �j , along the positive y-axis, and the vector �k , along the positive z-axis.

x y

z

�i �j

�k

1

1 1

Figure 13.8: The vectors�i , �j and �k in
3-space

1 2 3

1

2

x

y

2�j

3�i

�v

(3, 2)

Figure 13.9: We resolve �v into
components by writing �v = 3�i + 2�j

Writing Displacement Vectors Using
−→

i ,
−→

j ,
−→

k

Any displacement in 3-space or the plane can be expressed as a combination of displacements in
the coordinate directions. For example, Figure 13.9 shows that the displacement vector �v from the
origin to the point (3, 2) can be written as a sum of displacement vectors along the x- and y-axes:

�v = 3�i + 2�j .

This is called resolving �v into components. In general:

We resolve �v into components by writing �v in the form

�v = v1�i + v2�j + v3�k ,

where v1, v2, v3 are scalars. We call v1�i , v2�j , and v3�k the components of �v .

An Alternative Notation for Vectors

Many people write a vector in three dimensions as a string of three numbers, that is, as

�v = (v1, v2, v3) instead of �v = v1�i + v2�j + v3�k .

Since the first notation can be confused with a point and the second cannot, we usually use the
second form.

Example 2 Resolve the displacement vector, �v , from the point P1 = (2, 4, 10) to the point P2 = (3, 7, 6) into
components.

Solution To get from P1 to P2, we move 1 unit in the positive x-direction, 3 units in the positive y-direction,
and 4 units in the negative z-direction. Hence �v =�i + 3�j − 4�k .

Example 3 Decide whether the vector �v = 2�i + 3�j + 5�k is parallel to each of the following vectors:

�w = 4�i + 6�j + 10�k , �a = −�i − 1.5�j − 2.5�k , �b = 4�i + 6�j + 9�k .

Solution Since �w = 2�v and �a = −0.5�v , the vectors �v , �w , and �a are parallel. However,�b is not a multiple
of �v (since, for example, 4/2 �= 9/5), so �v and�b are not parallel.
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In general, Figure 13.10 shows us how to express the displacement vector between two points
in components:

Components of Displacement Vectors

The displacement vector from the point P1 = (x1, y1, z1) to the point P2 = (x2, y2, z2) is
given in components by

−−−→
P1P2 = (x2 − x1)�i + (y2 − y1)�j + (z2 − z1)�k .

Position Vectors: Displacement of a Point from the Origin

A displacement vector whose tail is at the origin is called a position vector. Thus, any point (x0, y0, z0)

in space has associated with it the position vector �r 0 = x0
�i + y0�j + z0�k . (See Figure 13.11.) In

general, a position vector gives the displacement of a point from the origin.

x

y

z

P1 = (x1, y1, z1)

P2 = (x2, y2, z2)
−−−→
P1P2

Figure 13.10: The displacement vector−−−→
P1P2 = (x2−x1)�i +(y2−y1)�j +(z2−z1)�k

z

x

y
y0

x0

(x0, y0, z0)

�

�

z0�r 0

Figure 13.11: The position vector
�r 0 = x0

�i + y0�j + z0�k

The Components of the Zero Vector

The zero displacement vector has magnitude equal to zero and is written �0 . So �0 = 0�i +0�j +0�k .

The Magnitude of a Vector in Components

For a vector, �v = v1�i + v2�j , the Pythagorean theorem is used to find its magnitude, ‖�v ‖. (See
Figure 13.12.) The angle θ gives the direction of �v .

v1

v2

‖�v ‖ = Length =
√

v21 + v22

y

xθ

�v

Figure 13.12: Magnitude, ‖�v ‖, of a 2-dimensional vector, �v

In three dimensions, for a vector �v = v1�i + v2�j + v3�k , we have

Magnitude of �v = ‖�v ‖ = Length of the arrow =

√
v21 + v22 + v23 .

For instance, if �v = 3�i − 4�j + 5�k , then ‖�v ‖ =
√
32 + (−4)2 + 52 =

√
50.
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Addition and Scalar Multiplication of Vectors in Components

Suppose the vectors �v and �w are given in components:

�v = v1�i + v2�j + v3�k and �w = w1
�i + w2

�j + w3
�k .

Then

�v + �w = (v1 + w1)�i + (v2 + w2)�j + (v3 + w3)
�k ,

and

λ�v = λv1�i + λv2�j + λv3�k .

Figures 13.13 and 13.14 illustrate these properties in two dimensions. Finally, �v − �w = �v +

(−1)�w , so we can write �v − �w = (v1 − w1)�i + (v2 − w2)�j + (v3 − w3)
�k .

�w

�v + �w

�v

�w

v1

v2

w1

w2

Figure 13.13: Sum �v + �w in
components

v2
�v

v1

2v1

2�v

2v2

v1

v2

−3v2
−3�v

−3v1

�v

Figure 13.14: Scalar multiples of vectors showing �v , 2�v , and −3�v

How to Resolve a Vector into Components

You may wonder how we find the components of a 2-dimensional vector, given its length and di-
rection. Suppose the vector �v has length v and makes an angle of θ with the x-axis, measured
counterclockwise, as in Figure 13.15. If �v = v1�i + v2�j , Figure 13.15 shows that

v1 = v cos θ and v2 = v sin θ.

Thus, we resolve �v into components by writing

�v = (v cos θ)�i + (v sin θ)�j .

Vectors in 3-space are resolved using direction cosines; see Problem 58 on page 754.

v cos θ

v sin θ

�

�

v

θ

y

x

Figure 13.15: Resolving a vector: �v = (v cos θ)�i + (v sin θ)�j

Example 4 Resolve �v into components if ‖�v ‖ = 2 and θ = π/6.

Solution We have �v = 2 cos(π/6)�i + 2 sin(π/6)�j = 2(
√
3/2)�i + 2(1/2)�j =

√
3�i +�j .
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Unit Vectors
A unit vector is a vector whose magnitude is 1. The vectors �i , �j , and �k are unit vectors in the
directions of the coordinate axes. It is often helpful to find a unit vector in the same direction as a
given vector �v . Suppose that ‖�v ‖ = 10; a unit vector in the same direction as �v is �v /10. In general,
a unit vector in the direction of any nonzero vector �v is

�u =
�v

‖�v ‖
.

Example 5 Find a unit vector, �u , in the direction of the vector �v =�i + 3�j .

Solution If �v =�i + 3�j , then ‖�v ‖ =
√
12 + 32 =

√
10. Thus, a unit vector in the same direction is given by

�u =
�v

√
10

=
1

√
10

(�i + 3�j ) =
1

√
10

�i +
3

√
10

�j ≈ 0.32�i + 0.95�j .

Example 6 Find a unit vector at the point (x, y, z) that points radially outward away from the origin.

Solution The vector from the origin to (x, y, z) is the position vector

�r = x�i + y�j + z�k .

Thus, if we put its tail at (x, y, z) it will point away from the origin. Its magnitude is

‖�r ‖ =
√

x2 + y2 + z2,

so a unit vector pointing in the same direction is

�r

‖�r ‖
=

x�i + y�j + z�k√
x2 + y2 + z2

=
x√

x2 + y2 + z2
�i +

y√
x2 + y2 + z2

�j +
z√

x2 + y2 + z2
�k .

Exercises and Problems for Section 13.1
Exercises

In Exercises 1–6, resolve the vectors into components.

1.

−2 −1 1 2 3

−2

−1

1

2

3

x

y

�b

�a

�w

�v

2.

1 2 3 4

−1

1

2

3

x

y

�a

�b

�c

�d

�e

3. A vector starting at the point Q = (4, 6) and ending at
the point P = (1, 2).

4. A vector starting at the point P = (1, 2) and ending at
the point Q = (4, 6).
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5.

x

y

z

�b

�c

�d

�a

�e

�f

�

�

3

�

�
2

�

�

1

6.

x

y

z

�

�

2

� �1

�

�

1

�u�v

For Exercises 7–14, perform the indicated computation.

7. (4�i + 2�j )− (3�i −�j )

8. (�i + 2�j ) + (−3)(2�i +�j )

9. −4(�i − 2�j )− 0.5(�i − �k )

10. 2(0.45�i − 0.9�j − 0.01�k )− 0.5(1.2�i − 0.1�k )

11. (3�i − 4�j + 2�k )− (6�i + 8�j − �k )

12. (4�i − 3�j + 7�k )− 2(5�i +�j − 2�k )

13. (0.6�i + 0.2�j − �k ) + (0.3�i + 0.3�k )

14. 1
2
(2�i −�j + 3�k ) + 3(�i − 1

6
�j + 1

2
�k )

In Exercises 15–19, find the length of the vectors.

15. �v =�i −�j + 2�k 16. �z =�i − 3�j − �k

17. �v =�i −�j + 3�k

18. �v = 7.2�i − 1.5�j + 2.1�k

19. �v = 1.2�i − 3.6�j + 4.1�k

For Exercises 20–25, perform the indicated operations on the
following vectors:

�a = 2�j + �k , �b = −3�i + 5�j + 4�k , �c =�i + 6�j ,

�x = −2�i + 9�j , �y = 4�i − 7�j , �z =�i − 3�j − �k .

20. 4�z 21. 5�a + 2�b 22. �a + �z

23. 2�c + �x 24. 2�a +7�b − 5�z 25. ‖�y − �x ‖

26. (a) Draw the position vector for �v = 5�i − 7�j .
(b) What is ‖�v ‖?
(c) Find the angle between �v and the positive x-axis.

27. Find the unit vector in the direction of 0.06�i − 0.08�k .

28. Find the unit vector in the opposite direction to�i −�j +�k .

29. Find a unit vector in the opposite direction to 2�i −�j −√
11�k .

30. Find a vector with length 2 that points in the same direc-
tion as�i −�j + 2�k .

Problems

31. Find the value(s) of a making �v = 5a�i − 3�j parallel to
�w = a2�i + 6�j .

32. (a) Find a unit vector from the point P = (1, 2) and
toward the point Q = (4, 6).

(b) Find a vector of length 10 pointing in the same di-
rection.

33. If north is the direction of the positive y-axis and east is
the direction of the positive x-axis, give the unit vector
pointing northwest.

34. Resolve the following vectors into components:

(a) The vector in 2-space of length 2 pointing up and to
the right at an angle of π/4 with the x-axis.

(b) The vector in 3-space of length 1 lying in the xz-
plane pointing upward at an angle of π/6 with the
positive x-axis.

35. (a) From Figure 13.16, read off the coordinates of
the five points, A, B, C, D, E, and thus re-
solve into components the following two vectors:
�u = (2.5)

−→
AB + (−0.8)

−−→
CD, �v = (2.5)

−→
BA −

(−0.8)
−−→
CD

(b) What is the relation between �u and �v ? Why was this
to be expected?

A

B

D

E

C

1 2 3 4 5 6 7

1

2

3

4

x

y

Figure 13.16

36. Find the components of a vector �p that has the same di-
rection as

−→
EA in Figure 13.16 and whose length equals

two units.

37. For each of the four statements below, answer the follow-
ing questions: Does the statement make sense? If yes, is
it true for all possible choices of �a and �b ? If no, why
not?

(a) �a +�b = �b + �a
(b) �a + ‖�b ‖ = ‖�a +�b ‖
(c) ‖�b + �a ‖ = ‖�a +�b ‖
(d) ‖�a +�b ‖ = ‖�a ‖+ ‖�b ‖.
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38. Two adjacent sides of a regular hexagon are given as the
vectors �u and �v in Figure 13.17. Label the remaining
sides in terms of �u and �v .

�u

�v

Figure 13.17

39. For what values of t are the following pairs of vectors
parallel?

(a) 2�i + (t2 + 2
3
t+ 1)�j + t�k , 6�i + 8�j + 3�k

(b) t�i +�j + (t− 1)�k , 2�i − 4�j + �k

(c) 2t�i + t�j + t�k , 6�i + 3�j + 3�k .

40. Find all vectors �v in 2 dimensions having ‖�v ‖ = 5 such
that the�i -component of �v is 3�i .

41. Find all vectors �v in the plane such that ‖�v ‖ = 1 and
‖�v +�i ‖ = 1.

42. Figure 13.18 shows a molecule with four atoms at
O,A,B and C. Check that every atom in the molecule is
2 units away from every other atom.

x y

z

A(2, 0, 0)

B(1,
√
3, 0)

C(1, 1/
√
3, 2
√

2/3)

0

Figure 13.18

43. Show that the medians of a triangle intersect at a point 1
3

of the way along each median from the side it bisects.

Strengthen Your Understanding

In Problems 44–47, explain what is wrong with the statement.

44. If ‖�u ‖ = 1 and ‖�v ‖ > 0, then ‖�u + �v ‖ ≥ 1.

45. The vector c�u has the same direction as �u .

46. ‖�v −�u ‖ is the length of the shorter of the two diagonals
of the parallelogram determined by �u and �v .

47. Given three vectors �u ,�v , and �w , if �u + �w = �u then it
is possible for �v + �w �= �v .

In Problems 48–50, give an example of:

48. A vector �v of length 2 with a positive �k -component and
lying on a plane parallel to the yz-plane.

49. Two unit vectors �u and �v for which �v − �u is also a unit
vector.

50. Two vectors �u and �v that have difference vector �w =
2�i + 3�j .

Are the statements in Problems 51–60 true or false? Give rea-
sons for your answer.

51. There is exactly one unit vector parallel to a given
nonzero vector �v .

52. The vector
1√
3
�i +

−1√
3
�j +

2√
3
�k is a unit vector.

53. The length of the vector 2�v is twice the length of the
vector �v .

54. If �v and �w are any two vectors, then ‖�v + �w ‖ =
‖�v ‖+ ‖�w ‖.

55. If �v and �w are any two vectors, then ‖�v − �w ‖ =
‖�v ‖ − ‖�w ‖.

56. The vectors 2�i −�j + �k and�i − 2�j + �k are parallel.

57. The vector �u +�v is always larger in magnitude than both
�u and �v .

58. For any scalar c and vector �v we have ‖c�v ‖ = c‖�v ‖.

59. The displacement vector from (1, 1, 1) to (1, 2, 3) is
−�j − 2�k .

60. The displacement vector from (a, b) to (c, d) is the same
as the displacement vector from (c, d) to (a, b).

13.2 VECTORS IN GENERAL

Besides displacement, there are many quantities that have both magnitude and direction and are
added and multiplied by scalars in the same way as displacements. Any such quantity is called a
vector and is represented by an arrow in the same manner we represent displacements. The length
of the arrow is the magnitude of the vector, and the direction of the arrow is the direction of the
vector.

Velocity Versus Speed

The speed of a moving body tells us how fast it is moving, say 80 km/hr. The speed is just a number;
it is therefore a scalar. The velocity, on the other hand, tells us both how fast the body is moving and
the direction of motion; it is a vector. For instance, if a car is heading northeast at 80 km/hr, then its
velocity is a vector of length 80 pointing northeast.
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The velocity vector of a moving object is a vector whose magnitude is the speed of the object
and whose direction is the direction of its motion.

The velocity vector is the displacement vector if the object moves at constant velocity for one
unit of time.

Example 1 A car is traveling north at a speed of 100 km/hr, while a plane above is flying horizontally southwest
at a speed of 500 km/hr. Draw the velocity vectors of the car and the plane.

Solution Figure 13.19 shows the velocity vectors. The plane’s velocity vector is five times as long as the car’s,
because its speed is five times as great.

�Velocity vector
of car

�Velocity vector
of plane

N
or

th

�

Figure 13.19: Velocity vector of the car is 100 km/hr north and of the plane is 500 km/hr southwest

The next example illustrates that the velocity vectors for two motions add to give the velocity
vector for the combined motion, just as displacements do.

Example 2 A riverboat is moving with velocity �v and a speed of 8 km/hr relative to the water. In addition, the
river has a current �c and a speed of 1 km/hr. (See Figure 13.20.) What is the physical significance
of the vector �v + �c ?

�v + �c

�v = Velocity relative to water
‖�v ‖ = 8 km/hr

�c = Velocity of current
‖�c ‖ = 1 km/hr

Figure 13.20: Boat’s velocity relative to the river bed is the sum, �v + �c

Solution The vector �v shows how the boat is moving relative to the water, while �c shows how the water is
moving relative to the riverbed. During an hour, imagine that the boat first moves 8 km relative to the
water, which remains still; this displacement is represented by �v . Then imagine the water moving
1 km while the boat remains stationary relative to the water; this displacement is represented by �c .
The combined displacement is represented by �v + �c . Thus, the vector �v + �c is the velocity of the
boat relative to the riverbed.

Note that the effective speed of the boat is not necessarily 9 km/hr unless the boat is moving in
the direction of the current. Although we add the velocity vectors, we do not necessarily add their
lengths.

Scalar multiplication also makes sense for velocity vectors. For example, if �v is a velocity
vector, then −2�v represents a velocity of twice the magnitude in the opposite direction.

Example 3 A ball is moving with velocity �v when it hits a wall at a right angle and bounces straight back, with
its speed reduced by 20%. Express its new velocity in terms of the old one.

Solution The new velocity is −0.8�v , where the negative sign expresses the fact that the new velocity is in the
direction opposite to the old.
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We can represent velocity vectors in components in the same way we did on page 723.

Example 4 Represent the velocity vectors of the car and the plane in Example 1 using components. Take north
to be the positive y-axis, east to be the positive x-axis, and upward to be the positive z-axis.

Solution The car is traveling north at 100 km/hr, so the y-component of its velocity is 100�j and the x-
component is 0�i . Since it is traveling horizontally, the z-component is 0�k . So we have

Velocity of car = 0�i + 100�j + 0�k = 100�j .

The plane’s velocity vector also has �k component equal to zero. Since it is traveling southwest,
its�i and �j components have negative coefficients (north and east are positive). Since the plane is
traveling at 500 km/hr, in one hour it is displaced 500/

√
2 ≈ 354 km to the west and 354 km to the

south. (See Figure 13.21.) Thus,
Velocity of plane = −(500 cos45

◦
)�i − (500 sin 45

◦
)�j ≈ −354�i − 354�j .

Of course, if the car were climbing a hill or if the plane were descending for a landing, then the �k
component would not be zero.

�

�

500/
√
2 ≈ 354

�� 500/
√
2

�
�
100�Distance traveled by

the car in one hour

�Distance traveled by
the plane in one hour

�

�

50
0

�

N
or

th

45◦

Figure 13.21: Distance traveled by the plane and car in one hour

Acceleration

Another example of a vector quantity is acceleration. Acceleration, like velocity, is specified by both
a magnitude and a direction — for example, the acceleration due to gravity is 9.81 m/sec2 vertically
downward.

Force

Force is another example of a vector quantity. Suppose you push on an open door. The result depends
both on how hard you push and in what direction. Thus, to specify a force we must give its magnitude
(or strength) and the direction in which it is acting. For example, the gravitational force exerted on an
object by the earth is a vector pointing from the object toward the center of the earth; its magnitude
is the strength of the gravitational force.

Example 5 The earth travels around the sun in an ellipse. The gravitational force on the earth and the velocity
of the earth are governed by the following laws:
Newton’s Law of Gravitation: The gravitational attraction, �F , of a mass m1 on a mass m2 at a
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distance r has magnitude ||�F || = Gm1m2/r
2, where G is a constant, and is directed from m2

toward m1.
Kepler’s Second Law: The line joining a planet to the sun sweeps out equal areas in equal times.

(a) Sketch vectors representing the gravitational force of the sun on the earth at two different posi-
tions in the earth’s orbit.

(b) Sketch the velocity vector of the earth at two points in its orbit.

Solution (a) Figure 13.22 shows the earth orbiting the sun. Note that the gravitational force vector always
points toward the sun and is larger when the earth is closer to the sun because of the r2 term in
the denominator. (In fact, the real orbit looks much more like a circle than we have shown here.)

(b) The velocity vector points in the direction of motion of the earth. Thus, the velocity vector is
tangent to the ellipse. See Figure 13.23. Furthermore, the velocity vector is longer at points of
the orbit where the planet is moving quickly, because the magnitude of the velocity vector is
the speed. Kepler’s Second Law enables us to determine when the earth is moving quickly and
when it is moving slowly. Over a fixed period of time, say one month, the line joining the earth
to the sun sweeps out a sector having a certain area. Figure 13.23 shows two sectors swept out
in two different one-month time-intervals. Kepler’s law says that the areas of the two sectors are
the same. Thus, the earth must move farther in a month when it is close to the sun than when
it is far from the sun. Therefore, the earth moves faster when it is closer to the sun and slower
when it is farther away.

Earth

Sun

Force, �F

Force, �F

Earth

Earth’s orbit

Figure 13.22: Gravitational force, �F , exerted by the sun on
the earth: Greater magnitude closer to sun

Earth

SunVelocity, �v

Velocity, �v

Earth

Earth’s orbit

Figure 13.23: The velocity vector, �v , of the earth:
Greater magnitude closer to the sun

Properties of Addition and Scalar Multiplication
In general, vectors add, subtract, and are multiplied by scalars in the same way as displacement vec-
tors. Thus, for any vectors �u ,�v , and �w and any scalars α and β, we have the following properties:

Commutativity
1. �v + �w = �w + �v

Distributivity
4. (α+ β)�v = α�v + β�v

5. α(�v + �w ) = α�v + α�w

Associativity
2. (�u + �v ) + �w = �u + (�v + �w )

3. α(β�v ) = (αβ)�v
Identity
6. 1�v = �v

7. 0�v = �0

8. �v + �0 = �v

9. �w + (−1)�v = �w − �v

Problems 30–37 at the end of this section ask for a justification of these results in terms of
displacement vectors.
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Using Components

Example 6 A plane, heading due east at an airspeed of 600 km/hr, experiences a wind of 50 km/hr blowing
toward the northeast. Find the plane’s direction and ground speed.

Solution We choose a coordinate system with the x-axis pointing east and the y-axis pointing north. See
Figure 13.24.

The airspeed tells us the speed of the plane relative to still air. Thus, the plane is moving due
east with velocity �v = 600�i relative to still air. In addition, the air is moving with a velocity �w .
Writing �w in components, we have

�w = (50cos45
◦
)�i + (50sin45

◦
)�j = 35.4�i + 35.4�j .

The vector �v + �w represents the displacement of the plane in one hour relative to the ground.
Therefore, �v + �w is the velocity of the plane relative to the ground. In components, we have

�v + �w = 600�i +
(
35.4�i + 35.4�j

)
= 635.4�i + 35.4�j .

The direction of the plane’s motion relative to the ground is given by the angle θ in Figure 13.24,
where

tan θ =
35.4

635.4
so

θ = arctan

(
35.4

635.4

)
= 3.2◦.

The ground speed is the speed of the plane relative to the ground, so

Groundspeed =
√

635.42 + 35.42 = 636.4 km/hr.

Thus, the speed of the plane relative to the ground has been increased slightly by the wind.
(This is as we would expect, as the wind has a positive component in the direction in which the
plane is traveling.) The angle θ shows how far the plane is blown off course by the wind.

y

x
�v = Velocity
relative to air

�v + �w �w = Wind velocity

45◦�

θ

Figure 13.24: Plane’s velocity relative to the ground is the sum �v + �w

Vectors in n Dimensions
Using the alternative notation �v = (v1, v2, v3) for a vector in 3-space, we can define a vector in n
dimensions as a string of n numbers. Thus, a vector in n dimensions can be written as

�c = (c1, c2, . . . , cn).

Addition and scalar multiplication are defined by the formulas

�v + �w = (v1, v2, . . . , vn) + (w1, w2, . . . , wn) = (v1 + w1, v2 + w2, . . . , vn + wn)

and

λ�v = λ(v1, v2, . . . , vn) = (λv1, λv2, . . . , λvn).
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Why Do We Want Vectors in n Dimensions?

Vectors in two and three dimensions can be used to model displacement, velocities, or forces. But
what about vectors in n dimensions? There is another interpretation of 3-dimensional vectors (or
3-vectors) that is useful: they can be thought of as listing three different quantities — for example,
the displacements parallel to the x-, y-, and z-axes. Similarly, the n-vector

�c = (c1, c2, . . . , cn)

can be thought of as a way of keeping n different quantities organized. For example, a population
vector �N shows the number of children and adults in a population:

�N = (Number of children, Number of adults),

or, if we are interested in a more detailed breakdown of ages, we might give the number in each
ten-year age bracket in the population (up to age 110) in the form

�N = (N1, N2, N3, N4, . . . , N10, N11),

where N1 is the population aged 0–9, and N2 is the population aged 10–19, and so on.
A consumption vector,

�q = (q1, q2, . . . , qn)

shows the quantities q1, q2, . . ., qn consumed of each of n different goods. A price vector

�p = (p1, p2, . . . , pn)

contains the prices of n different items.
In 1907, Hermann Minkowski used vectors with four components when he introduced space-

time coordinates, whereby each event is assigned a vector position �v with four coordinates, three
for its position in space and one for time:

�v = (x, y, z, t).

Example 7 Suppose the vector �I represents the number of copies, in thousands, made by each of four copy
centers in the month of December and �J represents the number of copies made at the same four
copy centers during the previous eleven months (the “year-to-date”). If �I = (25, 211, 818, 642),
and �J = (331, 3227, 1377, 2570), compute �I + �J . What does this sum represent?

Solution The sum is

�I + �J = (25 + 331, 211+ 3227, 818+ 1377, 642+ 2570) = (356, 3438, 2195, 3212).

Each term in �I + �J represents the sum of the number of copies made in December plus those in
the previous eleven months, that is, the total number of copies made during the entire year at that
particular copy center.

Example 8 The price vector �p = (p1, p2, p3) represents the prices in dollars of three goods. Write a vector that
gives the prices of the same goods in cents.

Solution The prices in cents are 100p1, 100p2, and 100p3 respectively, so the new price vector is

(100p1, 100p2, 100p3) = 100�p .
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Exercises and Problems for Section 13.2
Exercises

In Exercises 1–5, say whether the given quantity is a vector or
a scalar.

1. The population of the US.

2. The distance from Seattle to St. Louis.

3. The temperature at a point on the earth’s surface.

4. The magnetic field at a point on the earth’s surface.

5. The populations of each of the 50 states.

6. Give the components of the velocity vector for wind
blowing at 10 km/hr toward the southeast. (Assume north
is in the positive y-direction.)

7. Give the components of the velocity vector of a boat that
is moving at 40 km/hr in a direction 20◦ south of west.
(Assume north is in the positive y-direction.)

8. A car is traveling at a speed of 50 km/hr. The positive y-
axis is north and the positive x-axis is east. Resolve the
car’s velocity vector (in 2-space) into components if the
car is traveling in each of the following directions:

(a) East (b) South

(c) Southeast (d) Northwest.

9. Which is traveling faster, a car whose velocity vector is
21�i +35�j , or a car whose velocity vector is 40�i , assum-
ing that the units are the same for both directions?

10. What angle does a force of �F = 15�i + 18�j make with
the x-axis?

Problems

11. The velocity of the current in a river is �c = 0.6�i +0.8�j
km/hr. A boat moves relative to the water with velocity
�v = 8�i km/hr.

(a) What is the speed of the boat relative to the riverbed?
(b) What angle does the velocity of the boat relative to

the riverbed make with the vector �v ? What does this
angle tell us in practical terms?

12. Suppose the current in Problem 11 is twice as fast and in
the opposite direction. What is the speed of the boat with
respect to the riverbed?

13. A boat is heading due east at 25 km/hr (relative to the
water). The current is moving toward the southwest at 10
km/hr.

(a) Give the vector representing the actual movement of
the boat.

(b) How fast is the boat going, relative to the ground?
(c) By what angle does the current push the boat off of

its due east course?

14. A truck is traveling due north at 30 km/hr approaching a
crossroad. On a perpendicular road a police car is trav-
eling west toward the intersection at 40 km/hr. Both ve-
hicles will reach the crossroad in exactly one hour. Find
the vector currently representing the displacement of the
truck with respect to the police car.

15. An airplane heads northeast at an airspeed of 700 km/hr,
but there is a wind blowing from the west at 60 km/hr. In
what direction does the plane end up flying? What is its
speed relative to the ground?

16. Two forces, represented by the vectors �F 1 = 8�i − 6�j
and �F 2 = 3�i +2�j , are acting on an object. Give a vector
representing the force that must be applied to the object
if it is to remain stationary.

17. An airplane is flying at an airspeed of 500 km/hr in a
wind blowing at 60 km/hr toward the southeast. In what

direction should the plane head to end up going due east?
What is the airplane’s speed relative to the ground?

18. An airplane is flying at an airspeed of 600 km/hr in a
cross-wind that is blowing from the northeast at a speed
of 50 km/hr. In what direction should the plane head
to end up going due east?

19. The current in a river is pushing a boat in direction 25◦

north of east with a speed of 12 km/hr. The wind is push-
ing the same boat in a direction 80◦ south of east with a
speed of 7 km/hr. Find the velocity vector of the boat’s
engine (relative to the water) if the boat actually moves
due east at a speed of 40 km/hr relative to the ground.

20. A man wishes to row the shortest possible distance from
north to south across a river that is flowing at 4 km/hr
from the east. He can row at 5 km/hr.

(a) In which direction should he steer?
(b) If there is a wind of 10 km/hr from the southwest, in

which direction should he steer to try and go directly
across the river? What happens?

21. A large ship is being towed by two tugs. The larger tug
exerts a force which is 25% greater than the smaller tug
and at an angle of 30 degrees north of east. Which di-
rection must the smaller tug pull to ensure that the ship
travels due east?

22. An object P is pulled by a force �F1 of magnitude 15 lb
at an angle of 20 degrees north of east. In what direction
must a force �F2 of magnitude 20 lb pull to ensure that P
moves due east?

23. An object is to be moved vertically upward by a crane.
As the crane cannot get directly above the object, three
ropes are attached to guide the object. One rope is pulled
parallel to the ground with a force of 100 newtons in a
direction 30◦ north of east. The second rope is pulled
parallel to the ground with a force of 70 newtons in a di-
rection 80◦ south of east. If the crane is attached to the
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third rope and can pull with a total force of 3000 newtons,
find the force vector for the crane. What is the resulting
(total) force on the object? (Assume vector�i points east,
vector�j points north, and vector �k points vertically up.)

24. The earth is at the origin, the moon is at the point
(384, 0), and a spaceship is at (280, 90), where distance
is in thousands of kilometers.

(a) What is the displacement vector of the moon relative
to the earth? Of the spaceship relative to the earth?
Of the spaceship relative to the moon?

(b) How far is the spaceship from the earth? From the
moon?

(c) The gravitational force on the spaceship from the
earth is 461 newtons and from the moon is 26 new-
tons. What is the resulting force?

25. A particle moving with speed v hits a barrier at an an-
gle of 60◦ and bounces off at an angle of 60◦ in the op-
posite direction with speed reduced by 20 percent. See
Figure 13.25. Find the velocity vector of the object after
impact.

60◦ 60◦
x

y

Before
impact

After
impact

Figure 13.25

26. There are five students in a class. Their scores on the
midterm (out of 100) are given by the vector �v =
(73, 80, 91, 65, 84). Their scores on the final (out of 100)
are given by �w = (82, 79, 88, 70, 92). If the final counts
twice as much as the midterm, find a vector giving the
total scores (as a percentage) of the students.

27. The price vector of beans, rice, and tofu is
(0.30, 0.20, 0.50) in dollars per pound. Express it in
dollars per ounce.

28. An object is moving counterclockwise at a constant
speed around the circle x2 + y2 = 1, where x and y
are measured in meters. It completes one revolution ev-
ery minute.

(a) What is its speed?
(b) What is its velocity vector 30 seconds after it passes

the point (1, 0)? Does your answer change if the ob-
ject is moving clockwise? Explain.

29. An object is attached by a string to a fixed point and ro-
tates 30 times per minute in a horizontal plane. Show that
the speed of the object is constant but the velocity is not.
What does this imply about the acceleration?

In Problems 30–37, use the geometric definition of addition
and scalar multiplication to explain each of the properties.

30. �w + �v = �v + �w 31. (α + β)�v = α�v + β�v

32. α(�v + �w ) = α�v +α�w 33. α(β�v ) = (αβ)�v

34. �v +�0 = �v 35. 1�v = �v

36. �v + (−1)�w = �v − �w

37. (�u + �v ) + �w = �u + (�v + �w )

38. In the game of laser tag, you shoot a harmless laser gun
and try to hit a target worn at the waist by other play-
ers. Suppose you are standing at the origin of a three-
dimensional coordinate system and that the xy-plane is
the floor. Suppose that waist-high is 3 feet above floor
level and that eye level is 5 feet above the floor. Three of
your friends are your opponents. One is standing so that
his target is 30 feet along the x-axis, another lying down
so that his target is at the point x = 20, y = 15, and the
third lying in ambush so that his target is at a point 8 feet
above the point x = 12, y = 30.

(a) If you aim with your gun at eye level, find the vector
from your gun to each of the three targets.

(b) If you shoot from waist height, with your gun one
foot to the right of the center of your body as you
face along the x-axis, find the vector from your gun
to each of the three targets.

Strengthen Your Understanding

In Problems 39–40, explain what is wrong with the statement.

39. Two vectors in 3-space that have equal �k -components
and the same magnitude must be the same vector.

40. A vector �v in the plane whose �i -component is 0.5 has
smaller magnitude than the vector �w = 2�i .

In Problems 41–42, give an example of:

41. A non-zero vector �F on the plane that when combined
with the force vector �G = �i + �j results in a combined
force vector �R with a positive�i -component and a nega-
tive �j -component.

42. Non-zero vectors �u and �v such that ‖�u +�v ‖ = ‖�u ‖+
‖�v ‖.

In Problems 43–48, is the quantity a vector? Give a reason for
your answer.

43. Velocity 44. Speed 45. Force

46. Area 47. Acceleration 48. Volume
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13.3 THE DOT PRODUCT

We have seen how to add vectors; can we multiply two vectors together? In the next two sections
we will see two different ways of doing so: the scalar product (or dot product), which produces a
scalar, and the vector product (or cross product), which produces a vector.

Definition of the Dot Product
The dot product links geometry and algebra. We already know how to calculate the length of a vector
from its components; the dot product gives us a way of computing the angle between two vectors.
For any two vectors �v = v1�i + v2�j + v3�k and �w = w1

�i + w2
�j + w3

�k , shown in Figure 13.26,
we define a scalar as follows:

The following two definitions of the dot product, or scalar product, �v · �w , are equivalent:
• Geometric definition
�v · �w = ‖�v ‖‖�w ‖ cos θ where θ is the angle between �v and �w and 0 ≤ θ ≤ π.

• Algebraic definition
�v · �w = v1w1 + v2w2 + v3w3.

Notice that the dot product of two vectors is a number, not a vector.

Why don’t we give just one definition of �v · �w ? The reason is that both definitions are equally
important; the geometric definition gives us a picture of what the dot product means and the alge-
braic definition gives us a way of calculating it.

How do we know the two definitions are equivalent—that is, they really do define the same
thing? First, we observe that the two definitions give the same result in a particular example. Then
we show why they are equivalent in general.

θ

�w

�v

Figure 13.26: The vectors �v
and �w

1 2

2

x

y

θ

�w

�v

Figure 13.27: Calculating the dot product of the vectors
v =�i and �w = 2�i + 2�j geometrically and algebraically

gives the same result

Example 1 Suppose �v =�i and �w = 2�i + 2�j . Compute �v · �w both geometrically and algebraically.

Solution To use the geometric definition, see Figure 13.27. The angle between the vectors is π/4, or 45◦, and
the lengths of the vectors are given by

‖�v ‖ = 1 and ‖�w ‖ = 2
√
2.

Thus,

�v · �w = ‖�v ‖‖�w ‖ cos θ = 1 · 2
√
2 cos

(π
4

)
= 2.

Using the algebraic definition, we get the same result:

�v · �w = 1 · 2 + 0 · 2 = 2.
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Why the Two Definitions of the Dot Product Give the Same Result
In the previous example, the two definitions give the same value for the dot product. To show that
the geometric and algebraic definitions of the dot product always give the same result, we must
show that, for any vectors �v = v1�i + v2�j + v3�k and �w = w1

�i + w2
�j + w3

�k with an angle θ
between them:

‖�v ‖‖�w ‖ cos θ = v1w1 + v2w2 + v3w3.

One method follows; a method that does not use trigonometry is given in Problem 69 on page 743.
Using the Law of Cosines. Suppose that 0 < θ < π, so that the vectors �v and �w form a

triangle. (See Figure 13.28.) By the Law of Cosines, we have

‖�v − �w ‖2 = ‖�v ‖2 + ‖�w ‖2 − 2‖�v ‖‖�w ‖ cos θ.

This result is also true for θ = 0 and θ = π. We calculate the lengths using components:

‖�v ‖2 = v21 + v22 + v23

‖�w ‖2 = w2
1 + w2

2 + w2
3

‖�v − �w ‖2 = (v1 − w1)
2
+ (v2 − w2)

2
+ (v3 − w3)

2

= v21 − 2v1w1 + w2
1 + v22 − 2v2w2 + w2

2 + v23 − 2v3w3 + w2
3 .

Substituting into the Law of Cosines and canceling, we see that

−2v1w1 − 2v2w2 − 2v3w3 = −2‖�v ‖‖�w ‖ cos θ.

Therefore we have the result we wanted, namely that:

v1w1 + v2w2 + v3w3 = ‖�v ‖‖�w ‖ cos θ.

θ

�w

�v

�v − �w

Figure 13.28: Triangle used in the justification of ‖�v ‖‖�w ‖ cos θ = v1w1 + v2w2 + v3w3

Properties of the Dot Product
The following properties of the dot product can be justified using the algebraic definition; see Prob-
lem 63 on page 742. For a geometric interpretation of Property 3, see Problem 66.

Properties of the Dot Product. For any vectors �u , �v , and �w and any scalar λ,
1. �v · �w = �w · �v

2. �v · (λ�w ) = λ(�v · �w ) = (λ�v ) · �w

3. (�v + �w ) · �u = �v · �u + �w · �u

Perpendicularity, Magnitude, and Dot Products

Two vectors are perpendicular if the angle between them is π/2 or 90◦. Since cos(π/2) = 0, if �v
and �w are perpendicular, then �v · �w = 0. Conversely, provided that �v · �w = 0, then cos θ = 0, so
θ = π/2 and the vectors are perpendicular. Thus, we have the following result:



736 Chapter Thirteen A FUNDAMENTAL TOOL: VECTORS

Two non-zero vectors �v and �w are perpendicular, or orthogonal, if and only if

�v · �w = 0.

For example:�i ·�j = 0, �j · �k = 0,�i · �k = 0.
If we take the dot product of a vector with itself, then θ = 0 and cos θ = 1. For any vector �v :

Magnitude and dot product are related as follows:

�v · �v = ‖�v ‖2.

For example:�i ·�i = 1, �j ·�j = 1, �k · �k = 1.

Using the Dot Product
Depending on the situation, one definition of the dot product may be more convenient to use than
the other. In Example 2, the geometric definition is the only one that can be used because we are not
given components. In Example 3, the algebraic definition is used.

Example 2 Suppose the vector�b is fixed and has length 2; the vector �a is free to rotate and has length 3. What
are the maximum and minimum values of the dot product �a ·�b as the vector �a rotates through all
possible positions? What positions of �a and�b lead to these values?

Solution The geometric definition gives �a ·�b = ‖�a ‖‖�b ‖ cos θ = 3 · 2 cos θ = 6 cos θ. Thus, the maximum
value of �a ·�b is 6, and it occurs when cos θ = 1 so θ = 0, that is, when �a and�b point in the same
direction. The minimum value of �a · �b is −6, and it occurs when cos θ = −1 so θ = π, that is,
when �a and�b point in opposite directions. (See Figure 13.29.)

�b

�a
�a

�a

When�a is in this
position,�a ·�b = 0

When�a is in this
position,�a ·�b = −6

When�a is in this
position,�a ·�b = 6

Figure 13.29: Maximum and minimum values of �a ·�b obtained
from a fixed vector�b of length 2 and rotating vector �a of length 3

Example 3 Which pairs from the following list of 3-dimensional vectors are perpendicular to one another?

�u =�i +
√
3�k , �v =�i +

√
3�j , �w =

√
3�i +�j − �k .

Solution The geometric definition tells us that two vectors are perpendicular if and only if their dot product
is zero. Since the vectors are given in components, we calculate dot products using the algebraic
definition:

�v · �u = (�i +
√
3�j + 0�k ) · (�i + 0�j +

√
3�k ) = 1 · 1 +

√
3 · 0 + 0 ·

√
3 = 1,

�v · �w = (�i +
√
3�j + 0�k ) · (

√
3�i +�j − �k ) = 1 ·

√
3 +

√
3 · 1 + 0(−1) = 2

√
3,

�w · �u = (
√
3�i +�j − �k ) · (�i + 0�j +

√
3�k ) =

√
3 · 1 + 1 · 0 + (−1) ·

√
3 = 0.

So the only two vectors that are perpendicular are �w and �u .
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Example 4 Compute the angle between the vectors �v and �w from Example 3.

Solution We know that �v · �w = ‖�v ‖‖�w ‖ cos θ, so cos θ =
�v · �w

‖�v ‖‖�w ‖
. From Example 3, we know that

�v · �w = 2
√
3. This gives:

cos θ =
2
√
3

‖�v ‖‖�w ‖
=

2
√
3√

12 +
(√

3
)2

+ 02
√(√

3
)2

+ 12 + (−1)2
=

√
3

√
5

so θ = arccos

(√
3

√
5

)
= 39.2315◦.

Normal Vectors and the Equation of a Plane

In Section 12.4 we wrote the equation of a plane given its x-slope, y-slope and z-intercept. Now
we write the equation of a plane using a vector �n and a point P0. The key idea is that all the
displacement vectors from P0 that are perpendicular to �n form a plane. To picture this, imagine a
pencil balanced on a table, with other pencils fanned out on the table in different directions. The
upright pencil is �n , its base is P0, the other pencils are perpendicular displacement vectors, and the
table is the plane.

More formally, a normal vector to a plane is a vector that is perpendicular to the plane, that
is, it is perpendicular to every displacement vector between any two points in the plane. Let �n =

a�i +b�j +c�k be a normal vector to the plane, let P0 = (x0, y0, z0) be a fixed point in the plane, and
let P = (x, y, z) be any other point in the plane. Then

−−→
P0P = (x−x0)�i +(y−y0)�j +(z−z0)�k is

a vector whose head and tail both lie in the plane. (See Figure 13.30.) Thus, the vectors �n and
−−→
P0P

are perpendicular, so �n ·
−−→
P0P = 0. The algebraic definition of the dot product gives �n ·

−−→
P0P =

a(x− x0) + b(y − y0) + c(z − z0), so we obtain the following result:

�n



(x0, y0, z0)

� (x, y, z)
�

−−→
P0P

Figure 13.30: Plane with normal �n and containing a fixed point (x0, y0, z0)

The equation of the plane with normal vector �n = a�i + b�j + c�k and containing the point
P0 = (x0, y0, z0) is

a(x− x0) + b(y − y0) + c(z − z0) = 0.

Letting d = ax0 + by0 + cz0 (a constant), we can write the equation of the plane in the form

ax+ by + cz = d.

Example 5 (a) Find the equation of the plane perpendicular to �n = −�i + 3�j + 2�k and passing through the
point (1, 0, 4).

(b) Find a vector parallel to the plane.

Solution (a) The equation of the plane is

−(x− 1) + 3(y − 0) + 2(z − 4) = 0,

which can be written as
−x+ 3y + 2z = 7.
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(b) Any vector �v that is perpendicular to n is also parallel to the plane, so we look for any vector
satisfying �v · �n = 0; for example, �v = 3�i +�j . There are many other possible vectors.

Example 6 Find a normal vector to the plane with equation (a) x− y + 2z = 5 (b) z = 0.5x+ 1.2y.

Solution (a) Since the coefficients of�i , �j , and �k in a normal vector are the coefficients of x, y, and z in the
equation of the plane, a normal vector is �n =�i −�j + 2�k .

(b) Before we can find a normal vector, we rewrite the equation of the plane in the form

0.5x+ 1.2y − z = 0.

Thus, a normal vector is �n = 0.5�i + 1.2�j − �k .

The Dot Product in n Dimensions

The algebraic definition of the dot product can be extended to vectors in higher dimensions.

If �u = (u1, . . . , un) and �v = (v1, . . . , vn) then the dot product of �u and �v is the scalar

�u · �v = u1v1 + · · ·+ unvn.

Example 7 A video store sells videos, tapes, CDs, and computer games. We define the quantity vector �q =

(q1, q2, q3, q4), where q1, q2, q3, q4 denote the quantities sold of each of the items, and the price
vector �p = (p1, p2, p3, p4), where p1, p2, p3, p4 denote the price per unit of each item. What does
the dot product �p · �q represent?

Solution The dot product is �p · �q = p1q1 + p2q2 + p3q3 + p4q4. The quantity p1q1 represents the revenue
received by the store for the videos, p2q2 represents the revenue for the tapes, and so on. The dot
product represents the total revenue received by the store for the sale of these four items.

Resolving a Vector into Components: Projections
In Section 13.1, we resolved a vector into components parallel to the axes. Now we see how to re-
solve a vector, �v , into components, called �v parallel and �v perp, which are parallel and perpendicular,
respectively, to a given non-zero vector, �u . (See Figure 13.31.)

θ

�u�v

�v perp �v parallel

(a)

θ

�v parallel

�v

�u�v perp(b)

Figure 13.31: Resolving �v into components parallel and perpendicular to �u
(a) 0 < θ < π/2 (b) π/2 < θ < π

The projection of �v on �u , written �v parallel, measures (in some sense) how much the vector �v
is aligned with the vector �u . The length of �v parallel is the length of the shadow cast by �v on a line
in the direction of �u .

To compute�v parallel, we assume �u is a unit vector. (If not, create one by dividing by its length.)
Then Figure 13.31(a) shows that, if 0 ≤ θ ≤ π/2:

‖�v parallel‖ = ‖�v ‖ cos θ = �v · �u (since ‖�u ‖ = 1).

Now �v parallel is a scalar multiple of �u , and since �u is a unit vector,

�v parallel = (‖�v ‖ cos θ)�u = (�v · �u )�u .
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A similar argument shows that if π/2 < θ ≤ π, as in Figure 13.31(b), this formula for �v parallel still
holds. The vector �v perp is specified by

�v perp = �v − �v parallel.

Thus, we have the following results:

Projection of �v on the Line in the Direction of the Unit Vector �u

If �v parallel and �v perp are components of �v that are parallel and perpendicular, respectively,
to �u , then

Projection of �v onto �u = �v parallel = (�v · �u )�u provided ‖�u ‖ = 1

and �v = �v parallel + �v perp so �v perp = �v − �v parallel.

Example 8 Figure 13.32 shows the force the wind exerts on the sail of a sailboat. Find the component of the
force in the direction in which the sailboat is traveling.

Sail

�

��

�

�
��u

30◦

Wind direction

Boat’s direction of travel

�F wind

Component of �F wind
in boat’s direction of travel

Figure 13.32: Wind moving a sailboat

Solution Let �u be a unit vector in the direction of travel. The force of the wind on the sail makes an angle of
30◦ with �u . Thus, the component of this force in the direction of �u is

�F parallel = (�F · �u )�u = ‖�F ‖(cos 30◦)�u = 0.87‖�F ‖�u .

Thus, the boat is being pushed forward with about 87% of the total force due to the wind. (In fact,
the interaction of wind and sail is much more complex than this model suggests.)

A Physical Interpretation of the Dot Product: Work

In physics, the word “work” has a different meaning from its everyday meaning. In physics, when a
force of magnitude F acts on an object through a distance d, we say the work, W , done by the force
is

W = Fd,

provided the force and the displacement are in the same direction. For example, if a 1 kg body falls
10 meters under the force of gravity, which is 9.8 newtons, then the work done by gravity is

W = (9.8 newtons) · (10 meters) = 98 joules.

What if the force and the displacement are not in the same direction? Suppose a force �F acts
on an object as it moves along a displacement vector �d . Let θ be the angle between �F and �d . First,
we assume 0 ≤ θ ≤ π/2. Figure 13.33 shows how we can resolve �F into components that are
parallel and perpendicular to �d :

�F = �F parallel + �F perp.
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Then the work done by �F is defined to be

W = ‖�F parallel‖ ‖�d ‖.

We see from Figure 13.33 that �F parallel has magnitude ‖�F ‖ cos θ. So the work is given by the dot
product:

W = (‖�F ‖ cos θ)‖�d ‖ = ‖�F ‖‖�d ‖ cos θ = �F · �d .

θ

�d

�F

�F perp

�F parallel

Figure 13.33: Resolving the force �F into two forces, one parallel to �d , one perpendicular to �d

The formula W = �F · �d holds when π/2 < θ ≤ π also. In that case, the work done by the
force is negative and the object is moving against the force. Thus, we have the following definition:

The work, W , done by a force �F acting on an object through a displacement �d is given by

W = �F · �d .

Example 9 How much work does the wind do on the sailboat from Example 8 if the boat moves 20 m and the
wind’s force is 120 newtons?

Solution From Example 8, we know that the force of the wind �F makes a 30◦angle with the boat’s displace-
ment �d . Since ‖�F ‖ = 120 and ‖�d ‖ = 20, the work done by the wind on the boat is

W = �F · �d = ‖�F ‖‖�d ‖ cos 30◦ = 2078.461 joules.

Notice that if the vectors �F and �d are parallel and in the same direction, with magnitudes F
and d, then cos θ = cos 0 = 1, so W = ‖�F ‖‖�d ‖ = Fd, which is the original definition. When
the vectors are perpendicular, cos θ = cos(π/2) = 0, so W = 0 and no work is done in the
technical definition of the word. For example, if you carry a heavy box across the room at the same
horizontal height, no work is done by gravity because the force of gravity is vertical but the motion
is horizontal.

Exercises and Problems for Section 13.3
Exercises

For Exercises 1–9, perform the following operations on the
given 3-dimensional vectors.

�a = 2�j + �k �b = −3�i + 5�j + 4�k �c =�i + 6�j

�y = 4�i − 7�j �z =�i − 3�j − �k

1. �a · �y 2. �c · �y

3. �a ·�b 4. �a · �z

5. �c · �a + �a · �y 6. �a · (�c + �y )

7. (�a ·�b )�a 8. (�a · �y )(�c · �z )

9. ((�c · �c )�a ) · �a
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In Exercises 10–14, find a normal vector to the plane.

10. 2x+ y − z = 5

11. 2(x− z) = 3(x+ y)

12. 1.5x+ 3.2y + z = 0

13. z = 3x+ 4y − 7

14. π(x− 1) = (1− π)(y − z) + π

In Exercises 15–21, find an equation of a plane that satisfies
the given conditions.

15. Through (1, 5, 2) perpendicular to 3�i −�j + 4�k

16. Through (2,−1, 3) perpendicular to 5�i + 4�j − �k .

17. Through (1, 3, 5) and normal to�i −�j + �k .

18. Perpendicular to 5�i + �j − 2�k and passing through
(0, 1,−1).

19. Parallel to 2x+ 4y − 3z = 1 and through (1, 0,−1).

20. Through (−2, 3, 2) and parallel to 3x+ y + z = 4.

21. Perpendicular to �v = 2�i − 3�j + 5�k and through
(4, 5,−2).

In Exercises 22–26, compute the angle between the vectors.

22. �i +�j + �k and�i −�j − �k .

23. �i + �k and �j − �k .

24. �i +�j − �k and 2�i + 3�j + �k .

25. �i +�j and�i + 2�j − �k .

26. �i and 2�i + 3�j − �k .

Problems

27. Give a unit vector

(a) In the same direction as �v = 2�i + 3�j .
(b) Perpendicular to �v .

28. A plane has equation z = 5x− 2y + 7.

(a) Find a value of λ making the vector λ�i +�j +0.5�k
normal to the plane.

(b) Find a value of a so that the point (a + 1, a, a − 1)
lies on the plane.

29. Consider the plane 5x− y + 7z = 21.

(a) Find a point on the x-axis on this plane.
(b) Find two other points on the plane.
(c) Find a vector perpendicular to the plane.
(d) Find a vector parallel to the plane.

30. (a) Find a vector perpendicular to the plane
z = 2 + 3x− y.

(b) Find a vector parallel to the plane.

31. (a) Find a vector perpendicular to the plane
z = 2x+ 3y.

(b) Find a vector parallel to the plane.

32. Match the planes in (a)–(d) with one or more of the de-
scriptions in (I)–(IV). No reasons needed.

(a) 3x− y + z = 0 (b) 4x+ y + 2z − 5 = 0

(c) x+ y = 5 (d) x = 5

I Goes through the origin.
II Has a normal vector parallel to the xy-plane.

III Goes through the point (0, 5, 0).
IV Has a normal vector whose dot products with�i , �j ,

�k are all positive.

33. Which pairs (if any) of vectors from the following list

(a) Are perpendicular?
(b) Are parallel?
(c) Have an angle less than π/2 between them?

(d) Have an angle of more than π/2 between them?

�a =�i − 3�j − �k , �b =�i +�j + 2�k ,

�c = −2�i −�j + �k , �d = −�i −�j + �k .

34. List any vectors that are parallel to each other and any
vectors that are perpendicular to each other:

�v 1 =�i − 2�j �v 2 = 2�i + 4�j

�v 3 = 3�i + 1.5�j �v 4 = −1.2�i + 2.4�j

�v 5 = −5�i − 2.5�j �v 6 = 12�i − 12�j

�v 7 = 4�i + 2�j �v 8 = 3�i − 6�j

�v 9 = 0.70�i − 0.35�j

35. (a) Give a vector that is parallel to, but not equal to,
�v = 4�i + 3�j .

(b) Give a vector that is perpendicular to �v .

36. For what values of t are �u = t�i − �j + �k and �v =
t�i + t�j − 2�k perpendicular? Are there values of t for
which �u and �v are parallel?

37. Let θ be the angle between �v and �w , with 0 < θ < π/2.
What is the effect on �v · �w of increasing each of the
following quantities? Does �v · �w increase or decrease?

(a) ||�v || (b) θ

38. Write �a = 3�i +2�j −6�k as the sum of two vectors, one
parallel, and one perpendicular, to �d = 2�i − 4�j + �k .

39. Find angle BAC if A = (2, 2, 2), B = (4, 2, 1), and
C = (2, 3, 1).

40. The points (5, 0, 0), (0,−3, 0), and (0, 0, 2) form a tri-
angle. Find the lengths of the sides of the triangle and
each of its angles.
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41. Let S be the triangle with vertices A = (2, 2, 2), B =
(4, 2, 1), and C = (2, 3, 1).

(a) Find the length of the shortest side of S.
(b) Find the cosine of the angle BAC at vertex A.

In Problems 42–47, given �v = 3�i + 4�j and force vector �F ,
find:

(a) The component of �F parallel to �v .

(b) The component of �F perpendicular to �v .

(c) The work, W , done by force �F through displacement �v .

42. �F = 4�i +�j 43. �F = 0.2�i − 0.5�j

44. �F = 9�i + 12�j 45. �F = −0.4�i + 0.3�j

46. �F = −3�i − 5�j 47. �F = −6�i − 8�j

In Problems 48–51, the force on an object is �F = −20�j . For
vector �v , find:

(a) The component of �F parallel to �v .

(b) The component of �F perpendicular to �v .

(c) The work, W , done by force �F through displacement �v .

48. �v = 2�i + 3�j 49. �v = 5�i −�j

50. �v = 3�j 51. �v = 5�i

52. A basketball gymnasium is 25 meters high, 80 meters
wide and 200 meters long. For a half-time stunt, the
cheerleaders want to run two strings, one from each of
the two corners above one basket to the diagonally oppo-
site corners of the gym floor. What is the cosine of the
angle made by the strings as they cross?

53. A 100-meter dash is run on a track in the direction of the
vector �v = 2�i + 6�j . The wind velocity �w is 5�i + �j
km/hr. The rules say that a legal wind speed measured in
the direction of the dash must not exceed 5 km/hr. Will
the race results be disqualified due to an illegal wind?
Justify your answer.

54. An airplane is flying toward the southeast. Which of
the following wind velocity vectors increases the plane’s
speed the most? Which slows down the plane the most?

�w 1 = −4�i −�j �w 2 =�i −2�j �w 3 = −�i +8�j

�w 4 = 10�i + 2�j �w 5 = 5�i − 2�j

55. A canoe is moving with velocity �v = 5�i +3�j m/sec rel-
ative to the water. The velocity of the current in the water
is �c =�i + 2�j m/sec.

(a) What is the speed of the current?
(b) What is the speed of the current in the direction of

the canoe’s motion?

56. Find a vector that bisects the smaller of the two angles
formed by 3�i + 4�j and 5�i − 12�j .

57. Find the shortest distance between the planes 2x− 5y +
z = 10 and z = 5y − 2x.

58. A street vendor sells six items, with prices p1 dol-
lars per unit, p2 dollars per unit, and so on. The ven-
dor’s price vector is �p = (p1, p2, p3, p4, p5, p6) =
(1.00, 3.50, 4.00, 2.75, 5.00, 3.00). The vendor sells q1
units of the first item, q2 units of the second item,
and so on. The vendor’s quantity vector is �q =
(q1, q2, q3, q4, q5, q6) = (43, 57, 12, 78, 20, 35). Find
�p · �q , give its units, and explain its significance to the
vendor.

59. A course has four exams, weighted 10%, 15%, 25%,
50%, respectively. The class average on each of these
exams is 75%, 91%, 84%, 87%, respectively. What do
the vectors �a = (0.75, 0.91, 0.84, 0.87) and �w =
(0.1, 0.15, 0.25, 0.5) represent, in terms of the course?
Calculate the dot product �w · �a . What does it represent,
in terms of the course?

60. A consumption vector of three goods is defined by �x =
(x1, x2, x3), where x1, x2 and x3 are the quantities con-
sumed of the three goods. A budget constraint is repre-
sented by the equation �p · �x = k, where �p is the price
vector of the three goods and k is a constant. Show that
the difference between two consumption vectors corre-
sponding to points satisfying the same budget constraint
is perpendicular to the price vector �p .

61. What does Property 2 of the dot product in the box on
page 735 say geometrically?

62. Show that the vectors (�b · �c )�a − (�a · �c )�b and �c are
perpendicular.

63. Show why each of the properties of the dot product in the
box on page 735 follows from the algebraic definition of
the dot product:

�v · �w = v1w1 + v2w2 + v3w3.

64. Show that if �u and �v are two vectors such that

�u · �w = �v · �w

for every vector �w , then

�u = �v .

65. Show that

�u

‖�u ‖2 − �v

‖�v ‖2 and
�u

‖�u ‖‖�v ‖ − �v

‖�u ‖‖�v ‖

have the same magnitude where �u and �v are nonzero
vectors.
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66. Figure 13.34 shows that, given three vectors �u , �v , and
�w , the sum of the components of �v and �w in the direc-
tion of �u is the component of �v + �w in the direction of
�u . (Although the figure is drawn in two dimensions, this
result is also true in three dimensions.) Use this figure to
explain why the geometric definition of the dot product
satisfies (�v + �w ) · �u = �v · �u + �w · �u .

�w�v + �w

�v

Component
of �v in the
direction of �u

Component
of �w in the
direction of �u

�u

Component of �v + �w
in the direction of �u

Figure 13.34: Component of �v + �w in the direction of �u is
the sum of the components of �v and �w in that direction

67. (a) Using the geometric definition of the dot product,
show that

�u · (−�v ) = −(�u · �v ).
[Hint: What happens to the angle when you multiply
�v by −1?]

(b) Using the geometric definition of the dot product,
show that for any negative scalar λ

�u · (λ�v ) = λ(�u · �v )
(λ�u ) · �v = λ(�u · �v ).

68. The Law of Cosines for a triangle with side lengths a, b,
and c, and with angle C opposite side c, says

c2 = a2 + b2 − 2ab cosC.

On page 735, we used the Law of Cosines to show that
the two definitions of the dot product are equivalent. In
this problem, use the geometric definition of the dot prod-
uct and its properties in the box on page 735 to prove the
Law of Cosines. [Hint: Let �u and �v be the displacement
vectors from C to the other two vertices, and express c2

in terms of �u and �v .]

69. Use Problems 66 and 67 and the following steps to
show (without trigonometry) that the geometric and al-
gebraic definitions of the dot product are equivalent. Let
�u = u1

�i + u2
�j + u3

�k and �v = v1�i + v2�j + v3�k
be any vectors. Write (�u · �v )geom for the result of the
dot product computed geometrically. Substitute �u =
u1
�i + u2

�j + u3
�k and use Problems 66–67 to expand

(�u · �v )geom. Substitute for �v and expand. Then calcu-
late the dot products�i ·�i ,�i ·�j , etc. geometrically.

70. For any vectors �v and �w , consider the following func-
tion of t:

q(t) = (�v + t �w ) · (�v + t �w ).

(a) Explain why q(t) ≥ 0 for all real t.
(b) Expand q(t) as a quadratic polynomial in t using the

properties on page 735.
(c) Using the discriminant of the quadratic, show that

|�v · �w | ≤ ‖�v ‖‖�w ‖.

Strengthen Your Understanding

In Problems 71–73, explain what is wrong with the statement.

71. For any 3-dimensional vectors �u ,�v , �w , we have (�u ·�v )·
�w = �u · (�v · �w ).

72. If �u = �i +�j and �v = 2�i +�j , then the component of
�v parallel to �u is �v parallel = (�v · �u )�u = 3�i + 3�j .

73. A normal vector for the plane z = 2x+ 3y is 2�i + 3�j .

In Problems 74–75, give an example of:

74. A point (a, b) such that the displacement vector from
(1, 1) to (a, b) is perpendicular to�i + 2�j .

75. A linear function f(x, y) = mx + ny + c whose graph
is perpendicular to�i + 2�j + 3�k .

Are the statements in Problems 76–85 true or false? Give rea-
sons for your answer.

76. The quantity �u · �v is a vector.

77. The plane x+2y− 3z = 5 has normal vector�i +2�j −
3�k .

78. If �u · �v < 0 then the angle between �u and �v is greater
than π/2.

79. An equation of the plane with normal vector�i +�j + �k
containing the point (1, 2, 3) is z = x+ y.

80. The triangle in 3-space with vertices (1, 1, 0), (0, 1, 0)
and (0, 1, 1) has a right angle.

81. The dot product �v · �v is never negative.

82. If �u · �v = 0 then either �u = 0 or �v = 0.

83. If �u ,�v and �w are all nonzero, and �u · �v = �u · �w , then
�v = �w .

84. For any vectors �u and �v : (�u + �v ) · (�u − �v ) =
‖�u ‖2 − ‖�v ‖2.

85. If ‖�u ‖ = 1, then the vector �v − (�v · �u )�u is perpendic-
ular to �u .
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13.4 THE CROSS PRODUCT

In the previous section we combined two vectors to get a number, the dot product. In this section
we see another way of combining two vectors, this time to get a vector, the cross product. Any two
vectors in 3-space form a parallelogram. We define the cross product using this parallelogram.

The Area of a Parallelogram
Consider the parallelogram formed by the vectors �v and �w with an angle of θ between them. Then
Figure 13.35 shows

Area of parallelogram = Base · Height = ‖�v ‖‖�w ‖ sin θ.

How would we compute the area of the parallelogram if we were given �v and �w in components,
�v = v1�i + v2�j + v3�k and �w = w1

�i +w2
�j +w3

�k ? Project 1 on page 755 shows that if �v and �w
are in the xy-plane so that v3 = w3 = 0, then

Area of parallelogram = |v1w2 − v2w1| .

What if �v and �w do not lie in the xy-plane? The cross product will enable us to compute the area
of the parallelogram formed by any two vectors.

�

�

‖�w ‖ sin θ

�v

�w

θ

�� ‖�v ‖
Figure 13.35: Parallelogram formed by �v and �w has

Area = ‖�v ‖‖�w ‖ sin θ

Definition of the Cross Product
We define the cross product of the vectors �v and �w , written �v × �w , to be a vector perpendicular
to both �v and �w . The magnitude of this vector is the area of the parallelogram formed by the two
vectors. The direction of �v × �w is given by the normal vector, �n , to the plane defined by �v and
�w . If we require that �n be a unit vector, there are two choices for �n , pointing out of the plane in
opposite directions. We pick one by the following rule (see Figure 13.36):

The right-hand rule: Place �v and �w so that their tails coincide and curl the fingers of your
right hand through the smaller of the two angles from �v to �w ; your thumb points in the
direction of the normal vector, �n .

Like the dot product, there are two equivalent definitions of the cross product:
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The following two definitions of the cross product or vector product �v × �w are equivalent:
• Geometric definition

If �v and �w are not parallel, then

�v × �w =

(
Area of parallelogram
with edges �v and �w

)
�n = (‖�v ‖‖�w ‖ sin θ)�n ,

where 0 ≤ θ ≤ π is the angle between �v and �w and �n is the unit vector perpendicular to
�v and �w pointing in the direction given by the right-hand rule. If �v and �w are parallel,
then �v × �w = �0 .

• Algebraic definition

�v × �w = (v2w3 − v3w2)�i + (v3w1 − v1w3)�j + (v1w2 − v2w1)
�k

where �v = v1�i + v2�j + v3�k and �w = w1
�i + w2

�j + w3
�k .

Problems 45 and 48 at the end of this section show that the geometric and algebraic definitions
of the cross product give the same result.

� Unit normal determined by
right-hand rule

�v

�w

� ‖�v × �w ‖ = Area of parallelogram

Figure 13.36: Area of parallelogram = ‖�v × �w ‖

θ

�v

�w

�v × �w

Figure 13.37: The cross product �v × �w

The geometric definition shows us that the cross product is rotation invariant. Imagine the two
vectors �v and �w as two metal rods welded together. Attach a third rod whose direction and length
correspond to �v × �w . (See Figure 13.37.) Then, no matter how we turn this set of rods, the third
will still be the cross product of the first two.

The algebraic definition is more easily remembered by writing it as a 3 × 3 determinant. (See
Appendix E.)

�v × �w =

∣∣∣∣∣∣∣
�i �j �k

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣ = (v2w3 − v3w2)�i + (v3w1 − v1w3)�j + (v1w2 − v2w1)
�k .

Example 1 Find�i ×�j and �j ×�i .

Solution The vectors�i and �j both have magnitude 1 and the angle between them is π/2. By the right-hand
rule, the vector�i ×�j is in the direction of �k , so �n = �k and we have

�i ×�j =

(
‖�i ‖‖�j ‖ sin

π

2

)
�k = �k .

Similarly, the right-hand rule says that the direction of �j ×�i is −�k , so

�j ×�i = (‖�j ‖‖�i ‖ sin
π

2
)(−�k ) = −�k .
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Similar calculations show that �j × �k =�i and �k ×�i = �j .

Example 2 For any vector �v , find �v × �v .

Solution Since �v is parallel to itself, �v × �v = �0 .

Example 3 Find the cross product of �v = 2�i + �j − 2�k and �w = 3�i + �k and check that the cross product is
perpendicular to both �v and �w .

Solution Writing �v × �w as a determinant and expanding it into three two-by-two determinants, we have

�v × �w =

∣∣∣∣∣∣∣
�i �j �k

2 1 −2

3 0 1

∣∣∣∣∣∣∣ =�i

∣∣∣∣∣1 −2

0 1

∣∣∣∣∣−�j

∣∣∣∣∣2 −2

3 1

∣∣∣∣∣+ �k

∣∣∣∣∣2 1

3 0

∣∣∣∣∣
=�i (1(1)− 0(−2))−�j (2(1)− 3(−2)) + �k (2(0)− 3(1))

=�i − 8�j − 3�k .

To check that �v × �w is perpendicular to �v , we compute the dot product:

�v · (�v × �w ) = (2�i +�j − 2�k ) · (�i − 8�j − 3�k ) = 2− 8 + 6 = 0.

Similarly,
�w · (�v × �w ) = (3�i + 0�j + �k ) · (�i − 8�j − 3�k ) = 3 + 0− 3 = 0.

Thus, �v × �w is perpendicular to both �v and �w .

Properties of the Cross Product
The right-hand rule tells us that �v × �w and �w × �v point in opposite directions. The magnitudes of
�v × �w and �w × �v are the same, so �w × �v = −(�v × �w ). (See Figure 13.38.)

�v

�w

�v × �w

�w × �v

�v

�w

Figure 13.38: Diagram showing �v × �w = −(�w × �v )

This explains the first of the following properties. The other two are derived in Problems 39, 40, and
48 at the end of this section.

Properties of the Cross Product

For vectors �u ,�v , �w and scalar λ
1. �w × �v = −(�v × �w )

2. (λ�v )× �w = λ(�v × �w ) = �v × (λ�w )

3. �u × (�v + �w ) = �u × �v + �u × �w .
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The Equation of a Plane Through Three Points
As we saw on page 737, the equation of a plane is determined by a point P0 = (x0, y0, z0) on the
plane, and a normal vector, �n = a�i + b�j + c�k:

a(x− x0) + b(y − y0) + c(z − z0) = 0.

However, a plane can also be determined by three points on it (provided they do not lie on the same
line). In that case we can find an equation of the plane by first determining two vectors in the plane
and then finding a normal vector using the cross product, as in the following example.

Example 4 Find an equation of the plane containing the pointsP = (1, 3, 0),Q = (3, 4,−3), and R = (3, 6, 2).

Solution Since the points P and Q are in the plane, the displacement vector between them,
−−→
PQ, is in the

plane, where
−−→
PQ = (3− 1)�i + (4− 3)�j + (−3− 0)�k = 2�i +�j − 3�k .

The displacement vector
−→
PR is also in the plane, where

−→
PR = (3− 1)�i + (6 − 3)�j + (2 − 0)�k = 2�i + 3�j + 2�k .

Thus, a normal vector, �n , to the plane is given by

�n =
−−→
PQ×

−→
PR =

∣∣∣∣∣∣∣
�i �j �k

2 1 −3

2 3 2

∣∣∣∣∣∣∣ = 11�i − 10�j + 4�k .

Since the point (1, 3, 0) is on the plane, the equation of the plane is

11(x− 1)− 10(y − 3) + 4(z − 0) = 0,

which simplifies to
11x− 10y + 4z = −19.

You should check that P , Q, and R satisfy this equation, since they lie on the plane.

Areas and Volumes Using the Cross Product and Determinants
We can use the cross product to calculate the area of the parallelogram with sides �v and �w . We say
that �v × �w is the area vector of the parallelogram. The geometric definition of the cross product
tells us that �v × �w is normal to the parallelogram and gives us the following result:

Area of a parallelogram with edges �v = v1�i + v2�j + v3�k and �w = w1
�i +w2

�j +w3
�k is

given by

Area = ‖�v × �w ‖, where �v × �w =

∣∣∣∣∣∣∣
�i �j �k

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣ .
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Example 5 Find the area of the parallelogram with edges �v = 2�i +�j − 3�k and �w =�i + 3�j + 2�k .

Solution We calculate the cross product:

�v × �w =

∣∣∣∣∣∣∣
�i �j �k

2 1 −3

1 3 2

∣∣∣∣∣∣∣ = (2 + 9)�i − (4 + 3)�j + (6− 1)�k = 11�i − 7�j + 5�k .

The area of the parallelogram with edges �v and �w is the magnitude of the vector �v × �w :

Area = ‖�v × �w ‖ =
√
112 + (−7)2 + 52 =

√
195.

Volume of a Parallelepiped

Consider the parallelepiped with sides formed by �a ,�b , and �c . (See Figure 13.39.) Since the base is
formed by the vectors�b and �c , we have

Area of base of parallelepiped = ‖�b × �c ‖.

�a

�b

�c

Figure 13.39: Volume of a
parallelepiped

�a

�b

�c

θ�b × �c

Figure 13.40: The vectors �a ,�b , �c are
called a right-handed set

�c

�b

�a
θ

�b × �c

Figure 13.41: The vectors �a ,�b , �c are
called a left-handed set

The vectors �a , �b , and �c can be arranged either as in Figure 13.40 or as in Figure 13.41. In
either case,

Height of parallelepiped = ‖�a ‖ cos θ,

where θ is the angle shown in the figures. In Figure 13.40 the angle θ is less than π/2, so the product,
(�b × �c ) · �a , called the triple product, is positive. Thus, in this case

Volume of parallelepiped = Base · Height = ‖�b × �c ‖ · ‖�a ‖ cos θ = (�b × �c ) · �a .

In Figure 13.41, the angle, π−θ, between �a and�b ×�c is more than π/2, so the product (�b ×�c ) ·�a
is negative. Thus, in this case we have

Volume = Base · Height = ‖�b × �c ‖ · ‖�a ‖ cos θ = −‖�b × �c ‖ · ‖�a ‖ cos(π − θ)

= −(�b × �c ) · �a =

∣∣∣(�b × �c ) · �a
∣∣∣ .

Therefore, in both cases the volume is given by
∣∣∣(�b × �c ) · �a

∣∣∣. Using determinants, we can write

Volume of a parallelepiped with edges �a ,�b , �c is given by

Volume =

∣∣∣(�b × �c ) · �a
∣∣∣ = Absolute value of the determinant

∣∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣ .
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Exercises and Problems for Section 13.4
Exercises

In Exercises 1–7, use the algebraic definition to find �v × �w .

1. �v = �k , �w = �j

2. �v = −�i , �w = �j + �k

3. �v =�i + �k , �w =�i +�j

4. �v =�i +�j + �k , �w =�i +�j +−�k

5. �v = 2�i − 3�j + �k , �w =�i + 2�j − �k

6. �v = 2�i −�j − �k , �w = −6�i + 3�j + 3�k

7. �v = −3�i + 5�j + 4�k , �w =�i − 3�j − �k

Use the geometric definition in Exercises 8–9 to find:

8. 2�i × (�i +�j ) 9. (�i +�j )× (�i −�j )

In Exercises 10–11, use the properties on page 746 to find:

10.
(
(�i +�j )×�i

)
×�j 11. (�i +�j )× (�i ×�j )

12. For �a = 3�i +�j −�k and�b =�i − 4�j +2�k , find �a ×�b
and check that it is perpendicular to both �a and�b .

13. If �v = 3�i − 2�j + 4�k and �w = �i + 2�j − �k , find
�v × �w and �w ×�v . What is the relation between the two
answers?

In Exercises 14–15, find an equation for the plane through the
points.

14. (1, 0, 0), (0, 1, 0), (0, 0, 1).

15. (3, 4, 2), (−2, 1, 0), (0, 2, 1).

In Exercises 16–19, find the volume of the parallelogram with
edges �a ,�b ,�c .

16. �a = 3�i +4�j +5�k ,�b = 5�i +4�j +3�k ,�c =�i +�j +�k .

17. �a = −�i +�j + �k ,�b =�i −�j + �k ,�c =�i +�j − �k .

18. �a = −�i + 8�j + 7�k ,�b = 2�j + 9�k ,�c = 3�k .

19. �a =�i +�j + 2�k ,�b =�i + �k ,�c = �j + �k .

Problems

20. Find a vector parallel to the line of intersection of the
planes given by the equations 2x − 3y + 5z = 2 and
4x+ y − 3z = 7.

21. Find the equation of the plane through the origin that is
perpendicular to the line of intersection of the planes in
Problem 20.

22. Find the equation of the plane through the point (4, 5, 6)
and perpendicular to the line of intersection of the planes
in Problem 20.

23. Find an equation for the plane through the origin contain-
ing the points (1, 3, 0) and (2, 4, 1).

24. Find a vector parallel to the line of intersection of the two
planes 4x− 3y + 2z = 12 and x+ 5y − z = 25.

25. Find a vector parallel to the intersection of the planes
2x− 3y + 5z = 2 and 4x+ y − 3z = 7.

26. Find the equation of the plane through the origin that is
perpendicular to the line of intersection of the planes in
Problem 25.

27. Find the equation of the plane through the point (4, 5, 6)
that is perpendicular to the line of intersection of the
planes in Problem 25.

28. Find the equation of a plane through the origin and per-
pendicular to x− y + z = 5 and 2x+ y − 2z = 7.

29. Given the points P = (1, 2, 3), Q = (3, 5, 7), and
R = (2, 5, 3), find:

(a) A unit vector perpendicular to a plane containing P ,
Q, R.

(b) The angle between PQ and PR.
(c) The area of the triangle PQR.
(d) The distance from R to the line through P and Q.

30. Let A = (−1, 3, 0), B = (3, 2, 4), and C = (1,−1, 5).

(a) Find an equation for the plane that passes through
these three points.

(b) Find the area of the triangle determined by these
three points.

31. If �v and �w are both parallel to the xy-plane, what can
you conclude about �v × �w ? Explain.

32. Suppose �v · �w = 5 and ||�v × �w || = 3, and the angle
between �v and �w is θ. Find

(a) tan θ (b) θ.

33. If �v × �w = 2�i − 3�j + 5�k , and �v · �w = 3, find tan θ
where θ is the angle between �v and �w .

34. Suppose �v · �w = 8 and �v × �w = 12�i − 3�j + 4�k and
that the angle between �v and �w is θ. Find

(a) tan θ (b) θ

35. Why does a baseball curve? The baseball in Figure 13.42
has velocity �v meters/sec and is spinning at ω radians
per second about an axis in the direction of the unit vec-
tor �n . The ball experiences a force, called the Magnus
force,2 �FM , that is proportional to ω�n × �v .

2Named after German physicist Heinrich Magnus, who first described it in 1853.
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(a) What is the effect on �FM of increasing ω?

(b) The ball in Figure 13.42 is moving away from you.
What is the direction of the Magnus force?

ω

�n

Figure 13.42: Spinning baseball

36. The point P in Figure 13.43 has position vector �v ob-
tained by rotating the position vector �r of the point (x, y)
by 90◦ counterclockwise about the origin.

(a) Use the geometric definition of the cross product to
explain why �v = �k × �r .

(b) Find the coordinates of P .

(x, y)

P

�r

�v

x

y

Figure 13.43

37. The points P1 = (0, 0, 0), P2 = (2, 4, 2), P3 =
(3, 0, 0), and P4 = (5, 4, 2) are vertices of a parallel-
ogram.

(a) Find the displacement vectors along each of the four
sides. Check that these are equal in pairs.

(b) Find the area of the parallelogram.

38. Using the parallelogram in Problem 37 as a base, create
a parallelopiped with side

−−−→
P1P5 where P5 = (1, 0, 4).

Find the volume of this parallelepiped.

39. Use the algebraic definition to check that

�a × (�b + �c ) = (�a ×�b ) + (�a × �c ).

40. If �v and �w are non-zero vectors, use the geometric defi-
nition of the cross product to explain why

(λ�v )× �w = λ(�v × �w ) = �v × (λ�w ).

Consider the cases λ > 0, and λ = 0, and λ < 0 sepa-
rately.

41. Use a parallelepiped to show that�a ·(�b ×�c ) = (�a×�b )·�c
for any vectors �a , �b , and �c .

42. Show that ‖�a ×�b ‖2 = ‖�a ‖2‖�b ‖2 − (�a ·�b )2.

43. If �a +�b + �c = �0 , show that

�a ×�b = �b × �c = �c × �a .

Geometrically, what does this imply about �a ,�b , and �c ?

44. If �a = a1
�i + a2

�j + a3
�k , �b = b1�i + b2�j + b3�k and

�c = c1�i + c2�j + c3�k are any three vectors in space,
show that

�a · (�b × �c ) =

∣∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣ .

45. Use the fact that�i ×�i = �0 ,�i ×�j = �k ,�i × �k = −�j ,
and so on, together with the properties on page 746 to
derive the algebraic definition for the cross product.

46. In this problem, we arrive at the algebraic definition for
the cross product by a different route. Let �a = a1

�i +
a2
�j + a3

�k and�b = b1�i + b2�j + b3�k . We seek a vec-
tor �v = x�i + y�j + z�k that is perpendicular to both �a
and �b . Use this requirement to construct two equations
for x, y, and z. Eliminate x and solve for y in terms of
z. Then eliminate y and solve for x in terms of z. Since
z can be any value whatsoever (the direction of �v is un-
affected), select the value for z which eliminates the de-
nominator in the equation you obtained. How does the
resulting expression for �v compare to the formula we
derived on page 745?

47. For vectors �a and�b , let �c = �a × (�b × �a ).

(a) Show that �c lies in the plane containing �a and�b .
(b) Use Problems 41 and 42 to show that �a · �c = 0 and

�b · �c = ‖�a ‖2‖�b ‖2 − (�a ·�b )2.
(c) Show that

�a × (�b × �a ) = ‖�a ‖2�b − (�a ·�b )�a .

48. Use the result of Problem 41 to show that the cross prod-
uct distributes over addition. First, use distributivity for
the dot product to show that for any vector �d ,

[(�a +�b )× �c ] · �d = [(�a × �c ) + (�b × �c )] · �d .

Next, show that for any vector �d ,

[((�a +�b )× �c )− (�a × �c )− (�b × �c )] · �d = 0.

Finally, explain why you can conclude that

(�a +�b )× �c = (�a × �c ) + (�b × �c ).
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49. Figure 13.44 shows the tetrahedron determined by three
vectors �a ,�b , �c . The area vector of a face is a vector per-
pendicular to the face, pointing outward, whose magni-
tude is the area of the face. Show that the sum of the four
outward pointing area vectors of the faces equals the zero
vector.

�b

�b − �c

�a

�c

�b − �a

�c − �a

Figure 13.44

In Problems 50–52, find the vector representing the area of a
surface. The magnitude of the vector equals the magnitude of
the area; the direction is perpendicular to the surface. Since
there are two perpendicular directions, we pick one by giving
an orientation for the surface.

50. The rectangle with vertices (0, 0, 0), (0, 1, 0), (2, 1, 0),
and (2, 0, 0), oriented so that it faces downward.

51. The circle of radius 2 in the yz-plane, facing in the direc-
tion of the positive x-axis.

52. The triangle ABC, oriented upward, where A =
(1, 2, 3), B = (3, 1, 2), and C = (2, 1, 3).

53. This problem relates the area of a parallelogram S lying
in the plane z = mx+ny+c to the area of its projection

R in the xy-plane. Let S be determined by the vectors
�u = u1

�i +u2
�j +u3

�k and �v = v1�i + v2�j + v3�k . See
Figure 13.45.

(a) Find the area of S.
(b) Find the area of R.
(c) Find m and n in terms of the components of �u

and �v .
(d) Show that

Area of S =
√

1 +m2 + n2 · Area of R.

x

y

z

S

R

�u

�v

Figure 13.45

Strengthen Your Understanding

In Problems 54–55, explain what is wrong with the statement.

54. There is only one unit vector perpendicular to two non-
parallel vectors in 3-space.

55. �u × �v = �0 when �u and �v are perpendicular.

In Problems 56–57, give an example of:

56. A vector �u whose cross product with �v =�i +�j is par-
allel to �k .

57. A vector �v such that ‖�u × �v ‖ = 10, where �u =
3�i + 4�j .

Are the statements in Problems 58–67 true or false? Give rea-
sons for your answer.

58. �u × �v is a vector.

59. �u × �v has direction parallel to both �u and �v .

60. ‖�u × �v ‖ = ‖�u ‖‖�v ‖.

61. (�i ×�j ) · �k =�i · (�j × �k ).

62. If �v is a non-zero vector and �v × �u = �v × �w , then
�u = �w .

63. The value of �v · (�v × �w ) is always 0.

64. The value of �v × �w is never the same as �v · �w .

65. The area of the triangle with two sides given by �i + �j
and �j + 2�k is 3/2.

66. Given a non-zero vector �v in 3-space, there is a non-zero
vector �w such that �v × �w = �0 .

67. It is never true that �v × �w = �w × �v .
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CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• Vectors
Geometric definition of vector addition, subtraction and
scalar multiplication, resolving into�i ,�j , and �k compo-
nents, magnitude of a vector, algebraic properties of ad-
dition and scalar multiplication.

• Dot Product
Geometric and algebraic definition, algebraic properties,
using dot products to find angles and determine perpen-

dicularity, the equation of a plane with given normal vec-
tor passing through a given point, projection of a vector
in a direction given by a unit vector.

• Cross Product
Geometric and algebraic definition, algebraic properties,
cross product and volume, finding the equation of a plane
through three points.

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER THIRTEEN

Exercises

In Exercises 1–2, is the quantity a vector or a scalar? Compute
it.

1. �u · �v , where �u = 2�i − 3�j − 4�k and �v = �k −�j

2. �u ×�v , where �u = 2�i −3�j −4�k and �v = 3�i −�j +�k .

In Exercises 3–4, calculate the quantity.

3. (2�i − 3�j + 4�k ) · (2�i + 3�j + �k )

4. �i · (�k ×�j )

5. Resolve the vectors in Figure 13.46 into components.

1 2 3 4 5

1

2

3

4

5
�a

�b

�c

�d �e

�f

x

y

Figure 13.46

6. Resolve vector �v into components if ‖�v ‖ = 8 and the
direction of �v is shown in Figure 13.47.

40◦

�v

x

y

Figure 13.47

For Exercises 7–9, perform the indicated operations on the
following vectors:

�c =�i + 6�j , �x = −2�i + 9�j , �y = 4�i − 7�j .

7. 5�c 8. �c + �x + �y 9. ||�x − �c ||

In Exercises 10–19, use �v = 2�i + 3�j − �k and �w =
�i −�j + 2�k to calculate the given quantities.

10. �v + 2�w 11. 3�v − �w − �v

12. ||�v + �w || 13. �v · �w

14. �v × �w 15. �v × �v

16. (�v · �w )�v 17. (�v × �w ) · �w

18. (�v × �w )× �w 19. (�v × �w )× (�v × �w )

In Exercises 20–21, find a normal vector to the plane.

20. 2x+ y − z = 23

21. z − 5(x− 2) = 3(5− y)

22. Find the equation of the plane through the origin which
is parallel to z = 4x− 3y + 8.

23. Let �v = 3�i + 2�j − 2�k and �w = 4�i − 3�j + �k . Find
each of the following:

(a) �v · �w
(b) �v × �w
(c) A vector of length 5 parallel to vector �v
(d) The angle between vectors �v and �w
(e) The component of �v in the direction of �w
(f) A vector perpendicular to vector �v
(g) A vector perpendicular to both vectors �v and �w
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In Exercises 24–30, find a vector with the given property.

24. Length 10, parallel to 2�i + 3�j − �k .

25. Unit vector perpendicular to�i +�j and�i −�j − �k

26. Unit vector in the xy-plane perpendicular to 3�i −2�j .

27. Normal to 4(x− 1) + 6(z + 3) = 12.

28. Perpendicular to x− y = 1 + z.

29. The vector obtained from 4�i + 3�j by rotating it 90◦

counterclockwise.

30. A non-zero vector perpendicular to �v = 3�i −�j +�k and
�w =�i − 2�j + �k .

31. Which of the following vectors are parallel?

�u = 2�i + 4�j − 2�k , �p =�i +�j + �k ,

�v =�i −�j + 3�k , �q = 4�i − 4�j + 12�k ,

�w = −�i − 2�j + �k , �r =�i −�j + �k .

In Exercises 32–37, find the parallel and perpendicular com-
ponents of the force vector �F in the direction of the displace-
ment vector �d . Then find the work W done by �F though the
displacement �d .

32. �F = 2�i + 4�j , �d =�i + 2�j

33. �F = −2�i − 4�j , �d =�i + 2�j

34. �F = 2�i + 4�j , �d = 2�i − 1�j

35. �F = 2�i + 4�j , �d = 3�i − 4�j

36. �F = 2�i , �d =�i +�j

37. �F = 5�i + 2�j , �d = 3�j

38. Find the area of the triangle with vectors�a =�i +2�j −�k
and�b = 4�i − 2�j + �k as sides.

Problems

39. Figure 13.48 shows a rectangular box containing several
vectors. Are the following statements true or false? Ex-
plain.

(a) �c = �f (b) �a = �d (c) �a = −�b
(d) �g = �f + �a (e) �e = �a −�b (f) �d = �g − �c

�d

�c �g

�e

�j

�f

�b�a

x

y

z

Figure 13.48

40. Shortly after takeoff, a plane is climbing northwest
through still air at an airspeed of 200 km/hr, and rising at
a rate of 300 m/min. Resolve its velocity vector into com-
ponents. The x-axis points east, the y-axis points north,
and the z-axis points up.

41. A plane is heading due east and climbing at the rate of
80 km/hr. If its airspeed is 480 km/hr and there is a wind
blowing 100 km/hr to the northeast, what is the ground
speed of the plane?

42. A model rocket is shot into the air at an angle with the
earth of about 60◦. The rocket is going fast initially but
slows down as it reaches its highest point. It picks up
speed again as it falls to earth.

(a) Sketch a graph showing the path of the rocket. Draw
several velocity vectors on your graph.

(b) A second rocket has a parachute that deploys as it
begins its descent. How do the velocity vectors from
part (a) change for this rocket?

43. A car drives clockwise around the track in Figure 13.49,
slowing down at the curves and speeding up along the
straight portions. Sketch velocity vectors at the points P ,
Q, and R.

P R

Q

Figure 13.49

44. A racing car drives clockwise around the track shown in
Figure 13.49 at a constant speed. At what point on the
track does the car have the longest acceleration vector,
and in roughly what direction is it pointing? (Recall that
acceleration is the rate of change of velocity.)

45. Which pairs of the vectors
√
3�i +�j , 3�i +

√
3�j ,�i −√

3�j
are parallel and which are perpendicular?
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46. One force is pushing an object in a direction 50◦ south of
east with a force of 25 newtons. A second force is simul-
taneously pushing the object in a direction 70◦ north of
west with a force of 60 newtons. If the object is to remain
stationary, give the direction and magnitude of the third
force that must be applied to the object to counterbalance
the first two.

47. What values of a make �v = 2a�i − a�j + 16�k perpen-
dicular to �w = 5�i + a�j − �k ?

In Problems 48–49, find an equation of a plane that satisfies
the given conditions.

48. Perpendicular to the vector −�i + 2�j + �k and passing
through the point (1, 0, 2).

49. Perpendicular to the vector 2�i − 3�j + 7�k and passing
through the point (1,−1, 2).

50. Let A = (0, 4), B = (−1,−3), and C = (−5, 1). Draw
triangle ABC and find each of its interior angles.

51. Find the area of the triangle with vertices
P = (−2, 2, 0), Q = (1, 3,−1), and R = (−4, 2, 1).

52. A plane is drawn through the points A = (2, 1, 0),
B = (0, 1, 3) and C = (1, 0, 1). Find

(a) Two vectors lying in the plane.
(b) A vector perpendicular to the plane.
(c) The equation of the plane.

53. Let P = (0, 1, 0), Q = (−1, 1, 2), R = (2, 1,−1). Find

(a) The area of the triangle PQR.
(b) The equation for a plane that contains P , Q, and R.

54. Find the distance from the point P = (2,−1, 3) to the
plane 2x+ 4y − z = −1.

55. Find an equation of the plane passing through the three
points (1, 1, 1), (1, 4, 5), (−3,−2, 0). Find the distance
from the origin to the plane.

56. An airport is at the point (200, 10, 0) and an approach-
ing plane is at the point (550, 60, 4). Assume that the
xy-plane is horizontal, with the x-axis pointing eastward
and the y-axis pointing northward. Also assume that the
z-axis is upward and that all distances are measured in
kilometers. The plane flies due west at a constant altitude
at a speed of 500 km/hr for half an hour. It then descends
at 200 km/hr, heading straight for the airport.

(a) Find the velocity vector of the plane while it is flying
at constant altitude.

(b) Find the coordinates of the point at which the plane
starts to descend.

(c) Find a vector representing the velocity of the plane
when it is descending.

57. Find the vector �v with all of the following properties:

• Magnitude 10
• Angle of 45◦ with positive x-axis
• Angle of 75◦ with positive y-axis
• Positive �k -component.

58. (a) A vector �v of magnitude v makes an angle α with
the positive x-axis, angle β with the positive y-axis,
and angle γ with the positive z-axis. Show that

�v = v cosα�i + v cos β�j + v cos γ�k .

(b) Cosα, cos β, and cos γ are called direction cosines.
Show that

cos2 α+ cos2 β + cos2 γ = 1.

59. Three people are trying to hold a ferocious lion still for
the veterinarian. The lion, in the center, is wearing a col-
lar with three ropes attached to it and each person has
hold of a rope. Charlie is pulling in the direction 62◦

west of north with a force of 175 newtons and Sam is
pulling in the direction 43◦ east of north with a force of
200 newtons. What is the direction and magnitude of the
force that must be exerted by Alice on the third rope to
counterbalance Sam and Charlie?

CAS Challenge Problems

60. Let �a = x�i + y�j + z�k ,�b = u�i + v�j +w�k , and �c =
m�a +n�b . Compute (�a ×�b ) ·�c and (�a ×�b )× (�a ×�c ),
and explain the geometric meaning of your answers.

61. Let �a = x�i + y�j + z�k , �b = u�i + v�j + w�k and
�c = r�i + s�j + t�k . Show that the parallelepiped with
edges �a ,�b , �c has the same volume as the parallelepiped
with edges �a , �b , 2�a − �b + �c . Explain this result geo-
metrically.

62. Let �a =�i + 2�j + 3�k and�b = 2�i +�j + 2�k , and let θ
be the angle between �a and�b .

(a) For �c = x�i + y�j + z�k , write the following condi-
tions as equations in x, y, z and solve them:

�a · �c = 0, �b · �c = 0, ‖�c ‖2 = ‖�a ‖2‖�b ‖2 sin2 θ.

[Hint: Use the dot product to find sin2 θ.]
(b) Compute the cross product �a ×�b and compare with

your answer in part (a). What do you notice? Ex-
plain.

63. Let A = (0, 0, 0), B = (2, 0, 0), C = (1,
√
3, 0) and

D = (1, 1/
√
3, 2
√

2/3).

(a) Show that A, B, C, D are all the same distance from
each other.

(b) Find the point P = (x, y, z) that is equidistant from
A, B, C and D by setting up and solving three equa-
tions in x, y, and z.

(c) Use the dot product to find the angle APB. (In
chemistry, this angle is often approximated by
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109.5◦. A methane molecule can be represented by
four hydrogen atoms at points A, B, C and D, and
a carbon atom at P .)

64. Let P = (x, y, z) , Q = (u, v, w) and R = (r, s, t) be
points on the plane ax+ by + cz = d.

(a) What is the relation between
−−→
PQ×−→

PR and the nor-

mal vector to the plane, a�i + b�j + c�k ?
(b) Express

−−→
PQ×−→

PR in terms of x, y, z, u, v, w, r, s, t.
(c) Use the equation for the plane to eliminate z, w, and

t from the expression you obtained in part (b), and
simplify. Does your answer agree with what you said
in part (a)?

PROJECTS FOR CHAPTER THIRTEEN

1. Cross Product of Vectors in the Plane
Let�a = a1�i +a2�j and�b = b1�i +b2�j be two nonparallel vectors in 2-space, as in Figure 13.50.

s

r

β
α x

y

�b = b1�i + b2�j = (s cos β)�i + (s sin β)�j

�a = a1
�i + a2

�j

= (r cosα)�i + (r sinα)�j

Figure 13.50

(a) Use the identity sin(β−α) = (sinβ cosα− cosβ sinα) to derive the formula for the area
of the parallelogram formed by �a and�b :

Area of parallelogram = |a1b2 − a2b1|.

(b) Show that a1b2 − a2b1 is positive when the rotation from �a to �b is counterclockwise, and
negative when it is clockwise.

(c) Use parts (a) and (b) to show that the geometric and algebraic definitions of �a ×�b give the
same result.

2. The Dot Product in Genetics3

We define4 the angle between two n-dimensional vectors, �v and �w , using the dot product:

cos θ =
�v · �w

‖�v ‖‖�w ‖
=

v1w1 + v2w2 + · · ·+ vnwn

‖�v ‖‖�w ‖
, provided ‖�v ‖, ‖�w ‖ �= 0.

We use this idea of angle to measure how close two populations are to one another genetically.
The table shows the relative frequencies of four alleles (variants of a gene) in four populations.

Allele Eskimo Bantu English Korean

A1 0.29 0.10 0.21 0.22

A2 0.00 0.09 0.07 0.00

B 0.03 0.12 0.06 0.21

O 0.68 0.69 0.66 0.57

3Adapted from L. L. Cavalli-Sforza and A. W. F. Edwards, “Models and Estimation Procedures,” Am. J. Hum. Genet.,
Vol. 19 (1967), pp. 223-57.

4The result of Problem 70 on page 743 shows that the quantity on the right-hand side of this equation is between −1 and
1, so this definition makes sense.
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Let �a 1 be the 4-vector showing the square roots of the relative frequencies of the alleles
in the Eskimo population. Let �a 2,�a 3,�a 4 be the corresponding vectors for the Bantu, English,
and Korean populations, respectively. The genetic distance between two populations is defined
as the angle between the corresponding vectors.

(a) Using this definition, is the English population closer genetically to the Bantus or to the
Koreans? Explain.

(b) Is the English population closer to a half Eskimo, half Bantu population than to the Bantu
population alone?

(c) Among all possible populations that are a mix of Eskimo and Bantu, find the mix that is
closest to the English population.

3. A Warren Truss
A Warren truss is a structure for bearing a weight such as a roof or a bridge with two supports
at either end of a gap. The truss in Figure 13.51 is loaded by weights at points D and E and is
supported by vertical forces at points A and C. The horizontal bars in the truss are 10 ft long
and the diagonal bars are 12 ft. Angles A and C are 65.38◦.

Each bar exerts a force at the two joints at its ends. The two force vectors are parallel to
the bar, equal in magnitude, and opposite in direction. If the bar pushes on the joints at its ends,
then the bar is under compression, and if it pulls it is under tension, and the magnitude of the
force is called the magnitude of the tension or compression.

Engineers need to know the magnitude of the compression or tension in each of the bars
of the truss to prevent them from bending or breaking. To determine these magnitudes, we use
the fact that at each joint the sum of the external forces from the weights and supports and the
pushing and pulling forces exerted by the bars is zero. Find the magnitudes for all seven bars in
this order:

(a) Joint A; Bars AB, AE
(b) Joint C; Bars BC, CD
(c) Joint D; Bars BD, DE
(d) Joint E; Bar BE

A
B

C

DE

10 ft

12 ft

65.38◦

12500 lb 17500 lb

20000 lb10000 lb

Figure 13.51
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14.1 THE PARTIAL DERIVATIVE

The derivative of a one-variable function measures its rate of change. In this section we see how a
two-variable function has two rates of change: one as x changes (with y held constant) and one as y
changes (with x held constant).

Rate of Change of Temperature in a Metal Rod: a One-Variable Problem
Imagine an unevenly heated metal rod lying along the x-axis, with its left end at the origin and x
measured in meters. (See Figure 14.1.) Let u(x) be the temperature (in ◦C) of the rod at the point
x. Table 14.1 gives values of u(x). We see that the temperature increases as we move along the rod,
reaching its maximum at x = 4, after which it starts to decrease.

x (m)
0 1 2 3 4 5

Figure 14.1: Unevenly heated metal rod

Table 14.1 Temperature u(x) of the rod

x (m) 0 1 2 3 4 5

u(x) (◦C) 125 128 135 160 175 160

Example 1 Estimate the derivative u′(2) using Table 14.1 and explain what the answer means in terms of
temperature.

Solution The derivative u′(2) is defined as a limit of difference quotients:

u′
(2) = lim

h→0

u(2 + h)− u(2)

h
.

Choosing h = 1 so that we can use the data in Table 14.1, we get

u′
(2) ≈

u(2 + 1)− u(2)

1
=

160− 135

1
= 25.

This means that the temperature increases at a rate of approximately 25◦C per meter as we go from
left to right, past x = 2.

Rate of Change of Temperature in a Metal Plate
Imagine an unevenly heated thin rectangular metal plate lying in the xy-plane with its lower left
corner at the origin and x and y measured in meters. The temperature (in ◦C) at the point (x, y) is
T (x, y). See Figure 14.2 and Table 14.2. How does T vary near the point (2, 1)? We consider the
horizontal line y = 1 containing the point (2, 1). The temperature along this line is the cross section,
T (x, 1), of the function T (x, y) with y = 1. Suppose we write u(x) = T (x, 1).

1 2 3 4 5
0

1

2

3

x = 2

y = 1

x (m)

y (m)

(2, 1)

Figure 14.2: Unevenly heated metal plate

Table 14.2 Temperature (◦C) of a metal plate

y (m)

3 85 90 110 135 155 180

2 100 110 120 145 190 170

1 125 128 135 160 175 160

0 120 135 155 160 160 150

0 1 2 3 4 5

x (m)

What is the meaning of the derivative u′(2)? It is the rate of change of temperature T in the
x-direction at the point (2, 1), keeping y fixed. Denote this rate of change by Tx(2, 1), so that

Tx(2, 1) = u′
(2) = lim

h→0

u(2 + h)− u(2)

h
= lim

h→0

T (2 + h, 1)− T (2, 1)

h
.



14.1 THE PARTIAL DERIVATIVE 759

We call Tx(2, 1) the partial derivative of T with respect to x at the point (2, 1). Taking h = 1, we
can read values of T from the row with y = 1 in Table 14.2, giving

Tx(2, 1) ≈
T (3, 1)− T (2, 1)

1
=

160− 135

1
= 25

◦C/m.

The fact that Tx(2, 1) is positive means that the temperature of the plate is increasing as we move
past the point (2, 1) in the direction of increasing x (that is, horizontally from left to right in Fig-
ure 14.2).

Example 2 Estimate the rate of change of T in the y-direction at the point (2, 1).

Solution The temperature along the line x = 2 is the cross-section of T with x = 2, that is, the function
v(y) = T (2, y). If we denote the rate of change of T in the y-direction at (2, 1) by Ty(2, 1), then

Ty(2, 1) = v′(1) = lim
h→0

v(1 + h)− v(1)

h
= lim

h→0

T (2, 1 + h)− T (2, 1)

h
.

We call Ty(2, 1) the partial derivative of T with respect to y at the point (2, 1). Taking h = 1 so
that we can use the column with x = 2 in Table 14.2, we get

Ty(2, 1) ≈
T (2, 1 + 1)− T (2, 1)

1
=

120− 135

1
= −15

◦C/m.

The fact that Ty(2, 1) is negative means that the temperature decreases as y increases.

Definition of the Partial Derivative
We study the influence of x and y separately on the value of the function f(x, y) by holding one
fixed and letting the other vary. This leads to the following definitions.

Partial Derivatives of f With Respect to x and y

For all points at which the limits exist, we define the partial derivatives at the point (a,b)
by

fx(a, b) =
Rate of change of f with respect to x

at the point (a, b)
= lim

h→0

f(a+ h, b)− f(a, b)

h
,

fy(a, b) = Rate of change of f with respect to y
at the point (a, b)

= lim
h→0

f(a, b+ h)− f(a, b)

h
.

If we let a and b vary, we have the partial derivative functions fx(x, y) and fy(x, y).

Just as with ordinary derivatives, there is an alternative notation:

Alternative Notation for Partial Derivatives

If z = f(x, y), we can write

fx(x, y) =
∂z

∂x
and fy(x, y) =

∂z

∂y
,

fx(a, b) =
∂z

∂x

∣∣∣∣
(a,b)

and fy(a, b) =
∂z

∂y

∣∣∣∣
(a,b)

.
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We use the symbol ∂ to distinguish partial derivatives from ordinary derivatives. In cases where
the independent variables have names different from x and y, we adjust the notation accordingly.
For example, the partial derivatives of f(u, v) are denoted by fu and fv .

Visualizing Partial Derivatives on a Graph
The ordinary derivative of a one-variable function is the slope of its graph. How do we visualize
the partial derivative fx(a, b)? The graph of the one-variable function f(x, b) is the curve where the
vertical plane y = b cuts the graph of f(x, y). (See Figure 14.3.) Thus, fx(a, b) is the slope of the
tangent line to this curve at x = a.

y

x

z

�Point
(a, b, f(a, b))

Line has slope
fx(a, b)

� Graph of
f(x, b)

Figure 14.3: The curve z = f(x, b) on the
graph of f has slope fx(a, b) at x = a

x

y

z

� Point
(a, b, f(a, b))�Graph of

f(a, y)

Line has slope
fy(a, b)

Figure 14.4: The curve z = f(a, y) on the
graph of f has slope fy(a, b) at y = b

Similarly, the graph of the function f(a, y) is the curve where the vertical plane x = a cuts the
graph of f , and the partial derivative fy(a, b) is the slope of this curve at y = b. (See Figure 14.4.)

Example 3 At each point labeled on the graph of the surface z = f(x, y) in Figure 14.5, say whether each
partial derivative is positive or negative.

x

y

z



Q

� P

Figure 14.5: Decide the signs of fx and fy at P and Q

Solution The positive x-axis points out of the page. Imagine heading off in this direction from the point
marked P ; we descend steeply. So the partial derivative with respect to x is negative at P , with
quite a large absolute value. The same is true for the partial derivative with respect to y at P , since
there is also a steep descent in the positive y-direction.

At the point marked Q, heading in the positive x-direction results in a gentle descent, whereas
heading in the positive y-direction results in a gentle ascent. Thus, the partial derivative fx at Q is
negative but small (that is, near zero), and the partial derivative fy is positive but small.

Estimating Partial Derivatives from a Contour Diagram
The graph of a function f(x, y) often makes clear the sign of the partial derivatives. However,
numerical estimates of these derivatives are more easily made from a contour diagram than a surface
graph. If we move parallel to one of the axes on a contour diagram, the partial derivative is the rate
of change of the value of the function on the contours. For example, if the values on the contours
are increasing as we move in the positive direction, then the partial derivative must be positive.
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Example 4 Figure 14.6 shows the contour diagram for the temperature H(x, t) (in ◦C) in a room as a function
of distance x (in meters) from a heater and time t (in minutes) after the heater has been turned on.
What are the signs of Hx(10, 20) and Ht(10, 20)? Estimate these partial derivatives and explain the
answers in practical terms.

5 10 15 20 25 30

10

20

30

40

50

60

x (meters)

30

25

20

15

10

t (minutes)

�� 14

�

�

32

Figure 14.6: Temperature in a heated room: Heater at x = 0 is turned on at t = 0

Solution The point (10, 20) is nearly on the H = 25 contour. As x increases, we move toward the H = 20

contour, so H is decreasing and Hx(10, 20) is negative. This makes sense because the H = 30

contour is to the left: As we move further from the heater, the temperature drops. On the other hand,
as t increases, we move toward the H = 30 contour, so H is increasing; as t decreases H decreases.
Thus, Ht(10, 20) is positive. This says that as time passes, the room warms up.

To estimate the partial derivatives, use a difference quotient. Looking at the contour diagram,
we see there is a point on the H = 20 contour about 14 units to the right of the point (10, 20).
Hence, H decreases by 5 when x increases by 14, so we find

Rate of change of H with respect to x = Hx(10, 20) ≈
−5

14
≈ −0.36◦C/meter.

This means that near the point 10 m from the heater, after 20 minutes the temperature drops
about 0.36, or one third, of a degree, for each meter we move away from the heater.

To estimate Ht(10, 20), we notice that the H = 30 contour is about 32 units directly above the
point (10, 20). So H increases by 5 when t increases by 32. Hence,

Rate of change of H with respect to t = Ht(10, 20) ≈
5

32
= 0.16◦C/minute.

This means that after 20 minutes the temperature is going up about 0.16, or 1/6, of a degree each
minute at the point 10 m from the heater.

Using Units to Interpret Partial Derivatives
The meaning of a partial derivative can often be explained using units.

Example 5 Suppose that your weight w in pounds is a function f(c, n) of the number c of calories you consume
daily and the number n of minutes you exercise daily. Using the units for w, c and n, interpret in
everyday terms the statements

∂w

∂c
(2000, 15) = 0.02 and

∂w

∂n
(2000, 15) = −0.025.

Solution The units of ∂w/∂c are pounds per calorie. The statement

∂w

∂c
(2000, 15) = 0.02

means that if you are presently consuming 2000 calories daily and exercising 15 minutes daily, you
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will weigh 0.02 pounds more for each extra calorie you consume daily, or about 2 pounds for each
extra 100 calories per day. The units of ∂w/∂n are pounds per minute. The statement

∂w

∂n
(2000, 15) = −0.025

means that for the same calorie consumption and number of minutes of exercise, you will weigh
0.025 pounds less for each extra minute you exercise daily, or about 1 pound less for each extra
40 minutes per day. So if you eat an extra 100 calories each day and exercise about 80 minutes more
each day, your weight should remain roughly steady.

Exercises and Problems for Section 14.1
Exercises

1. Given the following table of values for z = f(x, y), es-
timate fx(3, 2) and fy(3, 2). Assume that f is differen-
tiable.

x \ y 0 2 5

1 1 2 4

3 −1 1 2

6 −3 0 0

2. Using difference quotients, estimate fx(3, 2) and
fy(3, 2) for the function given by

f(x, y) =
x2

y + 1
.

[Recall: A difference quotient is an expression of the
form (f(a+ h, b)− f(a, b))/h.]

3. Use difference quotients with Δx = 0.1 and Δy = 0.1
to estimate fx(1, 3) and fy(1, 3) where

f(x, y) = e−x sin y.

Then give better estimates by using Δx = 0.01 and
Δy = 0.01.

4. The price P in dollars to purchase a used car is a function
of its original cost, C, in dollars, and its age, A, in years.

(a) What are the units of ∂P/∂A?
(b) What is the sign of ∂P/∂A and why?
(c) What are the units of ∂P/∂C?
(d) What is the sign of ∂P/∂C and why?

5. Your monthly car payment in dollars is P = f(P0, t, r),
where $P0 is the amount you borrowed, t is the number
of months it takes to pay off the loan, and r% is the in-
terest rate. What are the units, the financial meaning, and
the signs of ∂P/∂t and ∂P/∂r?

6. A drug is injected into a patient’s blood vessel. The func-
tion c = f(x, t) represents the concentration of the drug
at a distance x mm in the direction of the blood flow

measured from the point of injection and at time t sec-
onds since the injection. What are the units of the follow-
ing partial derivatives? What are their practical interpre-
tations? What do you expect their signs to be?

(a) ∂c/∂x (b) ∂c/∂t

7. You borrow $A at an interest rate of r% (per month) and
pay it off over t months by making monthly payments of
P = g(A, r, t) dollars. In financial terms, what do the
following statements tell you?

(a) g(8000, 1, 24) = 376.59

(b)
∂g

∂A

∣∣∣∣
(8000,1,24)

= 0.047

(c)
∂g

∂r

∣∣∣∣
(8000,1,24)

= 44.83

8. The sales of a product, S = f(p, a), are a function of
the price, p, of the product (in dollars per unit) and the
amount, a, spent on advertising (in thousands of dollars).

(a) Do you expect fp to be positive or negative? Why?
(b) Explain the meaning of the statement fa(8, 12) =

150 in terms of sales.

9. The quantity, Q, of beef purchased at a store, in kilo-
grams per week, is a function of the price of beef, b, and
the price of chicken, c, both in dollars per kilogram.

(a) Do you expect ∂Q/∂b to be positive or negative?
Explain.

(b) Do you expect ∂Q/∂c to be positive or negative?
Explain.

(c) Interpret the statement ∂Q/∂b = −213 in terms of
quantity of beef purchased.

In Exercises 10–13, determine the sign of fx and fy at the
point using the contour diagram of f in Figure 14.7.
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10. P 11. Q 12. R 13. S

For Exercises 14–16, refer to Table 12.2 on page 672 giving
the temperature adjusted for wind chill, C, in ◦F, as a function
f(w, T ) of the wind speed, w, in mph, and the temperature,
T , in ◦F. The temperature adjusted for wind chill tells you
how cold it feels, as a result of the combination of wind and
temperature.

14. Estimate fw(10, 25). What does your answer mean in
practical terms?

15. Estimate fT (5, 20). What does your answer mean in
practical terms?

16. From Table 12.2 you can see that when the temperature
is 20◦F, the temperature adjusted for wind-chill drops by
an average of about 0.8◦F with every 1 mph increase in
wind speed from 5 mph to 10 mph. Which partial deriva-
tive is this telling you about?

Problems

17. Figure 14.8 is a contour diagram for z = f(x, y). Is fx
positive or negative? Is fy positive or negative? Estimate
f(2, 1), fx(2, 1), and fy(2, 1).
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Figure 14.8

18. Approximate fx(3, 5) using the contour diagram of
f(x, y) in Figure 14.9.
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Figure 14.9

19. The quantity Q (in pounds) of beef that a certain com-
munity buys during a week is a function Q = f(b, c)
of the prices of beef, b, and chicken, c, during the week.
Do you expect ∂Q/∂b to be positive or negative? What
about ∂Q/∂c?

20. The average price of large cars getting low gas mileage
(“gas guzzlers”) is x and the average price of a gallon of
gasoline is y. The number, q1, of gas guzzlers bought in
a year, depends on both x and y, so q1 = f(x, y). Sim-
ilarly, if q2 is the number of gallons of gas bought to fill
gas guzzlers in a year, then q2 = g(x, y).

(a) What do you expect the signs of ∂q1/∂x and
∂q2/∂y to be? Explain.

(b) What do you expect the signs of ∂q1/∂y and
∂q2/∂x to be? Explain.

21. An experiment to measure the toxicity of formaldehyde
yielded the data in Table 14.3. The values show the per-
cent, P = f(t, c), of rats surviving an exposure to
formaldehyde at a concentration of c (in parts per million,
ppm) after t months. Estimate ft(18, 6) and fc(18, 6).
Interpret your answers in terms of formaldehyde toxic-
ity.

Table 14.3

Conc. c
(ppm)

Time t (months)

14 16 18 20 22 24

0 100 100 100 99 97 95

2 100 99 98 97 95 92

6 96 95 93 90 86 80

15 96 93 82 70 58 36
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22. Figure 14.10 shows contours of f(x, y) with values of f
on the contours omitted. If fx(P ) > 0, find the sign of

(a) fy(P ) (b) fy(Q) (c) fx(Q)

−5 5

−5

5

Q

P

f(x, y)

x

y

Figure 14.10

23. Figure 14.11 shows the contour diagram of g(x, y). Mark
the points on the contours where

(a) gx = 0 (b) gy = 0
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Figure 14.11

24. The surface z = f(x, y) is shown in Figure 14.12. The
points A and B are in the xy-plane.

(a) What is the sign of

(i) fx(A)? (ii) fy(A)?

(b) The point P in the xy-plane moves along a straight
line from A to B. How does the sign of fx(P )
change? How does the sign of fy(P ) change?

x

y

z

�B �

A

Figure 14.12

25. Figure 14.13 shows the saddle-shaped surface z =
f(x, y).

(a) What is the sign of fx(0, 5)?
(b) What is the sign of fy(0, 5)?

x

y

z

�

(0, 5, 3)

Figure 14.13

26. Figure 14.14 shows the graph of the function f(x, y) on
the domain 0 ≤ x ≤ 4 and 0 ≤ y ≤ 4. Use the graph
to rank the following quantities in order from smallest to
largest: fx(3, 2), fx(1, 2), fy(3, 2), fy(1, 2), 0.

x y

z

Figure 14.14

27. Figure 14.15 shows a contour diagram for the monthly
payment P as a function of the interest rate, r%, and
the amount, L, of a 5-year loan. Estimate ∂P/∂r and
∂P/∂L at the following points. In each case, give the
units and the everyday meaning of your answer.

(a) r = 8, L = 4000 (b) r = 8, L = 6000

(c) r = 13, L = 7000
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Figure 14.15
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28. People commuting to a city can choose to go either by
bus or by train. The number of people who choose ei-
ther method depends in part upon the price of each. Let
f(P1, P2) be the number of people who take the bus
when P1 is the price of a bus ride and P2 is the price of a
train ride. What can you say about the signs of ∂f/∂P1

and ∂f/∂P2? Explain your answers.

29. When riding your bike in winter, the windchill temper-
ature is a measure of how cold you feel as a result of
the induced breeze caused by your travel. If W repre-
sents windchill temperature (in ◦F) that you experience,
then W = f(T, v), where T is the actual air tempera-
ture (in ◦F) and v is your speed, in meters per second.
Match each of the practical interpretations below with a
mathematical statement that most accurately describes it
below. For the remaining mathematical statement, give a
practical interpretation.

(i) “The faster you ride, the colder you’ll feel.”
(ii) “The warmer the day, the warmer you’ll feel.”

(a) fT (T, v) > 0
(b) f(0, v) ≤ 0
(c) fv(T, v) < 0

30. Figure 14.16 shows a contour diagram for the tempera-
ture T (in ◦C) along a wall in a heated room as a function
of distance x along the wall and time t in minutes. Esti-
mate ∂T/∂x and ∂T/∂t at the given points. Give units
and interpret your answers.

(a) x = 15, t = 20 (b) x = 5, t = 12
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Figure 14.16

An airport can be cleared of fog by heating the air. The amount
of heat required depends on the air temperature and the wet-
ness of the fog. Problems 31–33 involve Figure 14.17, which
shows the heat H(T,w) required (in calories per cubic meter
of fog) as a function of the temperature T (in degrees Celsius)
and the water content w (in grams per cubic meter of fog).
Note that Figure 14.17 is not a contour diagram, but shows
cross-sections of H with w fixed at 0.1, 0.2, 0.3, and 0.4.
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Figure 14.17

31. Use Figure 14.17 to estimate HT (10, 0.1). Interpret the
partial derivative in practical terms.

32. Make a table of values for H(T,w) from Figure 14.17,
and use it to estimate HT (T,w) for T = 10, 20, and 30
and w = 0.1, 0.2, and 0.3.

33. Repeat Problem 32 for Hw(T, w) at T = 10, 20, and 30
and w = 0.1, 0.2, and 0.3. What is the practical meaning
of these partial derivatives?

34. The cardiac output, represented by c, is the volume of
blood flowing through a person’s heart per unit time. The
systemic vascular resistance (SVR), represented by s, is
the resistance to blood flowing through veins and arteries.
Let p be a person’s blood pressure. Then p is a function
of c and s, so p = f(c, s).

(a) What does ∂p/∂c represent?

Suppose now that p = kcs, where k is a constant.

(b) Sketch the level curves of p. What do they represent?
Label your axes.

(c) For a person with a weak heart, it is desirable to
have the heart pumping against less resistance, while
maintaining the same blood pressure. Such a per-
son may be given the drug nitroglycerine to decrease
the SVR and the drug Dopamine to increase the car-
diac output. Represent this on a graph showing level
curves. Put a point A on the graph representing the
person’s state before drugs are given and a point B
for after.

(d) Right after a heart attack, a patient’s cardiac output
drops, thereby causing the blood pressure to drop. A
common mistake made by medical residents is to get
the patient’s blood pressure back to normal by using
drugs to increase the SVR, rather than by increasing
the cardiac output. On a graph of the level curves of
p, put a point D representing the patient before the
heart attack, a point E representing the patient right
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after the heart attack, and a third point F represent-
ing the patient after the resident has given the drugs
to increase the SVR.

35. In each case, give a possible contour diagram for the

function f(x, y) if

(a) fx > 0 and fy > 0 (b) fx > 0 and fy < 0

(c) fx < 0 and fy > 0 (d) fx < 0 and fy < 0

Strengthen Your Understanding

In Problems 36–37, explain what is wrong with the statement.

36. For f(x, y), ∂f/∂x has the same units as ∂f/∂y.

37. The partial derivative with respect to y is not defined for
functions such as f(x, y) = x2 + 5 that have a formula
that does not contain y explicitly.

In Problems 38–39, give an example of:

38. A table of values with three rows and three columns of a
linear function f(x, y) with fx < 0 and fy > 0.

39. A function f(x, y) with fx > 0 and fy < 0 everywhere.

Are the statements in Problems 40–49 true or false? Give rea-
sons for your answer.

40. If f(x, y) is a function of two variables and fx(10, 20)
is defined, then fx(10, 20) is a scalar.

41. If f(x, y) = x2 + y2, then fy(1, 1) < 0.

42. If the graph of f(x, y) is a hemisphere centered at the
origin, then fx(0, 0) = fy(0, 0) = 0.

43. If P = f(T, V ) is a function expressing the pressure P
(in grams/cm3) of gas in a piston in terms of the tem-
perature T (in degrees ◦C) and volume V (in cm3), then
∂P/∂V has units of grams.

44. If fx(a, b) > 0, then the values of f decrease as we move
in the negative x-direction near (a, b).

45. If g(r, s) = r2+ s, then for fixed s, the partial derivative
gr increases as r increases.

46. If g(u, v) = (u+ v)u, then 2.3 ≤ gu(1, 1) ≤ 2.4.

47. Let P = f(m, d) be the purchase price (in dollars) of
a used car that has m miles on its engine and originally
cost d dollars when new. Then ∂P/∂m and ∂P/∂d have
the same sign.

48. If f(x, y) is a function with the property that fx(x, y)
and fy(x, y) are both constant, then f is linear.

49. If f(x, y) has fx(a, b) = fy(a, b) = 0 at the point (a, b),
then f is constant everywhere.

14.2 COMPUTING PARTIAL DERIVATIVES ALGEBRAICALLY

Since the partial derivative fx(x, y) is the ordinary derivative of the function f(x, y) with y held
constant and fy(x, y) is the ordinary derivative of f(x, y) with x held constant, we can use all the
differentiation formulas from one-variable calculus to find partial derivatives.

Example 1 Let f(x, y) =
x2

y + 1
. Find fx(3, 2) algebraically.

Solution We use the fact that fx(3, 2) equals the derivative of f(x, 2) at x = 3. Since

f(x, 2) =
x2

2 + 1
=

x2

3
,

differentiating with respect to x, we have

fx(x, 2) =
∂

∂x

(
x2

3

)
=

2x

3
, and so fx(3, 2) = 2.

Example 2 Compute the partial derivatives with respect to x and with respect to y for the following functions.
(a) f(x, y) = y2e3x (b) z = (3xy + 2x)5 (c) g(x, y) = ex+3y sin(xy)

Solution (a) This is the product of a function of x (namely e3x) and a function of y (namely y2). When we
differentiate with respect to x, we think of the function of y as a constant, and vice versa. Thus,

fx(x, y) = y2
∂

∂x

(
e3x
)
= 3y2e3x,

fy(x, y) = e3x
∂

∂y
(y2) = 2ye3x.
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(b) Here we use the chain rule:

∂z

∂x
= 5(3xy + 2x)4

∂

∂x
(3xy + 2x) = 5(3xy + 2x)4(3y + 2),

∂z

∂y
= 5(3xy + 2x)4

∂

∂y
(3xy + 2x) = 5(3xy + 2x)43x = 15x(3xy + 2x)4.

(c) Since each function in the product is a function of both x and y, we need to use the product rule
for each partial derivative:

gx(x, y) =

(
∂

∂x
(ex+3y

)

)
sin(xy) + ex+3y ∂

∂x
(sin(xy)) = ex+3y

sin(xy) + ex+3yy cos(xy),

gy(x, y) =

(
∂

∂y
(ex+3y

)

)
sin(xy) + ex+3y ∂

∂y
(sin(xy)) = 3ex+3y

sin(xy) + ex+3yx cos(xy).

For functions of three or more variables, we find partial derivatives by the same method: Dif-
ferentiate with respect to one variable, regarding the other variables as constants. For a function
f(x, y, z), the partial derivative fx(a, b, c) gives the rate of change of f with respect to x along the
line y = b, z = c.

Example 3 Find all the partial derivatives of f(x, y, z) =
x2y3

z
.

Solution To find fx(x, y, z), for example, we consider y and z as fixed, giving

fx(x, y, z) =
2xy3

z
, and fy(x, y, z) =

3x2y2

z
, and fz(x, y, z) = −

x2y3

z2
.

Interpretation of Partial Derivatives

Example 4 A vibrating guitar string, originally at rest along the x-axis, is shown in Figure 14.18. Let x be the
distance in meters from the left end of the string. At time t seconds the point x has been displaced
y = f(x, t) meters vertically from its rest position, where

y = f(x, t) = 0.003 sin(πx) sin(2765t).

Evaluate fx(0.3, 1) and ft(0.3, 1) and explain what each means in practical terms.

0.5

−0.003

0.003

0
1

x (meters)

y (meters)

�

f(x, 2)

�

f(x, 1)

�

f(x, 10)

Figure 14.18: The position of a vibrating guitar string at several
different times: Graph of f(x, t) for t = 1, 2, 10.

Solution Differentiating f(x, t) = 0.003 sin(πx) sin(2765t) with respect to x, we have

fx(x, t) = 0.003π cos(πx) sin(2765t).

In particular, substituting x = 0.3 and t = 1 gives

fx(0.3, 1) = 0.003π cos(π(0.3)) sin(2765) ≈ 0.002.
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To see what fx(0.3, 1) means, think about the function f(x, 1). The graph of f(x, 1) in Figure 14.19
is a snapshot of the string at the time t = 1. Thus, the derivative fx(0.3, 1) is the slope of the string
at the point x = 0.3 at the instant when t = 1.

Similarly, taking the derivative of f(x, t) = 0.003 sin(πx) sin(2765t) with respect to t, we get

ft(x, t) = (0.003)(2765) sin(πx) cos(2765t) = 8.3 sin(πx) cos(2765t).

Since f(x, t) is in meters and t is in seconds, the derivative ft(0.3, 1) is in m/sec. Thus, substituting
x = 0.3 and t = 1,

ft(0.3, 1) = 8.3 sin(π(0.3)) cos(2765(1)) ≈ 6 m/sec.

0.5 1

f(x, 1)

0

0.001

0.002

Slope = fx(0.3, 1) = 0.002

x (meters)

y (meters)

Figure 14.19: Graph of f(x, 1): Snapshot of the shape of the string at t = 1 sec

To see what ft(0.3, 1)means, think about the function f(0.3, t). The graph of f(0.3, t) is a posi-
tion versus time graph that tracks the up-and-down movement of the point on the string where x = 0.3.
(See Figure 14.20.) The derivative ft(0.3, 1) = 6 m/sec is the velocity of that point on the string at
time t = 1. The fact that ft(0.3, 1) is positive indicates that the point is moving upward when t = 1.

0.996 1 1.004

−0.002
−0.001

0.001
0.002
0.003

Slope = ft(0.3, 1) = 6 m/sec

t (seconds)

y (meters)

Figure 14.20: Graph of f(0.3, t): Position versus time graph of the point x = 0.3 m
from the end of the guitar string

Exercises and Problems for Section 14.2
Exercises

1. (a) If f(x, y) = 2x2 + xy + y2, approximate fy(3, 2)
using Δy = 0.01.

(b) Find the exact value of fy(3, 2).

Find the partial derivatives in Exercises 2–40. Assume the
variables are restricted to a domain on which the function is
defined.

2. fx and fy if f(x, y) = 5x2y3 + 8xy2 − 3x2

3. fx(1, 2) and fy(1, 2) if f(x, y) = x3 + 3x2y − 2y2

4.
∂

∂y
(3x5y7 − 32x4y3 + 5xy)

5.
∂z

∂x
and

∂z

∂y
if z = (x2 + x− y)7

6. fx and fy if f(x, y) = Aαxα+βy1−α−β

7. fx and fy if f(x, y) = ln(x0.6y0.4)

8. zx if z =
1

2x2ay
+

3x5abc

y
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9. zx if z = x2y + 2x5y 10. Vr if V = 1
3
πr2h

11.
∂

∂T

(
2πr

T

)
12.

∂

∂x
(a
√
x)

13.
∂

∂x
(xe

√
xy) 14.

∂

∂t
esin(x+ct)

15. Fm if F = mg 16. av if a =
v2

r

17.
∂A

∂h
if A = 1

2
(a+ b)h 18.

∂

∂m

(
1

2
mv2
)

19.
∂

∂B

(
1

u0
B2
)

20.
∂

∂r

(
2πr

v

)
21. Fv if F =

mv2

r
22.

∂

∂v0
(v0 + at)

23.
∂F

∂m2
if F =

Gm1m2

r2

24.
∂

∂x

(
1

a
e−x2/a2

)
25.

∂

∂a

(
1

a
e−x2/a2

)
26. fx if f(x, y) = exy(ln y)

27.
∂

∂t
(v0t+

1

2
at2)

28.
∂

∂θ
(sin (πθφ) + ln(θ2 + φ))

29.
∂

∂M

(
2πr3/2√
GM

)
30. fa if f(a, b) = ea sin(a+ b)

31. zx if z = sin(5x3y − 3xy2)

32. gx if g(x, y) = ln(yexy)

33. FL if F (L,K) = 3
√
LK

34.
∂V

∂r
and

∂V

∂h
if V = 4

3
πr2h

35. uE if u =
1

2
ε0E

2 +
1

2μ0
B2

36.
∂

∂x

(
1√
2πσ

e−(x−μ)2/(2σ2)

)

37.
∂Q

∂K
if Q = c(a1K

b1 + a2L
b2)γ

38. zx and zy for z = x7 + 2y + xy

39.
∂z

∂y

∣∣∣∣
(1,0.5)

if z = ex+2y sin y

40.
∂f

∂x

∣∣∣
(π/3,1)

if f(x, y) = x ln(y cos x)

Problems

41. (a) Let f(x, y) = x2 + y2. Estimate fx(2, 1) and
fy(2, 1) using the contour diagram for f in Fig-
ure 14.21.

(b) Estimate fx(2, 1) and fy(2, 1) from a table of values
for f with x = 1.9, 2, 2.1 and y = 0.9, 1, 1.1.

(c) Compare your estimates in parts (a) and (b) with
the exact values of fx(2, 1) and fy(2, 1) found al-
gebraically.

321−1−2−3

3

2

1

−1

−2

−3

x

y

4

4

2
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6
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8

8

Figure 14.21

42. (a) Let f(w, z) = ew ln z . Use difference quotients with
h = 0.01 to approximate fw(2, 2) and fz(2, 2).

(b) Now evaluate fw(2, 2) and fz(2, 2) exactly.

43. (a) The surface S is given, for some constant a, by

z = 3x2 + 4y2 − axy

Find the values of a which ensure that S is sloping
upward when we move in the positive x-direction
from the point (1, 2).

(b) With the values of a from part (a), if you move in
the positive y-direction from the point (1, 2), does
the surface slope up or down? Explain.

44. Money in a bank account earns interest at a continuous
rate, r. The amount of money, $B, in the account de-
pends on the amount deposited, $P , and the time, t, it
has been in the bank according to the formula

B = Pert.

Find ∂B/∂t and ∂B/∂P and interpret each in financial
terms.

45. The acceleration g due to gravity, at a distance r from the
center of a planet of mass m, is given by

g =
Gm

r2
,

where G is the universal gravitational constant.

(a) Find ∂g/∂m and ∂g/∂r.
(b) Interpret each of the partial derivatives you found

in part (a) as the slope of a graph in the plane and
sketch the graph.
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46. The Dubois formula relates a person’s surface area, s, in
m2, to weight, w, in kg, and height, h, in cm, by

s = f(w, h) = 0.01w0.25h0.75.

Find f(65, 160), fw(65, 160), and fh(65, 160). Inter-
pret your answers in terms of surface area, height, and
weight.

47. The energy, E, of a body of mass m moving with speed
v is given by the formula

E = mc2

(
1√

1− v2/c2
− 1

)
.

The speed, v, is nonnegative and less than the speed of
light, c, which is a constant.

(a) Find ∂E/∂m. What would you expect the sign of
∂E/∂m to be? Explain.

(b) Find ∂E/∂v. Explain what you would expect the
sign of ∂E/∂v to be and why.

48. Let h(x, t) = 5 + cos(0.5x − t) describe a wave. The
value of h(x, t) gives the depth of the water in cm at a
distance x meters from a fixed point and at time t sec-
onds. Evaluate hx(2, 5) and ht(2, 5) and interpret each
in terms of the wave.

49. A one-meter long bar is heated unevenly, with tempera-
ture in ◦C at a distance x meters from one end at time t
given by

H(x, t) = 100e−0.1t sin(πx) 0 ≤ x ≤ 1.

(a) Sketch a graph of H against x for t = 0 and t = 1.
(b) Calculate Hx(0.2, t) and Hx(0.8, t). What is the

practical interpretation (in terms of temperature) of
these two partial derivatives? Explain why each one
has the sign it does.

(c) Calculate Ht(x, t). What is its sign? What is its in-
terpretation in terms of temperature?

50. Show that the Cobb-Douglas function

Q = bKαL1−α where 0 < α < 1

satisfies the equation

K
∂Q

∂K
+ L

∂Q

∂L
= Q.

51. Is there a function f which has the following partial
derivatives? If so what is it? Are there any others?

fx(x, y) = 4x3y2 − 3y4,

fy(x, y) = 2x4y − 12xy3.

Strengthen Your Understanding

In Problems 52–53, explain what is wrong with the statement.

52. The partial derivative of f(x, y) = x2y3 is 2xy3 +
3y2x2.

53. For f(x, y), if
f(0.01, 0) − f(0, 0)

0.01
> 0, then

fx(0, 0) > 0.

In Problems 54–56, give an example of:

54. A nonlinear function f(x, y) such that fx(0, 0) = 2 and
fy(0, 0) = 3.

55. Functions f(x, y) and g(x, y) such that fx = gx but
fy �= gy.

56. A non-constant function f(x, y) such that fx = 0 every-
where.

Are the statements in Problems 57–64 true or false? Give rea-
sons for your answer.

57. There is a function f(x, y) with fx(x, y) = y and
fy(x, y) = x.

58. The function z(u, v) = u cos v satisfies the equation

cos v
∂z

∂u
− sin v

u

∂z

∂v
= 1.

59. If f(x, y) is a function of two variables and g(x) is a
function of a single variable, then

∂

∂y
(g(x)f(x, y)) = g(x)fy(x, y).

60. The function k(r, s) = rses is increasing in the s-
direction at the point (r, s) = (−1, 2).

61. There is a function f(x, y) with fx(x, y) = y2 and
fy(x, y) = x2.

62. If f(x, y) has fy(x, y) = 0 then f must be a constant.

63. If f(x, y) = yeg(x) then fx = f .

64. If f is a symmetric two-variable function, that is
f(x, y) = f(y, x), then fx(x, y) = fy(x, y).

65. Which of the following functions satisfy the following
equation (called Euler’s Equation):

xfx + yfy = f?

(a) x2y3 (b) x+y+1 (c) x2 + y2 (d) x0.4y0.6
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14.3 LOCAL LINEARITY AND THE DIFFERENTIAL

In Sections 14.1 and 14.2 we studied a function of two variables by allowing one variable at a time
to change. We now let both variables change at once to develop a linear approximation for functions
of two variables.

Zooming In to See Local Linearity
For a function of one variable, local linearity means that as we zoom in on the graph, it looks like a
straight line. As we zoom in on the graph of a two-variable function, the graph usually looks like a
plane, which is the graph of a linear function of two variables. (See Figure 14.22.)

� �

Figure 14.22: Zooming in on the graph of a function of two variables until the graph looks like a plane

Similarly, Figure 14.23 shows three successive views of the contours near a point. As we zoom
in, the contours look more like equally spaced parallel lines, which are the contours of a linear
function. (As we zoom in, we have to add more contours.)

Figure 14.23: Zooming in on a contour diagram until the lines look parallel and equally spaced

This effect can also be seen numerically by zooming in with tables of values. Table 14.4 shows
three tables of values for f(x, y) = x2 + y3 near x = 2, y = 1, each one a closer view than the
previous one. Notice how each table looks more like the table of a linear function.

Table 14.4 Zooming in on values of f(x, y) = x2 + y3 near (2, 1) until the table looks linear

x

y

0 1 2

1 1 2 9

2 4 5 12

3 9 10 17

x

y

0.9 1.0 1.1

1.9 4.34 4.61 4.94

2.0 4.73 5.00 5.33

2.1 5.14 5.41 5.74

x

y

0.99 1.00 1.01

1.99 4.93 4.96 4.99

2.00 4.97 5.00 5.03

2.01 5.01 5.04 5.07
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Zooming in Algebraically: Differentiability

Seeing a plane when we zoom in at a point tells us (provided the plane is not vertical) that f(x, y)
is closely approximated near that point by a linear function, L(x, y):

f(x, y) ≈ L(x, y).

The graph of the function z = L(x, y) is the tangent plane at that point. Provided the approximation
is sufficiently good, we say that f(x, y) is differentiable at the point. Section 14.8 on page 815
defines precisely what is meant by the approximation being sufficiently good. The functions we
encounter are differentiable at most points in their domain.

The Tangent Plane
The plane that we see when we zoom in on a surface is called the tangent plane to the surface at the
point. Figure 14.24 shows the graph of a function with a tangent plane.

What is the equation of the tangent plane? At the point (a, b), the x-slope of the graph of f is
the partial derivative fx(a, b) and the y-slope is fy(a, b). Thus, using the equation for a plane on
page 694 of Chapter 12, we have the following result:

Tangent Plane to the Surface z = f (x,y) at the Point (a, b)

Assuming f is differentiable at (a, b), the equation of the tangent plane is

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

Here we are thinking of a and b as fixed, so f(a, b), and fx(a, b), and fy(a, b) are constants.
Thus, the right side of the equation is a linear function of x and y.

x

y

z

�Point of contact between
plane and surface: (a, b, f(a, b)) � Surface z = f(x, y)

� Tangent plane

Figure 14.24: The tangent plane to the surface z = f(x, y) at the point (a, b)

Example 1 Find the equation for the tangent plane to the surface z = x2 + y2 at the point (3, 4).

Solution We have fx(x, y) = 2x, so fx(3, 4) = 6, and fy(x, y) = 2y, so fy(3, 4) = 8. Also, f(3, 4) =

32 + 42 = 25. Thus, the equation for the tangent plane at (3, 4) is

z = 25 + 6(x− 3) + 8(y − 4).
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Local Linearization
Since the tangent plane lies close to the surface near the point at which they meet, z-values on the
tangent plane are close to values of f(x, y) for points near (a, b). Thus, replacing z by f(x, y) in
the equation of the tangent plane, we get the following approximation:

Tangent Plane Approximation to f (x,y) for (x,y) Near the Point (a, b)

Provided f is differentiable at (a, b), we can approximate f(x, y):

f(x, y) ≈ f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

We are thinking of a and b as fixed, so the expression on the right side is linear in x and y.
The right side of this approximation gives the local linearization of f near x = a, y = b.

Figure 14.25 shows the tangent plane approximation graphically.

x

y

z

(a, b)

(x, y)

�

Tangent plane approximation
to f(x, y)

True value of f(x, y)

�

�

fx(a, b)Δx+ fy(a, b)Δy

�

�
� fx(a, b)Δx

��


fy(a, b)Δy

�

�

f(a, b)

�

�

Δx

�
�

Δ
y

Figure 14.25: Local linearization: Approximating f(x, y) by the
z-value from the tangent plane

Example 2 Find the local linearization of f(x, y) = x2+y2 at the point (3, 4). Estimate f(2.9, 4.2) and f(2, 2)
using the linearization and compare your answers to the true values.

Solution Let z = f(x, y) = x2 + y2. In Example 1 on page 772, we found the equation of the tangent plane
at (3, 4) to be

z = 25 + 6(x− 3) + 8(y − 4).

Therefore, for (x, y) near (3, 4), we have the local linearization

f(x, y) ≈ 25 + 6(x− 3) + 8(y − 4).
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Substituting x = 2.9, y = 4.2 gives

f(2.9, 4.2) ≈ 25 + 6(−0.1) + 8(0.2) = 26.

This compares favorably with the true value f(2.9, 4.2) = (2.9)2 + (4.2)2 = 26.05.
However, the local linearization does not give a good approximation at points far away from

(3, 4). For example, if x = 2, y = 2, the local linearization gives

f(2, 2) ≈ 25 + 6(−1) + 8(−2) = 3,

whereas the true value of the function is f(2, 2) = 22 + 22 = 8.

Example 3 Designing safe boilers depends on knowing how steam behaves under changes in temperature and
pressure. Steam tables, such as Table 14.5, are published giving values of the function V = f(T, P )

where V is the volume (in ft3) of one pound of steam at a temperature T (in ◦F) and pressure P (in
lb/in2).

(a) Give a linear function approximating V = f(T, P ) for T near 500◦F and P near 24 lb/in2.
(b) Estimate the volume of a pound of steam at a temperature of 505◦F and a pressure of 24.3 lb/in2.

Table 14.5 Volume (in cubic feet) of one pound of steam at various
temperatures and pressures

Temperature
T

(◦F)

Pressure P (lb/in2)

20 22 24 26

480 27.85 25.31 23.19 21.39

500 28.46 25.86 23.69 21.86

520 29.06 26.41 24.20 22.33

540 29.66 26.95 24.70 22.79

Solution (a) We want the local linearization around the point T = 500, P = 24, which is

f(T, P ) ≈ f(500, 24) + fT (500, 24)(T − 500) + fP (500, 24)(P − 24).

We read the value f(500, 24) = 23.69 from the table.
Next we approximate fT (500, 24) by a difference quotient. From the P = 24 column, we

compute the average rate of change between T = 500 and T = 520:

fT (500, 24) ≈
f(520, 24)− f(500, 24)

520− 500
=

24.20− 23.69

20
= 0.0255.

Note that fT (500, 24) is positive, because steam expands when heated.
Next we approximate fP (500, 24) by looking at the T = 500 row and computing the

average rate of change between P = 24 and P = 26:

fP (500, 24) ≈
f(500, 26)− f(500, 24)

26− 24
=

21.86− 23.69

2
= −0.915.

Note that fP (500, 24) is negative, because increasing the pressure on steam decreases its vol-
ume. Using these approximations for the partial derivatives, we obtain the local linearization:

V = f(T, P ) ≈ 23.69 + 0.0255(T − 500)− 0.915(P − 24) ft3
for T near 500 ◦F
and P near 24 lb/in2.
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(b) We are interested in the volume at T = 505◦F and P = 24.3 lb/in2. Since these values are close
to T = 500◦F and P = 24 lb/in2, we use the linear relation obtained in part (a).

V ≈ 23.69 + 0.0255(505− 500)− 0.915(24.3− 24) = 23.54 ft3.

Local Linearity with Three or More Variables

Local linear approximations for functions of three or more variables follow the same pattern as for
functions of two variables. The local linearization of f(x, y, z) at (a, b, c) is given by

f(x, y, z) ≈ f(a, b, c) + fx(a, b, c)(x− a) + fy(a, b, c)(y − b) + fz(a, b, c)(z − c).

The Differential
We are often interested in the change in the value of the function as we move from the point (a, b)
to a nearby point (x, y). Then we use the notation

Δf = f(x, y)− f(a, b) and Δx = x− a and Δy = y − b

to rewrite the tangent plane approximation

f(x, y) ≈ f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

in the form
Δf ≈ fx(a, b)Δx+ fy(a, b)Δy.

For fixed a and b, the right side of this is a linear function of Δx and Δy that can be used to estimate
Δf . We call this linear function the differential. To define the differential in general, we introduce
new variables dx and dy to represent changes in x and y.

The Differential of a Function z = f (x,y)

The differential, df (or dz), at a point (a, b) is the linear function of dx and dy given by the
formula

df = fx(a, b) dx+ fy(a, b) dy.

The differential at a general point is often written df = fx dx+ fy dy.

Note that the differential, df , is a function of four variables a, b, and dx, dy.

Example 4 Compute the differentials of the following functions.
(a) f(x, y) = x2e5y (b) z = x sin(xy) (c) f(x, y) = x cos(2x)

Solution (a) Since fx(x, y) = 2xe5y and fy(x, y) = 5x2e5y , we have

df = 2xe5y dx + 5x2e5y dy.

(b) Since ∂z/∂x = sin(xy) + xy cos(xy) and ∂z/∂y = x2 cos(xy), we have

dz = (sin(xy) + xy cos(xy)) dx + x2
cos(xy) dy.

(c) Since fx(x, y) = cos(2x)− 2x sin(2x) and fy(x, y) = 0, we have

df = (cos(2x)− 2x sin(2x)) dx + 0 dy = (cos(2x)− 2x sin(2x)) dx.
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Example 5 The density ρ (in g/cm3
) of carbon dioxide gas CO2 depends upon its temperature T (in ◦C) and

pressure P (in atmospheres). The ideal gas model for CO2 gives what is called the state equation:

ρ =
0.5363P

T + 273.15
.

Compute the differential dρ. Explain the signs of the coefficients of dT and dP .

Solution The differential for ρ = f(T, P ) is

dρ = fT (T, P ) dT + fP (T, P )dP =
−0.5363P

(T + 273.15)2
dT +

0.5363

T + 273.15
dP.

The coefficient of dT is negative because increasing the temperature expands the gas (if the pressure
is kept constant) and therefore decreases its density. The coefficient of dP is positive because in-
creasing the pressure compresses the gas (if the temperature is kept constant) and therefore increases
its density.

Where Does the Notation for the Differential Come From?

We write the differential as a linear function of the new variables dx and dy. You may wonder why
we chose these names for our variables. The reason is historical: The people who invented calculus
thought of dx and dy as “infinitesimal” changes in x and y. The equation

df = fxdx+ fydy

was regarded as an infinitesimal version of the local linear approximation

Δf ≈ fxΔx + fyΔy.

In spite of the problems with defining exactly what “infinitesimal” means, some mathematicians,
scientists, and engineers think of the differential in terms of infinitesimals.

Figure 14.26 illustrates a way of thinking about differentials that combines the definition with
this informal point of view. It shows the graph of f along with a view of the graph around the point
(a, b, f(a, b)) under a microscope. Since f is locally linear at the point, the magnified view looks
like the tangent plane. Under the microscope, we use a magnified coordinate system with its origin
at the point (a, b, f(a, b)) and with coordinates dx, dy, and dz along the three axes. The graph of
the differential df is the tangent plane, which has equation dz = fx(a, b) dx + fy(a, b) dy in the
magnified coordinates.

x
y

z

�

Surface is
graph of f

�

dx dy

dz

�

Plane is
graph of df

Figure 14.26: The graph of f , with a view through a microscope showing the tangent plane in the
magnified coordinate system
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Exercises and Problems for Section 14.3
Exercises

In Exercises 1–8, find the equation of the tangent plane at the
given point.

1. z = yex/y at the point (1, 1, e)

2. z = sin(xy) at x = 2, y = 3π/4

3. z = ln(x2 + 1) + y2 at the point (0, 3, 9)

4. z = ey + x+ x2 + 6 at the point (1, 0, 9)

5. z = 1
2
(x2 + 4y2) at the point (2, 1, 4)

6. x2 + y2 − z = 1 at the point (1, 3, 9)

7. x2y2 + z − 40 = 0 at x = 2, y = 3

8. x2y + ln(xy) + z = 6 at the point (4, 0.25, 2)

In Exercises 9–12, find the differential of the function.

9. f(x, y) = sin(xy)

10. g(u, v) = u2 + uv

11. z = e−x cos y

12. h(x, t) = e−3t sin(x+ 5t)

In Exercises 13–16, find the differential of the function at the
given point.

13. g(x, t) = x2 sin(2t) at (2, π/4)

14. f(x, y) = xe−y at (1, 0)

15. P (L,K) = 1.01L0.25K0.75 at (100, 1)

16. F (m, r) = Gm/r2 at (100, 10)

Problems

17. At a distance of x feet from the beach, the price in dollars
of a plot of land of area a square feet is f(a, x).

(a) What are the units of fa(a, x)?
(b) What does fa(1000, 300) = 3 mean in practical

terms?
(c) What are the units of fx(a, x)?
(d) What does fx(1000, 300) = −2 mean in practical

terms?
(e) Which is cheaper: 1005 square feet that are 305 feet

from the beach or 998 square feet that are 295 feet
from the beach? Justify your answer.

18. A student was asked to find the equation of the tan-
gent plane to the surface z = x3 − y2 at the point
(x, y) = (2, 3). The student’s answer was

z = 3x2(x− 2)− 2y(y − 3)− 1.

(a) At a glance, how do you know this is wrong?
(b) What mistake did the student make?
(c) Answer the question correctly.

19. (a) Check the local linearity of f(x, y) = e−x sin y
near x = 1, y = 2 by making a table of values of
f for x = 0.9, 1.0, 1.1 and y = 1.9, 2.0, 2.1.
Express values of f with 4 digits after the deci-
mal point. Then make a table of values for x =
0.99, 1.00, 1.01 and y = 1.99, 2.00. 2.01, again
showing 4 digits after the decimal point. Do both ta-
bles look nearly linear? Does the second table look
more linear than the first?

(b) Give the local linearization of f(x, y) = e−x sin y
at (1, 2), first using your tables, and second using
the fact that fx(x, y) = −e−x sin y and fy(x, y) =
e−x cos y.

20. Find the local linearization of the function f(x, y) =
x2y at the point (3, 1).

21. For the differentiable function h(x, y), we are told that
h(600, 100) = 300 and hx(600, 100) = 12 and
hy(600, 100) = −8. Estimate h(605, 98).

22. (a) Find the equation of the plane tangent to the graph
of f(x, y) = x2exy at (1, 0).

(b) Find the linear approximation of f(x, y) for (x, y)
near (1, 0).

(c) Find the differential of f at the point (1, 0).

23. Find the differential of f(x, y) =
√

x2 + y3 at the point
(1, 2). Use it to estimate f(1.04, 1.98).

24. (a) Find the differential of g(u, v) = u2 + uv.
(b) Use your answer to part (a) to estimate the change in

g as you move from (1, 2) to (1.2, 2.1).

25. An unevenly heated plate has temperature T (x, y) in ◦C
at the point (x, y). If T (2, 1) = 135, and Tx(2, 1) = 16,
and Ty(2, 1) = −15, estimate the temperature at the
point (2.04, 0.97).

26. A right circular cylinder has a radius of 50 cm and a
height of 100 cm. Use differentials to estimate the change
in volume of the cylinder if its height and radius are both
increased by 1 cm.

27. Give the local linearization for the monthly car-loan pay-
ment function at each of the points investigated in Prob-
lem 27 on page 764.

28. In Example 3 on page 774 we found a linear approxima-
tion for V = f(T, P ) near (500, 24). Now find a linear
approximation near (480, 20).

29. In Example 3 on page 774 we found a linear approxima-
tion for V = f(T, p) near (500, 24).

(a) Test the accuracy of this approximation by compar-
ing its predicted value with the four neighboring val-
ues in the table. What do you notice? Which pre-
dicted values are accurate? Which are not? Explain
your answer.
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(b) Suggest a linear approximation for f(T, p) near
(500, 24) that does not have the property you no-
ticed in part (a). [Hint: Estimate the partial deriva-
tives in a different way.]

30. In a room, the temperature is given by T = f(x, t) de-
grees Celsius, where x is the distance from a heater (in
meters) and t is the elapsed time (in minutes) since the
heat has been turned on. A person standing 3 meters from
the heater 5 minutes after it has been turned on observes
the following: (1) The temperature is increasing by 1.2◦C
per minute, and (2) Walking away from the heater, the
temperature decreases by 2◦C per meter as time is held
constant. Estimate how much cooler or warmer it would
be 2.5 meters from the heater after 6 minutes.

31. Van der Waal’s equation relates the pressure, P , and the
volume, V , of a fixed quantity of a gas at constant tem-
perature T . For a, b, n,R constants, the equation is(

P +
n2a

V 2

)
(V − nb) = nRT.

(a) Express P as a function of T and V .
(b) Write a linear approximation for the change in pres-

sure, ΔP = P − P0, resulting from a change in
temperature ΔT = T − T0 and a change in pres-
sure, ΔV = V − V0.

32. The gas equation for one mole of oxygen relates its pres-
sure, P (in atmospheres), its temperature, T (in K), and
its volume, V (in cubic decimeters, dm3):

T = 16.574
1

V
− 0.52754

1

V 2
− 0.3879P +12.187V P.

(a) Find the temperature T and differential dT if the
volume is 25 dm3 and the pressure is 1 atmosphere.

(b) Use your answer to part (a) to estimate how much
the volume would have to change if the pressure in-
creased by 0.1 atmosphere and the temperature re-
mained constant.

33. The coefficient, β, of thermal expansion of a liquid re-
lates the change in the volume V (in m3) of a fixed quan-
tity of a liquid to an increase in its temperature T (in ◦C):

dV = βV dT.

(a) Let ρ be the density (in kg/m3) of water as a func-
tion of temperature. (For a mass m of liquid, we have
ρ = m/V .) Write an expression for dρ in terms of
ρ and dT .

(b) The graph in Figure 14.27 shows density of water as
a function of temperature. Use it to estimate β when
T = 20◦C and when T = 80◦C.

0 20 40 60 80 100

960

970

980

990

1000

ρ (kg/m3)

T (◦C)

Figure 14.27

34. A fluid moves through a tube of length 1 meter and ra-
dius r = 0.005 ± 0.00025 meters under a pressure
p = 105 ± 1000 pascals, at a rate v = 0.625 · 10−9 m3

per unit time. Use differentials to estimate the maximum
error in the viscosity η given by

η =
π

8

pr4

v
.

35. The period, T , of oscillation in seconds of a pendulum
clock is given by T = 2π

√
l/g, where g is the accel-

eration due to gravity. The length of the pendulum, l,
depends on the temperature, t, according to the formula
l = l0(1 + α(t− t0)) where l0 is the length of the pen-
dulum at temperature t0 and α is a constant which char-
acterizes the clock. The clock is set to the correct period
at the temperature t0. How many seconds a day does the
clock gain or lose when the temperature is t0+Δt? Show
that this gain or loss is independent of l0.

36. Two functions that have the same local linearization at a
point have contours that are tangent at this point.

(a) If fx(a, b) or fy(a, b) is nonzero, use the local lin-
earization to show that an equation of the line tan-
gent at (a, b) to the contour of f through (a, b) is
fx(a, b)(x− a) + fy(a, b)(y − b) = 0.

(b) Find the slope of the tangent line if fy(a, b) �= 0.
(c) Find an equation for the line tangent to the contour

of f(x, y) = x2 + xy at (3, 4).

Strengthen Your Understanding

In Problems 37–39, explain what is wrong with the statement.

37. An equation for the tangent plane to the surface z =
f(x, y) at the point (3, 4) is

z = f(3, 4) + fx(3, 4)x+ fy(3, 4)y.

38. If fx(0, 0) = gx(0, 0) and fy(0, 0) = gy(0, 0), then the
surfaces z = f(x, y) and z = g(x, y) have the same
tangent planes at the point (0, 0).

39. The tangent plane to the surface z = x2y at the point
(1, 2) has equation

z = 2 + 2xy(x− 1) + x2(y − 2).
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In Problems 40–41, give an example of:

40. Two different functions with the same differential.

41. A surface in three space whose tangent plane at (0, 0, 3)
is the plane z = 3.

Are the statements in Problems 42–49 true or false? Give rea-
sons for your answer.

42. The tangent plane approximation of f(x, y) = yex
2

at
the point (0, 1) is f(x, y) ≈ y.

43. If f is a function with differential df = 2y dx +
sin(xy)dy, then f changes by about −0.4 between the
points (1, 2) and (0.9, 2.0002).

44. The local linearization of f(x, y) = x2 + y2 at (1,1)
gives an overestimate of the value of f(x, y) at the point
(1.04, 0.95).

45. If two functions f and g have the same differential at the
point (1, 1), then f = g.

46. If two functions f and g have the same tangent plane at
a point (1, 1), then f = g.

47. If f(x, y) is a constant function, then df = 0.

48. If f(x, y) is a linear function, then df is a linear function
of dx and dy.

49. If you zoom close enough near a point (a, b) on the con-
tour diagram of any differentiable function, the contours
will be precisely parallel and exactly equally spaced.
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The Rate of Change in an Arbitrary Direction: The Directional Derivative
The partial derivatives of a function f tell us the rate of change of f in the directions parallel to
the coordinate axes. In this section we see how to compute the rate of change of f in an arbitrary
direction.

Example 1 Figure 14.28 shows the temperature, in ◦C, at the point (x, y). Estimate the average rate of change
of temperature as we walk from point A to point B.

100 200 300

100

200

300

x (m)

y (m)

50

4
5

35

B

A

�

40

Figure 14.28: Estimating rate of change on a temperature map

Solution At the point A we are on the H = 45◦C contour. At B we are on the H = 50◦C contour. The
displacement vector from A to B has x component approximately −100�i and y component ap-
proximately 25�j , so its length is

√
(−100)2 + 252 ≈ 103. Thus, the temperature rises by 5◦C as

we move 103 meters, so the average rate of change of the temperature in that direction is about
5/103 ≈ 0.05◦C/m.

Suppose we want to compute the rate of change of a function f(x, y) at the point P = (a, b) in
the direction of the unit vector �u = u1

�i +u2
�j . For h > 0, consider the pointQ = (a+hu1, b+hu2)

whose displacement from P is h�u . (See Figure 14.29.) Since ‖�u ‖ = 1, the distance from P to Q is
h. Thus,

Average rate of change
in f from P to Q

=
Change in f

Distance from P to Q
=

f(a+ hu1, b+ hu2)− f(a, b)

h
.
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(a, b)

P

Q

(a+ hu1, b+ hu2)

h�u

Figure 14.29: Displacement of h�u from the point (a, b)

Taking the limit as h → 0 gives the instantaneous rate of change and the following definition:

Directional Derivative of f at (a, b) in the Direction of a Unit Vector �u

If �u = u1
�i + u2

�j is a unit vector, we define the directional derivative, f�u , by

f�u (a, b) =

Rate of change

of f in direction

of �u at (a, b)

= lim
h→0

f(a+ hu1, b+ hu2)− f(a, b)

h
,

provided the limit exists.

Notice that if �u =�i , so u1 = 1, u2 = 0, then the directional derivative is fx, since

f�i (a, b) = lim
h→0

f(a+ h, b)− f(a, b)

h
= fx(a, b).

Similarly, if �u = �j then the directional derivative f�j = fy.

What If We Do Not Have a Unit Vector?

We defined f�u for �u a unit vector. If �v is not a unit vector, �v �= �0 , we construct a unit vector
�u = �v /‖�v ‖ in the same direction as �v and define the rate of change of f in the direction of �v
as f�u .

Example 2 For each of the functions f , g, and h in Figure 14.30, decide whether the directional derivative at
the indicated point is positive, negative, or zero, in the direction of the vector �v = �i + 2�j , and in
the direction of the vector �w = 2�i +�j .

3 4 5 6 7 8 9 10

�
�v
�w

f(x, y)

x

y

�

�v

�w

7
8

9

7
8

9

6 6

6 6

3 4 5 5 4 3

x

y g(x, y)

5
6

7
8

9

10

9
8

7
6

y

x

h(x, y)

�v

�w

�

Figure 14.30: Contour diagrams of three functions with direction vectors �v =�i + 2�j and �w = 2�i +�j marked on each

Solution On the contour diagram for f , the vector �v =�i + 2�j appears to be tangent to the contour. Thus, in
this direction, the value of the function is not changing, so the directional derivative in the direction
of �v is zero. The vector �w = 2�i +�j points from the contour marked 4 toward the contour marked
5. Thus, the values of the function are increasing and the directional derivative in the direction of �w
is positive.
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On the contour diagram for g, the vector �v =�i +2�j points from the contour marked 6 toward
the contour marked 5, so the function is decreasing in that direction. Thus, the rate of change is
negative. On the other hand, the vector �w = 2�i +�j points from the contour marked 6 toward the
contour marked 7, and hence the directional derivative in the direction of �w is positive.

Finally, on the contour diagram for h, both vectors point from the h = 10 contour to the h = 9

contour, so both directional derivatives are negative.

Example 3 Calculate the directional derivative of f(x, y) = x2+y2 at (1, 0) in the direction of the vector�i +�j .

Solution First we have to find the unit vector in the same direction as the vector�i +�j . Since this vector has
magnitude

√
2, the unit vector is

�u =
1
√
2
(�i +�j ) =

1
√
2

�i +
1
√
2

�j .

Thus,

f�u (1, 0) = lim
h→0

f(1 + h/
√
2, h/

√
2)− f(1, 0)

h
= lim

h→0

(1 + h/
√
2)2 + (h/

√
2)2 − 1

h

= lim
h→0

√
2h+ h2

h
= lim

h→0
(
√
2 + h) =

√
2.

Computing Directional Derivatives from Partial Derivatives
If f is differentiable, we will now see how to use local linearity to find a formula for the directional
derivative which does not involve a limit. If �u is a unit vector, the definition of f�u says

f�u (a, b) = lim
h→0

f(a+ hu1, b+ hu2)− f(a, b)

h
= lim

h→0

Δf

h
,

where Δf = f(a+ hu1, b + hu2) − f(a, b) is the change in f . We write Δx for the change in x,
so Δx = (a+ hu1)− a = hu1; similarly Δy = hu2. Using local linearity, we have

Δf ≈ fx(a, b)Δx+ fy(a, b)Δy = fx(a, b)hu1 + fy(a, b)hu2.

Thus, dividing by h gives

Δf

h
≈

fx(a, b)hu1 + fy(a, b)hu2

h
= fx(a, b)u1 + fy(a, b)u2.

This approximation becomes exact as h → 0, so we have the following formula:

f�u (a, b) = fx(a, b)u1 + fy(a, b)u2.

Example 4 Use the preceding formula to compute the directional derivative in Example 3. Check that we get
the same answer as before.

Solution We calculate f�u (1, 0), where f(x, y) = x2 + y2 and �u =
1
√
2

�i +
1
√
2

�j .

The partial derivatives are fx(x, y) = 2x and fy(x, y) = 2y. So, as before,

f�u (1, 0) = fx(1, 0)u1 + fy(1, 0)u2 = (2)

(
1
√
2

)
+ (0)

(
1
√
2

)
=

√
2.

The Gradient Vector
Notice that the expression for f�u (a, b) can be written as a dot product of �u and a new vector:

f�u (a, b) = fx(a, b)u1 + fy(a, b)u2 = (fx(a, b)�i + fy(a, b)�j ) · (u1
�i + u2

�j ).
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The new vector, fx(a, b)�i + fy(a, b)�j , turns out to be important. Thus, we make the following
definition:

The Gradient Vector of a differentiable function f at the point (a, b) is

gradf(a, b) = fx(a, b)�i + fy(a, b)�j

The formula for the directional derivative can be written in terms of the gradient as follows:

The Directional Derivative and the Gradient

If f is differentiable at (a, b) and �u = u1
�i + u2

�j is a unit vector, then

f�u (a, b) = fx(a, b)u1 + fy(a, b)u2 = gradf(a, b) · �u .

Example 5 Find the gradient vector of f(x, y) = x+ ey at the point (1, 1).

Solution Using the definition, we have

grad f = fx�i + fy�j =�i + ey�j ,

so at the point (1, 1)
grad f(1, 1) =�i + e�j .

Alternative Notation for the Gradient

You can think of
∂f

∂x
�i +

∂f

∂y
�j as the result of applying the vector operator (pronounced “del”)

∇=
∂

∂x
�i +

∂

∂y
�j

to the function f . Thus, we get the alternative notation

grad f = ∇f.

If z = f(x, y), we can write grad z or ∇z for gradf or for ∇f .

What Does the Gradient Tell Us?

The fact that f�u = gradf · �u enables us to see what the gradient vector represents. Suppose θ is
the angle between the vectors gradf and �u . At the point (a, b), we have

f�u = grad f · �u = ‖ gradf‖ ‖�u ‖︸︷︷︸
1

cos θ = ‖ gradf‖ cos θ.

Zero f
u

Max f
uZero f
u

Min f
u

grad f
�u θ

Figure 14.31: Values of the directional derivative at different angles to the gradient
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Imagine that gradf is fixed and that �u can rotate. (See Figure 14.31.) The maximum value of
f�u occurs when cos θ = 1, so θ = 0 and �u is pointing in the direction of gradf . Then

Maximum f�u = ‖ gradf‖ cos 0 = ‖ gradf‖.

The minimum value of f�u occurs when cos θ = −1, so θ = π and �u is pointing in the direction
opposite to grad f . Then

Minimum f�u = ‖ gradf‖ cosπ = −‖ gradf‖.

When θ = π/2 or 3π/2, so cos θ = 0, the directional derivative is zero.

Properties of the Gradient Vector
We have seen that the gradient vector points in the direction of the greatest rate of change at a point
and the magnitude of the gradient vector is that rate of change.

Figure 14.32 shows that the gradient vector at a point is perpendicular to the contour through
that point. If the contours represent equally spaced f -values and f is differentiable, local linearity
tells us that the contours of f around a point appear straight, parallel, and equally spaced. The
greatest rate of change is obtained by moving in the direction that takes us to the next contour in the
shortest possible distance; that is, perpendicular to the contour. Thus, we have the following:

Geometric Properties of the Gradient Vector in the Plane

If f is a differentiable function at the point (a, b) and grad f(a, b) �= �0 , then:
• The direction of gradf(a, b) is

· Perpendicular1 to the contour of f through (a, b);
· In the direction of the maximum rate of increase of f .

• The magnitude of the gradient vector, ‖ gradf‖, is

· The maximum rate of change of f at that point;
· Large when the contours are close together and small when they are far apart.

(a, b)

� Contour where
f(x, y) = c

� Contour where
f(x, y) = c+Δc

�

Shortest path to next
contour gives greatest
rate of change

�

Change in f is Δc
for both paths

�

Figure 14.32: Close-up view of the contours around (a, b),
showing the gradient is perpendicular to the contours
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y (m)
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�
�

50

4
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40

35

Figure 14.33: A temperature map showing
directions and relative magnitudes of two

gradient vectors

1This assumes that the same scale is used on both axes.
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Examples of Directional Derivatives and Gradient Vectors

Example 6 Explain why the gradient vectors at points A and C in Figure 14.33 have the direction and the
relative magnitudes they do.

Solution The gradient vector points in the direction of greatest increase of the function. This means that
in Figure 14.33, the gradient points directly toward warmer temperatures. The magnitude of the
gradient vector measures the rate of change. The gradient vector at A is longer than the gradient
vector at C because the contours are closer together at A, so the rate of change is larger.

Example 2 on page 780 shows how the contour diagram can tell us the sign of the directional
derivative. In the next example we compute the directional derivative in three directions, two that
are close to that of the gradient vector and one that is not.

Example 7 Use the gradient to find the directional derivative of f(x, y) = x + ey at the point (1, 1) in the
direction of the vectors�i −�j ,�i + 2�j ,�i + 3�j .

Solution In Example 5 we found

grad f(1, 1) =�i + e�j .

A unit vector in the direction of�i −�j is �s = (�i −�j )/
√
2, so

f�s (1, 1) = gradf(1, 1) · �s = (�i + e�j ) ·

(
�i −�j
√
2

)
=

1− e
√
2

≈ −1.215.

A unit vector in the direction of�i + 2�j is �v = (�i + 2�j )/
√
5, so

f�v (1, 1) = grad f(1, 1) · �v = (�i + e�j ) ·

(
�i + 2�j
√
5

)
=

1 + 2e
√
5

≈ 2.879.

A unit vector in the direction of�i + 3�j is �w = (�i + 3�j )/
√
10, so

f�w (1, 1) = grad f(1, 1) · �w = (�i + e�j ) ·

(
�i + 3�j
√
10

)
=

1 + 3e
√
10

≈ 2.895.

Now look back at the answers and compare with the value of ‖ gradf‖ =
√
1 + e2 ≈ 2.896.

One answer is not close to this value; the other two, f�v = 2.879 and f�w = 2.895, are close but
slightly smaller than ‖ gradf‖. Since ‖ gradf‖ is the maximum rate of change of f at the point,
we have for any unit vector �u :

f�u (1, 1) ≤ ‖ gradf‖.

with equality when �u is in the direction of gradf . Since e ≈ 2.718, the vectors�i +2�j and�i +3�j
both point roughly, but not exactly, in the direction of the gradient vector gradf(1, 1) = �i + e�j .
Thus, the values of f�v and f�w are both close to the value of ‖ gradf‖. The direction of the vector
�i −�j is not close to the direction of grad f and the value of f�s is not close to the value of ‖ gradf‖.
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Exercises and Problems for Section 14.4
Exercises

In Exercises 1–14, find the gradient of the function. Assume
the variables are restricted to a domain on which the function
is defined.

1. f(x, y) = 3
2
x5 − 4

7
y6 2. Q = 50K + 100L

3. f(m,n) = m2 + n2 4. z = xey

5. f(α, β) =
√

5α2 + β 6. f(r, h) = πr2h

7. z = (x+ y)ey 8. f(K,L) = K0.3L0.7

9. f(r, θ) = r sin θ 10. f(x, y) = ln(x2+y2)

11. z = sin(x/y) 12. z = tan−1(x/y)

13. f(α, β) =
2α+ 3β
2α− 3β

14. z = x
ey

x+ y

In Exercises 15–22, find the gradient at the point.

15. f(x, y) = x2y + 7xy3, at (1, 2)

16. f(m,n) = 5m2 + 3n4, at (5, 2)

17. f(r, h) = 2πrh+ πr2, at (2, 3)

18. f(x, y) = esin y , at (0, π)

19. f(x, y) = sin (x2) + cos y, at (
√

π
2
, 0)

20. f(x, y) = ln(x2 + xy), at (4, 1)

21. f(x, y) = 1/(x2 + y2), at (−1, 3)

22. f(x, y) =
√
tan x+ y, at (0, 1)

In Exercises 23–26, find the directional derivative f
u (1, 2)
for the function f with �u = (3�i − 4�j )/5.

23. f(x, y) = xy + y3 24. f(x, y) = 3x− 4y

25. f(x, y) = x2 − y2 26. f(x, y) = sin(2x− y)

27. If f(x, y) = x2y and �v = 4�i − 3�j , find the directional
derivative at the point (2, 6) in the direction of �v .

In Exercises 28–29, find the differential df from the gradient.

28. grad f = y�i + x�j

29. grad f = (2x+ 3ey)�i + 3xey�j

In Exercises 30–31, find grad f from the differential.

30. df = 2xdx+ 10ydy

31. df = (x+ 1)yexdx+ xexdy

In Exercises 32–37, use the contour diagram of f in Fig-
ure 14.34 to decide if the specified directional derivative is
positive, negative, or approximately zero.

321−1−2−3

3

2

1

−1

−2

−3

x

y

4

4

2

2

6

6

8

8

Figure 14.34

32. At point (−2, 2), in direction�i .

33. At point (0,−2), in direction�j .

34. At point (0,−2), in direction�i + 2�j .

35. At point (0,−2), in direction�i − 2�j .

36. At point (−1, 1), in direction�i +�j .

37. At point (−1, 1), in direction −�i +�j .

In Exercises 38–45, use the contour diagram of f in Fig-
ure 14.34 to find the approximate direction of the gradient
vector at the given point.

38. (−2, 0) 39. (0,−2) 40. (2, 0) 41. (0, 2)

42. (−2, 2) 43. (−2,−2) 44. (2, 2) 45. (2,−2)

Problems

46. Let f(P ) = 15 and f(Q) = 20 where P = (3, 4) and
Q = (3.03, 3.96). Approximate the directional deriva-
tive of f at P in the direction of Q.

47. (a) Give Q, the point at a distance of 0.1 from P =
(4, 5) in the direction of �v = −�i + 3�j . Give five

decimal places in your answer.
(b) Use P and Q to approximate the directional deriva-

tive of f(x, y) =
√
x+ y in the direction of �v .

(c) Give the exact value for the directional derivative
you estimated in part (b).
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48. Find the directional derivative of f(x, y) = ex tan(y) +
2x2y at the point (0, π/4) in the following directions

(a) �i −�j (b) �i +
√
3�j

49. Find the rate of change of f(x, y) = x2+ y2 at the point
(1, 2) in the direction of the vector �u = 0.6�i + 0.8�j .

50. (a) Let f(x, y) = (x+y)/(1+x2). Find the directional
derivative of f at P = (1,−2) in the direction of:

(i) �v = 3�i − 2�j (ii) �v = −�i + 4�j

(b) What is the direction of greatest increase of f at P ?

51. Let f(x, y) = x2y3. At the point (−1, 2), find a vector

(a) In the direction of maximum rate of change.
(b) In the direction of minimum rate of change.
(c) In a direction in which the rate of change is zero.

52. You are at the point (π/4, 1) and start to move in the
direction of the point (1 + π/4, 2). At what rate does
the value of f(x, y) = sin(xy) change as you leave
(π/4, 1)? Give your answer in units of f per unit dis-
tance.

53. (a) Let f(x, y) = x2 + ln y. Find the average rate of
change of f as you go from (3, 1) to (1, 2).

(b) Find the instantaneous rate of change of f as you
leave the point (3, 1) heading toward (1, 2).

54. (a) What is the rate of change of f(x, y) = 3xy+ y2 at
the point (2, 3) in the direction �v = 3�i −�j ?

(b) What is the direction of maximum rate of change of
f at (2, 3)?

(c) What is the maximum rate of change?

55. A student was asked to find the directional derivative of
f(x, y) = x2ey at the point (1, 0) in the direction of
�v = 4�i + 3�j . The student’s answer was

f
u (1, 0) = grad f(1, 0) · �u =
8

5
�i +

3

5
�j .

(a) At a glance, how do you know this is wrong?
(b) What is the correct answer?

For Problems 56–60 use Figure 14.35, showing level curves
of f(x, y), to estimate the directional derivatives.

1 2 3 4 5 6

1

2

3

4

0
1 2 3 4 5

y

x

Figure 14.35

56. f
i (4, 1) 57. f
j (4, 1)

58. f
u (4, 1) where �u = (�i −�j )/
√
2

59. f
u (4, 1) where �u = (−�i +�j )/
√
2

60. f
u (4, 1) with �u = (−2�i +�j )/
√
5

In Problems 61–64, check that the point (2, 3) lies on the
curve. Then, viewing the curve as a contour of f(x, y), use
grad f(2, 3) to find a vector normal to the curve at (2, 3) and
an equation for the tangent line to the curve at (2, 3).

61. x2 + y2 = 13 62. xy = 6

63. y = x2 − 1 64. (y−x)2 +2 = xy− 3

65. The surface z = g(x, y) is in Figure 14.36. What is the
sign of each of the following directional derivatives?

(a) g
u (2, 5) where �u = (�i −�j )/
√
2.

(b) g
u (2, 5) where �u = (�i +�j )/
√
2.

x

y

z



(2, 5, 2)
(0, 5, 4)

(0, 12, 4)

Figure 14.36

66. The table gives values of a differentiable function
f(x, y). At the point (1.2, 0), into which quadrant does
the gradient vector of f point? Justify your answer.

x

y

−1 0 1

1.0 0.7 0.1 −0.5

1.2 4.8 4.2 3.6

1.4 8.9 8.3 7.7

67. Figure 14.37 represents the level curves f(x, y) = c ;
the values of f on each curve are marked. In each of the
following parts, decide whether the given quantity is pos-
itive, negative or zero. Explain your answer.

(a) The value of ∇f ·�i at P .
(b) The value of ∇f ·�j at P .
(c) ∂f/∂x at Q.
(d) ∂f/∂y at Q.

4

3

2

1

x

y



P

� Q

Figure 14.37
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68. In Figure 14.37, which is larger: ‖∇f‖ at P or ‖∇f‖ at
Q? Explain how you know.

In Problems 69–72, do the level curves of f(x, y) cross the
level curves of g(x, y) at right angles? Sketch contour dia-
grams.

69. f(x, y) = x+ y, g(x, y) = x− y

70. f(x, y) = 2x+ 3y, g(x, y) = 2x− 3y

71. f(x, y) = x2 − y, g(x, y) = 2y + ln |x|
72. f(x, y) = x2 − y2, g(x, y) = xy

73. (a) Sketch the surface z = f(x, y) = y2 in three di-
mensions.

(b) Sketch the level curves of f in the xy-plane.
(c) If you are standing on the surface z = y2 at the point

(2, 3, 9), in which direction should you move to
climb the fastest? (Give your answer as a 2-vector.)

74. You are standing above the point (1, 3) on the surface
z = 20− (2x2 + y2).

(a) In which direction should you walk to descend
fastest? (Give your answer as a 2-vector.)

(b) If you start to move in this direction, what is the
slope of your path?

75. Let P be a fixed point in the plane and let f(x, y) be the
distance from P to (x, y). Answer the following ques-
tions using geometric interpretations, not formulas.

(a) What are the level curves of f?
(b) In what direction does grad f(x, y) point?
(c) What is the magnitude ‖ grad f(x, y)‖?

76. The directional derivative of z = f(x, y) at (2, 1) in
the direction toward the point (1, 3) is −2/

√
5, and the

directional derivative in the direction toward the point
(5, 5) is 1. Compute ∂z/∂x and ∂z/∂y at (2, 1).

77. Consider the function f(x, y). If you start at the point
(4, 5) and move toward the point (5, 6), the directional
derivative is 2. Starting at the point (4, 5) and moving to-
ward the point (6, 6) gives a directional derivative of 3.
Find ∇f at the point (4, 5).

78. (a) For g(x, y) =
√

x2 + 3y + 3, find grad g(1, 4).
(b) Find the best linear approximation of g(x, y) for

(x, y) near (1, 4).
(c) Use the approximation in part (b) to estimate

g(1.01, 3.98).

79. Find the directional derivative of z = x2−y2 at the point
(3,−1) in the direction making an angle θ = π/4 with
the x-axis. In which direction is the directional derivative
the largest?

80. The temperature H in ◦Fahrenheit y miles north of the
Canadian border t hours after midnight is given by H =
30−0.05y−5t. A moose runs north at a speed of 20 mph.
At what rate does the moose perceive the temperature to
be changing?

81. At a certain point on a heated plate, the greatest rate of
temperature increase, 5◦ C per meter, is toward the north-
east. If an object at this point moves directly north, at
what rate is the temperature increasing?

82. You are climbing a mountain by the steepest route at a
slope of 20◦ when you come upon a trail branching off
at a 30◦ angle from yours. What is the angle of ascent of
the branch trail?

83. Figure 14.39 is a graph of the directional derivative, f
u ,
at the point (a, b) versus θ, the angle in Figure 14.38.

(a) Which points on the graph in Figure 14.39 corre-
spond to the greatest rate of increase of f? The great-
est rate of decrease?

(b) Mark points on the circle in Figure 14.38 corre-
sponding to the points P,Q,R, S.

(c) What is the amplitude of the function graphed in
Figure 14.39? What is its formula?

grad f�u θ

Figure 14.38

RP Q S P

θ

f
u

Figure 14.39

84. You are standing at the point (1, 1, 3) on the hill whose
equation is given by z = 5y − x2 − y2.

(a) If you choose to climb in the direction of steepest
ascent, what is your initial rate of ascent relative to
the horizontal distance?

(b) If you decide to go straight northwest, will you be
ascending or descending? At what rate?

(c) If you decide to maintain your altitude, in what di-
rections can you go?

85. In this problem we see another way of obtaining the for-
mula f
u (a, b) = grad f(a, b) · �u . Imagine zooming in
on a function f(x, y) at a point (a, b). By local linearity,
the contours around (a, b) look like the contours of a lin-
ear function. See Figure 14.40. Suppose you want to find
the directional derivative f
u (a, b) in the direction of a
unit vector �u . If you move from P to Q, a small distance
h in the direction of �u , then the directional derivative is
approximated by the difference quotient

Change in f between P and Q

h
.

(a) Use the gradient to show that

Change in f ≈ ‖ grad f‖(h cos θ).

(b) Use part (a) to obtain f
u (a, b) = grad f(a, b) · �u .
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�

�h cos θ

�

�
h

Q

�u

θ

grad f

P = (a, b)

Figure 14.40

86. Let L be a line tangent to the ellipse x2/2 + y2 = 1 at
the point (a, b). See Figure 14.41.

(a) Find a vector perpendicular to L.
(b) Find the distance p from P = (−1, 0) to L as a

function of a.
(c) Find the distance q from Q = (1, 0) to L as a func-

tion of a.
(d) Show that pq = 1.

P Q

(a, b)

p q

L

Figure 14.41

87. Let C be the contour C of f(x, y) through (a, b) and
grad f(a, b) �= �0 . Show that

(a) The vector −fy(a, b)�i + fx(a, b)�j is tangent to C
at (a, b).

(b) The slope of the line tangent to C at the point (a, b)
is −fx(a, b)/fy(a, b) if the tangent line is not verti-
cal.

88. Let ‖ grad f(x, y)‖ = ‖ grad g(x, y)‖ at a point P
where these gradients are not the zero vector. Show that
at P , the direction of the most rapid increase of f + g

(a) Increases f and g at equal rates.
(b) Bisects the angle between the contours of f and g

that pass through P .

Strengthen Your Understanding

In Problems 89–91, explain what is wrong with the statement.

89. A function f has a directional derivative given by
f
u (0, 0) = 3�i + 4�j .

90. A function f has gradient grad f(0, 0) = 7.

91. The gradient vector grad f(x, y) is perpendicular to the
contours of f , and the closer together the contours for
equally spaced values of f , the shorter the gradient vec-
tor.

In Problems 92–93, give an example of:

92. A unit vector �u such that f
u (0, 0) < 0, given that
fx(0, 0) = 2 and fy(0, 0) = 3.

93. A contour diagram of a function with two points in the
domain where the gradients are parallel but different
lengths.

94. For the gradient ∇f(P ) of f at a point P , describe the
geometric interpretation of its

(a) Direction
(b) Magnitude
(c) Dot product with a unit vector �u

Are the statements in Problems 95–106 true or false? Give
reasons for your answer.

95. If the point (a, b) is on the contour f(x, y) = k, then
the slope of the line tangent to this contour at (a, b) is
fy(a, b)/fx(a, b).

96. The gradient vector grad f(a, b) is a vector in 3-space.

97. grad(fg) = (grad f) · (grad g)

98. The gradient vector grad f(a, b) is tangent to the contour
of f at (a, b).

99. If you know the gradient vector of f at (a, b) then you
can find the directional derivative f
u (a, b) for any unit
vector �u .

100. If you know the directional derivative f
u (a, b) for all
unit vectors �u then you can find the gradient vector of
f at (a, b).

101. The directional derivative f
u (a, b) is parallel to �u .

102. The gradient grad f(3, 4) is perpendicular to the vector
3�i + 4�j .

103. If grad f(1, 2) =�i , then f decreases in the −�i direction
at (1, 2).

104. If grad f(1, 2) =�i , then f(10, 2) > f(1, 2).

105. At the point (3, 0), the function g(x, y) = x2 + y2 has
the same maximal rate of increase as that of the function
h(x, y) = 2xy.
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106. If f(x, y) = ex+y, then the directional derivative in any
direction �u (with ‖�u ‖ = 1) at the point (0, 0) is always
less than or equal to

√
2.

Assume that f(x, y) is a differentiable function. Are the state-
ments in Problems 107–111 true or false? Explain your an-
swer.

107. f
u (x0, y0) is a scalar.

108. f
u (a, b) = ‖∇f(a, b)‖
109. If �u is tangent to the level curve of f at some point, then

grad f · �u = 0 there.

110. There is always a direction in which the rate of change of
f at (a, b) is 0.

111. There is a function with a point in its domain where
‖ grad f‖ = 0 and where there is a nonzero directional
derivative.

14.5 GRADIENTS AND DIRECTIONAL DERIVATIVES IN SPACE

Directional Derivatives of Functions of Three Variables
We calculate directional derivatives of a function of three variables in the same way as for a function
of two variables. If the function f is differentiable at the point (a, b, c), then the rate of change of
f(x, y, z) at the point (a, b, c) in the direction of a unit vector �u = u1

�i + u2
�j + u3

�k is

f�u (a, b, c) = fx(a, b, c)u1 + fy(a, b, c)u2 + fz(a, b, c)u3.

This can be justified using local linearity in the same way as for functions of two variables.

Example 1 Find the directional derivative of f(x, y, z) = xy + z at the point (−1, 0, 1) in the direction of the
vector �v = 2�i + �k .

Solution The magnitude of �v is ‖�v ‖ =
√
22 + 1 =

√
5, so a unit vector in the same direction as �v is

�u =
�v

‖�v ‖
=

2
√
5

�i + 0�j +
1
√
5

�k .

The partial derivatives of f are fx(x, y, z) = y and fy(x, y, z) = x and fz(x, y, z) = 1. Thus,

f�u (−1, 0, 1) = fx(−1, 0, 1)u1 + fy(−1, 0, 1)u2 + fz(−1, 0, 1)u3

= (0)

(
2
√
5

)
+ (−1)(0) + (1)

(
1
√
5

)
=

1
√
5
.

The Gradient Vector of a Function of Three Variables
The gradient of a function of three variables is defined in the same way as for two variables:

gradf(a, b, c) = fx(a, b, c)�i + fy(a, b, c)�j + fz(a, b, c)�k .

Directional derivatives are related to gradients in the same way as for functions of two variables:

f�u (a, b, c) = fx(a, b, c)u1 + fy(a, b, c)u2 + fz(a, b, c)u3 = grad f(a, b, c) · �u .

Since gradf(a, b, c) · �u = ‖ gradf(a, b, c)‖ cosθ, where θ is the angle between gradf(a, b, c)
and �u , the value of f�u (a, b, c) is largest when θ = 0, that is, when �u is in the same direction as
gradf(a, b, c). In addition, f�u (a, b, c) = 0 when θ = π/2, so grad f(a, b, c) is perpendicular to
the level surface of f . The properties of gradients in space are similar to those in the plane:
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Properties of the Gradient Vector in Space

If f is differentiable at (a, b, c) and �u is a unit vector, then

f�u (a, b, c) = grad f(a, b, c) · �u .

If, in addition, gradf(a, b, c) �= �0 , then
• grad f(a, b, c) is in the direction of the greatest rate of increase of f

• grad f(a, b, c) is perpendicular to the level surface of f at (a, b, c)

• ‖ gradf(a, b, c)‖ is the maximum rate of change of f at (a, b, c).

Example 2 Let f(x, y, z) = x2 + y2 and g(x, y, z) = −x2 − y2 − z2. What can we say about the direction of
the following vectors?
(a) grad f(0, 1, 1) (b) grad f(1, 0, 1) (c) grad g(0, 1, 1) (d) grad g(1, 0, 1).

Solution The cylinder x2+y2 = 1 in Figure 14.42 is a level surface of f and contains both the points (0, 1, 1)
and (1, 0, 1). Since the value of f does not change at all in the z-direction, all the gradient vectors
are horizontal. They are perpendicular to the cylinder and point outward because the value of f
increases as we move out.

Similarly, the points (0, 1, 1) and (1, 0, 1) also lie on the same level surface of g, namely
g(x, y, z) = −x2 − y2 − z2 = −2, which is the sphere x2 + y2 + z2 = 2. Part of this level
surface is shown in Figure 14.43. This time the gradient vectors point inward, since the negative
signs mean that the function increases (from large negative values to small negative values) as we
move inward.

x y

z

Figure 14.42: The level surface
f(x, y, z) = x2 + y2 = 1 with two gradient

vectors

x y

z

Figure 14.43: The level surface
g(x, y, z) = −x2 − y2 − z2 = −2 with two

gradient vectors

Example 3 Consider the functions f(x, y) = 4−x2−2y2 and g(x, y) = 4−x2. Calculate a vector perpendicular
to each of the following:

(a) The level curve of f at the point (1, 1) (b) The surface z = f(x, y) at the point (1, 1, 1)
(c) The level curve of g at the point (1, 1) (d) The surface z = g(x, y) at the point (1, 1, 3)

Solution (a) The vector we want is a 2-vector in the plane. Since gradf = −2x�i − 4y�j , we have

gradf(1, 1) = −2�i − 4�j .

Any nonzero multiple of this vector is perpendicular to the level curve at the point (1, 1).
(b) In this case we want a 3-vector in space. To find it we rewrite z = 4 − x2 − 2y2 as the level

surface of the function F , where

F (x, y, z) = 4− x2 − 2y2 − z = 0.

Then
gradF = −2x�i − 4y�j − �k ,
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so
gradF (1, 1, 1) = −2�i − 4�j − �k ,

and gradF (1, 1, 1) is perpendicular to the surface z = 4−x2−2y2 at the point (1, 1, 1). Notice
that −2�i − 4�j − �k is not the only possible answer: any multiple of this vector will do.

(c) We are looking for a 2-vector. Since grad g = −2x�i + 0�j , we have

grad g(1, 1) = −2�i .

Any multiple of this vector is perpendicular to the level curve also.
(d) We are looking for a 3-vector. We rewrite z = 4 − x2 as the level surface of the function G,

where
G(x, y, z) = 4− x2 − z = 0.

Then
gradG = −2x�i − �k

So
gradG(1, 1, 3) = −2�i − �k ,

and any multiple of gradG(1, 1, 3) is perpendicular to the surface z = 4− x2 at this point.

Example 4 (a) A hiker on the surface f(x, y) = 4 − x2 − 2y2 at the point (1,−1, 1) starts to climb along
the path of steepest ascent. What is the relation between the vector gradf(1,−1) and a vector
tangent to the path at the point (1,−1, 1) and pointing uphill?

(b) At the point (1,−1, 1) on the surface f(x, y) = 4−x2−2y2, calculate a vector, �n , perpendicular
to the surface and a vector, �T , tangent to the curve of steepest ascent.

1
2

0

3

−1
−3

−5

x

y

�

Figure 14.44: Contour diagram for
z = f(x, y) = 4− x2 − 2y2 showing

direction of grad f(1,−1)

x

y
z

Figure 14.45: Graph of
f(x, y) = 4− x2 − 2y2 showing path of
steepest ascent from the point (1,−1, 1)

Solution (a) The hiker at the point (1,−1, 1) lies directly above the point (1,−1) in the xy-plane. The vector
gradf(1,−1) lies in 2-space, pointing like a compass in the direction in which f increases
most rapidly. Therefore, grad f(1,−1) lies directly under a vector tangent to the hiker’s path at
(1,−1, 1) and pointing uphill. (See Figures 14.44 and 14.45.)
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(b) The surface is represented by F (x, y, z) = 4 − x2 − 2y2 − z = 0. Since gradF = −2x�i −

4y�j − �k , the normal, �n , to the surface is given by

�n = gradF (1,−1, 1) = −2(1)�i − 4(−1)�j − �k = −2�i + 4�j − �k .

We take the�i and �j components of �T to be the vector gradf(1,−1) = −2�i + 4�j . Thus, we
have that, for some a > 0,

�T = −2�i + 4�j + a�k

We want �n · �T = 0, so

�n · �T = (−2�i + 4�j − �k ) · (−2�i + 4�j + a�k ) = 4 + 16− a = 0

So a = 20 and hence
�T = −2�i + 4�j + 20�k .

Example 5 Find the equation of the tangent plane to the sphere x2 + y2 + z2 = 14 at the point (1, 2, 3).

Solution We write the sphere as a level surface as follows:

f(x, y, z) = x2
+ y2 + z2 = 14.

We have
grad f = 2x�i + 2y�j + 2z�k ,

so the vector
grad f(1, 2, 3) = 2�i + 4�j + 6�k

is perpendicular to the sphere at the point (1, 2, 3). Since the vector gradf(1, 2, 3) is normal to the
tangent plane, the equation of the plane is

2x+ 4y + 6z = 2 · 1 + 4 · 2 + 6 · 3 = 28 or x+ 2y + 3z = 14.

We could also try to find the tangent plane to the level surface f(x, y, z) = k by solving
algebraically for z and using the method of Section 14.3, page 773. (See Problem 46.) Solving for
z can be difficult or impossible, however, so the method of Example 5 is preferable.

Tangent Plane to a Level Surface

If f(x, y, z) is differentiable at (a, b, c), then an equation for the tangent plane to the level
surface of f at the point (a, b, c) is

fx(a, b, c)(x− a) + fy(a, b, c)(y − b) + fz(a, b, c)(z − c) = 0.

Caution: Scale on the Axis and the Geometric Interpretation of the Gradient
When we interpreted the gradient of a function geometrically (page 783), we tacitly assumed that
the units and scales along the x and y axes were the same. If the scales are not the same, the gradient
vector may not look perpendicular to the contours. Consider the function f(x, y) = x2 + y with
gradient vector gradf = 2x�i +�j . Figure 14.46 shows the gradient vector at (1, 1) using the same
scales in the x and y directions. As expected, the gradient vector is perpendicular to the contour
line. Figure 14.47 shows contours of the same function with unequal scales on the two axes. Notice
that the gradient vector no longer appears perpendicular to the contour lines. Thus, we see that the
geometric interpretation of the gradient vector requires that the same scale be used on both axes.



14.5 GRADIENTS AND DIRECTIONAL DERIVATIVES IN SPACE 793
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1 2 3 4
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y

Figure 14.46: The gradient vector with x and y
scales equal

1 2 3
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x

y

Figure 14.47: The gradient vector with x and y
scales unequal

Exercises and Problems for Section 14.5
Exercises

In Exercises 1–12, find the gradient of the function.

1. f(x, y, z) = x2

2. f(x, y, z) = x2 + y3 − z4

3. f(x, y, z) = ex+y+z

4. f(x, y, z) = cos(x+ y) + sin(y + z)

5. f(x, y, z) = yz2/(1 + x2)

6. f(x, y, z) = 1/(x2 + y2 + z2)

7. f(x, y, z) =
√

x2 + y2 + z2

8. f(x, y, z) = xey sin z

9. f(x, y, z) = xy + sin (ez)

10. f(x1, x2, x3) = x2
1x

3
2x

4
3

11. f(p, q, r) = ep + ln q + er
2

12. f(x, y, z) = ez
2

+ y ln(x2 + 5)

In Exercises 13–18, find the gradient at the point.

13. f(x, y, z) = zy2, at (1, 0, 1)

14. f(x, y, z) = 2x+ 3y + 4z, at (1, 1, 1)

15. f(x, y, z) = x2 + y2 − z4, at (3, 2, 1)

16. f(x, y, z) = xyz, at (1, 2, 3)

17. f(x, y, z) = sin(xy) + sin(yz), at (1, π,−1)

18. f(x, y, z) = x ln(yz), at (2, 1, e)

In Exercises 19–24, find the directional derivative using
f(x, y, z) = xy + z2.

19. At (1, 2, 3) in the direction of�i +�j + �k .

20. At (1, 1, 1) in the direction of�i + 2�j + 3�k .

21. As you leave the point (1, 1, 0) heading in the direction
of the point (0, 1, 1).

22. As you arrive at (0, 1, 1) from the direction of (1, 1, 0).

23. At the point (2, 3, 4) in the direction of a vector making
an angle of 3π/4 with grad f(2, 3, 4).

24. At the point (2, 3, 4) in the direction of the maximum
rate of change of f .

In Exercises 25–30, check that the point (−1, 1, 2) lies on the
given surface. Then, viewing the surface as a level surface for
a function f(x, y, z), find a vector normal to the surface and
an equation for the tangent plane to the surface at (−1, 1, 2).

25. x2 − y2 + z2 = 4 26. z = x2 + y2

27. y2 = z2 − 3 28. x2 − xyz = 3

29. cos(x+ y) = exz+2 30. y = 4/(2x + 3z)

31. For f(x, y, z) = 3x2y2 + 2yz, find the directional
derivative at the point (−1, 0, 4) in the direction of
(a) �i − �k (b) −�i + 3�j + 3�k

32. If f(x, y, z) = x2+3xy+2z, find the directional deriva-
tive at the point (2, 0,−1) in the direction of 2�i +�j −2�k .

33. (a) Let f(x, y, z) = x2 + y2 − xyz. Find grad f .
(b) Find the equation for the tangent plane to the surface

f(x, y, z) = 7 at the point (2, 3, 1).

34. Find the equation of the tangent plane at the point
(3, 2, 2) to z =

√
17− x2 − y2.

35. Find the equation of the tangent plane to z = 8/(xy) at
the point (1, 2, 4).

36. Find an equation of the tangent plane and of a normal
vector to the surface x = y3z7 at the point (1,−1,−1).

In Exercises 37–38, the gradient of f and a point P on the
level surface f(x, y, z) = 0 are given. Find an equation for
the tangent plane to the surface at the point P .

37. grad f = yz�i + xz�j + xy�k , P = (1, 2, 3)

38. grad f = 2x�i + z2�j + 2yz�k , P = (10,−10, 30)

In Exercises 39–43, find an equation of the tangent plane to
the surface at the given point.

39. x2 + y2 + z2 = 17 at the point (2, 3, 2)

40. x2 + y2 = 1 at the point (1, 0, 0)

41. z = 2x+ y + 3 at the point (0, 0, 3)

42. 3x2 − 4xy + z2 = 0 at the point (a, a, a), where a �= 0

43. z = 9/(x+ 4y) at the point where x = 1 and y = 2
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Problems

44. Consider the surface g(x, y) = 4 − x2. What is the re-
lation between grad g(−1,−1) and a vector tangent to
the path of steepest ascent at (−1,−1, 3)? Illustrate your
answer with a sketch.

45. Match the functions f(x, y, z) in (a)–(d) with the de-
scriptions of their gradients in (I)–(IV). No reasons
needed.

(a) x2 + y2 + z2 (b) x2 + y2

(c)
1

x2 + y2 + z2
(d)

1

x2 + y2

I Points radially outward from the z-axis.
II Points radially inward toward the z-axis.

III Points radially outward from the origin.
IV Points radially inward toward the origin.

46. Find the equation of the tangent plane at (2, 3, 1) to the
surface x2 + y2 − xyz = 7. Do this in two ways:

(a) Viewing the surface as the level set of a function of
three variables, F (x, y, z).

(b) Viewing the surface as the graph of a function of two
variables z = f(x, y).

47. Let f(x, y, z) = x2+y2+z2. At the point (1, 2, 1), find
the rate of change of f in the direction perpendicular to
the plane x + 2y + 3z = 8 and moving away from the
origin.

48. Let f(x, y) = cos x sin y and let S be the surface z =
f(x, y).

(a) Find a normal vector to the surface S at the point
(0, π/2, 1).

(b) What is the equation of the tangent plane to the sur-
face S at the point (0, π/2, 1)?

49. Let f(x, y, z) = sin(x2 + y2 + z2).

(a) Describe in words the shape of the level surfaces
of f .

(b) Find grad f .
(c) Consider the two vectors �r = x�i + y�j + z�k and

grad f at a point (x, y, z) where sin(x2+y2+z2) �=
0. What is (are) the possible values(s) of the angle
between these vectors?

50. Each diagram (I) – (IV) in Figure 14.48 represents the
level curves of a function f(x, y). For each function f ,
consider the point above P on the surface z = f(x, y)
and choose from the lists which follow:

(a) A vector which could be the normal to the surface at
that point;

(b) An equation which could be the equation of the tan-
gent plane to the surface at that point.

y

x

P

4

3

2

1

(I) y

x

P

1

2

3

4

(II)

y

x

P

4
3

2
1

(III) y

x

P

1
2

3
4

(IV)

Figure 14.48

Vectors
(E) 2�i + 2�j − 2�k
(F) 2�i + 2�j + 2�k
(G) 2�i − 2�j + 2�k
(H) −2�i + 2�j + 2�k

Equations
(J) x+ y + z = 4
(K) 2x− 2y − 2z = 2
(L) −3x− 3y + 3z = 6

(M) −x

2
+

y

2
− z

2
= −7

51. The surface S is represented by the equation F = 0
where F (x, y, z) = x2 − (y/z2).

(a) Find the unit vectors �u 1 and �u 2 pointing in the
direction of maximum increase of F at the points
(0, 0, 1) and (1, 1, 1) respectively.

(b) Find the tangent plane to S at the points (0, 0, 1) and
(1, 1, 1).

(c) Find all points on S where a normal vector is parallel
to the xy-plane.

52. Consider the function f(x, y) = (ex−x) cos y. Suppose
S is the surface z = f(x, y).

(a) Find a vector which is perpendicular to the level
curve of f through the point (2, 3) in the direction
in which f decreases most rapidly.

(b) Suppose �v = 5�i + 4�j + a�k is a vector in 3-space
which is tangent to the surface S at the point P lying
on the surface above (2, 3). What is a?

53. (a) Find the tangent plane to the surface x2+y2+3z2 =
4 at the point (0.6, 0.8, 1).

(b) Is there a point on the surface x2 + y2 + 3z2 = 4
at which the tangent plane is parallel to the plane
8x + 6y + 30z = 1? If so, find it. If not, explain
why not.

54. Your house lies on the surface z = f(x, y) = 2x2 − y2

directly above the point (4, 3) in the xy-plane.

(a) How high above the xy-plane do you live?
(b) What is the slope of your lawn as you look from your

house directly toward the z-axis (that is, along the
vector −4�i − 3�j )?
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(c) When you wash your car in the driveway, on this sur-
face above the point (4, 3), which way does the wa-
ter run off? (Give your answer as a two-dimensional
vector.)

(d) What is the equation of the tangent plane to this sur-
face at your house?

55. (a) Sketch the contours of z = y − sin x for z =
−1, 0, 1, 2.

(b) A bug starts on the surface at the point (π/2, 1, 0)
and walks on the surface z = y − sin x in the direc-
tion parallel to the y-axis, in the direction of increas-
ing y. Is the bug walking in a valley or on top of a
ridge? Explain.

(c) On the contour z = 0 in your sketch for part (a),
draw the gradients of z at x = 0, x = π/2, and
x = π.

56. At what point on the surface z = 1+x2+y2 is its tangent
plane parallel to the following planes?

(a) z = 5 (b) z = 5 + 6x− 10y.

57. The concentration of salt in a fluid at (x, y, z) is given by
F (x, y, z) = x2 + y4 + x2z2 mg/cm3. You are at the
point (−1, 1, 1).

(a) In which direction should you move if you want the
concentration to increase the fastest?

(b) You start to move in the direction you found in part
(a) at a speed of 4 cm/sec. How fast is the concen-
tration changing?

58. Let gx(2, 1, 7) = 3, gy(2, 1, 7) = 10, gz(2, 1, 7) = −5.
Find the equation of the tangent plane to g(x, y, z) = 0
at the point (2, 1, 7).

59. The vector ∇f at point P and four unit vectors
�u 1, �u 2, �u 3, �u 4 are shown in Figure 14.49. Arrange the
following quantities in ascending order

f
u 1
, f
u 2

, f
u 3
, f
u 4

, the number 0.

The directional derivatives are all evaluated at the point
P and the function f(x, y) is differentiable at P .

�u 1

�u 4

�u 3

�u 2

∇f

P

Figure 14.49

60. The temperature of a gas at the point (x, y, z) is given by
G(x, y, z) = x2 − 5xy + y2z.

(a) What is the rate of change in the temperature at the
point (1, 2, 3) in the direction �v = 2�i +�j − 4�k ?

(b) What is the direction of maximum rate of change of
temperature at the point (1, 2, 3)?

(c) What is the maximum rate of change at the point
(1, 2, 3)?

61. The temperature at the point (x, y, z) in 3-space is given,

in degrees Celsius, by T (x, y, z) = e−(x2+y2+z2).

(a) Describe in words the shape of surfaces on which
the temperature is constant.

(b) Find grad T .
(c) You travel from the point (1, 0, 0) to the point

(2, 1, 0) at a speed of 3 units per second. Find the
instantaneous rate of change of the temperature as
you leave the point (1, 0, 0). Give units.

62. A spaceship is plunging into the atmosphere of a planet.
With coordinates in miles and the origin at the center of
the planet, the pressure of the atmosphere at (x, y, z) is

P = 5e−0.1
√

x2+y2+z2 atmospheres.

The velocity, in miles/sec, of the spaceship at (0, 0, 1) is
�v = �i − 2.5�k . At (0, 0, 1), what is the rate of change
with respect to time of the pressure on the spaceship?

63. Let �r = x�i + y�j + z�k and �a be a constant vector. For
each of the quantities in (a)–(c), choose the statement in
(I)–(V) that describes it. No reasons needed.

(a) grad(�r +�a ) (b) grad(�r · �a ) (c) grad(�r ×�a )

I Scalar, independent of �a .
II Scalar, depends on �a .

III Vector, independent of �a .
IV Vector, depends on �a .
V Not defined.

64. The earth has mass M and is located at the origin in 3-
space, while the moon has mass m. Newton’s Law of
Gravitation states that if the moon is located at the point
(x, y, z) then the attractive force exerted by the earth on
the moon is given by the vector

�F = −GMm
�r

‖�r ‖3 ,

where �r = x�i + y�j + z�k . Show that �F = gradϕ,
where ϕ is the function given by

ϕ(x, y, z) =
GMm

‖�r ‖ .

65. Two surfaces are said to be tangential at a point P if they
have the same tangent plane at P . Show that the surfaces
z =
√

2x2 + 2y2 − 25 and z = 1
5
(x2+y2) are tangen-

tial at the point (4, 3, 5).
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66. Two surfaces are said to be orthogonal to each other at a
point P if the normals to their tangent planes are perpen-
dicular at P . Show that the surfaces z = 1

2
(x2 + y2 − 1)

and z = 1
2
(1 − x2 − y2) are orthogonal at all points of

intersection.

67. Let �r be the position vector of the point (x, y, z). If
�μ = μ1

�i + μ2
�j + μ3

�k is a constant vector, show that

grad(�μ · �r ) = �μ .

68. Let �r be the position vector of the point (x, y, z). Show

that, if a is a constant,

grad(‖�r ‖a) = a‖�r ‖a−2�r , �r �= �0 .

69. Let f and g be functions on 3-space. Suppose f is differ-
entiable and that

grad f(x, y, z) = (x�i + y�j + z�k )g(x, y, z).

Explain why f must be constant on any sphere centered
at the origin.

Strengthen Your Understanding

In Problems 70–71, explain what is wrong with the statement.

70. The gradient vector grad f(x, y) points in the direction
perpendicular to the surface z = f(x, y).

71. The tangent plane at the origin to a surface f(x, y, z) =
1 that contains the point (0, 0, 0) has equation

fx(0, 0, 0)x+ fy(0, 0, 0)y + fz(0, 0, 0)z + 1 = 0.

In Problems 72–74, give an example of:

72. A surface z = f(x, y) such that the vector�i −2�j −�k is
normal to the tangent plane at the point where (x, y) =
(0, 0).

73. A function f(x, y, z) such that grad f = 2�i +3�j +4�k .

74. Two nonparallel unit vectors �u and �v such that
f
u (0, 0, 0) = f
v (0, 0, 0) = 0, where f(x, y, z) =
2x− 3y.

Are the statements in Problems 75–78 true or false? Give rea-
sons for your answer.

75. An equation for the tangent plane to the surface z =
x2 + y3 at (1, 1) is z = 2 + 2x(x− 1) + 3y2(y − 1).

76. There is a function f(x, y) which has a tangent plane
with equation z = 0 at a point (a, b).

77. There is a function with ‖ grad f‖ = 4 and f
k = 5 at
some point.

78. There is a function with ‖ grad f‖ = 5 and f
k = −3 at
some point.

79. Let f(x, y, z) represent the temperature in ◦C at the point
(x, y, z) with x, y, z in meters. Let �v be your velocity
in meters per second. Give units and an interpretation of
each of the following quantities.

(a) || grad f || (b) grad f · �v (c) || grad f ||·||�v ||

14.6 THE CHAIN RULE

Composition of Functions of Many Variables and Rates of Change
The chain rule enables us to differentiate composite functions. If we have a function of two variables
z = f(x, y) and we substitute x = g(t), y = h(t) into z = f(x, y), then we have a composite
function in which z is a function of t:

z = f(g(t), h(t)).

If, on the other hand, we substitute x = g(u, v), y = h(u, v), then we have a different composite
function in which z is a function of u and v:

z = f(g(u, v), h(u, v)).

The next example shows how to calculate the rate of change of a composite function.

Example 1 Corn production, C, depends on annual rainfall, R, and average temperature, T , so C = f(R, T ).
Global warming predicts that both rainfall and temperature depend on time. Suppose that according
to a particular model of global warming, rainfall is decreasing at 0.2 cm per year and temperature
is increasing at 0.1◦C per year. Use the fact that at current levels of production, fR = 3.3 and
fT = −5 to estimate the current rate of change, dC/dt.
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Solution By local linearity, we know that changes ΔR and ΔT generate a change, ΔC, in C given approxi-
mately by

ΔC ≈ fRΔR+ fTΔT = 3.3ΔR− 5ΔT.

We want to know how ΔC depends on the time increment, Δt. A change Δt causes changes ΔR
and ΔT , which in turn cause a change ΔC. The model of global warming tells us that

dR

dt
= −0.2 and

dT

dt
= 0.1.

Thus, a time increment, Δt, generates changes of ΔR and ΔT given by

ΔR ≈ −0.2Δt and ΔT ≈ 0.1Δt.

Substituting for ΔR and ΔT in the expression for ΔC gives us

ΔC ≈ 3.3(−0.2Δt)− 5(0.1Δt) = −1.16Δt.

Thus,
ΔC

Δt
≈ −1.16 and, therefore,

dC

dt
≈ −1.16.

The relationship between ΔC and Δt, which gives the value of dC/dt, is an example of the
chain rule. The argument in Example 1 leads to more general versions of the chain rule.

The Chain Rule for z = f(x, y), x = g(t), y = h(t)

Since z = f(g(t), h(t)) is a function of t, we can consider the derivative dz/dt. The chain rule
gives dz/dt in terms of the derivatives of f, g, and h. Since dz/dt represents the rate of change of z
with t, we look at the change Δz generated by a small change, Δt.

We substitute the local linearizations

Δx ≈
dx

dt
Δt and Δy ≈

dy

dt
Δt

into the local linearization

Δz ≈
∂z

∂x
Δx+

∂z

∂y
Δy,

yielding

Δz ≈
∂z

∂x

dx

dt
Δt+

∂z

∂y

dy

dt
Δt

=

(
∂z

∂x

dx

dt
+

∂z

∂y

dy

dt

)
Δt.

Thus,
Δz

Δt
≈

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt
.

Taking the limit as Δt → 0, we get the following result.

If f , g, and h are differentiable and if z = f(x, y), and x = g(t), and y = h(t), then

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt
.
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Visualizing the Chain Rule with a Diagram

The diagram in Figure 14.50 provides a way of remembering the chain rule. It shows the chain of
dependence: z depends on x and y, which in turn depend on t. Each line in the diagram is labeled
with a derivative relating the variables at its ends.

z

x y

t

∂z
∂x

∂z
∂y

dx
dt

dy
dt

Figure 14.50: Diagram for z = f(x, y), x = g(t), y = h(t). Lines represent dependence of z on x and y, and
of x and y on t

The diagram keeps track of how a change in t propagates through the chain of composed func-
tions. There are two paths from t to z, one through x and one through y. For each path, we multiply
together the derivatives along the path. Then, to calculate dz/dt, we add the contributions from the
two paths.

Example 2 Suppose that z = f(x, y) = x sin y, where x = t2 and y = 2t + 1. Let z = g(t). Compute g′(t)
directly and using the chain rule.

Solution Since z = g(t) = f(t2, 2t + 1) = t2 sin(2t + 1), it is possible to compute g′(t) directly by one-
variable methods:

g′(t) = t2
d

dt
(sin(2t+ 1)) +

(
d

dt
(t2)

)
sin(2t+ 1) = 2t2 cos(2t+ 1) + 2t sin(2t+ 1).

The chain rule provides an alternative route to the same answer. We have

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt
= (sin y)(2t) + (x cos y)(2) = 2t sin(2t+ 1) + 2t2 cos(2t+ 1).

Example 3 The capacity,C, of a communication channel, such as a telephone line, to carry information depends
on the ratio of the signal strength, S, to the noise, N . For some positive constant k,

C = k ln

(
1 +

S

N

)
.

Suppose that the signal and noise are given as a function of time, t in seconds, by

S(t) = 4 + cos(4πt) N(t) = 2 + sin(2πt).

What is dC/dt one second after transmission started? Is the capacity increasing or decreasing at
that instant?

Solution By the chain rule

dC

dt
=

∂C

∂S

dS

dt
+

∂C

∂N

dN

dt

=
k

1 + S/N
·
1

N
(−4π sin 4πt) +

k

1 + S/N

(
−

S

N2

)
(2π cos 2πt).
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When t = 1, the first term is zero, S(1) = 5, and N(1) = 2, so

dC

dt
=

k

1 + S(1)/N(1)

(
−

S(1)

(N(1))2

)
· 2π =

k

1 + 5
2

(
−
5

4

)
· 2π.

Since dC/dt is negative, the capacity is decreasing at time t = 1 second.

How to Formulate a General Chain Rule
A diagram can be used to write the chain rule for general compositions.

To find the rate of change of one variable with respect to another in a chain of composed
differentiable functions:
• Draw a diagram expressing the relationship between the variables, and label each link in

the diagram with the derivative relating the variables at its ends.

• For each path between the two variables, multiply together the derivatives from each step
along the path.

• Add the contributions from each path.

The diagram keeps track of all the ways in which a change in one variable can cause a change
in another; the diagram generates all the terms we would get from the appropriate substitutions into
the local linearizations.

z

x y

u v

∂z
∂x

∂z
∂y

∂x
∂v

∂x
∂u

∂y
∂u

∂y
∂v

Figure 14.51: Diagram for z = f(x, y), x = g(u, v), y = h(u, v). Lines
represent dependence of z on x and y, and of x and y on u and v

For example, we can use Figure 14.51 to find formulas for ∂z/∂u and ∂z/∂v. Adding the
contributions for the two paths from z to u, we get the following results:

If f , g, h are differentiable and if z = f(x, y), with x = g(u, v) and y = h(u, v), then

∂z

∂u
=

∂z

∂x

∂x

∂u
+

∂z

∂y

∂y

∂u
,

∂z

∂v
=

∂z

∂x

∂x

∂v
+

∂z

∂y

∂y

∂v
.
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Example 4 Let w = x2ey , x = 4u, and y = 3u2 − 2v. Compute ∂w/∂u and ∂w/∂v using the chain rule.

Solution Using the previous result, we have

∂w

∂u
=

∂w

∂x

∂x

∂u
+

∂w

∂y

∂y

∂u
= 2xey(4) + x2ey(6u) = (8x+ 6x2u)ey

= (32u+ 96u3
)e3u

2−2v.

Similarly,

∂w

∂v
=

∂w

∂x

∂x

∂v
+

∂w

∂y

∂y

∂v
= 2xey(0) + x2ey(−2) = −2x2ey

= −32u2e3u
2−2v.

Example 5 A quantity z can be expressed either as a function of x and y, so that z = f(x, y), or as a function
of u and v, so that z = g(u, v). The two coordinate systems are related by

x = u+ v, y = u− v.

(a) Use the chain rule to express ∂z/∂u and ∂z/∂v in terms of ∂z/∂x and ∂z/∂y.
(b) Solve the equations in part (a) for ∂z/∂x and ∂z/∂y.
(c) Show that the expressions we get in part (b) are the same as we get by expressing u and v in

terms of x and y and using the chain rule.

Solution (a) We have ∂x/∂u = 1 and ∂x/∂v = 1, and also ∂y/∂u = 1 and ∂y/∂v = −1. Thus,

∂z

∂u
=

∂z

∂x
(1) +

∂z

∂y
(1) =

∂z

∂x
+

∂z

∂y

and
∂z

∂v
=

∂z

∂x
(1) +

∂z

∂y
(−1) =

∂z

∂x
−

∂z

∂y
.

(b) Adding together the equations for ∂z/∂u and ∂z/∂v, we get

∂z

∂u
+

∂z

∂v
= 2

∂z

∂x
, so

∂z

∂x
=

1

2

∂z

∂u
+

1

2

∂z

∂v
.

Similarly, subtracting the equations for ∂z/∂u and ∂z/∂v yields

∂z

∂y
=

1

2

∂z

∂u
−

1

2

∂z

∂v
.

(c) Alternatively, we can solve the equations

x = u+ v, y = u− v

for u and v, which yields

u =
1

2
x+

1

2
y, v =

1

2
x−

1

2
y.

Now we can think of z as a function of u and v, and u and v as functions of x and y, and apply
the chain rule again. This gives us

∂z

∂x
=

∂z

∂u

∂u

∂x
+

∂z

∂v

∂v

∂x
=

1

2

∂z

∂u
+

1

2

∂z

∂v

and
∂z

∂y
=

∂z

∂u

∂u

∂y
+

∂z

∂v

∂v

∂y
=

1

2

∂z

∂u
−

1

2

∂z

∂v
.

These are the same expressions we got in part (b).
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An Application to Physical Chemistry
A chemist investigating the properties of a gas such as carbon dioxide may want to know how the
internal energy U of a given quantity of the gas depends on its temperature, T , pressure, P , and
volume, V . The three quantities T , P , and V are not independent, however. For instance, according
to the ideal gas law, they satisfy the equation

PV = kT

where k is a constant which depends only upon the quantity of the gas. The internal energy can then
be thought of as a function of any two of the three quantities T , P , and V :

U = U1(T, P ) = U2(T, V ) = U3(P, V ).

The chemist writes, for example,
(
∂U
∂T

)
P

to indicate the partial derivative of U with respect to
T holding P constant, signifying that for this computation U is viewed as a function of T and P .

Thus, we interpret

(
∂U

∂T

)
P

as (
∂U

∂T

)
P

=
∂U1(T, P )

∂T
.

If U is to be viewed as a function of T and V , the chemist writes
(
∂U
∂T

)
V

for the partial derivative

of U with respect to T holding V constant: thus,
(
∂U
∂T

)
V
=

∂U2(T,V )
∂T .

Each of the functions U1, U2, U3 gives rise to one of the following formulas for the differential
dU :

dU =

(
∂U

∂T

)
P

dT +

(
∂U

∂P

)
T

dP corresponds to U1,

dU =

(
∂U

∂T

)
V

dT +

(
∂U

∂V

)
T

dV corresponds to U2,

dU =

(
∂U

∂P

)
V

dP +

(
∂U

∂V

)
P

dV corresponds to U3.

All the six partial derivatives appearing in formulas for dU have physical meaning, but they are not
all equally easy to measure experimentally. A relationship among the partial derivatives, usually
derived from the chain rule, may make it possible to evaluate one of the partials in terms of others
that are more easily measured.

Example 6 Suppose a gas satisfies the equation PV = 2T and P = 3 when V = 4. If

(
∂U

∂P

)
V

= 7 and(
∂U

∂V

)
P

= 8, find the values of

(
∂U

∂P

)
T

and

(
∂U

∂T

)
P

.

Solution Since we know the values of
(
∂U
∂P

)
V

and
(
∂U
∂V

)
P

, we think of U as a function of P and V and use
the function U3 to write

dU =

(
∂U

∂P

)
V

dP +

(
∂U

∂V

)
P

dV

dU = 7dP + 8dV.

To calculate
(
∂U
∂P

)
T

and
(
∂U
∂T

)
P

, we think of U as a function of T and P . Thus, we want to substitute
for dV in terms of dT and dP . Since PV = 2T , we have

PdV + V dP = 2dT,

3dV + 4dP = 2dT.
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Solving gives dV = (2dT − 4dP )/3, so

dU = 7dP + 8

(
2dT − 4dP

3

)
dU = −

11

3
dP +

16

3
dT.

Comparing with the formula for dU obtained from U1,

dU =

(
∂U

∂T

)
P

dT +

(
∂U

∂P

)
T

dP,

we have (
∂U

∂T

)
P

=
16

3
and

(
∂U

∂P

)
T

= −
11

3
.

In Example 6, we could have substituted for dP instead of dV , leading to values of
(
∂U
∂T

)
V

and(
∂U
∂V

)
T

. See Problem 41.
In general, if for some particular P , V , and T , we can measure two of the six quantities

(
∂U
∂P

)
V

,(
∂U
∂V

)
P

,
(
∂U
∂P

)
T

,
(
∂U
∂T

)
P

,
(
∂U
∂V

)
T

,
(
∂U
∂T

)
V

, then we can compute the other four using the relationship
between dP , dV , and dT given by the gas law. General formulas for each partial derivative in terms
of others can be obtained in the same way. See the following example and Problem 41.

Example 7 Express

(
∂U

∂T

)
P

in terms of

(
∂U

∂T

)
V

and

(
∂U

∂V

)
T

and

(
∂V

∂T

)
P

.

Solution Since we are interested in the derivatives
(
∂U
∂T

)
V

and
(
∂U
∂V

)
T

, we think of U as a function of T and
V and use the formula

dU =

(
∂U

∂T

)
V

dT +

(
∂U

∂V

)
T

dV corresponding to U2.

We want to find a formula for
(
∂U
∂T

)
P

, which means thinking of U as a function of T and P .
Thus, we want to substitute for dV . Since V is a function of T and P , we have

dV =

(
∂V

∂T

)
P

dT +

(
∂V

∂P

)
T

dP.

Substituting for dV into the formula for dU corresponding to U2 gives

dU =

(
∂U

∂T

)
V

dT +

(
∂U

∂V

)
T

((
∂V

∂T

)
P

dT +

(
∂V

∂P

)
T

dP

)
.

Collecting the terms containing dT and the terms containing dP gives

dU =

((
∂U

∂T

)
V

+

(
∂U

∂V

)
T

(
∂V

∂T

)
P

)
dT +

(
∂U

∂V

)
T

(
∂V

∂P

)
T

dP.

But we also have the formula

dU =

(
∂U

∂T

)
P

dT +

(
∂U

∂P

)
T

dP corresponding to U1.

We now have two formulas for dU in terms of dT and dP . The coefficients of dT must be identical,
so we conclude (

∂U

∂T

)
P

=

(
∂U

∂T

)
V

+

(
∂U

∂V

)
T

(
∂V

∂T

)
P

.
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Example 7 expresses
(
∂U
∂T

)
P

in terms of three other partial derivatives. Two of them, namely(
∂U
∂T

)
V

, the constant-volume heat capacity, and
(
∂V
∂T

)
P

, the expansion coefficient, can be easily
measured experimentally. The third, the internal pressure,

(
∂U
∂V

)
T

, cannot be measured directly but
can be related to

(
∂P
∂T

)
V

, which is measurable. Thus,
(
∂U
∂T

)
P

can be determined indirectly using
this identity.

Exercises and Problems for Section 14.6
Exercises

For Exercises 1–6, find dz/dt using the chain rule. Assume
the variables are restricted to domains on which the functions
are defined.

1. z = xy2, x = e−t, y = sin t

2. z = x sin y + y sin x, x = t2, y = ln t

3. z = sin(x/y), x = 2t, y = 1− t2

4. z = ln(x2 + y2), x = 1/t, y =
√
t

5. z = xey, x = 2t, y = 1− t2

6. z = (x+ y)ey, x = 2t, y = 1− t2

For Exercises 7–15, find ∂z/∂u and ∂z/∂v. The variables are
restricted to domains on which the functions are defined.

7. z = sin(x/y), x = ln u, y = v

8. z = ln(xy), x = (u2 + v2)2, y = (u3 + v3)2

9. z = xey, x = lnu, y = v

10. z = (x+ y)ey, x = lnu, y = v

11. z = xey, x = u2 + v2, y = u2 − v2

12. z = (x+ y)ey, x = u2 + v2, y = u2 − v2

13. z = xe−y + ye−x, x = u sin v, y = v cosu

14. z = cos (x2 + y2), x = u cos v, y = u sin v

15. z = tan−1(x/y), x = u2 + v2, y = u2 − v2

Problems

16. Use the chain rule to find dz/dt, and check the result
by expressing z as a function of t and differentiating di-
rectly.

z = x3y2, x = t3, y = t2

17. Use the chain rule to find ∂w/∂ρ and ∂w/∂θ, given that

w = x2 + y2 − z2,

and

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ.

18. A bison is charging across the plain one morning. His
path takes him to location (x, y) at time t where x and y
are functions of t and north is in the direction of increas-
ing y. The temperature is always colder farther north.
As time passes, the sun rises in the sky, sending out
more heat, and a cold front blows in from the east. At
time t the air temperature H near the bison is given by
H = f(x, y, t). The chain rule expresses the derivative
dH/dt as a sum of three terms:

dH

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂t
.

Identify the term that gives the contribution to the change
in temperature experienced by the bison that is due to

(a) The rising sun.
(b) The coming cold front.
(c) The bison’s change in latitude.

19. Let z = f(x, y) where x = g(t), y = h(t) and f, g, h
are all differentiable functions. Given the information in

the table, find
∂z

∂t

∣∣∣
t=1

.

f(3, 10) = 7 f(4, 11) = −20

fx(3, 10) = 100 fy(3, 10) = 0.1

fx(4, 11) = 200 fy(4, 11) = 0.2

f(3, 4) = −10 f(10, 11) = −1

g(1) = 3 h(1) = 10

g′(1) = 4 h′(1) = 11

20. The voltage, V , (in volts) across a circuit is given by
Ohm’s law: V = IR, where I is the current (in amps)
flowing through the circuit and R is the resistance (in
ohms). If we place two circuits, with resistance R1 and
R2, in parallel, then their combined resistance, R, is
given by

1

R
=

1

R1
+

1

R2
.

Suppose the current is 2 amps and increasing at 10−2

amp/sec and R1 is 3 ohms and increasing at 0.5 ohm/sec,
while R2 is 5 ohms and decreasing at 0.1 ohm/sec. Cal-
culate the rate at which the voltage is changing.
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21. The air pressure is decreasing at a rate of 2 pascals per
kilometer in the eastward direction. In addition, the air
pressure is dropping at a constant rate with respect to
time everywhere. A ship sailing eastward at 10 km/hour
past an island takes barometer readings and records a
pressure drop of 50 pascals in 2 hours. Estimate the time
rate of change of air pressure on the island. (A pascal is
a unit of air pressure.)

22. A steel bar with square cross sections 5 cm by 5 cm and
length 3 meters is being heated. For each dimension, the
bar expands 13 · 10−6meters for each 1◦C rise in tem-
perature.2 What is the rate of change in the volume of the
steel bar?

23. Corn production, C, is a function of rainfall, R, and tem-
perature, T . (See Example 1 on page 796.) Figures 14.52
and 14.53 show how rainfall and temperature are pre-
dicted to vary with time because of global warming. Sup-
pose we know that ΔC ≈ 3.3ΔR − 5ΔT . Use this to
estimate the change in corn production between the year
2020 and the year 2021. Hence, estimate dC/dt when
t = 2020.

2020 2040

13

14

15

t (years)

R (in)

Figure 14.52: Rainfall as a function of time

2020 2040

23

25

27

t (years)

T (◦C)

Figure 14.53: Temperature as a function of time

24. The function g(ρ) is graphed in Figure 14.54. Let ρ =√
x2 + y2 + z2. Define f , a function of x, y, z by

f(x, y, z) = g
(√

x2 + y2 + z2
)

. Let �F = grad f .

(a) Describe precisely in words the level surfaces of f .

(b) Give a unit vector in the direction of �F at the point
(1, 2, 2).

(c) Estimate ||�F || at the point (1, 2, 2).
(d) Estimate �F at the point (1, 2, 2).
(e) The points (1, 2, 2) and (3, 0, 0) are both on the

sphere x2 + y2 + z2 = 9. Estimate �F at (3, 0, 0).
(f) If P and Q are any two points on the sphere x2 +

y2 + z2 = k2:

(i) Compare the magnitudes of �F at P and at Q.

(ii) Describe the directions of �F at P and at Q.

1 2 3 4 5

1

2

3 g(ρ)

ρ

Figure 14.54

25. Let z = g(u, v, w) and u = u(s, t), v = v(s, t), w =
w(s, t). How many terms are there in the expression for
∂z/∂t?

26. Suppose w = f(x, y, z) and that x, y, z are functions of
u and v. Use a tree diagram to write down the chain rule
formula for ∂w/∂u and ∂w/∂v.

27. Suppose w = f(x, y, z) and that x, y, z are all functions
of t. Use a tree diagram to write down the chain rule for
dw/dt.

28. Let F (u, v) be a function of two variables. Find f ′(x) if

(a) f(x) = F (x, 3) (b) f(x) = F (3, x)

(c) f(x) = F (x, x) (d) f(x) = F (5x, x2)

In Problems 29–30, let z = f(x, y), x = x(u, v), y =
y(u, v) and x(1, 2) = 5, y(1, 2) = 3, calculate the partial
derivative in terms of some of the numbers a, b, c, d, e, k, p, q:

fx(1, 2) = a fy(1, 2) = c xu(1, 2) = e yu(1, 2) = p

fx(5, 3) = b fy(5, 3) = d xv(1, 2) = k yv(1, 2) = q

29. zu(1, 2) 30. zv(1, 2)

31. The equation f(x, y) = f(a, b) defines a level curve
through a point (a, b) where grad f(a, b) �= �0 . Use im-
plicit differentiation and the chain rule to show that the
slope of the line tangent to this curve at the point (a, b)
is −fx(a, b)/fy(a, b) if fy(a, b) �= 0.

32. Let z = f(t)g(t). Use the chain rule applied to
h(x, y) = f(x)g(y) to show that dz/dt = f ′(t)g(t) +
f(t)g′(t). The one-variable product rule for differentia-
tion is a special case of the two-variable chain rule.

2http://www.engineeringtoolbox.com/
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33. A function f(x, y) is homogeneous of degree p if
f(tx, ty) = tpf(x, y) for all t. Show that any differ-
entiable, homogeneous function of degree p satisfies Eu-
ler’s Theorem:

x fx(x, y) + y fy(x, y) = p f(x, y).

[Hint: Define g(t) = f(tx, ty) and compute g′(1).]

34. Let F (x, y, z) be a function and define a function z =
f(x, y) implicitly by letting
F (x, y, f(x, y)) = 0. Use the chain rule to show that

∂z

∂x
= −∂F/∂x

∂F/∂z
and

∂z

∂y
= −∂F/∂y

∂F/∂z
.

In Problems 35–36, let z = f(x, y), x = x(u, v), y =
y(u, v) and x(4, 5) = 2, y(4, 5) = 3. Calculate the partial
derivative in terms of a, b, c, d, e, k, p, q, r, s, t, w:

fx(4, 5) = a fy(4, 5) = c xu(4, 5) = e yu(4, 5) = p

fx(2, 3) = b fy(2, 3) = d xv(4, 5) = k yv(4, 5) = q

xu(2, 3) = r yu(2, 3) = s xv(2, 3) = t yv(2, 3) = w

35. zu(4, 5) 36. zv(4, 5)

For Problems 37–38, suppose that x > 0, y > 0 and that z
can be expressed either as a function of Cartesian coordinates
(x, y) or as a function of polar coordinates (r, θ), so that z =
f(x, y) = g(r, θ). [Recall that x = r cos θ, y = r sin θ, r =√

x2 + y2, and, for x > 0, y > 0, θ = arctan(y/x)]

37. (a) Use the chain rule to find ∂z/∂r and ∂z/∂θ in terms
of ∂z/∂x and ∂z/∂y.

(b) Solve the equations you have just written down for
∂z/∂x and ∂z/∂y in terms of ∂z/∂r and ∂z/∂θ.

(c) Show that the expressions you get in part (b) are the
same as you would get by using the chain rule to find
∂z/∂x and ∂z/∂y in terms of ∂z/∂r and ∂z/∂θ.

38. Show that(
∂z

∂x

)2
+

(
∂z

∂y

)2

=
(
∂z

∂r

)2
+

1

r2

(
∂z

∂θ

)2
.

Problems 39–44 are continuations of the physical chemistry
example on page 802.

39. Write
(
∂U
∂P

)
V

as a partial derivative of one of the func-
tions U1, U2, or U3.

40. Write
(
∂U
∂P

)
T

as a partial derivative of one of the func-
tions U1, U2, U3.

41. For the gas in Example 6, find
(
∂U
∂T

)
V

and
(
∂U
∂V

)
T

.
[Hint: Use the same method as the example, but substi-
tute for dP instead of dV .]

42. Show that
(

∂T
∂V

)
P
= 1
/(

∂V
∂T

)
P

.

43. Use Example 7 and Problem 42 to show that(
∂U

∂V

)
P
=
(
∂U

∂V

)
T
+

(
∂U
∂T

)
V(

∂V
∂T

)
P

.

44. In Example 6, we calculated values of (∂U/∂T )P and
(∂U/∂P )T using the relationship PV = 2T for a spe-
cific gas. In this problem, you will derive general rela-
tionships for these two partial derivatives.

(a) Think of V as a function of P and T and write an
expression for dV .

(b) Substitute for dV into the following formula for dU
(thinking of U as a function of P and V ):

dU =
(
∂U

∂P

)
V
dP +

(
∂U

∂V

)
P
dV.

(c) Thinking of U as a function of P and T , write an
expression for dU .

(d) By comparing coefficients of dP and dT in your an-
swers to parts (b) and (c), show that(

∂U

∂T

)
P

=
(
∂U

∂V

)
P
·
(
∂V

∂T

)
P(

∂U

∂P

)
T
=
(
∂U

∂P

)
V
+
(
∂U

∂V

)
P
·
(
∂V

∂P

)
T
.

Problems 45–47 concern differentiating an integral in one
variable, y, which also involves another variable x, either in
the integrand, or in the limits, or both:∫ 5

0

(x2y+4) dy or

∫ x

0

(y+4) dy or

∫ x

0

(xy+4) dy.

To differentiate the first integral with respect to x, it can be
shown that in most cases we can differentiate with respect to
x inside the integral:

d

dx

(∫ 5

0

(x2y + 4) dy

)
=

∫ 5

0

2xy dy.

Differentiating the second integral with respect to x uses the
Fundamental Theorem of Calculus:

d

dx

∫ x

0

(y + 4) dy = x+ 4.

Differentiating the third integral involves the chain rule, as
shown in Problem 47. Assume that the function F is continu-
ously differentiable and b is constant throughout.

45. Let f(x) =
∫ b

0
F (x, y) dy. Find f ′(x).

46. Let f(x) =
∫ x

0
F (b, y) dy. Find f ′(x).

47. Let f(x) =
∫ x

0
F (x, y) dy. Use Problem 45 and Prob-

lem 46 to find f ′(x) by the following steps:

(a) Let G(u,w) =
∫ w

0
F (u, y) dy. Find Gu(u,w) and

Gw(u, w).
(b) Use part (a) and the chain rule applied to G(x, x) =

f(x) to show:

f ′(x) =

∫ x

0

Fx(x, y) dy + F (x, x).
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Strengthen Your Understanding

In Problems 48–50, explain what is wrong with the statement.

48. If z = f(g(t), h(t)), then dz/dt = f(g′(t), h(t)) +
f(g(t), h′(t)).

49. If C = C(R,T ), R = R(x, y), T = T (x, y)
and R(0, 2) = 5, T (0, 2) = 1, then Cx(0, 2) =
CR(0, 2)Rx(0, 2) + CT (0, 2)Tx(0, 2).

50. If z = f(x, y) and x = g(t), y = h(t) with g(0) = 2
and h(0) = 3, then

dz

dt

∣∣∣
t=0

= fx(0, 0)g
′(0) + fy(0, 0)h

′(0).

In Problems 51–55, give an example of:

51. Functions x = g(t) and y = h(t) such that
(dz/dt)|t=0 = 9, given that z = x2y.

52. A function z = f(x, y) such that dz/dt|t=0 = 10, given
that x = e2t and y = sin t.

53. Functions z, x and y where you need to follow the dia-
gram in order to answer questions about the derivative of
z with respect to the other variables.

z

x y

t

∂z
∂x

∂z
∂y

dx
dt

dy
dt

54. Functions w, u and v where you need to follow the dia-
gram in order to answer questions about the derivative of
w with respect to the other variables.

w

u v

s t s t

∂w
∂u

∂w
∂v

∂u
∂s

∂u
∂t

∂v
∂s

∂v
∂t

55. Function z = f(x, y) where x and y are functions of one

variable, t, for which
∂z

∂t
= 2.

56. Let z = g(u, v) and u = u(x, y, t), v = v(x, y, t) and
x = x(t), y = y(t). Then the expression for dz/dt has

(a) Three terms (b) Four terms

(c) Six terms (d) Seven terms

(e) Nine terms (f) None of the above

14.7 SECOND-ORDER PARTIAL DERIVATIVES

Since the partial derivatives of a function are themselves functions, we can differentiate them, giving
second-order partial derivatives. A function z = f(x, y) has two first-order partial derivatives, fx
and fy, and four second-order partial derivatives.

The Second-Order Partial Derivatives of z = f(x, y)

∂2z

∂x2
= fxx = (fx)x,

∂2z

∂x∂y
= fyx = (fy)x,

∂2z

∂y∂x
= fxy = (fx)y ,

∂2z

∂y2
= fyy = (fy)y.

It is usual to omit the parentheses, writing fxy instead of (fx)y and
∂2z

∂y ∂x
instead of

∂

∂y

(
∂z

∂x

)
.
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Example 1 Compute the four second-order partial derivatives of f(x, y) = xy2 + 3x2ey.

Solution From fx(x, y) = y2 + 6xey we get

fxx(x, y) =
∂

∂x
(y2 + 6xey) = 6ey and fxy(x, y) =

∂

∂y
(y2 + 6xey) = 2y + 6xey.

From fy(x, y) = 2xy + 3x2ey we get

fyx(x, y) =
∂

∂x
(2xy+3x2ey) = 2y+6xey and fyy(x, y) =

∂

∂y
(2xy+3x2ey) = 2x+3x2ey.

Observe that fxy = fyx in this example.

Example 2 Use the values of the function f(x, y) in Table 14.6 to estimate fxy(1, 2) and fyx(1, 2).

Table 14.6 Values of f(x, y)

y\x 0.9 1.0 1.1

1.8 4.72 5.83 7.06

2.0 6.48 8.00 9.60

2.2 8.62 10.65 12.88

Solution Since fxy = (fx)y , we first estimate fx

fx(1, 2) ≈
f(1.1, 2)− f(1, 2)

0.1
=

9.60− 8.00

0.1
= 16.0,

fx(1, 2.2) ≈
f(1.1, 2.2)− f(1, 2.2)

0.1
=

12.88− 10.65

0.1
= 22.3.

Thus,

fxy(1, 2) ≈
fx(1, 2.2)− fx(1, 2)

0.2
=

22.3− 16.0

0.2
= 31.5.

Similarly,

fyx(1, 2) ≈
fy(1.1, 2)− fy(1, 2)

0.1
≈

1

0.1

(
f(1.1, 2.2)− f(1.1, 2)

0.2
−

f(1, 2.2)− f(1, 2)

0.2

)

=
1

0.1

(
12.88− 9.60

0.2
−

10.65− 8.00

0.2

)
= 31.5.

Observe that in this example also, fxy = fyx.

The Mixed Partial Derivatives Are Equal
It is not an accident that the estimates for fxy(1, 2) and fyx(1, 2) are equal in Example 2, because the
same values of the function are used to calculate each one. The fact that fxy = fyx in Examples 1
and 2 corroborates the following general result; Problem 54 suggests why you might expect it to be
true.3

Theorem 14.1: Equality of Mixed Partial Derivatives

If fxy and fyx are continuous at (a, b), an interior point of their domain, then

fxy(a, b) = fyx(a, b).

3For a proof, see M. Spivak, Calculus on Manifolds, p. 26 (New York: Benjamin, 1965).
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For most functions f we encounter and most points (a, b) in their domains, not only are fxy
and fyx continuous at (a, b), but all their higher-order partial derivatives (such as fxxy or fxyyy)
exist and are continuous at (a, b). In that case we say f is smooth at (a, b). We say f is smooth on a
region R if it is smooth at every point of R.

What Do the Second-Order Partial Derivatives Tell Us?

Example 3 Let us return to the guitar string of Example 4, page 767. The string is 1 meter long and at time t
seconds, the point x meters from one end is displaced f(x, t) meters from its rest position, where

f(x, t) = 0.003 sin(πx) sin(2765t).

Compute the four second-order partial derivatives of f at the point (x, t) = (0.3, 1) and describe
the meaning of their signs in practical terms.

Solution First we compute fx(x, t) = 0.003π cos(πx) sin(2765t), from which we get

fxx(x, t) =
∂

∂x
(fx(x, t)) = −0.003π2

sin(πx) sin(2765t), so fxx(0.3, 1) ≈ −0.01;

and

fxt(x, t) =
∂

∂t
(fx(x, t)) = (0.003)(2765)π cos(πx) cos(2765t), so fxt(0.3, 1) ≈ 14.

On page 767 we saw thatfx(x, t) gives the slope of the string at any point and time. Therefore,
fxx(x, t) measures the concavity of the string. The fact that fxx(0.3, 1) < 0 means the string is
concave down at the point x = 0.3 when t = 1. (See Figure 14.55.)

On the other hand, fxt(x, t) is the rate of change of the slope of the string with respect to time.
Thus, fxt(0.3, 1) > 0 means that at time t = 1 the slope at the point x = 0.3 is increasing. (See
Figure 14.56.)

0

A
B

0.3 1
x

The slope at B is less
than the slope at A

Figure 14.55: Interpretation of fxx(0.3, 1) < 0:
The concavity of the string at t = 1

x
A

B

0 0.3 1

t = 1 + h

t = 1

The slope at B is greater
than the slope at A

Figure 14.56: Interpretation of
fxt(0.3, 1) > 0: The slope of one point on

the string at two different times

Now we compute ft(x, t) = (0.003)(2765) sin(πx) cos(2765t), from which we get

ftx(x, t) =
∂

∂x
(ft(x, t)) = (0.003)(2765)π cos(πx) cos(2765t), so ftx(0.3, 1) ≈ 14

and

ftt(x, t) =
∂

∂t
(ft(x, t)) = −(0.003)(2765)2 sin(πx) sin(2765t), so ftt(0.3, 1) ≈ −7200.

On page 767 we saw that ft(x, t) gives the velocity of the string at any point and time. There-
fore, ftx(x, t) and ftt(x, t) will both be rates of change of velocity. That ftx(0.3, 1) > 0 means that
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at time t = 1 the velocities of points just to the right of x = 0.3 are greater than the velocity at
x = 0.3. (See Figure 14.57.) That ftt(0.3, 1) < 0 means that the velocity of the point x = 0.3 is
decreasing at time t = 1. Thus, ftt(0.3, 1) = −7200 m/sec2 is the acceleration of this point. (See
Figure 14.58.)

x
0

A B

0.3 1
x

�
�

The velocity at B is greater
than the velocity at A

Figure 14.57: Interpretation of
ftx(0.3, 1) > 0: The velocity of different

points on the string at t = 1

x
A


B

0 0.3 1

�
� �

t = 1
�

t = 1 + h
The velocity at B is less
than the velocity at A

Figure 14.58: Interpretation of
ftt(0.3, 1) < 0: Negative acceleration. The

velocity of one point on the string at two
different times

Taylor Approximations
We use second derivatives to construct quadratic Taylor approximations. In Section 14.3, we saw
how to approximate f(x, y) by a linear function (its local linearization). We now see how to improve
this approximation of f(x, y) using a quadratic function.

Linear and Quadratic Approximations Near (0,0)
For a function of one variable, local linearity tells us that the best linear approximation is the
degree-1 Taylor polynomial

f(x) ≈ f(a) + f ′
(a)(x− a) for x near a.

A better approximation to f(x) is given by the degree-2 Taylor polynomial:

f(x) ≈ f(a) + f ′
(a)(x − a) +

f ′′(a)

2
(x− a)2 for x near a.

For a function of two variables the local linearization for (x, y) near (a, b) is

f(x, y) ≈ L(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

In the case (a, b) = (0, 0), we have:

Taylor Polynomial of Degree 1 Approximating f(x, y) for (x, y) near (0,0)
If f has continuous first-order partial derivatives, then

f(x, y) ≈ L(x, y) = f(0, 0) + fx(0, 0)x+ fy(0, 0)y.

We get a better approximation to f by using a quadratic polynomial. We choose a quadratic
polynomial Q(x, y), with the same partial derivatives as the original function f . You can check that
the following Taylor polynomial of degree 2 has this property.

Taylor Polynomial of Degree 2 Approximating f(x, y) for (x,y) near (0,0)
If f has continuous second-order partial derivatives, then

f(x, y) ≈ Q(x, y)

= f(0, 0) + fx(0, 0)x+ fy(0, 0)y +
fxx(0, 0)

2
x2

+ fxy(0, 0)xy +
fyy(0, 0)

2
y2.
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Example 4 Let f(x, y) = cos(2x+ y) + 3 sin(x+ y)

(a) Compute the linear and quadratic Taylor polynomials, L and Q, approximating f near (0, 0).
(b) Explain why the contour plots of L and Q for −1 ≤ x ≤ 1, −1 ≤ y ≤ 1 look the way they do.

Solution (a) We have f(0, 0) = 1. The derivatives we need are as follows:

fx(x, y) = −2 sin(2x+ y) + 3 cos(x+ y) so fx(0, 0) = 3,

fy(x, y) = − sin(2x+ y) + 3 cos(x+ y) so fy(0, 0) = 3,

fxx(x, y) = −4 cos(2x+ y)− 3 sin(x+ y) so fxx(0, 0) = −4,

fxy(x, y) = −2 cos(2x+ y)− 3 sin(x+ y) so fxy(0, 0) = −2,

fyy(x, y) = − cos(2x+ y)− 3 sin(x+ y) so fyy(0, 0) = −1.

Thus, the linear approximation, L(x, y), to f(x, y) at (0, 0) is given by

f(x, y) ≈ L(x, y) = f(0, 0) + fx(0, 0)x+ fy(0, 0)y = 1 + 3x+ 3y.

The quadratic approximation, Q(x, y), to f(x, y) near (0, 0) is given by

f(x, y) ≈ Q(x, y)

= f(0, 0) + fx(0, 0)x+ fy(0, 0)y +
fxx(0, 0)

2
x2

+ fxy(0, 0)xy +
fyy(0, 0)

2
y2

= 1 + 3x+ 3y − 2x2 − 2xy −
1

2
y2.

Notice that the linear terms in Q(x, y) are the same as the linear terms in L(x, y). The quadratic
terms in Q(x, y) can be thought of as “correction terms” to the linear approximation.

(b) The contour plots of f(x, y), L(x, y), and Q(x, y) are in Figures 14.59–14.61.

1−1

1

−1

2

1
0

−1

−2

x

y

Figure 14.59: Original function, f(x, y)

1−1

1

−1

2

1
0

−1

−2

x

y

Figure 14.60: Linear approximation,
L(x, y)

1−1

1

−1

2

1
0

−1
−2

x

y

Figure 14.61: Quadratic approximation,
Q(x, y)

Notice that the contour plot of Q is more similar to the contour plot of f than is the contour
plot of L. Since L is linear, the contour plot of L consists of parallel, equally spaced lines.

An alternative, and much quicker, way to find the Taylor polynomial in the previous example is
to use the single-variable approximations. For example, since

cosu = 1−
u2

2!
+

u4

4!
+ · · · and sin v = v −

v3

3!
+ · · · ,

we can substitute u = 2x + y and v = x + y and expand. We discard terms beyond the second
(since we want the quadratic polynomial), getting

cos(2x+y) = 1−
(2x+ y)2

2!
+

(2x+ y)4

4!
+ · · · ≈ 1−

1

2
(4x2

+4xy+y2) = 1−2x2−2xy−
1

2
y2
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and

sin(x+ y) = (x+ y)−
(x+ y)3

3!
+ · · · ≈ x+ y.

Combining these results, we get

cos(2x+ y)+ 3 sin(x+ y) ≈ 1− 2x2− 2xy−
1

2
y2+3(x+ y) = 1+3x+3y− 2x2− 2xy−

1

2
y2.

Linear and Quadratic Approximations near (a, b)
The local linearization for a function f(x, y) at a point (a, b) is

Taylor Polynomial of Degree 1 Approximating f(x, y) for (x, y) near (a, b)
If f has continuous first-order partial derivatives, then

f(x, y) ≈ L(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

This suggests that a quadratic polynomial approximation Q(x, y) for f(x, y) near a point (a, b)
should be written in terms of (x − a) and (y − b) instead of x and y. If we require that Q(a, b) =
f(a, b) and that the first- and second-order partial derivatives of Q and f at (a, b) be equal, then we
get the following polynomial:

Taylor Polynomial of Degree 2 Approximating f(x, y) for (x, y) near (a, b)
If f has continuous second-order partial derivatives, then

f(x, y) ≈ Q(x, y)

= f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

+
fxx(a, b)

2
(x− a)2 + fxy(a, b)(x − a)(y − b) +

fyy(a, b)

2
(y − b)2.

These coefficients are derived in exactly the same way as for (a, b) = (0, 0).

Example 5 Find the Taylor polynomial of degree 2 at the point (1, 2) for the function f(x, y) =
1

xy
.

Solution Table 14.7 contains the partial derivatives and their values at the point (1, 2).

Table 14.7 Partial derivatives of f(x, y) = 1/(xy)

Derivative Formula Value at (1, 2) Derivative Formula Value at (1, 2)

f(x, y) 1/(xy) 1/2 fxx(x, y) 2/(x3y) 1

fx(x, y) −1/(x2y) −1/2 fxy(x, y) 1/(x2y2) 1/4

fy(x, y) −1/(xy2) −1/4 fyy(x, y) 2/(xy3) 1/4

So, the quadratic Taylor polynomial for f near (1, 2) is

1

xy
≈ Q(x, y)

=
1

2
−

1

2
(x− 1)−

1

4
(y − 2) +

1

2
(1)(x− 1)

2
+

1

4
(x− 1)(y − 2) +

(
1

2

)(
1

4

)
(y − 2)

2

=
1

2
−

x− 1

2
−

y − 2

4
+

(x− 1)2

2
+

(x− 1)(y − 2)

4
+

(y − 2)2

8
.
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Exercises and Problems for Section 14.7
Exercises

In Exercises 1–11, calculate all four second-order partial
derivatives and check that fxy = fyx. Assume the variables
are restricted to a domain on which the function is defined.

1. f(x, y) = (x+ y)2 2. f(x, y) = (x+ y)3

3. f(x, y) = 3x2y+5xy3 4. f(x, y) = e2xy

5. f(x, y) = (x+ y)ey 6. f(x, y) = xey

7. f(x, y) = sin(x/y) 8. f(x, y) =
√

x2 + y2

9. f(x, y) = 5x3y2 − 7xy3 + 9x2 + 11

10. f(x, y) = sin(x2 + y2)

11. f(x, y) = 3 sin 2x cos 5y

In Exercises 12–19, find the quadratic Taylor polynomials
about (0, 0) for the function.

12. (y − 1)(x+ 1)2 13. (x− y + 1)2

14. e−2x2
−y2

15. ex cos y

16. 1/(1 + 2x− y) 17. cos(x+ 3y)

18. sin 2x+ cos y 19. ln(1 + x2 − y)

In Exercises 20–21, find the best quadratic approximation for
f(x, y) for (x, y) near (0, 0).

20. f(x, y) = ln(1 + x− 2y)

21. f(x, y) =
√
1 + 2x− y

In Exercises 22–31, use the level curves of the function z =
f(x, y) to decide the sign (positive, negative, or zero) of each
of the following partial derivatives at the point P . Assume the
x- and y-axes are in the usual positions.

(a) fx(P ) (b) fy(P ) (c) fxx(P )
(d) fyy(P ) (e) fxy(P )

22.

P

5 4 3 2 1

23.

5 4 3 2 1

P

24.

P

1 2 3 4 5

25.

P

1 2 3 4 5

26.

P

5

4

3

2

1

27.

P

5

4

3

2

1

28.

P

5
4
3
2
1

29.

P

1
2
3
4
5

30.

� 5
� 3

� 1
P

31.

� 1

� 3

� 5
P
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Problems

In Problems 32–36, find the linear, L(x, y), and quadratic,
Q(x, y), Taylor polynomials valid near (1, 0). Compare the
values of the approximations L(0.9, 0.2) and Q(0.9, 0.2)
with the exact value of the function f(0.9, 0.2).

32. f(x, y) =
√
x+ 2y 33. f(x, y) = x2y

34. f(x, y) = xe−y

35. F (x, y)= ex sin y + ey sin x

36. f(x, y) = sin(x− 1) cos y

In Problems 37–38, show that the function satisfies Laplace’s
equation, Fxx + Fyy = 0.

37. F (x, y) = e−x sin y

38. F (x, y) = arctan(y/x)

39. If u(x, t) = eat sin (bx) satisfies the heat equation ut =
uxx, find the relationship between a and b.

40. (a) Check that u(x, t) satisfies the heat equation ut =
uxx for t > 0 and all x, where

u(x, t) =
1

2
√
πt

e−x2/(4t)

(b) Graph u(x, t) against x for t = 0.01, 0.1, 1, 10.
These graphs represent the temperature in an in-
finitely long insulated rod that at t = 0 is 0◦C ev-
erywhere except at the origin x = 0, and that is in-
finitely hot at t = 0 at the origin.

41. Figure 14.62 shows a graph of z = f(x, y). Is fxx(0, 0)
positive or negative? Is fyy(0, 0) positive or negative?
Give reasons for your answers.

x

y

z

Figure 14.62

42. If z = f(x) + yg(x), what can you say about zyy? Ex-
plain your answer.

43. If zxy = 4y, what can you say about the value of
(a) zyx? (b) zxyx? (c) zxyy?

44. A contour diagram for the smooth function z = f(x, y)
is in Figure 14.63.

(a) Is z an increasing or decreasing function of x? Of y?
(b) Is fx positive or negative? How about fy?
(c) Is fxx positive or negative? How about fyy?
(d) Sketch the direction of grad f at points P and Q.
(e) Is grad f longer at P or at Q? How do you know?

1 2 3 4 5 6

1

2

3

4

5

6 P

Q

1

2
3

4

5
6 7 8 9 10

x

y

Figure 14.63

Problems 45–48 give tables of values of quadratic polynomi-
als P (x, y) = a + bx + cy + dx2 + exy + fy2. Determine
whether each of the coefficients d, e and f of the quadratic
terms is positive, negative, or zero.
45.

y

x

10 12 14

10 35 37 39

15 45 47 49

20 55 57 59

46.

y

x

10 12 14

10 26 36 54

15 31 41 59

20 36 46 64

47.

y

x

10 12 14

10 90 82 74

15 75 87 99

20 10 42 74

48.

y

x

10 12 14

10 13 33 61

15 28 28 36

20 93 73 61

49. You are hiking on a level trail going due east and plan-
ning to strike off cross country up the mountain to your
left. The slope up to the left is too steep now and seems
to be gentler the further you go along the trail, so you
decide to wait before turning off.

(a) Sketch a topographical contour map that illustrates
this story.

(b) What information does the story give about partial
derivatives? Define all variables and functions that
you use.

(c) What partial derivative influenced your decision to
wait before turning?
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50. The weekly production, Y , in factories that manufacture
a certain item is modeled as a function of the quantity
of capital, K, and quantity of labor, L, at the factory.
Data shows that hiring a few extra workers increases pro-
duction. Moreover, for two factories with the same num-
ber of workers, hiring a few extra workers increases pro-
duction more for the factory with more capital. (With
more equipment, additional labor can be used more ef-
fectively.) What does this tell you about the sign of

(a) ∂Y/∂L?
(b) ∂2Y/(∂K∂L)?

51. Data suggests that human surface area, S, can reason-
ably be modeled as a function of height, h, and weight,
w. In the Dubois model, we have ∂2S/∂w2 < 0 and
∂2S/(∂h∂w) > 0. Two people A and B each gain 1
pound. Which experiences the greater increase in surface
area if

(a) They have the same weight but A is taller?
(b) They have the same height, but A is heavier?

52. Figure 14.64 shows the level curves of a function f(x, y)
around a maximum or minimum, M . One of the points
P and Q has coordinates (x1, y1) and the other has co-
ordinates (x2, y2). Suppose b > 0 and c > 0. Consider
the two linear approximations to f given by

f(x, y) ≈ a+ b(x− x1) + c(y − y1)

f(x, y) ≈ k +m(x− x2) + n(y − y2).

(a) What is the relationship between the values of a
and k?

(b) What are the coordinates of P ?
(c) Is M a maximum or a minimum?
(d) What can you say about the sign of the constants m

and n?

x

y

M



P

�

Q

Figure 14.64

53. Consider the function f(x, y) = (sin x)(sin y).

(a) Find the Taylor polynomials of degree 2 for f about
the points (0, 0) and (π/2, π/2).

(b) Use the Taylor polynomials to sketch the contours of
f close to each of the points (0, 0) and (π/2, π/2).

54. Give an explanation of why you might expect
fxy(a, b) = fyx(a, b) using the following steps.

(a) Write the definition of fx(a, b).
(b) Write a definition of fxy(a, b) as (fx)y.

(c) Substitute for fx in the definition of fxy .
(d) Write an expression for fyx similar to the one for

fxy you obtained in part (c).
(e) Compare your answers to parts (c) and (d). What do

you have to assume to conclude that fxy and fyx are
equal?

55. You plan to buy a used car. You are debating between a 5-
year old car and a 10-year old car and thinking about the
price. Experts report that the original price matters more
when buying a 5-year old car than a 10-year old car. This
suggests that we model the average market price, P , in
dollars as a function of two variables: the original price,
C, in dollars, and the age of the car, A, in years.

(a) Give units for the following partial derivatives and
say whether you think they are positive or negative.
Explain your reasoning.

(a) ∂P/∂A (b) ∂P/∂C

(b) Express the experts’ report in terms of partial deriva-
tives.

(c) Using a quadratic polynomial to model P , we have

P = a+ bC + cA+ dC2 + eCA+ fA2.

Which term in this polynomial is most relevant to
the experts’ report?

56. The tastiness, T , of a soup depends on the volume, V ,
of the soup in the pot and the quantity, S, of salt in the
soup. If you have more soup, you need more salt to make
it taste good. Match the three stories (a)–(c) to the three
statements (I)–(III) about partial derivatives.

(a) I started adding salt to the soup in the pot. At first the
taste improved, but eventually the soup became too
salty and continuing to add more salt made it worse.

(b) The soup was too salty, so I started adding unsalted
soup. This improved the taste at first, but eventually
there was too much soup for the salt, and continuing
to add unsalted soup just made it worse.

(c) The soup was too salty, so adding more salt would
have made it taste worse. I added a quart of unsalted
soup instead. Now it is not salty enough, but I can
improve the taste by adding salt.

(I) ∂2T/∂V 2 < 0
(II) ∂2T/∂S2 < 0
(III) ∂2T/∂V ∂S > 0

57. Let f(x, y) =
√

x+ 2y + 1.

(a) Compute the local linearization of f at (0, 0).
(b) Compute the quadratic Taylor polynomial for f at

(0, 0).
(c) Compare the values of the linear and quadratic

approximations in part (a) and part (b) with the
true values for f(x, y) at the points (0.1, 0.1),
(−0.1, 0.1), (0.1,−0.1), (−0.1,−0.1). Which ap-
proximation gives the closest values?
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58. Using a computer and your answer to Problem 57, draw
the six contour diagrams of f(x, y) =

√
x+ 2y + 1

and its linear and quadratic approximations, L(x, y) and
Q(x, y), in the two windows [−0.6, 0.6] × [−0.6, 0.6]
and [−2, 2]× [−2, 2]. Explain the shape of the contours,
their spacing, and the relationship between the contours
of f , L, and Q.

59. Suppose that f(x, y) has continuous partial derivatives
fx and fy . Using the Fundamental Theorem of Calculus
to evaluate the integrals, show that

f(a, b) = f(0, 0) +

∫ a

t=0

fx(t, 0)dt+

∫ b

t=0

fy(a, t)dt.

60. Suppose that f(x, y) has continuous partial deriva-
tives and that f(0, 0) = 0 and |fx(x, y)| ≤ A and
|fy(x, y)| ≤ B for all points (x, y) in the plane. Use
Problem 59 to show that |f(x, y)| ≤ A |x|+B |y|.

This inequality shows how bounds on the partial
derivatives of f limit the growth of f .

Strengthen Your Understanding

In Problems 61–62, explain what is wrong with the statement.

61. If f(x, y) �= 0, then the Taylor polynomial of degree 2
approximating f(x, y) near (0, 0) is also nonzero.

62. There is a function f(x, y) with partial derivatives fx =
xy and fy = y2.

In Problems 63–65, give an example of:

63. A function f(x, y) such that fxx �= 0, fyy �= 0, and
fxy = 0.

64. Formulas for two different functions f(x, y) and g(x, y)
with the same quadratic approximation near (0, 0).

65. Contour diagrams for two different functions f(x, y) and
g(x, y) that have the same quadratic approximations near
(0, 0).

14.8 DIFFERENTIABILITY

In Section 14.3 we gave an informal introduction to the concept of differentiability. We called a
function f(x, y) differentiable at a point (a, b) if it is well approximated by a linear function near
(a, b). This section focuses on the precise meaning of the phrase “well approximated.” By looking
at examples, we shall see that local linearity requires the existence of partial derivatives, but they
do not tell the whole story. In particular, existence of partial derivatives at a point is not sufficient to
guarantee local linearity at that point.

We begin by discussing the relation between continuity and differentiability. As an illustration,
take a sheet of paper, crumple it into a ball and smooth it out again. Wherever there is a crease it
would be difficult to approximate the surface by a plane—these are points of nondifferentiability
of the function giving the height of the paper above the floor. Yet the sheet of paper models a
graph which is continuous—there are no breaks. As in the case of one-variable calculus, continuity
does not imply differentiability. But differentiability does require continuity: there cannot be linear
approximations to a surface at points where there are abrupt changes in height.

Differentiability for Functions of Two Variables
For a function of two variables, as for a function of one variable, we define differentiability at a
point in terms of the error and the distance from the point. If the point is (a, b) and a nearby point is
(a+ h, b+ k), the distance between them is

√
h2 + k2. (See Figure 14.65.)

A function f(x, y) is differentiable at the point (a, b) if there is a linear function L(x, y) =
f(a, b) +m(x− a) + n(y − b) such that if the error E(x, y) is defined by

f(x, y) = L(x, y) + E(x, y),

and if h = x− a, k = y − b, then the relative error E(a+ h, b+ k)/
√
h2 + k2 satisfies

lim
h→0

k→0

E(a+ h, b+ k)
√
h2 + k2

= 0.

The function f is differentiable on a region R if it is differentiable at each point of R. The
function L(x, y) is called the local linearization of f(x, y) near (a, b).
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x

y

z

(a, b)
� Distance =

√
h2 + k2

L(x, y)

f(x, y)

�
E(x, y) = E(a+ h, b+ k)

�

(a+ h, b+ k)

�

�

Figure 14.65: Graph of function z = f(x, y) and its local linearization z = L(x, y) near the point (a, b)

Partial Derivatives and Differentiability

In the next example, we show that this definition of differentiability is consistent with our previous
notion — that is, that m = fx and n = fy and that the graph of L(x, y) is the tangent plane.

Example 1 Show that if f is a differentiable function with local linearization L(x, y) = f(a, b) +m(x− a) +
n(y − b), then m = fx(a, b) and n = fy(a, b).

Solution Since f is differentiable, we know that the relative error in L(x, y) tends to 0 as we get close to
(a, b). Suppose h > 0 and k = 0. Then we know that

0 = lim
h→0

E(a+ h, b+ k)
√
h2 + k2

= lim
h→0

E(a+ h, b)

h
= lim

h→0

f(a+ h, b)− L(a+ h, b)

h

= lim
h→0

f(a+ h, b)− f(a, b)−mh

h

= lim
h→0

(
f(a+ h, b)− f(a, b)

h

)
−m = fx(a, b)−m.

A similar result holds if h < 0, so we have m = fx(a, b). The result n = fy(a, b) is found in a
similar manner.

The previous example shows that if a function is differentiable at a point, it has partial deriva-
tives there. Therefore, if any of the partial derivatives fail to exist, then the function cannot be
differentiable. This is what happens in the following example of a cone.

Example 2 Consider the function f(x, y) =
√

x2 + y2. Is f differentiable at the origin?

x y

z

�

Figure 14.66: The function f(x, y) =
√

x2 + y2 is not locally linear at (0, 0): Zooming in around
(0, 0) does not make the graph look like a plane
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Solution If we zoom in on the graph of the function f(x, y) =
√
x2 + y2 at the origin, as shown in Fig-

ure 14.66, the sharp point remains; the graph never flattens out to look like a plane. Near its vertex,
the graph does not look as if is well approximated (in any reasonable sense) by any plane.

Judging from the graph of f , we would not expect f to be differentiable at (0, 0). Let us check
this by trying to compute the partial derivatives of f at (0, 0):

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

√
h2 + 0− 0

h
= lim

h→0

|h|

h
.

Since |h|/h = ±1, depending on whether h approaches 0 from the left or right, this limit does
not exist and so neither does the partial derivative fx(0, 0). Thus, f cannot be differentiable at the
origin. If it were, both of the partial derivatives, fx(0, 0) and fy(0, 0), would exist.

Alternatively, we could show directly that there is no linear approximation near (0, 0) that
satisfies the small relative error criterion for differentiability. Any plane passing through the point
(0, 0, 0) has the form L(x, y) = mx + ny for some constants m and n. If E(x, y) = f(x, y) −
L(x, y), then

E(x, y) =
√

x2 + y2 −mx− ny.

Then for f to be differentiable at the origin, we would need to show that

lim
h→0

k→0

√
h2 + k2 −mh− nk

√
h2 + k2

= 0.

Taking k = 0 gives

lim
h→0

|h| −mh

|h|
= 1−m lim

h→0

h

|h|
.

This limit exists only if m = 0 for the same reason as before. But then the value of the limit is 1
and not 0 as required. Thus, we again conclude f is not differentiable.

In Example 2 the partial derivatives fx and fy did not exist at the origin and this was sufficient
to establish nondifferentiability there. We might expect that if both partial derivatives do exist, then
f is differentiable. But the next example shows that this not necessarily true: the existence of both
partial derivatives at a point is not sufficient to guarantee differentiability.

Example 3 Consider the function f(x, y) = x1/3y1/3. Show that the partial derivatives fx(0, 0) and fy(0, 0)
exist, but that f is not differentiable at (0, 0).

x

y

z

Figure 14.67: Graph of z = x1/3y1/3 for z ≥ 0
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Solution See Figure 14.67 for the part of the graph of z = x1/3y1/3 when z ≥ 0. We have f(0, 0) = 0 and
we compute the partial derivatives using the definition:

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0,

and similarly
fy(0, 0) = 0.

So, if there did exist a linear approximation near the origin, it would have to be L(x, y) = 0. But
we can show that this choice of L(x, y) does not result in the small relative error that is required for
differentiability. In fact, since E(x, y) = f(x, y)− L(x, y) = f(x, y), we need to look at the limit

lim
h→0

k→0

h1/3k1/3
√
h2 + k2

.

If this limit exists, we get the same value no matter how h and k approach 0. Suppose we take
k = h > 0. Then the limit becomes

lim
h→0

h1/3h1/3

√
h2 + h2

= lim
h→0

h2/3

h
√
2
= lim

h→0

1

h1/3
√
2
.

But this limit does not exist, since small values for h will make the fraction arbitrarily large. So the
only possible candidate for a linear approximation at the origin does not have a sufficiently small
relative error. Thus, this function is not differentiable at the origin, even though the partial derivatives
fx(0, 0) and fy(0, 0) exist. Figure 14.67 confirms that near the origin the graph of z = f(x, y) is
not well approximated by any plane.

In summary,

• If a function is differentiable at a point, then both partial derivatives exist there.

• Having both partial derivatives at a point does not guarantee that a function is differen-
tiable there.

Continuity and Differentiability

We know that differentiable functions of one variable are continuous. Similarly, it can be shown that
if a function of two variables is differentiable at a point, then the function is continuous there.

In Example 3 the function f was continuous at the point where it was not differentiable. Ex-
ample 4 shows that even if the partial derivatives of a function exist at a point, the function is not
necessarily continuous at that point if it is not differentiable there.

Example 4 Suppose that f is the function of two variables defined by

f(x, y) =

{ xy

x2 + y2
, (x, y) �= (0, 0),

0, (x, y) = (0, 0).

Problem 23 on page 709 showed that f(x, y) is not continuous at the origin. Show that the partial
derivatives fx(0, 0) and fy(0, 0) exist. Could f be differentiable at (0, 0)?
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Solution From the definition of the partial derivative we see that

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

(
1

h
·

0

h2 + 02

)
= lim

h→0

0

h
= 0,

and similarly
fy(0, 0) = 0.

So, the partial derivatives fx(0, 0) and fy(0, 0) exist. However, f cannot be differentiable at the
origin since it is not continuous there.

In summary,

• If a function is differentiable at a point, then it is continuous there.

• Having both partial derivatives at a point does not guarantee that a function is continuous
there.

How Do We Know If a Function Is Differentiable?
Can we use partial derivatives to tell us if a function is differentiable? As we see from Examples 3
and 4, it is not enough that the partial derivatives exist. However, the following theorem gives con-
ditions that do guarantee differentiability4:

Theorem 14.2: Continuity of Partial Derivatives Implies Differentiability

If the partial derivatives, fx and fy , of a function f exist and are continuous on a small disk
centered at the point (a, b), then f is differentiable at (a, b).

We will not prove this theorem, although it provides a criterion for differentiability which is
often simpler to use than the definition. It turns out that the requirement of continuous partial deriva-
tives is more stringent than that of differentiability, so there exist differentiable functions which do
not have continuous partial derivatives. However, most functions we encounter will have continuous
partial derivatives. The class of functions with continuous partial derivatives is given the name C1.

Example 5 Show that the function f(x, y) = ln(x2 + y2) is differentiable everywhere in its domain.

Solution The domain of f is all of 2-space except for the origin. We shall show that f has continuous partial
derivatives everywhere in its domain (that is, the function f is in C1). The partial derivatives are

fx =
2x

x2 + y2
and fy =

2y

x2 + y2
.

Since each of fx and fy is the quotient of continuous functions, the partial derivatives are con-
tinuous everywhere except the origin (where the denominators are zero). Thus, f is differentiable
everywhere in its domain.

Most functions built up from elementary functions have continuous partial derivatives, except
perhaps at a few obvious points. Thus, in practice, we can often identify functions as being C1

without explicitly computing the partial derivatives.

4For a proof, see M. Spivak, Calculus on Manifolds, p. 31 (New York: Benjamin, 1965).
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Exercises and Problems for Section 14.8
Exercises

In Exercises 1–10, list the points in the xy-plane, if any, at
which the function z = f(x, y) is not differentiable.

1. z = −
√

x2 + y2 2. z =
√

(x+ 1)2 + y2

3. z = |x|+ |y| 4. z = |x+ 2| − |y − 3|

5. z = e−(x2+y2) 6. z = x1/3 + y2

7. z = |x− 3|2 + y3 8. z = (sin x)(cos |y|)

9. z = 4 +
√

(x− 1)2 + (y − 2)2

10. z = 1 +
(
(x− 1)2 + (y − 2)2

)2
Problems

In Problems 11–14, a functions f is given.

(a) Use a computer to draw a contour diagram for f .
(b) Is f differentiable at all points (x, y) �= (0, 0)?
(c) Do the partial derivatives fx and fy exist and are they

continuous at all points (x, y) �= (0, 0)?
(d) Is f differentiable at (0, 0)?
(e) Do the partial derivatives fx and fy exist and are they

continuous at (0, 0)?

11. f(x, y) =

⎧⎨
⎩

x

y
+

y

x
, x �= 0 and y �= 0,

0, x = 0 or y = 0.

12. f(x, y) =

{
2xy

(x2 + y2)2
, (x, y) �= (0, 0),

0, (x, y) = (0, 0).

13. f(x, y) =

{
x2y

x4 + y2
, (x, y) �= (0, 0),

0, (x, y) = (0, 0).

14. f(x, y) =

{ xy√
x2 + y2

, (x, y) �= (0, 0),

0, (x, y) = (0, 0).

15. Consider the function

f(x, y) =

{
xy2

x2 + y2
, (x, y) �= (0, 0),

0, (x, y) = (0, 0).

(a) Use a computer to draw the contour diagram for f .
(b) Is f differentiable for (x, y) �= (0, 0)?
(c) Show that fx(0, 0) and fy(0, 0) exist.
(d) Is f differentiable at (0, 0)?
(e) Suppose x(t) = at and y(t) = bt, where a and b

are constants, not both zero. If g(t) = f(x(t), y(t)),
show that

g′(0) =
ab2

a2 + b2
.

(f) Show that

fx(0, 0)x
′(0) + fy(0, 0)y

′(0) = 0.

Does the chain rule hold for the composite function
g(t) at t = 0? Explain.

(g) Show that the directional derivative f
u (0, 0) exists
for each unit vector �u . Does this imply that f is dif-
ferentiable at (0, 0)?

16. Consider the function f(x, y) =
√

|xy|.
(a) Use a computer to draw the contour diagram for f .

Does the contour diagram look like that of a plane
when we zoom in on the origin?

(b) Use a computer to draw the graph of f . Does the
graph look like a plane when we zoom in on the ori-
gin?

(c) Is f differentiable for (x, y) �= (0, 0)?
(d) Show that fx(0, 0) and fy(0, 0) exist.
(e) Is f differentiable at (0, 0)? [Hint: Consider the di-

rectional derivative f
u (0, 0) for �u = (�i +�j )/
√
2.]

17. Consider the function

f(x, y) =

{
xy2

x2 + y4
, (x, y) �= (0, 0),

0, (x, y) = (0, 0).

(a) Use a computer to draw the contour diagram for f .
(b) Show that the directional derivative f
u (0, 0) exists

for each unit vector �u .
(c) Is f continuous at (0, 0)? Is f differentiable at

(0, 0)? Explain.

18. Suppose f(x, y) is a function such that fx(0, 0) = 0 and
fy(0, 0) = 0, and f
u (0, 0) = 3 for �u = (�i +�j )/

√
2.

(a) Is f differentiable at (0, 0)? Explain.
(b) Give an example of a function f defined on 2-space

which satisfies these conditions. [Hint: The function
f does not have to be defined by a single formula
valid over all of 2-space.]

19. Consider the following function:

f(x, y) =

{
xy(x2 − y2)

x2 + y2
, (x, y) �= (0, 0),

0, (x, y) = (0, 0).

The graph of f is shown in Figure 14.68, and the contour
diagram of f is shown in Figure 14.69.

(a) Find fx(x, y) and fy(x, y) for (x, y) �= (0, 0).
(b) Show that fx(0, 0) = 0 and fy(0, 0) = 0.
(c) Are the functions fx and fy continuous at (0, 0)?
(d) Is f differentiable at (0, 0)?
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x y

z

Figure 14.68: Graph of
xy(x2 − y2)

x2 + y2

.05
.25

.45
.65
.85

−
.0
5

−
.2
5

−
.45

−
.65
−.85

.25

−.25

.25

−
.25

−
.25

.25
x

y

Figure 14.69: Contour diagram of
xy(x2 − y2)

x2 + y2

20. Suppose a function f is differentiable at the point (a, b).
Show that f is continuous at (a, b).

Strengthen Your Understanding

In Problems 21–22, explain what is wrong with the statement.

21. If f(x, y) is continuous at the origin, then it is differen-
tiable at the origin.

22. If the partial derivatives fx(0, 0) and fy(0, 0) both exist,
then f(x, y) is differentiable at the origin.

In Problems 23–24, give an example of:

23. A continuous function f(x, y) that is not differentiable

at the origin.

24. A continuous function f(x, y) that is not differentiable
on the line x = 1.

25. Which of the following functions f(x, y) is differen-
tiable at the given point?

(a)
√

1− x2 − y2 at (0, 0)(b)
√

4− x2 − y2 at (2, 0)

(c) −
√

x2 + 2y2 at (0, 0)(d) −
√

x2 + 2y2 at (2, 0)

CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• Partial Derivatives
Definition as a difference quotient, visualizing on a
graph, estimating from a contour diagram, computing
from a formula, interpreting units, alternative notation.

• Local Linearity
Zooming on a surface, contour diagram, or table to see
local linearity, the idea of tangent plane, formula for a
tangent plane in terms of partials, the differential.

• Directional Derivatives
Definition as a difference quotient, interpretation as a rate
of change, computation using partial derivatives.

• Gradient Vector

Definition in terms of partial derivatives, geometric prop-
erties of gradient’s length and direction, relation to direc-
tional derivative, relation to contours and level surfaces.

• Chain Rule
Local linearity and differentials for composition of func-
tions, tree diagrams, chain rule in general, application to
physical chemistry.

• Second- and Higher-Order Partial Derivatives
Interpretations, mixed partials are equal.

• Taylor Approximations
Linear and quadratic polynomial approximations to func-
tions near a point.
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REVIEW EXERCISES AND PROBLEMS FOR CHAPTER FOURTEEN

Exercises

Are the quantities in Exercises 1–4 vectors or scalars? Calcu-
late them.

1. grad(x3e−y/2) at (1, 2)

2. The directional derivative of f(x, y) = x2y3 at the point
(1, 1) in the direction of (�i +�j )/

√
2.

3. grad((cos x)ey + z)

4.
∂2f

∂x2
when f(x, y) = yex

2y

For Exercises 5–28, find the partial derivatives. Assume the
variables are restricted to a domain on which the function is
defined.

5. fx and fy if f(x, y) = x2y + x3 − 7xy6

6.
∂w

∂h
if w = 320πgh2(20− h)

7.
∂T

∂l
if T = 2π

√
l

g

8.
∂B

∂t
and

∂B

∂r
when B = P (1 + r)t.

9. fx and fy if f(x, y) =
x2y

x2 + y2

10.
∂F

∂r
and

∂F

∂r
if F =

Gμmy

(r2 + y2)3/2

11. fp and fq if f(p, q) = ep/q

12. zx(2, 3) if z = (cos x) + y

13. fN if f(N,V ) = cNαV β

14. fx and fy if f(x, y) =
√

(x− a)2 + (y − b)2

15.
∂

∂ω

(
tan

√
ωx
)

16.
∂y

∂t
if y = sin(ct− 5x)

17. zy if z =
3x2y7 − y2

15xy − 8

18.
∂α

∂β
if α =

exβ−3

2yβ + 5

19.
∂

∂w

(√
2πxyw − 13x7y3v

)
20.

∂

∂λ

(
x2yλ− 3λ5

√
λ2 − 3λ + 5

)

21.
∂

∂w

(
x2yw − xy3w7

w − 1

)
−7/2

22.
∂

∂x
(ex cos(xy) + ay2),

∂

∂y
(ex cos(xy) + ay2),

∂

∂a
(ex cos(xy) + ay2)

23.
∂f0
∂L

if f0 =
1

2π
√
LC

24. fxx and fxy if f(x, y) = 1/
√

x2 + y2

25. uxx and uyy if u = ex sin y

26. Vrr and Vrh if V = πr2h

27. fxxy and fyxx if f(x, y) = sin(x− 2y)

28.
∂2

∂x2
(eax−bt) +

∂2

∂t2
(eax−bt)

In Exercises 29–39, find the gradient of the function.

29. f(x, y, z) = x2 + y2 + y3

30. f(x, y, z) = x3 + z3 − xyz

31. f(x, y, z) = 1/(xyz)

32. f(x, y) = sin(y2 − xy)

33. z = sin(x2 + y2)

34. f(x, y, z) = xey + ln(xz)

35. f(x, y, z) = sin(x2 + y2 + z2)

36. f(ρ, φ, θ) = ρ sinφ cos θ

37. f(s, t) =
1√
s
(t2 − 2t+ 4)

38. f(x, y) =
√

x2 + y2

39. f(x, y) = sin(xy) + cos(xy)

In Exercises 40–41, find the gradient of f at the point.

40. f(x, y, z) = x2 at (0, 0, 0)

41. f(x, y, z) = x2z, at (1, 1, 1)

In Exercises 42–47, find the directional derivative of the func-
tion.

42. f(x, y) = x3 − y3 at (2,−1) in the direction of�i −�j

43. f(x, y) = xey at (3, 0) in the direction of 4�i − 3�j

44. f(x, y, z) = x2 + y2 − z2 at (2, 3, 4) in the direction of
2�i − 2�j + �k

45. f(x, y, z) = 3x2y2 + 2yz at (−1, 0, 4) in the direction
of�i − �k

46. f(x, y, z) = 3x2y2 + 2yz at (−1, 0, 4) in the direction
of −�i + 3�j + 3�k

47. f(x, y, z) = ex+z cos y at (1, 0,−1) in the direction of
�i +�j + �k

In Exercises 48–50, find a vector normal to the curve or sur-
face at the point.

48. x2 − y2 = 3 at (2, 1)

49. xy + xz + yz = 11 at (1, 2, 3)
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50. z2 − 2xyz = x2 + y2 at (1, 2,−1)

51. Find an equation of the tangent plane to the surface
z2 − 4x2 − 3y2 = 9 at the point (1, 1, 4).

52. Find an equation of the tangent plane to the surface
x3 = 2y2 − z at the point (1, 0,−1).

53. Find an equation of the tangent plane to the surface
z − 1/(xy) = 0 at the point (1, 1, 1).

54. Compute all four second-order partial derivatives of
f(x, y) = x2y2 − 5xy3.

In Exercises 55–60, find dz/dt using the chain rule. Assume
the variables are restricted to domains on which the functions
are defined.

55. z = x sin y, x = sin t, y = cos t

56. z = sin(x2 + y2), x = 2t, y = t2

57. z = (x2 + y)2, x = 2t, y = t2

58. z = (x+ y)ex, x = t2, y = 1− t2

59. z = ln y + ln x, x = t3, y = t2 + 1

60. z = sin(pq), p = sin t, q = cos t2

In Exercises 61–63, find the quadratic Taylor polynomial for
the function.

61. f(x, y) = (x+ 1)3(y + 2) about (0, 0)

62. f(x, y) = cos x cos 3y about (0, 0)

63. f(x, y) =
√
2x− y about (3, 5)

Problems

64. Match each function f(x, y, z) in (a)–(d) with the de-
scription of its gradient in (I)–(VI).

(a) x2 + y2 + z2 (b)
√

x2 + y2 + z2

(c) 3x+ 4y (d) 3x+ 4z

I Constant, parallel to xy-plane.
II Constant, parallel to xz-plane.

III Constant, parallel to yz-plane.
IV Radial, increasing in magnitude away from the ori-

gin.
V Radial, constant magnitude.

VI Radial, decreasing in magnitude away from the ori-
gin.

65. (a) Find an equation of the tangent plane to the surface
2x2 − 2xy2 + az = a at the point (1, 1, 1).

(b) For which value of a does the tangent plane pass
through the origin?

66. The monthly mortgage payment in dollars, P , for a house
is a function of three variables:

P = f(A, r,N),

where A is the amount borrowed in dollars, r is the in-
terest rate, and N is the number of years before the mort-
gage is paid off.

(a) f(92000, 14, 30) = 1090.08. What does this tell
you, in financial terms?

(b)
∂P

∂r

∣∣∣∣
(92000,14,30)

= 72.82. What is the financial

significance of the number 72.82?
(c) Would you expect ∂P/∂A to be positive or nega-

tive? Why?
(d) Would you expect ∂P/∂N to be positive or nega-

tive? Why?

67. Figure 14.70 is a contour diagram of f(x, y). In each of
the following cases, list the marked points in the diagram
(there may be none or more than one) at which

(a) fx < 0 (b) fy > 0

(c) fxx > 0 (d) fyy < 0

Q P

R S

1
2
3
4

x

y

Figure 14.70

68. Figure 14.71 gives a contour diagram for the number n
of foxes per square kilometer in southwestern England.
Estimate ∂n/∂x and ∂n/∂y at the points A, B, and C,
where x is kilometers east and y is kilometers north.
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69. The cost of producing one unit of a product is given by

c = a+ bx+ ky,

where x is the amount of labor used (in man hours) and
y is the amount of raw material used (by weight) and a
and b and k are constants. What does ∂c/∂x = b mean?
What is the practical interpretation of b?

70. (a) Let f(u, v) = u(u2 + v2)3/2. Use a difference quo-
tient to approximate fu(1, 3) with h = 0.001.

(b) Now evaluate fu(1, 3) exactly. Was the approxima-
tion in part (a) reasonable?

71. The gravitational force, F newtons, exerted on a mass of
m kg at a distance of r meters from the center of the earth
is given by

F =
GMm

r2

where the mass of the earth M = 6 · 1024 kilograms,
and G = 6.67 · 10−11. Find the gravitational force on
a person with mass 70 kg at the surface of the earth
(r = 6.4 · 106). Calculate ∂F/∂m and ∂F/∂r for these
values of m and r. Interpret these partial derivatives in
terms of gravitational force.

72. (a) Write a formula for the number π using only the
perimeter L and the area A of a circle.

(b) Suppose that L and A are determined experimen-
tally. Show that if the relative, or percent, errors in
the measured values of L and A are λ and μ, respec-
tively, then the resulting relative, or percent, error in
π is 2λ − μ.

73. A company uses x hours of unskilled labor and y hours of
skilled labor to produce F (x, y) = 60x2/3y1/3 units of
output. It currently employs 400 hours of unskilled labor
and 50 hours of skilled labor. The company is planning
to hire an additional 5 hours of skilled labor.

(a) Use a linear approximation to decide by about how
much the company can reduce its use of unskilled
labor and keep its output at current level.

(b) Calculate the exact value of the reduction.

74. One mole of ammonia gas is contained in a vessel which
is capable of changing its volume (a compartment sealed
by a piston, for example). The total energy U (in joules)
of the ammonia is a function of the volume V (in m3) of
the container, and the temperature T (in K) of the gas.
The differential dU is given by

dU = 840 dV + 27.32 dT.

(a) How does the energy change if the volume is held
constant and the temperature is increased slightly?

(b) How does the energy change if the temperature is
held constant and the volume is increased slightly?

(c) Find the approximate change in energy if the gas is
compressed by 100 cm3 and heated by 2 K.

75. Figure 14.72 shows grad f(x, y). In each of the follow-
ing cases, list the marked points (if any) at which

(a) fx > 0 (b) fy < 0

(c) fxx > 0 (d) fyy < 0

PQ

R S

grad f

x

y

Figure 14.72

In Problems 76–81, use the contour diagram for f(x, y) in
Figure 14.73 to estimate the directional derivative of f(x, y)
in the direction �v at the point given.
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1

Figure 14.73

76. �v =�i at (1, 1) 77. �v = �j at (1, 1)

78. �v =�i +�j at (1, 1) 79. �v =�i +�j at (4, 1)

80. �v = −2�i +�j at (3, 3) 81. �v = −2�i +�j at (4, 1)

82. Figure 14.73 shows the level curves of f(x, y). At
the points (1, 1) and (1, 4), draw a vector representing
grad f . Explain how you know the direction and length
of each vector.

83. Find the directional derivative of z = x2y at (1, 2) in the
direction making an angle of 5π/4 with the x-axis. In
which direction is the directional derivative the largest?

84. An ant is crawling across a heated plate with velocity
�v cm/sec, and the temperature of the plate at position
(x, y) is H(x, y) degrees, where x and y are in centime-
ters. Which of the following (if any) is correct? The rate
of change in deg/sec of the temperature felt by the ant is:

(a) ‖ gradH‖‖�v ‖, because it is the product of the ant’s
speed and the rate of change of H with respect to
distance.
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(b) gradH · �v , because it is the product of the ant’s
speed and the directional derivative of H in the di-
rection of �v .

(c) H
u , where �u = �v /‖�v ‖, because it is the rate of
change of H in the direction of �v .

85. The depth, in feet, of a lake at a point x miles east and y
miles north of a buoy is given by

h(x, y) = 150 − 30x2 − 20y2.

(a) A rowboat is 1 mile east and 2 miles south of the
buoy. At what rate is the depth changing with respect
to distance in the direction of the buoy?

(b) The boat starts moving toward the buoy at a rate of
3 mph. At what rate is the depth of the lake beneath
the boat changing with respect to time?

86. A differentiable function f(x, y) has the property that
f(1, 3) = 7 and grad f(1, 3) = 2�i − 5�j .

(a) Find the equation of the tangent line to the level
curve of f through the point (1, 3).

(b) Find the equation of the tangent plane to the surface
z = f(x, y) at the point (1, 3, 7).

87. Let x, y, z be in meters. At the point (x, y, z) in space,
the temperature, H , in ◦C, is given by

H = e−(x2+2y2+3z2).

(a) A particle at the point (2, 1, 5) starts to move in the
direction of increasing x. How fast is the tempera-
ture changing with respect to distance? Give units.

(b) If the particle in part (a) moves at 10 meters/sec,
how fast is the temperature changing with respect to
time? Give units.

(c) What is the maximum rate of change of temperature
with respect to distance at the point (2, 1, 5)?

88. A differentiable function f(x, y) has the property that
f(4, 1) = 3 and fx(4, 1) = 2 and fy(4, 1) = −1. Find
the equation of the tangent plane at the point on the sur-
face z = f(x, y) where x = 4, y = 1.

89. The temperature at (x, y) is T (x, y) = 100 − x2 − y2.
In which direction should a heat-seeking bug move from
the point (x, y) to increase its temperature fastest?

90. A car is driving northwest at v mph across a sloping plain
whose height, in feet above sea level, at a point N miles
north and E miles east of a city is given by

h(N,E) = 2500 + 100N + 50E.

(a) At what rate is the height above sea level changing
with respect to distance in the direction the car is
driving?

(b) Express the rate of change of the height of the car
with respect to time in terms of v.

91. Do the level curves of f(x, y) =
√

x2 + y2 + x and

g(x, y) =
√

x2 + y2 − x cross at right angles?

92. At any point (x, y, z) outside a spherically symmetric
mass m located at the point (x0, y0, z0), the gravitational
potential, V , is defined by V = −Gm/r, where r is the
distance from (x, y, z) to (x0, y0, z0) and G is a con-
stant. Show that, for all points outside the mass, V satis-
fies Laplace’s equation:

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= 0.

93. Suppose that f is any differentiable function of one vari-
able. Define V , a function of two variables, by

V (x, t) = f(x+ ct).

Show that V satisfies the equation

∂V

∂t
= c

∂V

∂x
.

94. Given z = u2 − uev , u = x+ 2y, v = 2x − y, use the
chain rule to find:

(a) ∂z/∂x|(x,y)=(1,2) (b) ∂z/∂y|(x,y)=(1,2)

95. Let F (u, v, w) be a function of three variables. Find
Gx(x, y) if

(a) G(x, y) = F (x, y, 3) (b) G(x, y) = F (3, y, x)

(c) G(x, y) = F (x, y, x) (d) G(x, y) = F (x, y, xy)

96. In analyzing a factory and deciding whether or not to
hire more workers, it is useful to know under what
circumstances productivity increases. Suppose P =
f(x1, x2, x3) is the total quantity produced as a function
of x1, the number of workers, and any other variables
x2, x3. We define the average productivity of a worker as
P/x1. Show that the average productivity increases as x1

increases when marginal production, ∂P/∂x1, is greater
than the average productivity, P/x1.

97. For the Cobb-Douglas function P = 40L0.25K0.75, find
the differential dP when L = 2 and K = 16.

98. The period, T , of a pendulum is T = 2π
√

l/g. If the
approximate length is l = 2 meters, find the approxi-
mate error in T if the true length is l = 1.99 and we take
g = 9.8 as an approximation for g = 9.81 m/s2.

99. Figure 14.74 shows the monthly payment, m, on a 5-year
car loan if you borrow P dollars at r percent interest.
Find a formula for a linear function which approximates
m. What is the practical significance of the constants in
your formula?
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In Problems 100–107, the function f is differentiable and
fx(2, 1) = −3, fy(2, 1) = 4, and f(2, 1) = 7.

100. (a) Give an equation for the tangent plane to the graph
of f at x = 2, y = 1.

(b) Give an equation for the tangent line to the contour
for f at x = 2, y = 1.

101. (a) Find a vector perpendicular to the tangent plane to
the graph of f at x = 2, y = 1.

(b) Find a vector perpendicular to the tangent line to the
contour for f at x = 2, y = 1.

102. Near x = 2 and y = 1, how far apart are the contours
f(x, y) = 7 and f(x, y) = 7.3?

103. Give an approximate table of values of f for x =
1.8, 2.0, 2.2 and y = 0.9, 1.0, 1, 1.

104. Give an approximate contour diagram for f for 1 ≤ x ≤
3, 0 ≤ y ≤ 2, using contour values . . . 5, 6, 7, 8, 9 . . ..

105. The function f gives temperature in ◦C and x and y are
in centimeters. A bug leaves (2, 1) at 3 cm/min so that it
cools off as fast as possible. In which direction does the
bug head? At what rate does it cool off, in ◦C/min?

106. Find fr(2, 1) and fθ(2, 1), where r and θ are polar coor-
dinates, x = r cos θ and y = r sin θ. If �u is the unit vec-
tor in the direction 2�i+�j , show that f
u (2, 1) = fr(2, 1)
and explain why this should be the case.

107. Find approximately the largest value of f on or inside the
circle of radius 0.1 about the point (2, 1). At what point
does f achieve this value?

108. Values of the function f(x, y) near the point x = 2,
y = 3 are given in Table 14.8. Estimate the following.

(a)
∂f

∂x

∣∣∣∣
(2,3)

and
∂f

∂y

∣∣∣∣
(2,3)

.

(b) The rate of change of f at (2, 3) in the direction of
the vector�i + 3�j .

(c) The maximum possible rate of change of f as you
move away from the point (2, 3). In which direction
should you move to obtain this rate of change?

(d) Write an equation for the level curve through the
point (2, 3).

(e) Find a vector tangent to the level curve of f through
the point (2, 3).

(f) Find the differential of f at the point (2, 3). If dx =
0.03 and dy = 0.04, find df . What does df represent
in this case?

Table 14.8

y

x

2.00 2.01

3.00 7.56 7.42

3.02 7.61 7.47

109. Find the quadratic Taylor polynomial about (0, 0) for
f(x, y) = cos (x+ 2y) sin (x− y).

110. Suppose f(x, y) = e(x−1)2+(y−3)2 .

(a) Find the first-order Taylor polynomial about (0, 0).
(b) Find the second-order (quadratic) Taylor polynomial

about the point (1, 3).
(c) Find a 2-vector perpendicular to the level curve

through (0, 0).
(d) Find a 3-vector perpendicular to the surface z =

f(x, y) at the point (0, 0).

111. Figure 14.75 shows a contour diagram for a vibrating
string function, f(x, t).

(a) Is ft(π/2, π/2) positive or negative? How about
ft(π/2, π)? What does the sign of ft(π/2, b) tell
you about the motion of the point on the string at
x = π/2 when t = b?

(b) Find all t for which ft is positive, for 0 ≤ t ≤ 5π/2.
(c) Find all x and t such that fx is positive.

π

π/2

π

3π/2

2π

5π/2

x

t
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0
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5

0
.5
0

0
.7
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0

0.250.50 0.75

−
0
.2
5

−
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−
0
.7
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Figure 14.75
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CAS Challenge Problems

112. (a) Find the quadratic Taylor polynomial about (0, 0) of

f(x, y) =
ex(1 + sin(3y))2

5 + e2x
.

(b) Find the quadratic Taylor polynomial about 0 of the
one-variable functions g(x) = ex/(5 + e2x) and
h(y) = (1+ sin(3y))2. Multiply these polynomials
together and compare with your answer to part (a).

(c) Show that if f(x, y) = g(x)h(y), then the quadratic
Taylor polynomial of f about (0, 0) is the prod-
uct of the quadratic Taylor polynomials of g(x) and
h(y) about 0. [If you use a computer algebra system,
make sure that f, g and h do not have any previously
assigned formula.]

113. Let

f(x, y) = A0 + A1x+ A2y + A3x
2 +A4xy +A5y

2,

g(t) = 1 +B1t+B2t
2,

h(t) = 2 +C1t+C2t
2.

(a) Find L(x, y), the linear approximation to f(x, y) at
the point (1, 2). Also find m(t) and n(t), the linear

approximations to g(t) and h(t) at t = 0.
(b) Calculate (d/dt)f(g(t), h(t))|t=0 and

(d/dt)L(m(t), n(t))|t=0. Describe what you notice
and explain it in terms of the chain rule.

114. Let f(x, y) = A0+A1x+A2y+A3x
2+A4xy+A5y

2.

(a) Find the quadratic Taylor approximation for f(x, y)
near the point (1, 2), and expand the result in powers
of x and y.

(b) Explain what you notice in part (a) and formulate a
generalization to points other than (1, 2).

(c) Repeat part (a) for the linear approximation. How
does it differ from the quadratic?

115. Suppose that w = f(x, y, z), that x and y are functions
of u and v, and that z, u, and v are functions of t. Use a
computer algebra system to find the derivative

d

dt
f(x(u(t), v(t)), y(u(t), v(t)), z(t))

and explain the answer using a tree diagram.

PROJECTS FOR CHAPTER FOURTEEN

1. Heat Equation
The function T (x, y, z, t) is a solution to the heat equation

Tt = K(Txx + Tyy + Tzz)

and gives the temperature at the point (x, y, z) in 3-space and time t. The constant K is the
thermal conductivity of the medium through which the heat is flowing.

(a) Show that the function

T (x, y, z, t) =
1

(4πKt)3/2
e−(x2+y2+z2)/4Kt

is a solution to the heat equation for all (x, y, z) in 3-space and t > 0.
(b) For each fixed time t, what are the level surfaces of the function T (x, y, z, t) in 3-space?
(c) Regard t as fixed and compute gradT (x, y, z, t). What does gradT (x, y, z, t) tell us about

the direction and magnitude of the heat flow?

2. Matching Birthdays
Consider a class of m students and a year with n days. Let q(m,n) denote the probability,
expressed as a number between 0 and 1, that at least two students have the same birthday.
Surprisingly, q(23, 365) ≈ 0.5073. (This means that there is slightly better than an even chance
that at least two students in a class of 23 have the same birthday.) A general formula for q is
complicated, but it can be shown that

∂q

∂m
≈ +

m

n
(1 − q) and

∂q

∂n
≈ −

m2

2n2
(1− q).

(These approximations hold when n is a good deal larger than m, and m is a good deal larger
than 1.)

(a) Explain why the + and − signs in the approximations for ∂q/∂m and ∂q/∂n are to be
expected.
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(b) Suppose there are 21 students in a class. What is the approximate probability that at least
two students in the class have the same birthday? (Assume that a year always has 365 days.)

(c) Suppose there is a class of 24 students and you know that no one was born in the first week
of the year. (This has the effect of making n = 358.) What is the approximate value of q
for this class?

(d) If you want to bet that a certain class of 23 students has at least two matching birthdays,
would you prefer to have two more students added to the class or to be told that no one in
the class was born in December?

(e) (Optional) Find the actual formula for q. [Hint: It’s easier to find 1 − q. There are n · n ·

n · · ·n = nm different choices for the students’ birthdays. How many such choices have
no matching birthdays?]
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15.1 CRITICAL POINTS: LOCAL EXTREMA AND SADDLE POINTS

Functions of several variables, like functions of one variable, can have local and global extrema.
(That is, local and global maxima and minima.) A function has a local extremum at a point where
it takes on the largest or smallest value in a small region around the point. Global extrema are the
largest or smallest values anywhere on the domain under consideration. (See Figures 15.1 and 15.2.)

x

y

z

Figure 15.1: Local and global extrema for a
function of two variables on 0 ≤ x ≤ a,

0 ≤ y ≤ b

a

b

x

y

−1

−3

0

1

3
1

6
11

Figure 15.2: Contour map of the
function in Figure 15.1

More precisely, considering only points at which f is defined, we say:

• f has a local maximum at the point P0 if f(P0) ≥ f(P ) for all points P near P0.

• f has a local minimum at the point P0 if f(P0) ≤ f(P ) for all points P near P0.

How Do We Detect a Local Maximum or Minimum?
Recall that if the gradient vector of a function is defined and nonzero, then it points in a direction in
which the function increases. Suppose that a function f has a local maximum at a point P0 which
is not on the boundary of the domain. If the vector gradf(P0) were defined and nonzero, then we
could increase f by moving in the direction of grad f(P0). Since f has a local maximum at P0,
there is no direction in which f is increasing. Thus, if gradf(P0) is defined, we must have

gradf(P0) = �0 .

Similarly, suppose f has a local minimum at the point P0. If grad f(P0) were defined and nonzero,
then we could decrease f by moving in the direction opposite to grad f(P0), and so we must again
have gradf(P0) = �0 . Therefore, we make the following definition:

Points where the gradient is either �0 or undefined are called critical points of the function.

If a function has a local maximum or minimum at a point P0, not on the boundary of its do-
main, then P0 is a critical point. For a function of two variables, we can also see that the gradient
vector must be zero or undefined at a local maximum by looking at its contour diagram and a plot of
its gradient vectors. (See Figures 15.3 and 15.4.) Around the maximum the vectors are all pointing
inward, perpendicularly to the contours. At the maximum the gradient vector must be zero or unde-
fined. A similar argument shows that the gradient must be zero or undefined at a local minimum.
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Figure 15.3: Contour diagram around a
local maximum of a function

x

y

Figure 15.4: Gradients pointing toward the local maximum
of the function in Figure 15.3

Finding and Analyzing Critical Points
To find critical points of f we set gradf = fx�i + fy�j + fz�k = �0 , which means setting all the
partial derivatives of f equal to zero. We must also look for the points where one or more of the
partial derivatives is undefined.

Example 1 Find and analyze the critical points of f(x, y) = x2 − 2x+ y2 − 4y + 5.

Solution To find the critical points, we set both partial derivatives equal to zero:

fx(x, y) = 2x− 2 = 0

fy(x, y) = 2y − 4 = 0.

Solving these equations gives x = 1, y = 2. Hence, f has only one critical point, namely (1, 2). To
see the behavior of f near (1, 2), look at the values of the function in Table 15.1.

Table 15.1 Values of f(x, y) near the point (1, 2)

y

x

0.8 0.9 1.0 1.1 1.2

1.8 0.08 0.05 0.04 0.05 0.08

1.9 0.05 0.02 0.01 0.02 0.05

2.0 0.04 0.01 0.00 0.01 0.04

2.1 0.05 0.02 0.01 0.02 0.05

2.2 0.08 0.05 0.04 0.05 0.08

The table suggests that the function has a local minimum value of 0 at (1, 2). We can confirm
this by completing the square:

f(x, y) = x2 − 2x+ y2 − 4y + 5 = (x− 1)
2
+ (y − 2)

2.

Figure 15.5 shows that the graph of f is a paraboloid with vertex at the point (1, 2, 0). It is the
same shape as the graph of z = x2 + y2 (see Figure 12.12 on page 675), except that the vertex has
been shifted to (1, 2). So the point (1, 2) is a local minimum of f (as well as a global minimum).

x
y

z

(1, 2, 0)

Figure 15.5: The graph of f(x, y) = x2 − 2x+ y2 − 4y + 5 with a local minimum at the point (1, 2)
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Example 2 Find and analyze any critical points of f(x, y) = −
√
x2 + y2.

Solution We look for points where gradf = �0 or is undefined. The partial derivatives are given by

fx(x, y) = −
x√

x2 + y2
,

fy(x, y) = −
y√

x2 + y2
.

These partial derivatives are never simultaneously zero, but they are undefined at x = 0, y = 0.
Thus, (0, 0) is a critical point and a possible extreme point. The graph of f (see Figure 15.6) is a
cone, with vertex at (0, 0). So f has a local and global maximum at (0, 0).

x y

z



Local maximum
Global maximum

Figure 15.6: Graph of f(x, y) = −
√

x2 + y2

Example 3 Find and analyze any critical points of g(x, y) = x2 − y2.

Solution To find the critical points, we look for points where both partial derivatives are zero:

gx(x, y) = 2x = 0

gy(x, y) = −2y = 0.

Solving gives x = 0, y = 0, so the origin is the only critical point.
Figure 15.7 shows that near the origin g takes on both positive and negative values. Since

g(0, 0) = 0, the origin is a critical point which is neither a local maximum nor a local minimum.
The graph of g looks like a saddle.

The previous examples show that critical points can occur at local maxima or minima, or at
points which are neither: The functions g and h in Figures 15.7 and 15.8 both have critical points
at the origin. Figure 15.9 shows level curves of g. They are hyperbolas showing both positive and
negative values of g near (0, 0). Contrast this with the level curves of h near the local minimum in
Figure 15.10.

x

y

z

Figure 15.7: Graph of
g(x, y) = x2 − y2, showing

saddle shape at the origin

x y

z

Figure 15.8: Graph of h(x, y) = x2 + y2, showing
minimum at the origin
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Figure 15.9: Contours of g(x, y) = x2 − y2,
showing a saddle shape at the origin
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Figure 15.10: Contours of h(x, y) = x2 + y2,
showing a local minimum at the origin

Example 4 Find the local extrema of the function f(x, y) = 8y3 + 12x2 − 24xy.

Solution We begin by looking for critical points:

fx(x, y) = 24x− 24y,

fy(x, y) = 24y2 − 24x.

Setting these expressions equal to zero gives the system of equations

x = y, x = y2,

which has two solutions, (0, 0) and (1, 1). Are these local maxima, local minima or neither? Fig-
ure 15.11 shows contours of f near the points. Notice that f(1, 1) = −4 and that there is no other
−4 contour. The contours near (1, 1) suggest that f has a local minimum at the point (1, 1).

We have f(0, 0) = 0 and the contours near (0, 0) show that f takes both positive and negative
values nearby. This suggests that (0, 0) is a critical point which is neither a local maximum nor a
local minimum.

−0.5 0.5 1 1.5 2
−0.5

0.5

1

1.5

2

x

y

−1

−2

−3

0

0

1

2

3

Figure 15.11: Contour diagram of f(x, y) = 8y3 + 12x2 − 24xy showing
critical points at (0, 0) and (1, 1)

Classifying Critical Points
We can see whether a critical point of a function, f , is a local maximum, local minimum, or neither
by looking at the contour diagram. There is also an analytic method for making this distinction.

Quadratic Functions of the Form f(x, y) = ax
2 + bxy + cy

2

Near most critical points, a function has the same behavior as its quadratic Taylor approximation
about that point. Thus, we start by investigating critical points of quadratic functions of the form
f(x, y) = ax2 + bxy + cy2, where a, b and c are constants.
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Example 5 Find and analyze the local extrema of the function f(x, y) = x2 + xy + y2.

Solution To find critical points, we set

fx(x, y) = 2x+ y = 0,

fy(x, y) = x+ 2y = 0.

The only critical point is (0, 0), and the value of the function there is f(0, 0) = 0. If f is always
positive or zero near (0, 0), then (0, 0) is a local minimum; if f is always negative or zero near
(0, 0), it is a local maximum; if f takes both positive and negative values, it is neither. The graph in
Figure 15.12 suggests that (0, 0) is a local minimum.

How can we be sure that (0, 0) is a local minimum? We complete the square. Writing

f(x, y) = x2
+ xy + y2 =

(
x+

1

2
y

)2

+
3

4
y2,

shows that f(x, y) is a sum of two nonnegative terms, so it is always greater than or equal to zero.
Thus, the critical point is both a local and a global minimum.

x

y

z

�
Local minimum

Figure 15.12: Graph of f(x, y) = x2 + xy + y2 = (x+ 1
2
y)2 + 3

4
y2

showing local minimum at the origin

The Shape of the Graph of f(x, y) = ax
2 + bxy + cy

2

In general, a function of the form f(x, y) = ax2 + bxy + cy2 has one critical point at (0, 0).
Assuming a �= 0, we complete the square and write

ax2
+ bxy + cy2 = a

[
x2

+
b

a
xy +

c

a
y2
]
= a

[(
x+

b

2a
y

)2

+

(
c

a
−

b2

4a2

)
y2

]

= a

[(
x+

b

2a
y

)2

+

(
4ac− b2

4a2

)
y2

]
.

The shape of the graph of f depends on whether the coefficient of y2 is positive, negative, or zero.
The sign of the discriminant, D = 4ac− b2, determines the sign of the coefficient of y2.
• If D > 0, then the expression inside the square brackets is positive or zero, so the function has

a local maximum or a local minimum.

• If a > 0, the function has a local minimum, since the graph is a right-side-up paraboloid,
like z = x2 + y2. (See Figure 15.13.)

• If a < 0, the function has a local maximum, since the graph is an upside-down paraboloid,
like z = −x2 − y2. (See Figure 15.14.)

• If D < 0, then the function goes up in some directions and goes down in others, like z =

x2 − y2. We say the function has a saddle point. (See Figure 15.15.)

• If D = 0, then the quadratic function is a(x + by/2a)2, whose graph is a parabolic cylinder.
(See Figure 15.16.)
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Figure 15.13: Local minimum:
D > 0 and a > 0

Figure 15.14: Local maximum:
D > 0 and a < 0

Figure 15.15: Saddle point:
D < 0

Figure 15.16: Parabolic
cylinder: D = 0

More generally, the graph of g(x, y) = a(x− x0)
2 + b(x− x0)(y − y0) + c(y − y0)

2 has the
same shape as the graph of f(x, y) = ax2 + bxy + cy2, except that the critical point is at (x0, y0)
rather than (0, 0).1

Classifying the Critical Points of a Function

Suppose that f is any function with grad f(0, 0) = �0 . Its quadratic Taylor polynomial near (0, 0),

f(x, y) ≈ f(0, 0) + fx(0, 0)x+ fy(0, 0)y

+
1

2
fxx(0, 0)x

2
+ fxy(0, 0)xy +

1

2
fyy(0, 0)y

2,

can be simplified using fx(0, 0) = fy(0, 0) = 0, which gives

f(x, y)− f(0, 0) ≈
1

2
fxx(0, 0)x

2
+ fxy(0, 0)xy +

1

2
fyy(0, 0)y

2.

The discriminant of this quadratic polynomial is

D = 4ac− b2 = 4

(
1

2
fxx(0, 0)

)(
1

2
fyy(0, 0)

)
− (fxy(0, 0))

2,

which simplifies to
D = fxx(0, 0)fyy(0, 0)− (fxy(0, 0))

2
.

There is a similar formula for D if the critical point is at (x0, y0). An analogy with quadratic func-
tions suggests the following test for classifying a critical point of a function of two variables:

Second-Derivative Test for Functions of Two Variables

Suppose (x0, y0) is a point where gradf(x0, y0) = �0 . Let

D = fxx(x0, y0)fyy(x0, y0)− (fxy(x0, y0))
2.

• If D > 0 and fxx(x0, y0) > 0, then f has a local minimum at (x0, y0).

• If D > 0 and fxx(x0, y0) < 0, then f has a local maximum at (x0, y0).

• If D < 0, then f has a saddle point at (x0, y0).

• If D = 0, anything can happen: f can have a local maximum, or a local minimum, or a
saddle point, or none of these, at (x0, y0).

Example 6 Find the local maxima, minima, and saddle points of f(x, y) = 1
2x

2 +3y3 +9y2 − 3xy+9y− 9x.

Solution Setting the partial derivatives of f to zero gives

fx(x, y) = x− 3y − 9 = 0,

fy(x, y) = 9y2 + 18y + 9− 3x = 0.

1We assumed that a �= 0. If a = 0 and c �= 0, the same argument works. If both a = 0 and c = 0, then f(x, y) = bxy,
which has a saddle point.



836 Chapter Fifteen OPTIMIZATION: LOCAL AND GLOBAL EXTREMA

Eliminating x gives 9y2+9y−18 = 0, with solutions y = −2 and y = 1. The corresponding values
of x are x = 3 and x = 12, so the critical points of f are (3,−2) and (12, 1). The discriminant is

D(x, y) = fxxfyy − f2
xy = (1)(18y + 18)− (−3)

2
= 18y + 9.

Since D(3,−2) = −36 + 9 < 0, we know that (3,−2) is a saddle point of f . Since D(12, 1) =
18 + 9 > 0 and fxx(12, 1) = 1 > 0, we know that (12, 1) is a local minimum of f .

The second-derivative test does not give any information if D = 0. However, as the following
example illustrates, we may still be able to classify the critical points.

Example 7 Classify the critical points of f(x, y) = x4 + y4, and g(x, y) = −x4 − y4, and h(x, y) = x4 − y4.

Solution Each of these functions has a critical point at (0, 0). Since all the second partial derivatives are 0

there, each function has D = 0. Near the origin, the graphs of f , g and h look like the surfaces in
Figures 15.13–15.15, respectively, so f has a local minimum at (0, 0), and g has a local maximum
at (0, 0), and h is saddle-shaped at (0, 0).

We can get the same results algebraically. Since f(0, 0) = 0 and f(x, y) > 0 elsewhere, f has
a local minimum at the origin. Since g(0, 0) = 0 and g(x, y) < 0 elsewhere, g has a local maximum
at the origin. Lastly, h is saddle-shaped at the origin since h(0, 0) = 0 and, away from the origin,
h(x, y) > 0 on the x-axis and h(x, y) < 0 on the y-axis.

Exercises and Problems for Section 15.1
Exercises

1. Figures (I)–(VI) show level curves of six functions
around a critical point P . Does each function have a local
maximum, a local minimum, or a saddle point at P ?

−7

−5

P

(I)

2

1

P

(II)

−2
−1

0

−1
−2

P

(III)

2
1

0

1
2

P

(IV)

−2

−1

P

(V)

14

12

P

(VI)

2. Which of the points A,B,C in Figure 15.17 appear to be
critical points? Classify those that are critical points.

0

−1−2 −1 −2

1

2
1

2

1

2

0
1
2

0−1−2 −2

A
B

C

D

E
F

G

x

y

Figure 15.17

3. Which of the points D–G in Figure 15.17 appear to be

(a) Local maxima?
(b) Local minima?
(c) Saddle points?
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Each function in Exercises 4–7 has a critical point at (0, 0).
What sort of critical point is it?

4. g(x, y) = x4 + y3 5. f(x, y) = x6 + y6

6. k(x, y) = sin x sin y 7. h(x, y) = cosx cos y

For Exercises 8–20, find the critical points and classify them
as local maxima, local minima, saddle points, or none of these.

8. f(x, y) = x2 − 2xy + 3y2 − 8y

9. f(x, y) = 5 + 6x− x2 + xy − y2

10. f(x, y) = x2 − y2 + 4x+ 2y

11. f(x, y) = 400− 3x2 − 4x+ 2xy − 5y2 + 48y

12. f(x, y) = 15− x2 + 2y2 + 6x− 8y

13. f(x, y) = x2y + 2y2 − 2xy + 6

14. f(x, y) = 2x3 − 3x2y + 6x2 − 6y2

15. f(x, y) = x3 − 3x+ y3 − 3y

16. f(x, y) = x3 + y3 − 3x2 − 3y + 10

17. f(x, y) = x3 + y3 − 6y2 − 3x+ 9

18. f(x, y) = (x+ y)(xy + 1)

19. f(x, y) = 8xy − 1
4
(x+ y)4

20. f(x, y) = e2x
2+y2

Problems

21. Find A and B so that f(x, y) = x2 +Ax+ y2 +B has
a local minimum value of 20 at (1, 0).

22. For f(x, y) = x2+xy+y2+ax+by+c, find values of
a, b, and c giving a local minimum at (2, 5) and so that
f(2, 5) = 11.

23. (a) Find critical points for f(x, y) = e−(x−a)2−(y−b)2 .
(b) Find a and b such that the critical point is at (−1, 5).
(c) For the values of a and b in part (b), is (−1, 5) a

local maximum, local minimum, or a saddle point?

24. Let f(x, y) = kx2 + y2 − 4xy. Determine the values of
k (if any) for which the critical point at (0, 0) is:

(a) A saddle point
(b) A local maximum
(c) A local minimum

For Problems 25–27, use the contours of f in Figure 15.18.
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Figure 15.18

25. Decide whether you think each point is a local maximum,
local minimum, saddle point, or none of these.

(a) P (b) Q (c) R (d) S

26. Sketch the direction of ∇f at several points around each
of P , Q, and R.

27. At the points where ‖∇f‖ is largest, put arrows showing
the direction of ∇f .

For Problems 28–31, find critical points and classify them as
local maxima, local minima, saddle points, or none of these.

28. f(x, y) = x3 + e−y2

29. f(x, y) = sin x sin y

30. f(x, y) = 1− cos x+ y2/2

31. f(x, y) = ex(1− cos y)

32. At the point (1, 3), suppose that fx = fy = 0 and
fxx > 0, fyy > 0, fxy = 0.

(a) What can you conclude about the behavior of the
function near the point (1, 3)?

(b) Sketch a possible contour diagram.

33. At the point (a, b), suppose that fx = fy = 0, fxx > 0,
fyy = 0, fxy > 0.

(a) What can you conclude about the shape of the graph
of f near the point (a, b)?

(b) Sketch a possible contour diagram.

34. Draw a possible contour diagram of f such that
fx(−1, 0) = 0, fy(−1, 0) < 0, fx(3, 3) > 0,
fy(3, 3) > 0, and f has a local maximum at (3,−3).

35. Draw a possible contour diagram of a function with a
saddle point at (2, 1), a local minimum at (2, 4), and no
other critical points. Label the contours.
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36. For constants a and b with ab �= 0 and ab �= 1, let

f(x, y) = ax2 + by2 − 2xy − 4x− 6y.

(a) Find the x- and y-coordinates of the critical point.
Your answer will be in terms of a and b.

(b) If a = b = 2, is the critical point a local maximum,
a local minimum, or neither? Give a reason for your
answer.

(c) Classify the critical point for all values of a and b
with ab �= 0 and ab �= 1.

37. (a) Find the critical point of f(x, y) = (x2−y)(x2+y).
(b) Show that at the critical point, the discriminant D =

0, so the second-derivative test gives no information
about the nature of the critical point.

(c) Sketch contours near the critical point to determine
whether it is a local maximum, a local minimum, a
saddle point, or none of these.

38. On a computer, draw contour diagrams for functions

f(x, y) = k(x2 + y2)− 2xy

for k = −2, −1, 0, 1, 2. Use these figures to classify the
critical point at (0, 0) for each value of k. Explain your
observations using the discriminant, D.

39. The behavior of a function can be complicated near a crit-
ical point where D = 0. Suppose that

f(x, y) = x3 − 3xy2.

Show that there is one critical point at (0, 0) and that
D = 0 there. Show that the contour for f(x, y) = 0 con-
sists of three lines intersecting at the origin and that these
lines divide the plane into six regions around the origin
where f alternates from positive to negative. Sketch a
contour diagram for f near (0, 0). The graph of this func-
tion is called a monkey saddle.

40. The contour diagrams for four functions z = f(x, y) are
in (a)–(d). Each function has a critical point with z = 0 at
the origin. Graphs (I)–(IV) show the value of z for these
four functions on a small circle around the origin, ex-
pressed as function of θ, the angle between the positive
x-axis and a line through the origin. Match the contour
diagrams (a)–(d) with the graphs (I)–(IV). Classify the
critical points as local maxima, local minima or saddle
points.

x

y(a)

x

y(b)

x

y(c)

x

y(d)

π 2π
θ

z(I)

π 2π
θ

z(II)

π 2π
θ

z(III)

π 2π
θ

z(IV)

Strengthen Your Understanding

In Problems 41–43, explain what is wrong with the statement.

41. If fx = fy = 0 at (1, 3), then f has a local maximum or
local minimum at (1, 3).

42. For f(x, y), if D = fxxfyy − (fxy)
2 = 0 at (a, b), then

(a, b) is a saddle point.

43. A critical point (a, b) for the function f must be a local
minimum if both cross-sections for x = a and y = b are
concave up.

In Problems 44–45, give an example of:

44. A nonlinear function having no critical points

45. A function f(x, y) with a local maximum at (2,−3, 4).

Are the statements in Problems 46–56 true or false? Give rea-
sons for your answer.

46. If fx(P0) = fy(P0) = 0, then P0 is a critical point of f .

47. If fx(P0) = fy(P0) = 0, then P0 is a local maximum or
local minimum of f .

48. If P0 is a critical point of f , then P0 is either a local
maximum or local minimum of f .

49. If P0 is a local maximum or local minimum of f , and not
on the boundary of the domain of f , then P0 is a critical
point of f .

50. The function f(x, y) =
√

x2 + y2 has a local minimum
at the origin.

51. The function f(x, y) = x2 − y2 has a local minimum at
the origin.
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52. If f has a local minimum at P0 then so does the function
g(x, y) = f(x, y) + 5.

53. If f has a local minimum at P0 then the function
g(x, y) = −f(x, y) has a local maximum at P0.

54. Every function has at least one local maximum.

55. If P0 is a local maximum of f , then f(a, b) ≤ f(P0) for
all points (a, b) in 2-space.

56. If P0 is a local maximum of f , then P0 is also a global
maximum of f .

15.2 OPTIMIZATION

Suppose we want to find the highest and the lowest points in Colorado. A contour map is shown
in Figure 15.19. The highest point is the top of a mountain peak (point A on the map, Mt. Elbert,
14,440 feet high). What about the lowest point? Colorado does not have large pits without drainage,
like Death Valley in California. A drop of rain falling at any point in Colorado will eventually flow
out of the state. If there is no local minimum inside the state, where is the lowest point? It must be
on the state boundary at a point where a river is flowing out of the state (point B where the Arikaree
River leaves the state, 3,315 feet high). The highest point in Colorado is a global maximum for the
elevation function in Colorado and the lowest point is the global minimum.
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Figure 15.19: The highest and lowest points in the state of Colorado

In general, if we are given a function f defined on a region R, we say:

• f has a global maximum on R at the point P0 if f(P0) ≥ f(P ) for all points P in R.

• f has a global minimum on R at the point P0 if f(P0) ≤ f(P ) for all points P in R.

The process of finding a global maximum or minimum for a function f on a region R is called
optimization. If the region R is not stated explicitly, we take it to be the whole xy-plane unless the
context of the problem suggests otherwise.

How Do We Find Global Maxima and Minima?
As the Colorado example illustrates, a global extremum can occur either at a critical point inside
the region or at a point on the boundary of the region. This is analogous to single-variable calculus,
where a function achieves its global extrema on an interval either at a critical point inside the interval
or at an endpoint of the interval.

To locate global maxima and minima:

• Find the critical points.

• Investigate whether the critical points give global maxima or minima.
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Not all functions have a global maximum or minimum: it depends on the function and the
region. First, we consider applications in which global extrema are expected from practical con-
siderations. At the end of this section, we examine the conditions that lead to global extrema. In
general, the fact that a function has a single local maximum or minimum does not guarantee that
the point is the global maximum or minimum. (See Problem 26.) An exception is if the function is
quadratic, in which case the local maximum or minimum is the global maximum or minimum. (See
Example 1 on page 831 and Example 5 on page 834.)

Maximizing Profit and Minimizing Cost
In planning production of an item, a company often chooses the combination of price and quantity
that maximizes its profit. We use

Profit = Revenue − Cost,

and, provided the price is constant,

Revenue = Price · Quantity = pq.

In addition, we need to know how the cost and price depend on quantity.

Example 1 A company manufactures two items which are sold in two separate markets where it has a monopoly.
The quantities, q1 and q2, demanded by consumers, and the prices, p1 and p2 (in dollars), of each
item are related by

p1 = 600− 0.3q1 and p2 = 500− 0.2q2.

Thus, if the price for either item increases, the demand for it decreases. The company’s total pro-
duction cost is given by

C = 16 + 1.2q1 + 1.5q2 + 0.2q1q2.

To maximize its total profit, how much of each product should be produced? What is the maximum
profit? 2

Solution The total revenue, R, is the sum of the revenues, p1q1 and p2q2, from each market. Substituting for
p1 and p2, we get

R = p1q1 + p2q2 = (600− 0.3q1)q1 + (500− 0.2q2)q2

= 600q1 − 0.3q21 + 500q2 − 0.2q22.

Thus, the total profit P is given by

P = R− C = 600q1 − 0.3q21 + 500q2 − 0.2q22 − (16 + 1.2q1 + 1.5q2 + 0.2q1q2)

= −16 + 598.8q1 − 0.3q21 + 498.5q2 − 0.2q22 − 0.2q1q2.

Since q1 and q2 cannot be negative,3 the region we consider is the first quadrant with boundary
q1 = 0 and q2 = 0.

To maximize P , we look for critical points by setting the partial derivatives equal to 0:

∂P

∂q1
= 598.8− 0.6q1 − 0.2q2 = 0,

∂P

∂q2
= 498.5− 0.4q2 − 0.2q1 = 0.

2Adapted from M. Rosser, Basic Mathematics for Economists, p. 316 (New York: Routledge, 1993).
3Restricting prices to be nonnegative further restricts the region but does not alter the solution.
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Since gradP is defined everywhere, the only critical points of P are those where gradP = �0 .
Thus, solving for q1, and q2, we find that

q1 = 699.1 and q2 = 896.7.

The corresponding prices are

p1 = 390.27 and p2 = 320.66.

To see whether or not we have found a local maximum, we compute second partial derivatives:

∂2P

∂q21
= −0.6,

∂2P

∂q22
= −0.4,

∂2P

∂q1∂q2
= −0.2,

so,

D =
∂2P

∂q21

∂2P

∂q22
−

(
∂2P

∂q1∂q2

)2

= (−0.6)(−0.4)− (−0.2)2 = 0.2.

Therefore we have found a local maximum. The graph of P is an upside-down paraboloid, so
(699.1, 896.7) is a global maximum. This point is within the region, so points on the boundary give
smaller values of P .

The company should produce 699.1 units of the first item priced at $390.27 per unit, and
896.7 units of the second item priced at $320.66 per unit. The maximum profit P (699.1, 896.7) ≈
$433,000.

Example 2 A delivery of 480 cubic meters of gravel is to be made to a landfill. The trucker plans to purchase an
open-top box in which to transport the gravel in numerous trips. The total cost to the trucker is the
cost of the box plus $80 per trip. The box must have height 2 meters, but the trucker can choose the
length and width. The cost of the box is $100/m2 for the ends, $50/m2 for the sides and $200/m2

for the bottom. Notice the tradeoff: A smaller box is cheaper to buy but requires more trips. What
size box should the trucker buy to minimize the total cost? 4

Solution We first get an algebraic expression for the trucker’s cost. Let the length of the box be x meters and
the width be y meters; the height is 2 meters. (See Figure 15.20.)

xy

�
�

2 m

Figure 15.20: The box for transporting gravel

Table 15.2 Trucker’s itemized cost

Expense Cost in dollars

Travel: 480/(2xy) at $80/trip (240 · 80)/(xy)
Ends: 2 at $100/m2 · 2y m2 400y

Sides: 2 at $50/m2 · 2x m2 200x

Bottom: l at $200/m2 · xy m2 200xy

The volume of the box is 2xy m3, so delivery of 480 m3 of gravel requires 480/(2xy) trips. The
number of trips is a whole number; however, we treat it as continuous so that we can optimize using
derivatives. The trucker’s cost is itemized in Table 15.2. The problem is to minimize

Total cost =
240 · 80

xy
+ 400y + 200x+ 200xy = 200

(
96

xy
+ 2y + x+ xy

)
.

4Adapted from Claude McMillan, Jr., Mathematical Programming, 2nd ed., p. 156-157 (New York: Wiley, 1978).



842 Chapter Fifteen OPTIMIZATION: LOCAL AND GLOBAL EXTREMA

The length and width of the box must be positive. Thus, the region is the first quadrant but it does
not contain the boundary, x = 0 and y = 0.

Our problem is to minimize

f(x, y) =
96

xy
+ 2y + x+ xy.

The critical points of this function occur where

fx(x, y) = −
96

x2y
+ 1 + y = 0

fy(x, y) = −
96

xy2
+ 2 + x = 0.

We put the 96/(x2y) and 96/(xy2) terms on the other side of the the equation, divide, and simplify:

96/(x2y)

96/(xy2)
=

1 + y

2 + x
so

y

x
=

1 + y

2 + x
giving 2y = x.

Substituting x = 2y in the equation fy(x, y) = 0 gives

−
96

2y · y2
+ 2 + 2y = 0

y4 + y3 − 24 = 0.

The only positive solution to this equation is y = 2, so the only critical point in the region is (4, 2).
To check that the critical point is a local minimum, we use the second-derivative test. Since

D(4, 2) = fxxfyy − (fxy)
2
=

192

43 · 2
·
192

4 · 23
−

(
96

42 · 22
+ 1

)2

= 9−
25

4
> 0

and fxx(4, 2) > 0, the point (4, 2) is a local minimum. Since the value of f increases without bound
as x or y increases without bound and as x → 0+ and y → 0+, it can be shown that (4, 2) is a global
minimum. (See Problem 29.) Thus, the optimal box is 4 meters long and 2 meters wide.

Fitting a Line to Data: Least Squares
Suppose we want to fit the “best” line to some data in the plane. We measure the distance from a
line to the data points by adding the squares of the vertical distances from each point to the line.
The smaller this sum of squares is, the better the line fits the data. The line with the minimum sum
of square distances is called the least squares line, or the regression line. If the data is nearly linear,
the least squares line is a good fit; otherwise it may not be. (See Figure 15.21.)

Data almost linear: line fits well Data not very linear: line does not fit well

Figure 15.21: Fitting lines to data points

Example 3 Find a least squares line for the following data points: (1, 1), (2, 1), and (3, 3).



15.2 OPTIMIZATION 843

Solution Suppose the line has equation y = b + mx. If we find b and m then we have found the line. So,
for this problem, b and m are the two variables. Any values of m and b are possible, so this is an
unconstrained problem. We want to minimize the function f(b,m) that gives the sum of the three
squared vertical distances from the points to the line in Figure 15.22.
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Figure 15.22: The least squares line minimizes the sum of the squares of these vertical distances

The vertical distance from the point (1, 1) to the line is the difference in the y-coordinates
1− (b+m); similarly for the other points. Thus, the sum of squares is

f(b,m) = (1 − (b+m))
2
+ (1− (b+ 2m))

2
+ (3− (b+ 3m))

2.

To minimize f we look for critical points. First we differentiate f with respect to b:

∂f

∂b
= −2(1− (b+m))− 2(1− (b+ 2m))− 2(3− (b+ 3m))

= −2 + 2b+ 2m− 2 + 2b+ 4m− 6 + 2b+ 6m

= −10 + 6b+ 12m.

Now we differentiate with respect to m:

∂f

∂m
= 2(1− (b+m))(−1) + 2(1− (b+ 2m))(−2) + 2(3− (b+ 3m))(−3)

= −2 + 2b+ 2m− 4 + 4b+ 8m− 18 + 6b+ 18m

= −24 + 12b+ 28m.

The equations
∂f

∂b
= 0 and

∂f

∂m
= 0 give a system of two linear equations in two unknowns:

−10 + 6b+ 12m = 0,

−24 + 12b+ 28m = 0.

The solution to this pair of equations is the critical point b = −1/3 and m = 1. Since

D = fbbfmm − (fmb)
2
= (6)(28)− 12

2
= 24 and fbb = 6 > 0,

we have found a local minimum. The graph of f(b,m) is a parabolic bowl, so the local minimum is
the global minimum of f . Thus, the least squares line is

y = x−
1

3
.

As a check, notice that the line y = x passes through the points (1, 1) and (3, 3). It is reasonable
that introducing the point (2, 1) moves the y-intercept down from 0 to −1/3.

The general formulas for the slope and y-intercept of a least squares line are in Project 2 on
page 865. Many calculators have built-in formulas for b and m, as well as for the correlation coeffi-
cient, which measures how well the data points fit the least squares line.
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How Do We Know Whether a Function Has a Global Maximum or Minimum?
Under what circumstances does a function of two variables have a global maximum or minimum?
The next example shows that a function may have both a global maximum and a global minimum
on a region, or just one, or neither.

Example 4 Investigate the global maxima and minima of the following functions:

(a) h(x, y) = 1 + x2 + y2 on the disk x2 + y2 ≤ 1.
(b) f(x, y) = x2 − 2x+ y2 − 4y + 5 on the xy-plane.
(c) g(x, y) = x2 − y2 on the xy-plane.

Solution (a) The graph of h(x, y) = 1 + x2 + y2 is a bowl-shaped paraboloid with a global minimum of 1
at (0, 0), and a global maximum of 2 on the edge of the region, x2 + y2 = 1.

(b) The graph of f in Figure 15.5 on page 831 shows that f has a global minimum at the point (1, 2)
and no global maximum (because the value of f increases without bound as x → ∞, y → ∞).

(c) The graph of g in Figure 15.7 on page 832 shows that g has no global maximum because
g(x, y) → ∞ as x → ∞ if y is constant. Similarly, g has no global minimum because g(x, y) →
−∞ as y → ∞ if x is constant.

Sometimes a function is guaranteed to have a global maximum and minimum. For example, a
continuous function, h(x), of one variable has a global maximum and minimum on every closed
interval a ≤ x ≤ b. On a non-closed interval, such as a ≤ x < b or a < x < b, or on an unbounded
interval, such as a < x < ∞, then h may not have a maximum or minimum value.

What is the situation for functions of two variables? As it turns out, a similar result is true for
continuous functions defined on regions which are closed and bounded, analogous to the closed and
bounded interval a ≤ x ≤ b. In everyday language we say

• A closed region is one which contains its boundary;

• A bounded region is one which does not stretch to infinity in any direction.

More precise definitions follow. Suppose R is a region in 2-space. A point (x0, y0) is a bound-
ary point of R if, for every r > 0, the disk (x − x0)

2 + (y − y0)
2 < r2 with center (x0, y0) and

radius r contains both points which are in R and points which are not in R. See Figure 15.23. A
point (x0, y0) can be a boundary point of the region R without belonging to R. A point (x0, y0)
in R is an interior point if it is not a boundary point; thus, for small enough r > 0, the disk of
radius r centered at (x0, y0) lies entirely in the region R. See Figure 15.24. The collection of all the
boundary points is the boundary of R and the collection of all the interior points is the interior of R.
The region R is closed if it contains its boundary; it is open if every point in R is an interior point.

A region R in 2-space is bounded if the distance between every point (x, y) in R and the origin
is less than some constant K . Closed and bounded regions in 3-space are defined in the same way.

R

(x0, y0)

Figure 15.23: Boundary point (x0, y0) of R

R

(x0, y0)

Figure 15.24: Interior point (x0, y0) of R

Example 5 (a) The square −1 ≤ x ≤ 1, −1 ≤ y ≤ 1 is closed and bounded.
(b) The first quadrant x ≥ 0, y ≥ 0 is closed but is not bounded.
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(c) The disk x2 + y2 < 1 is open and bounded, but is not closed.
(d) The half-plane y > 0 is open, but is neither closed nor bounded.

The reason that closed and bounded regions are useful is the following theorem, which is also
true for functions of three or more variables:5

Theorem 15.1: Extreme Value Theorem for Multivariable Functions

If f is a continuous function on a closed and bounded region R, then f has a global maximum
at some point (x0, y0) in R and a global minimum at some point (x1, y1) in R.

If f is not continuous or the region R is not closed and bounded, there is no guarantee that f
achieves a global maximum or global minimum on R. In Example 4, the function g is continuous
but does not achieve a global maximum or minimum in 2-space, a region which is closed but not
bounded. Example 6 illustrates what can go wrong when the region is bounded but not closed.

Example 6 Does the function f have a global maximum or minimum on the regionR given by 0 < x2 + y2 ≤ 1?

f(x, y) =
1

x2 + y2

Solution The region R is bounded, but it is not closed since it does not contain the boundary point (0, 0).
We see from the graph of z = f(x, y) in Figure 15.25 that f has a global minimum on the circle
x2 + y2 = 1. However, f(x, y) → ∞ as (x, y) → (0, 0), so f has no global maximum.

x y

z

Figure 15.25: Graph showing f(x, y) = 1
x2+y2 has no global maximum on 0 < x2 + y2 ≤ 1

Exercises and Problems for Section 15.2
Exercises

1. By looking at the weather map in Figure 12.1 on page 666, find the maximum and minimum daily high temperatures in
the states of Mississippi, Alabama, Pennsylvania, New York, California, Arizona, and Massachusetts.

In Exercises 2–4, estimate the position and approximate value of the global maxima and minima on the region shown.
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5For a proof, see W. Rudin, Principles of Mathematical Analysis, 2nd ed., p. 89 (New York: McGraw-Hill, 1976).
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In Exercises 5–7, find the global maximum and minimum of
the function on −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, and say whether
it occurs on the boundary of the square. [Hint: Use graphs.]

5. z = x2 + y2 6. z = −x2 − y2 7. z = x2 − y2

In Exercises 8–12, do the functions have global maxima and
minima in the xy-plane?

8. f(x, y) = x2 − 2y2 9. g(x, y) = x2y2

10. h(x, y) = x3 + y3 11. f(x, y) = −2x2 − 7y2

12. f(x, y) = x2/2 + 3y3 + 9y2 − 3x

Problems

13. (a) Compute and classify the critical points of
f(x, y) = 2x2 − 3xy + 8y2 + x− y.

(b) By completing the square, plot the contour diagram
of f and show that the local extremum found in part
(a) is a global one.

14. A missile has a guidance device which is sensitive to both
temperature, t◦C, and humidity, h. The range in km over
which the missile can be controlled is given by

Range = 27,800 − 5t2 − 6ht − 3h2 + 400t + 300h.

What are the optimal atmospheric conditions for control-
ling the missile?

15. A closed rectangular box has volume 32 cm3. What are
the lengths of the edges giving the minimum surface
area?

16. A closed rectangular box with faces parallel to the co-
ordinate planes has one bottom corner at the origin and
the opposite top corner in the first octant on the plane
3x+ 2y + z = 1. What is the maximum volume of such
a box?

17. An international airline has a regulation that each pas-
senger can carry a suitcase having the sum of its width,
length and height less than or equal to 135 cm. Find the
dimensions of the suitcase of maximum volume that a
passenger may carry under this regulation.

18. Design a rectangular milk carton box of width w, length
l, and height h which holds 512 cm3 of milk. The sides
of the box cost 1 cent/cm2 and the top and bottom cost
2 cent/cm2. Find the dimensions of the box that mini-
mize the total cost of materials used.

19. Find the point on the plane 3x+2y+z = 1 that is closest
to the origin by minimizing the square of the distance.

20. What is the shortest distance from the surface xy+3x+
z2 = 9 to the origin?

21. For constants a, b, and c, let f(x, y) = ax+ by + c be a
linear function, and let R be a region in the xy-plane.

(a) If R is any disk, show that the maximum and mini-
mum values of f on R occur on the boundary of the
disk.

(b) If R is any rectangle, show that the maximum and
minimum values of f on R occur at the corners of
the rectangle. They may occur at other points of the
rectangle as well.

(c) Use a graph of the plane z = f(x, y) to explain your
answers in parts (a) and (b).

22. Two products are manufactured in quantities q1 and q2
and sold at prices of p1 and p2, respectively. The cost of
producing them is given by

C = 2q21 + 2q22 + 10.

(a) Find the maximum profit that can be made, assum-
ing the prices are fixed.

(b) Find the rate of change of that maximum profit as p1
increases.

23. A company operates two plants which manufacture the
same item and whose total cost functions are

C1 = 8.5 + 0.03q21 and C2 = 5.2 + 0.04q22 ,

where q1 and q2 are the quantities produced by each
plant. The company is a monopoly. The total quantity de-
manded, q = q1 + q2, is related to the price, p, by

p = 60− 0.04q.

How much should each plant produce in order to maxi-
mize the company’s profit?6

24. The quantity of a product demanded by consumers is a
function of its price. The quantity of one product de-
manded may also depend on the price of other products.
For example, the demand for tea is affected by the price
of coffee; the demand for cars is affected by the price of
gas. The quantities demanded, q1 and q2, of two products
depend on their prices, p1 and p2, as follows:

q1 = 150 − 2p1 − p2

q2 = 200− p1 − 3p2.

(a) What does the fact that the coefficients of p1 and p2
are negative tell you? Give an example of two prod-
ucts that might be related this way.

(b) If one manufacturer sells both products, how should
the prices be set to generate the maximum possible
revenue? What is that maximum possible revenue?

6Adapted from M. Rosser, Basic Mathematics for Economists, p. 318 (New York: Routledge, 1993).
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25. A company manufactures a product which requires capi-
tal and labor to produce. The quantity, Q, of the product
manufactured is given by the Cobb-Douglas function

Q = AKaLb,

where K is the quantity of capital; L is the quantity of
labor used; and A, a, and b are positive constants with
0 < a < 1 and 0 < b < 1. One unit of capital costs $k
and one unit of labor costs $�. The price of the product is
fixed at $p per unit.

(a) If a+ b < 1, how much capital and labor should the
company use to maximize its profit?

(b) Is there a maximum profit in the case a + b = 1?
What about a+ b ≥ 1? Explain.

26. Let f(x, y) = x2(y + 1)3 + y2. Show that f has only
one critical point, namely (0, 0), and that point is a local
minimum but not a global minimum. Contrast this with
the case of a function with a single local minimum in
one-variable calculus.

27. Find the parabola of the form y = ax2+b which best fits
the points (1, 0), (2, 2), (3, 4) by minimizing the sum of
squares, S, given by

S = (a+ b)2 + (4a+ b− 2)2 + (9a+ b− 4)2.

28. Find the least squares line for the data points
(0, 4), (1, 3), (2, 1).

29. Let f(x, y) = 80/(xy)+20y+10x+10xy in the region
R where x, y > 0.

(a) Explain why f(x, y) > f(2, 1) at every point in R
where

(i) x > 20 (ii) y > 20

(iii) x < 0.01 and y ≤ 20

(iv) y < 0.01 and x ≤ 20

(b) Explain why f must have a global minimum at a
critical point in R.

(c) Explain why f must have a global minimum in R at
the point (2, 1).

30. Let f(x, y) = 2/x + 3/y + 4x + 5y in the region R
where x, y > 0.

(a) Explain why f must have a global minimum at some
point in R.

(b) Find the global minimum.

31. (a) The energy, E, required to compress a gas from a
fixed initial pressure P0 to a fixed final pressure PF

through an intermediate pressure p is7

E =
(

p

P0

)2
+

(
PF

p

)2

− 1.

How should p be chosen to minimize the energy?
(b) Now suppose the compression takes place in two

stages with two intermediate pressures, p1 and p2.
What choices of p1 and p2 minimize the energy if

E =
(
p1
P0

)2
+

(
p2
p1

)2

+

(
PF

p2

)2

− 2?

32. The Dorfman-Steiner rule shows how a company which
has a monopoly should set the price, p, of its product and
how much advertising, a, it should buy. The price of ad-
vertising is pa per unit. The quantity, q, of the product
sold is given by q = Kp−Eaθ, where K > 0, E > 1,
and 0 < θ < 1 are constants. The cost to the company to
make each item is c.

(a) How does the quantity sold, q, change if the price,
p, increases? If the quantity of advertising, a, in-
creases?

(b) Show that the partial derivatives can be written in the
form ∂q/∂p = −Eq/p and ∂q/∂a = θq/a.

(c) Explain why profit, π, is given by π = pq−cq−paa.
(d) If the company wants to maximize profit, what must

be true of the partial derivatives, ∂π/∂p and ∂π/∂a?
(e) Find ∂π/∂p and ∂π/∂a.
(f) Use your answers to parts (d) and (e) to show that at

maximum profit,

p− c

p
=

1

E
and

p− c

pa
=

a

θq
.

(g) By dividing your answers in part (f), show that at
maximum profit,

paa

pq
=

θ

E
.

This is the Dorfman-Steiner rule, that the ratio of the
advertising budget to revenue does not depend on the
price of advertising.

Strengthen Your Understanding

In Problems 33–35, explain what is wrong with the statement.

33. A function having no critical points in a region R cannot
have a global maximum in the region.

34. No continuous function has a global minimum on an un-
bounded region R.

35. If f(x, y) has a local maximum value of 1 at the origin,
then the global maximum is 1.

In Problems 36–37, give an example of:

36. A continuous function f(x, y) that has no global maxi-
mum and no global minimum on the xy-plane.

37. A function f(x, y) and a region R such that the maxi-
mum value of f on R is on the boundary of R.

7Adapted from Aris Rutherford, Discrete Dynamic Programming, p. 35 (New York: Blaisdell, 1964).
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Are the statements in Problems 38–46 true or false? Give rea-
sons for your answer.

38. If P0 is a global maximum of f , where f is defined on
all of 2-space, then P0 is also a local maximum of f .

39. Every function has a global maximum.

40. The region consisting of all points (x, y) satisfying x2 +
y2 < 1 is bounded.

41. The region consisting of all points (x, y) satisfying x2 +
y2 < 1 is closed.

42. The function f(x, y) = x2 + y2 has a global minimum
on the region x2 + y2 < 1.

43. The function f(x, y) = x2 + y2 has a global maximum
on the region x2 + y2 < 1.

44. If P and Q are two distinct points in 2-space, and f has a
global maximum at P , then f cannot have a global max-
imum at Q.

45. The function f(x, y) = sin(1 + exy) must have a global
minimum in the square region 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

46. If P0 is a global minimum of f on a closed and bounded
region, then P0 need not be a critical point of f .

15.3 CONSTRAINED OPTIMIZATION: LAGRANGE MULTIPLIERS

Many, perhaps most, real optimization problems are constrained by external circumstances. For
example, a city wanting to build a public transportation system has only a limited number of tax
dollars it can spend on the project. In this section, we see how to find an optimum value under such
constraints.

In Section 15.2, we saw how to optimize a function f(x, y) on a region R. If the region R is
the entire xy-plane, we have unconstrained optimization; if the region R is not the entire xy-plane,
that is, if x or y is restricted in some way, then we have constrained optimization.

Graphical Approach: Maximizing Production Subject to a Budget Constraint
Suppose we want to maximize the production under a budget constraint. Suppose production, f , is
a function of two variables, x and y, which are quantities of two raw materials, and that

f(x, y) = x2/3y1/3.

If x and y are purchased at prices of p1 and p2 thousands of dollars per unit, what is the maximum
production f that can be obtained with a budget of c thousand dollars?

To maximize f without regard to the budget, we simply increase x and y. However, the budget
constraint prevents us from increasing x and y beyond a certain point. Exactly how does the budget
constrain us? With prices of p1 and p2, the amount spent on x is p1x and the amount spent on y is
p2y, so we must have

g(x, y) = p1x+ p2y ≤ c,

where g(x, y) is the total cost of the raw materials and c is the budget in thousands of dollars.
Let’s look at the case when p1 = p2 = 1 and c = 3.78. Then

x+ y ≤ 3.78.

Figure 15.26 shows some contours of f and the budget constraint represented by the line x+y =

3.78. Any point on or below the line represents a pair of values of x and y that we can afford. A
point on the line completely exhausts the budget, while a point below the line represents values of x
and y which can be bought without using up the budget. Any point above the line represents a pair
of values that we cannot afford.

To maximize f , we find the point which lies on the level curve with the largest possible value of
f and which lies within the budget. The point must lie on the budget constraint because we should
spend all the available money. Unless we are at the point where the budget constraint is tangent to
the contour f = 2, we can increase f by moving along the line representing the budget constraint in
Figure 15.26. For example, if we are on the line to the left of the point of tangency, moving right on
the constraint will increase f ; if we are on the line to the right of the point of tangency, moving left
will increase f . Thus, the maximum value of f on the budget constraint occurs at the point where
the budget constraint is tangent to the contour f = 2.
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x

y
Level curves of production

� f = 1
� f = 2
� f = 3

Budget constraint
x+ y = 3.78

�
�

Maximum production

P

Figure 15.26: Optimal point, P , where budget constraint
is tangent to a level of production function

Analytical Solution: Lagrange Multipliers
Figure 15.26 suggests that maximum production is achieved at the point where the budget constraint
is tangent to a level curve of the production function. The method of Lagrange multipliers uses this
fact in algebraic form. Figure 15.27 shows that at the optimum point, P , the gradient of f and the
normal to the budget line g(x, y) = 3.78 are parallel. Thus, at P , gradf and grad g are parallel, so
for some scalar λ, called the Lagrange multiplier,

grad f = λ grad g.

Since grad f =
(
2
3x

−1/3y1/3
)
�i +

(
1
3x

2/3y−2/3
)
�j and grad g = �i + �j , equating components

gives
2

3
x−1/3y1/3 = λ and

1

3
x2/3y−2/3

= λ.

Eliminating λ gives

2

3
x−1/3y1/3 =

1

3
x2/3y−2/3, which leads to 2y = x.

Since the constraint x+ y = 3.78 must be satisfied, we have x = 2.52 and y = 1.26. Then

f(2.52, 1.26) = (2.52)2/3(1.26)1/3 ≈ 2.

As before, we see that the maximum value of f is approximately 2. Thus, to maximize production
on a budget of $3780, we should use 2.52 units of one raw material and 1.26 units of the other.

grad f = λ grad g

�
�

x

y
Level curves of production

� f = 1
� f = 2
� f = 3

Budget constraint
g(x, y) = 3.78

�

P

Figure 15.27: At the point, P , of maximum production,
the vectors grad f and grad g are parallel
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Lagrange Multipliers in General
Suppose we want to optimize an objective function f(x, y) subject to a constraint g(x, y) = c. We
look for extrema among the points which satisfy the constraint. We make the following definition.

Suppose P0 is a point satisfying the constraint g(x, y) = c.
• f has a local maximum at P0 subject to the constraint if f(P0) ≥ f(P ) for all points
P near P0 satisfying the constraint.

• f has a global maximum at P0 subject to the constraint if f(P0) ≥ f(P ) for all points
P satisfying the constraint.

Local and global minima are defined similarly.

As we saw in the production example, constrained extrema occur at points of tangency of
contours of f and g; they can also occur at endpoints of constraints. At a point of tangency, gradf
is perpendicular to the constraint and so parallel to grad g. At interior points on the constraint where
gradf is not perpendicular to the constraint, the value of f can be increased or decreased by moving
along the constraint. Therefore constrained extrema occur only at points where gradf and grad g
are parallel or at endpoints of the constraint. (See Figure 15.28.) At points where the gradients are
parallel, provided grad g �= �0 , there is a constant λ such that gradf = λ grad g.

Optimizing f Subject to the Constraint g = c:
If a smooth function, f , has a maximum or minimum subject to a smooth constraint g = c at
a point P0, then either P0 satisfies the equations

gradf = λ grad g and g = c,

or P0 is an endpoint of the constraint, or grad g(P0) = �0 . To find P0, compare values of f at
the points satisfying these three conditions. The numberλ is called the Lagrange multiplier.

If the set of points satisfying the constraint is closed and bounded, such as a circle or line
segment, then there must be a global maximum and minimum of f subject to the constraint. If the
constraint is not closed and bounded, such as a line or hyperbola, then there may or may not be a
global maximum and minimum.

�

�

P0

��

grad f

grad g

grad f

grad g f = 1

f = 2

f = 3

f = 4

g = c

Figure 15.28: Maximum and minimum values
of f(x, y) on g(x, y) = c are at points where

grad f is parallel to grad g

Example 1 Find the maximum and minimum values of x+ y on the circle x2 + y2 = 4.
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Solution The objective function is
f(x, y) = x+ y,

and the constraint is
g(x, y) = x2

+ y2 = 4.

Since gradf = fx�i + fy�j = �i + �j and grad g = gx�i + gy�j = 2x�i + 2y�j , the condition
gradf = λ grad g gives

1 = 2λx and 1 = 2λy,

so
x = y.

We also know that
x2

+ y2 = 4,

giving x = y =
√
2 or x = y = −

√
2. The constraint has no endpoints (it’s a circle) and grad g �= �0

on the circle, so we compare values of f at (
√
2,
√
2) and (−

√
2,−

√
2). Since f(x, y) = x+ y, the

maximum value of f is f(
√
2,
√
2) = 2

√
2; the minimum value is f(−

√
2,−

√
2) = −2

√
2. (See

Figure 15.29.)

f = 2
√
2

f = 2

f = 1

f = 0

f = −1

f = −2

f = −2
√
2

Maximum f
(
√
2,
√
2)

(−√
2,−√

2)
Minimum f

x

yx2 + y2 = 4



Figure 15.29: Maximum and minimum values of f(x, y) = x+ y on the circle
x2 + y2 = 4 are at points where contours of f are tangent to the circle

How to Distinguish Maxima from Minima

There is a second-derivative test8 for classifying the critical points of constrained optimization prob-
lems, but it is more complicated than the test in Section 15.1. However, a graph of the constraint
and some contours usually shows which points are maxima, which points are minima, and which
are neither.

Optimization with Inequality Constraints
The production problem that we looked at first was to maximize production f(x, y) subject to a
budget constraint

g(x, y) = p1x+ p2y ≤ c.

Since the inputs are nonnegative, x ≥ 0 and y ≥ 0, we have three inequality constraints, which
restrict (x, y) to a region of the plane rather than to a curve in the plane. In principle, we should first
check to see whether or not f(x, y) has any critical points in the interior:

p1x+ p2y < c, x > 0 y > 0.

However, in the case of a budget constraint, we can see that the maximum of f must occur when
the budget is exhausted, so we look for the maximum value of f on the boundary line:

p1x+ p2y = c, x ≥ 0 y ≥ 0.

8See J. E. Marsden and A. J. Tromba, Vector Calculus, 4th ed., p. 218 (New York: W.H. Freeman, 1996).
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Strategy for Optimizing f(x, y) Subject to the Constraint g(x, y) ≤ c
• Find all points in the region g(x, y) < c where grad f is zero or undefined.

• Use Lagrange multipliers to find the local extrema of f on the boundary g(x, y) = c.

• Evaluate f at the points found in the previous two steps and compare the values.

From Section 15.2 we know that if f is continuous on a closed and bounded region, R, then f
is guaranteed to attain its global maximum and minimum values on R.

Example 2 Find the maximum and minimum values of f(x, y) = (x− 1)2 + (y − 2)2 subject to the constraint
x2 + y2 ≤ 45.

Solution First, we look for all critical points of f in the interior of the region. Setting

fx(x, y) = 2(x− 1) = 0

fy(x, y) = 2(y − 2) = 0.

we find f has exactly one critical point at x = 1, y = 2. Since 12 + 22 < 45, that critical point is in
the interior of the region.

Next, we find the local extrema of f on the boundary curve x2 + y2 = 45. To do this, we use
Lagrange multipliers with constraint g(x, y) = x2 + y2 = 45. Setting gradf = λ grad g, we get

2(x− 1) = λ · 2x,

2(y − 2) = λ · 2y.

We can’t have x = 0 since the first equation would become −2 = 0. Similarly, y �= 0. So we can
solve each equation for λ by dividing by x and y. Setting the expressions for λ equal gives

x− 1

x
=

y − 2

y
,

so
y = 2x.

Combining this with the constraint x2 + y2 = 45, we get

5x2
= 45

so
x = ±3.

Since y = 2x, we have possible local extrema at x = 3, y = 6 and x = −3, y = −6.
We conclude that the only candidates for the maximum and minimum values of f in the region

occur at (1, 2), (3, 6), and (−3,−6). Evaluating f at these three points, we find

f(1, 2) = 0, f(3, 6) = 20, f(−3,−6) = 80.

Therefore, the minimum value of f is 0 at (1, 2) and the maximum value is 80 at (−3,−6).

The Meaning of λ
In the uses of Lagrange multipliers so far, we never found (or needed) the value of λ. However, λ
does have a practical interpretation. In the production example, we wanted to maximize

f(x, y) = x2/3y1/3

subject to the constraint
g(x, y) = x+ y = 3.78.



15.3 CONSTRAINED OPTIMIZATION: LAGRANGE MULTIPLIERS 853

We solved the equations

2

3
x−1/3y1/3 = λ,

1

3
x2/3y−2/3

= λ,

x+ y = 3.78,

to get x = 2.52, y = 1.26 and f(2.52, 1.26) ≈ 2. Continuing to find λ gives us

λ ≈ 0.53.

Now we do another, apparently unrelated, calculation. Suppose our budget is increased slightly,
from 3.78 to 4.78, giving a new budget constraint of x+ y = 4.78. Then the corresponding solution
is at x = 3.19 and y = 1.59 and the new maximum value (instead of f = 2) is

f = (3.19)2/3(1.59)1/3 ≈ 2.53.

Notice that the amount by which f has increased is 0.53, the value of λ. Thus, in this example,
the value of λ represents the extra production achieved by increasing the budget by one—in other
words, the extra “bang” you get for an extra “buck” of budget. In fact, this is true in general:
• The value of λ is approximately the increase in the optimum value of f when the budget is

increased by 1 unit.
More precisely:
• The value of λ represents the rate of change of the optimum value of f as the budget increases.

An Expression for λ

To interpret λ, we look at how the optimum value of the objective function f changes as the value
c of the constraint function g is varied. In general, the optimum point (x0, y0) depends on the
constraint value c. So, provided x0 and y0 are differentiable functions of c, we can use the chain
rule to differentiate the optimum value f(x0(c), y0(c)) with respect to c:

df

dc
=

∂f

∂x

dx0

dc
+

∂f

∂y

dy0
dc

.

At the optimum point (x0, y0), we have fx = λgx and fy = λgy , and therefore

df

dc
= λ

(
∂g

∂x

dx0

dc
+

∂g

∂y

dy0
dc

)
= λ

dg

dc
.

But, as g(x0(c), y0(c)) = c, we see that dg/dc = 1, so df/dc = λ. Thus, we have the following
interpretation of the Lagrange multiplier λ:

The value of λ is the rate of change of the optimum value of f as c increases (where g(x, y) =
c). If the optimum value of f is written as f(x0(c), y0(c)), then

d

dc
f(x0(c), y0(c)) = λ.

Example 3 The quantity of goods produced according to the function f(x, y) = x2/3y1/3 is maximized subject
to the budget constraint x + y ≤ 3.78. The budget is increased to allow for a small increase in
production. What is the price of the product if the sale of the additional goods covers the budget
increase?
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Solution We know that λ = 0.53, which tells us that df/dc = 0.53. The constraint corresponds to a budget of
$3.78 thousand. Therefore increasing the budget by $1000 increases production by about 0.53 units.
In order to make the increase in budget profitable, the extra goods produced must sell for more than
$1000. Thus, if p is the price of each unit of the good, then 0.53p is the revenue from the extra 0.53
units sold. Thus, we need 0.53p ≥ 1000 so p ≥ 1000/0.53 = $1890.

The Lagrangian Function
Constrained optimization problems are frequently solved using a Lagrangian function, L. For ex-
ample, to optimize f(x, y) subject to the constraint g(x, y) = c, we use the Lagrangian function

L(x, y, λ) = f(x, y)− λ(g(x, y) − c).

To see how the function L is used, compute the partial derivatives of L:

∂L

∂x
=

∂f

∂x
− λ

∂g

∂x
,

∂L

∂y
=

∂f

∂y
− λ

∂g

∂y
,

∂L

∂λ
= −(g(x, y)− c).

Notice that if (x0, y0) is an extreme point of f(x, y) subject to the constraint g(x, y) = c and λ0 is
the corresponding Lagrange multiplier, then at the point (x0, y0, λ0) we have

∂L

∂x
= 0 and

∂L

∂y
= 0 and

∂L

∂λ
= 0.

In other words, (x0, y0, λ0) is a critical point for the unconstrained Lagrangian function, L(x, y, λ).
Thus, the Lagrangian converts a constrained optimization problem to an unconstrained problem.

Example 4 A company has a production function with three inputs x, y, and z given by

f(x, y, z) = 50x2/5y1/5z1/5.

The total budget is $24,000 and the company can buy x, y, and z at $80, $12, and $10 per unit,
respectively. What combination of inputs will maximize production? 9

Solution We need to maximize the objective function

f(x, y, z) = 50x2/5y1/5z1/5,

subject to the constraint

g(x, y, z) = 80x+ 12y + 10z = 24,000.

The method for functions of two variables works for functions of three variables, so we construct
the Lagrangian function

L(x, y, z, λ) = 50x2/5y1/5z1/5 − λ(80x+ 12y + 10z − 24,000),

9Adapted from M. Rosser, Basic Mathematics for Economists, p. 363 (New York: Routledge, 1993).
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and solve the system of equations we get from gradL = �0 :

∂L

∂x
= 20x−3/5y1/5z1/5 − 80λ = 0,

∂L

∂y
= 10x2/5y−4/5z1/5 − 12λ = 0,

∂L

∂z
= 10x2/5y1/5z−4/5 − 10λ = 0,

∂L

∂λ
= −(80x+ 12y + 10z − 24,000) = 0.

Simplifying this system gives

λ =
1

4
x−3/5y1/5z1/5,

λ =
5

6
x2/5y−4/5z1/5,

λ = x2/5y1/5z−4/5,

80x+ 12y + 10z = 24,000.

Eliminating z from the first two equations gives x = 0.3y. Eliminating x from the second and third
equations gives z = 1.2y. Substituting for x and z into 80x+ 12y + 10z = 24,000 gives

80(0.3y) + 12y + 10(1.2y) = 24,000,

so y = 500. Then x = 150 and z = 600, and f(150, 500, 600) = 4,622 units.
The graph of the constraint, 80x + 12y + 10z = 24,000, is a plane. Since the inputs x, y, z

must be nonnegative, the graph is a triangle in the first octant, with edges on the coordinate planes.
On the boundary of the triangle, one (or more) of the variables x, y, z is zero, so the function f is
zero. Thus production is maximized within the budget using x = 150, y = 500, and z = 600.

Exercises and Problems for Section 15.3
Exercises

In Exercises 1–17, use Lagrange multipliers to find the maxi-
mum and minimum values of f subject to the given constraint,
if such values exist.

1. f(x, y) = x+ y, x2 + y2 = 1

2. f(x, y) = x+ 3y + 2, x2 + y2 = 10

3. f(x, y) = (x− 1)2 + (y + 2)2, x2 + y2 = 5

4. f(x, y) = x3 + y, 3x2 + y2 = 4

5. f(x, y) = 3x− 2y, x2 + 2y2 = 44

6. f(x, y) = 2xy, 5x+ 4y = 100

7. f(x1, x2) = x1
2 + x2

2, x1 + x2 = 1

8. f(x, y) = x2 + y, x2 − y2 = 1

9. f(x, y, z) = x+ 3y + 5z, x2 + y2 + z2 = 1

10. f(x, y, z) = x2 − y2 − 2z, x2 + y2 = z

11. f(x, y, z) = xyz, x2 + y2 + 4z2 = 12

12. f(x, y) = x2 + 2y2, x2 + y2 ≤ 4

13. f(x, y) = x+ 3y, x2 + y2 ≤ 2

14. f(x, y) = xy, x2 + 2y2 ≤ 1

15. f(x, y) = x3 + y, x+ y ≥ 1

16. f(x, y) = (x+ 3)2 + (y − 3)2, x2 + y2 ≤ 2

17. f(x, y) = x2y + 3y2 − y, x2 + y2 ≤ 10

18. Decide whether each point appears to be a maximum,
minimum, or neither for the function f constrained by
the loop in Figure 15.30.

(a) P (b) Q (c) R (d) S

Q

P

S

R


Constraint

f = 10

f = 20

f = 30 f = 40
f = 50

f = 60

Figure 15.30
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Problems

19. Find the maximum value of f(x, y) = x+ y− (x− y)2

on the triangular region x ≥ 0, y ≥ 0, x+ y ≤ 1.

20. (a) Draw contours of f(x, y) = 2x+ y for
z = −7,−5,−3,−1, 1, 3, 5, 7.

(b) On the same axes, graph the constraint x2+y2 = 5.
(c) Use the graph to approximate the points at which f

has a maximum or a minimum value subject to the
constraint x2 + y2 = 5.

(d) Use Lagrange multipliers to find the maximum and
minimum values of f(x, y) = 2x + y subject to
x2 + y2 = 5.

21. Let f(x, y) = xαy1−α for 0 < α < 1. Find the
value of α such that the maximum value of f on the line
2x+ 3y = 6 occurs at (1.5, 1).

22. Figure 15.31 shows contours of f . Does f have a max-
imum value subject to the constraint g(x, y) = c for
x ≥ 0, y ≥ 0? If so, approximately where is it and what
is its value? Does f have a minimum value subject to the
constraint? If so, approximately where and what?

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

x

y

�

g(x, y) = c

	

f = 700

�

f = 600

�

f = 500

 

f = 400

�
f = 300

� f = 200

�

f = 100

Figure 15.31

23. Each person tries to balance his or her time between
leisure and work. The tradeoff is that as you work less
your income falls. Therefore each person has indifference
curves which connect the number of hours of leisure, l,
and income, s. If, for example, you are indifferent be-
tween 0 hours of leisure and an income of $1125 a week
on the one hand, and 10 hours of leisure and an income
of $750 a week on the other hand, then the points l = 0,
s = 1125, and l = 10, s = 750 both lie on the same
indifference curve. Table 15.3 gives information on three
indifference curves, I, II, and III.

Table 15.3

Weekly income Weekly leisure hours

I II III I II III

1125 1250 1375 0 20 40

750 875 1000 10 30 50

500 625 750 20 40 60

375 500 625 30 50 70

250 375 500 50 70 90

(a) Graph the three indifference curves.
(b) You have 100 hours a week available for work and

leisure combined, and you earn $10/hour. Write an
equation in terms of l and s which represents this
constraint.

(c) On the same axes, graph this constraint.
(d) Estimate from the graph what combination of leisure

hours and income you would choose under these
circumstances. Give the corresponding number of
hours per week you would work.

24. Figure 15.32 shows ∇f for a function f(x, y) and two
curves g(x, y) = 1 and g(x, y) = 2. Mark the follow-
ing:

(a) The point(s) A where f has a local maximum.
(b) The point(s) B where f has a saddle point.
(c) The point C where f has a maximum on g = 1.
(d) The point D where f has a minimum on g = 1.
(e) If you used Lagrange multipliers to find C, what

would the sign of λ be? Why?

�g = 2

�g = 1

Figure 15.32

25. The point P is a maximum or minimum of the function
f subject to the constraint g(x, y) = x + y = c, with
x, y ≥ 0. For the graphs (a) and (b), does P give a max-
imum or a minimum of f? What is the sign of λ? If P
gives a maximum, where does the minimum of f occur?
If P gives a minimum, where does the maximum of f
occur?

x

y

� f = 3
� f = 2
� f = 1

g(x, y) = c�

P

(a)

x

y

� f = 1
� f = 2
� f = 3

g(x, y) = c�

P

(b)
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26. Figure 15.33 shows the optimal point (marked with a dot)
in three optimization problems with the same constraint.
Arrange the corresponding values of λ in increasing or-
der. (Assume λ is positive.)

f = 3
f = 2
f = 1
x

y(I)

�

f = 3

�

f = 2

� f = 1
x

y(II)

�

f = 3

�

f = 2

� f = 1
x

y(III)

Figure 15.33

27. If the right side of the constraint in Exercise 5 is changed
by the small amount Δc, by approximately how much do
the maximum and minimum values change?

28. If the right side of the constraint in Exercise 16 is
changed by the small amount Δc, by approximately how
much do the maximum and minimum values change?

29. The function P (x, y) gives the number of units produced
and C(x, y) gives the cost of production.

(a) A company wishes to maximize production at a
fixed cost of $50,000. What is the objective func-
tion f? What is the constraint equation? What is the
meaning of λ in this situation?

(b) A company wishes to minimize costs at a fixed pro-
duction level of 2000 units. What is the objective
function f? What is the constraint equation? What
is the meaning of λ in this situation?

30. Design a closed cylindrical container which holds
100 cm3 and has the minimal possible surface area. What
should its dimensions be?

31. A company manufactures x units of one item and y units
of another. The total cost in dollars, C, of producing these
two items is approximated by the function

C = 5x2 + 2xy + 3y2 + 800.

(a) If the production quota for the total number of items
(both types combined) is 39, find the minimum pro-
duction cost.

(b) Estimate the additional production cost or savings if
the production quota is raised to 40 or lowered to 38.

32. An international organization must decide how to spend
the $2000 they have been allotted for famine relief in a
remote area. They expect to divide the money between

buying rice at $5/sack and beans at $10/sack. The num-
ber, P , of people who would be fed if they buy x sacks
of rice and y sacks of beans is given by

P = x+ 2y +
x2y2

2 · 108 .

What is the maximum number of people that can be fed,
and how should the organization allocate its money?

33. The quantity, q, of a product manufactured depends on
the number of workers, W , and the amount of capital in-
vested, K, and is given by

q = 6W 3/4K1/4.

Labor costs are $10 per worker and capital costs are $20
per unit, and the budget is $3000.

(a) What are the optimum number of workers and the
optimum number of units of capital?

(b) Show that at the optimum values of W and K, the
ratio of the marginal productivity of labor (∂q/∂W )
to the marginal productivity of capital (∂q/∂K) is
the same as the ratio of the cost of a unit of labor to
the cost of a unit of capital.

(c) Recompute the optimum values of W and K when
the budget is increased by one dollar. Check that in-
creasing the budget by $1 allows the production of
λ extra units of the good, where λ is the Lagrange
multiplier.

34. A neighborhood health clinic has a budget of $600,000
per quarter. The director of the clinic wants to allocate
the budget to maximize the number of patient visits, V ,
which is given as a function of the number of doctors, D,
and the number of nurses, N , by

V = 1000D0.6N0.3.

A doctor gets $40,000 per quarter; nurses get $10,000
per quarter.

(a) Set up the director’s constrained optimization prob-
lem.

(b) Describe, in words, the conditions which must be
satisfied by ∂V /∂D and ∂V /∂N for V to have an
optimum value.

(c) Solve the problem formulated in part (a).
(d) Find the value of the Lagrange multiplier and inter-

pret its meaning in this problem.
(e) At the optimum point, what is the marginal cost of a

patient visit (that is, the cost of an additional visit)?
Will that marginal cost rise or fall with the number
of visits? Why?

35. (a) In Problem 33, does the value of λ change if the bud-
get changes from $3000 to $4000?

(b) In Problem 34, does the value of λ change if the bud-
get changes from $600,000 to $700,000?

(c) What condition must a Cobb-Douglas production
function, Q = cKaLb, satisfy to ensure that the
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marginal increase of production (that is, the rate of
increase of production with budget) is not affected
by the size of the budget?

36. The production function P (K,L) gives the number of
pairs of skis produced per week at a factory operating
with K units of capital and L units of labor. The contour
diagram for P is in Figure 15.34; the parallel lines are
budget constraints for budgets, B, in dollars.

(a) On each budget constraint, mark the point that gives
the maximum production.

(b) Complete the table, where the budget, B, is in dol-
lars and the maximum production is the number of
pairs of skis to be produced each week.

B 2000 4000 6000 8000 10000

M

(c) Estimate the Lagrange multiplier λ = dM/dB at a
budget of $6000. Give units for the multiplier.

5 10 15 20

5

10

15

20

20
30
40

50

60

70

80

P = 90

2000

4000

6000

B
= 8000

10,000

K , capital

L, labor

Figure 15.34

37. A doctor wants to schedule visits for two patients who
have been operated on for tumors so as to minimize the
expected delay in detecting a new tumor. Visits for pa-
tients 1 and 2 are scheduled at intervals of x1 and x2

weeks, respectively. A total of m visits per week is avail-
able for both patients combined.

The recurrence rates for tumors for patients 1 and 2
are judged to be v1 and v2 tumors per week, respectively.
Thus, v1/(v1 + v2) and v2/(v1 + v2) are the probabil-
ities that patient 1 and patient 2, respectively, will have
the next tumor. It is known that the expected delay in
detecting a tumor for a patient checked every x weeks
is x/2. Hence, the expected detection delay for both pa-
tients combined is given by10

f(x1, x2) =
v1

v1 + v2
· x1

2
+

v2
v1 + v2

· x2

2
.

Find the values of x1 and x2 in terms of v1 and v2 that
minimize f(x1, x2) subject to the fact that m, the num-
ber of visits per week, is fixed.

38. What is the value of the Lagrange multiplier in Prob-
lem 37? What are the units of λ? What is its practical
significance to the doctor?

39. Figure 15.35 shows two weightless springs with spring
constants k1 and k2 attached between a ceiling and floor
without tension or compression. A mass m is placed be-
tween the springs which settle into equilibrium as in Fig-
ure 15.36. The magnitudes f1 and f2 of the forces of the
springs on the mass minimize the complementary energy

f2
1

2k1
+

f2
2

2k2

subject to the force balance constraint f1 + f2 = mg.

(a) Determine f1 and f2 by the method of Lagrange
multipliers.

(b) If you are familiar with Hooke’s law, find the mean-
ing of λ.

k2

k1

Figure 15.35

m

Figure 15.36

40. (a) If
∑3

i=1
xi = 1, find the values of x1, x2, x3 mak-

ing
∑3

i=1
xi

2 minimum.
(b) Generalize the result of part (a) to find the minimum

value of
∑n

i=1
xi

2 subject to
∑n

i=1
xi = 1.

41. Let f(x, y) = ax2+bxy+cy2. Show that the maximum
value of f(x, y) subject to the constraint x2 + y2 = 1 is
equal to λ, the Lagrange multiplier.

42. Find the minimum distance from the point (1, 2, 10) to
the paraboloid given by the equation z = x2 + y2. Give
a geometric justification for your answer.

43. A company produces one product from two inputs (for
example, capital and labor). Its production function
g(x, y) gives the quantity of the product that can be pro-
duced with x units of the first input and y units of the
second. The cost function (or expenditure function) is the
three-variable function C(p, q, u) where p and q are the
unit prices of the two inputs. For fixed p, q, and u, the
value C(p, q, u) is the minimum of f(x, y) = px + qy
subject to the constraint g(x, y) = u.

(a) What is the practical meaning of C(p, q, u)?
(b) Find a formula for C(p, q, u) if g(x, y) = xy.

10Adapted from Daniel Kent, Ross Shachter, et al., Efficient Scheduling of Cystoscopies in Monitoring for Recurrent
Bladder Cancer in Medical Decision Making (Philadelphia: Hanley and Belfus, 1989).
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44. A utility function U(x, y) for two items gives the util-
ity (benefit) to a consumer of x units of item 1 and y
units of item 2. The indirect utility function is the three-
variable function V (p, q, I) where p and q are the unit
prices of the two items. For fixed p, q, and I , the value
V (p, q, I) is the maximum of U(x, y) subject to the con-
straint px+ qy = I .

(a) What is the practical meaning of V (p, q, I)?
(b) The Lagrange multiplier λ that arises in the maxi-

mization defining V is called the marginal utility of
money. What is its practical meaning?

(c) Find formulas for V (p, q, I) and λ if U(x, y) = xy.

45. The function h(x, y) = x2 + y2 − λ(2x+4y − 15) has
a minimum value m(λ) for each value of λ.

(a) Find m(λ).
(b) For which value of λ is m(λ) the largest and what is

that maximum value?
(c) Find the minimum value of f(x, y) = x2 + y2 sub-

ject to the constraint 2x+4y = 15 using the method
of Lagrange multipliers and evaluate λ.

(d) Compare your answers to parts (b) and (c).

46. Let f be differentiable and grad f(2, 1) = −3�i + 4�j .
You want to see if (2, 1) is a candidate for the maximum
and minimum values of f subject to a constraint satisfied
by the point (2, 1).

(a) Show (2, 1) is not a candidate if the constraint is
x2 + y2 = 5.

(b) Show (2, 1) is a candidate if the constraint is (x −
5)2 + (y+3)2 = 25. From a sketch of the contours
for f near (2, 1) and the constraint, decide whether
(2, 1) is a candidate for a maximum or minimum.

(c) Do the same as part (b), but using the constraint
(x+ 1)2 + (y − 5)2 = 25.

47. A person’s satisfaction from consuming a quantity x1 of
one item and a quantity x2 of another item is given by

S = u(x1, x2) = a ln x1 + (1− a) lnx2,

where a is a constant, 0 < a < 1. The prices of the two
items are p1 and p2 respectively, and the budget is b.

(a) Express the maximum satisfaction that can be
achieved as a function of p1, p2, and b.

(b) Find the amount of money that must be spent to
achieve a particular level of satisfaction, c, as a func-
tion of p1, p2, and c.

48. This problem illustrates the Envelope Theorem, which
relates the maxima of z = f(x, y) subject to the con-
straint x = c to the contour diagram in Figure 15.37 and
the cross-sections in Figure 15.38.

(a) For each value c, there is a maximum value of
f(x, y) with x = c. On Figure 15.37, sketch the
curve that goes through the points where the max-
ima are achieved.

(b) On Figure 15.38, sketch the curve going through the
points corresponding to the same maximum values
in part (a). This curve is called the envelope of the
cross-sections.

(c) Show that the Lagrange multiplier λ for this con-
strained optimization problem is the slope of the en-
velope curve in part (b).
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Figure 15.37: Contour diagram of f
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Figure 15.38: Cross-sections of f

Strengthen Your Understanding

In Problems 49–50, explain what is wrong with the statement.

49. The function f(x, y) = xy has a maximum of 2 on the
constraint x+ y = 2.

50. If the level curves of f(x, y) and the level curves of
g(x, y) are not tangent at any point on the constraint
g(x, y) = c, x ≥ 0, y ≥ 0, then f has no maximum
on the constraint.

In Problems 51–55, give an example of:

51. A function f(x, y) whose maximum subject to the con-
straint x2 + y2 = 5 is at (3, 4).

52. A function f(x, y) to be optimized with constraint x2 +
2y2 ≤ 1 such that the minimum value does not change
when the constraint is changed to x2 + y2 ≤ 1 + c for
c > 0.
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53. A function f(x, y) with a minimum at (1, 1) on the con-
straint x+ y = 2.

54. A function f(x, y) that has a maximum but no minimum
on the constraint x+ y = 4.

55. A contour diagram of a function f whose maximum
value on the constraint x + 2y = 6, x ≥ 0, y ≥ 0
occurs at one of the endpoints.

For Problems 56–57, use Figure 15.39. The grid lines are one
unit apart.

f = 1

f = 2

f = 3

f = 4

f = 5
g = c

f = 0
x

y

Figure 15.39

56. Find the maximum and minimum values of f on g = c.
At which points do they occur?

57. Find the maximum and minimum values of f on the tri-
angular region below g = c in the first quadrant.

Are the statements in Problems 58–62 true or false? Give rea-
sons for your answer.

58. If f(x, y) has a local maximum at (a, b) subject to the
constraint g(x, y) = c, then g(a, b) = c.

59. If f(x, y) has a local maximum at (a, b) subject to the
constraint g(x, y) = c, then gradf(a, b) = �0 .

60. The function f(x, y) = x + y has no global maximum
subject to the constraint x− y = 0.

61. The point (2,−1) is a local minimum of f(x, y) =
x2 + y2 subject to the constraint x+ 2y = 0.

62. If grad f(a, b) and grad g(a, b) point in opposite direc-
tions, then (a, b) is a local minimum of f(x, y) con-
strained by g(x, y) = c.

In Problems 63–70, suppose that M and m are the maxi-
mum and minimum values of f(x, y) subject to the constraint
g(x, y) = c and that (a, b) satisfies g(a, b) = c. Decide
whether the statements are true or false. Give an explanation
for your answer.

63. If f(a, b) = M , then fx(a, b) = fy(a, b) = 0.

64. If f(a, b) = M , then f(a, b) = λg(a, b) for some value
of λ.

65. If grad f(a, b) = λ grad g(a, b), then f(a, b) = M or
f(a, b) = m.

66. If f(a, b) = M and fx(a, b)/fy(a, b) = 5, then
gx(a, b)/gy(a, b) = 5.

67. If f(a, b) = m and gx(a, b) = 0, then fx(a, b) = 0.

68. Increasing the value of c increases the value of M .

69. Suppose that f(a, b) = M and that grad f(a, b) =
3 grad g(a, b). Then increasing the value of c by 0.02
increases the value of M by about 0.06.

70. Suppose that f(a, b) = m and that grad f(a, b) =
3 grad g(a, b). Then increasing the value of c by 0.02
decreases the value of m by about 0.06.
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REVIEW EXERCISES AND PROBLEMS FOR CHAPTER FIFTEEN

Exercises

For Exercises 1–6, find the critical points of the given func-
tion and classify them as local maxima, local minima, saddle
points, or none of these.

1. f(x, y) = x2 + 2xy − y2 − 4x− 8y + 9

2. f(x, y) = 2xy2 − x2 − 2y2 + 1

3. f(x, y) = x3 + y2 − 3x2 + 10y + 6
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4. f(x, y) = x2y + 2y2 − 2xy + 6

5. f(x, y) =
80

xy
+ 10x+ 10xy + 20y

6. f(x, y) = sin x + sin y + sin(x + y), 0 < x < π,
0 < y < π.

For Exercises 7–10, find the local maxima, local minima, and
saddle points of the function. Decide if the local maxima or
minima are global maxima or minima. Explain.

7. f(x, y) = 10 + 12x+ 6y − 3x2 − y2

8. f(x, y) = x2 + y3 − 3xy

9. f(x, y) = x+ y +
1

x
+

4

y

10. f(x, y) = xy + ln x+ y2 − 10, x > 0

For Exercises 11–22, use Lagrange multipliers to find the
maximum and minimum values of f subject to the constraint.

11. f(x, y) = 3x− 4y, x2 + y2 = 5

12. f(x, y) = x2 + y2, x4 + y4 = 2

13. f(x, y) = x2 + y2, 4x− 2y = 15

14. f(x, y) = x2 − xy + y2, x2 − y2 = 1

15. f(x, y) = x2 + 2y2, 3x+ 5y = 200

16. f(x, y) = xy, 4x2 + y2 = 8

17. f(x, y) = −3x2 − 2y2 + 20xy, x+ y = 100

18. f(x, y, z) = x2 − 2y + 2z2, x2 + y2 + z2 = 1

19. f(x, y, z) = 2x+ y + 4z, x2 + y + z2 = 16

20. z = 4x2 − xy + 4y2, x2 + y2 ≤ 2

21. f(x, y) = x2 − y2, x2 ≥ y

22. f(x, y) = x3 − y2, x2 + y2 ≤ 1

In Exercises 23–26, does f(x, y) = x2−y2 have a maximum,
a minimum, neither, or both when subject to the constraint?

23. x = 10 24. y = 10

25. x2 + y2 = 10 26. xy = 10

Problems

27. Maximize 0.3 ln x+ 0.7 ln y on 2x+ 3y = 6.

28. (a) Write an expression for the distance between the
points (3, 4) and (x, y).

(b) Minimize this distance if (x, y) lies on the unit circle
centered at the origin. At what point does the mini-
mum occur?

(c) What is the maximum distance? At what point does
it occur?

29. If the right side of the constraint in Exercise 12 is
changed by the small amount Δc, by approximately how
much do the maximum and minimum values change?

30. Compute the regression line for the points (−1, 2),
(0,−1), (1, 1) using least squares.

31. At the point (1, 3), suppose fx = fy = 0 and fxx < 0,
fyy < 0, fxy = 0. Draw a possible contour diagram.

32. For f(x, y) = A− (x2 +Bx+ y2 + Cy), what values
of A, B, and C give f a local maximum value of 15 at
the point (−2, 1)?

33. A biological rule of thumb states that as the area A of an
island increases tenfold, the number of animal species,
N , living on it doubles. The table contains data for is-
lands in the West Indies. Assume that N is a power func-
tion of A.

(a) Use the biological rule of thumb to find

(i) N as a function of A

(ii) lnN as a function of lnA

(b) Using the data given, tabulate lnN against lnA and
find the line of best fit. Does your answer agree with
the biological rule of thumb?

Island Area (sq km) Number of species

Redonda 3 5

Saba 20 9

Montserrat 192 15

Puerto Rico 8858 75

Jamaica 10854 70

Hispaniola 75571 130

Cuba 113715 125

34. A firm manufactures a commodity at two different fac-
tories. The total cost of manufacturing depends on the
quantities, q1 and q2, supplied by each factory, and is ex-
pressed by the joint cost function,

C = f(q1, q2) = 2q21 + q1q2 + q22 + 500.

The company’s objective is to produce 200 units, while
minimizing production costs. How many units should be
supplied by each factory?

35. (a) Let f(x, y) = x2 + 2y2. Find the minimum value
m(c) of f on the line x+ y = c as a function of c.

(b) Give the value of the Lagrange multiplier λ at this
minimum.

(c) What is the relation between your answers in parts
(a) and (b)?

36. The maximum value of f(x, y) subject to the constraint
g(x, y) = 240 is 6300. The method of Lagrange multi-
pliers gives λ = 20. Find an approximate value for the
maximum of f(x, y) subject to the constraint g(x, y) =
242.
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37. An industry manufactures a product from two raw ma-
terials. The quantity produced, Q, can be given by the
Cobb-Douglas function:

Q = cxayb,

where x and y are quantities of each of the two raw ma-
terials used and a, b, and c are positive constants. The
first raw material costs $P1 per unit and the second costs
$P2 per unit. Find the maximum production possible if
no more than $K can be spent on raw materials.

38. The quantity, Q, of a product manufactured by a com-
pany is given by

Q = aK0.6L0.4,

where a is a positive constant, K is the quantity of cap-
ital and L is the quantity of labor used. Capital costs are
$20 per unit, labor costs are $10 per unit, and the com-
pany wants costs for capital and labor combined to be no
higher than $150. Suppose you are asked to consult for
the company, and learn that 5 units each of capital and
labor are being used.

(a) What do you advise? Should the company use more
or less labor? More or less capital? If so, by how
much?

(b) Write a one-sentence summary that could be used to
sell your advice to the board of directors.

39. Figure 15.40 shows contours labeled with values of
f(x, y) and a constraint g(x, y) = c. Mark the approxi-
mate points at which:

(a) grad f = λ grad g
(b) f has a maximum
(c) f has a maximum on the constraint g = c.

9

10

11

12

13

14



g = c

Figure 15.40

40. A mountain climber at the summit of a mountain wants
to descend to a lower altitude as fast as possible. The al-
titude of the mountain is given approximately by

h(x, y) = 3000− 1

10,000
(5x2 + 4xy + 2y2) meters,

where x, y are horizontal coordinates on the earth (in me-
ters), with the mountain summit located above the origin.
In thirty minutes, the climber can reach any point (x, y)
on a circle of radius 1000 m. In which direction should
she travel in order to descend as far as possible?

41. Let f(x, y, z) =
√

(x− a)2 + (y − b)2 + (z − c)2.
Minimize f subject to Ax+ By + Cz +D = 0. What
is the geometric meaning of your solution?

42. A company sells two products which are partial substi-
tutes for each other, such as coffee and tea. If the price of
one product rises, then the demand for the other product
rises. The quantities demanded, q1 and q2, are given as a
function of the prices, p1 and p2, by

q1 = 517− 3.5p1 + 0.8p2, q2 = 770− 4.4p2 +1.4p1.

What prices should the company charge in order to max-
imize the total sales revenue? 11

43. The quantity, Q, of a certain product manufactured de-
pends on the quantity of labor, L, and of capital, K, used
according to the function

Q = 900L1/2K2/3.

Labor costs $100 per unit and capital costs $200 per unit.
What combination of labor and capital should be used
to produce 36,000 units of the goods at minimum cost?
What is that minimum cost?

44. A company manufactures a product using inputs x, y,
and z according to the production function

Q(x, y, z) = 20x1/2y1/4z2/5.

The prices per unit are $20 for x, and $10 for y, and $5
for z. What quantity of each input should be used in order
to manufacture 1,200 units at minimum cost?12

45. The Cobb-Douglas function models the quantity, q, of
a commodity produced as a function of the number of
workers, W , and the amount of capital invested, K:

q = cW 1−aKa,

where a and c are positive constants. Labor costs are $p1
per worker, capital costs are $p2 per unit, and there is a
fixed budget of $b. Show that when W and K are at their
optimal levels, the ratio of marginal productivity of labor
to marginal productivity of capital equals the ratio of the
cost of one unit of labor to one unit of capital.

11Adapted from M. Rosser, Basic Mathematics for Economists, p. 318 (New York: Routledge, 1993).
12Adapted from M. Rosser, Basic Mathematics for Economists, p. 363 (New York: Routledge, 1993).
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46. An electrical current I flows through a circuit containing
the resistors R1 and R2 in Figure 15.41. The currents i1
and i2 through the individual resistors minimize energy
loss i21R1 + i22R2 subject to the constraint i1 + i2 = I
given by Kirchoff’s current law.

(a) Find the currents i1 and i2 by the method of La-
grange multipliers.

(b) If you are familiar with Ohm’s law, find the meaning
of λ.

I�

R1

R2

i1�

i2

�

Figure 15.41

47. An open rectangular box has volume 32 cm3. What are
the lengths of the edges giving the minimum surface
area?

48. The function f(x, y) is defined for all x, y and the origin
does not lie on the surface representing z = f(x, y).
There is a unique point P = (a, b, c) on the surface
which is closest to the origin. Explain why the position
vector from the origin to P must be perpendicular to the
surface at that point.

49. In a curious game, you and your opponent will choose
three real numbers. The rules say that you must first
choose a value λ, then your opponent is free to choose
any values for x and y. Your goal is to make the value of
L(x, y, λ) = 10−x2−y2−2x−λ(2x+2y) as small as
you can, and your opponent’s goal is to make it as large
as possible. What value of λ should you choose (assum-
ing you have a brilliant opponent who never makes mis-
takes)?

50. An irrigation canal has a trapezoidal cross-section of area
50 m2, as in Figure 15.42. The average flow rate in the
canal is inversely proportional to the wetted perimeter, p,
of the canal, that is, to the perimeter of the trapezoid in
Figure 15.42, excluding the top. Thus, to maximize the
flow rate we must minimize p. Find the depth d, base
width w, and angle θ that give the maximum flow rate.13

�

�

d

�� w

θ θ

Figure 15.42

CAS Challenge Problems

51. Let f(x, y) =
√
a+ x+ y

1 + y +
√
a+ x

, for x, y > 0, where a

is a positive constant.

(a) Find the critical points of f and classify them as lo-
cal maxima, local minima, saddle points, or none of
these.

(b) Describe how the position and type of the critical
points changes with respect to a, and explain this in
terms of the graph of f .

52. Students are asked to find the global maximum of
f(x, y) = x2 + y subject to the constraint g(x, y) =
x2 + 2xy + y2 − 9 = 0. Student A uses the method of
Lagrange multipliers with the help of a computer algebra

system, and says that the global maximum is 11/4. Stu-
dent B looks at a contour diagram of f and a graph of
g = 0 and says there is no global maximum. Which stu-
dent is correct and what mistake is the other one making?

53. Let f(x, y) = 3x+2y+5, g(x, y) = 2x2−4xy+5y2.

(a) Find the maximum of f subject to the constraint
g = 20.

(b) Using the value of λ in part (a), estimate the maxi-
mum of f subject to each of the constraints g = 20.5
and g = 20.2.

(c) Use Lagrange multipliers to find the two maxima in
part (b) exactly. Compare them with the estimates.

13Adapted from Robert M. Stark and Robert L. Nichols, Mathematical Foundations of Design: Civil Engineering Systems
(New York: McGraw-Hill, 1972).
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PROJECTS FOR CHAPTER FIFTEEN

1. Optimization in Manufacturing
A recycling company makes paper from a combination of two raw materials A and B where
A is wood pulp from a timber company and B is waste paper from a recycling depot. The
production function is Q = f(x, y) where Q is the quantity of paper the company can make
using x units of A and y units of B. The cost of acquiring these materials is given by the cost
function C = g(x, y) = px+ qy, where p is the unit price of A and q is the unit price of B.

(a) If the company decides to reduce the amount of A that it buys, then it can use the money
saved to buy additional B. The economic rate of substitution, or ERS, of B for A tells
how much additional B can be bought for the cost of a unit of A. Show that the ERS is
gx/gy = p/q.

(b) If the company decides to reduce slightly the amount of A that it buys, then it must buy
additional B in order to maintain a constant level of production. The technical rate of
substitution, or TRS, of B for A tells how much additional B to buy per unit reduction
in A. Show that the TRS is fx/fy. [Hint: The TRS is the rate at which y increases with
respect to x as a point (x, y) slides in the direction of decreasing x along a fixed contour
f(x, y) = Q of the production function.]

(c) Show that to maximize the quantity of paper produced with a fixed budget the company
should use raw materials A and B in quantities such that ERS = TRS.

(d) Show that to minimize the cost of producing a fixed quantity of paper the company should
use raw materials A and B in quantities such that ERS = TRS.

2. Fitting a Line to Data Using Least Squares
In this problem you will derive the general formulas for the slope and y-intercept of a least
squares line. Assume that you have n data points (x1, y1), (x2, y2), . . . , (xn, yn). Let the equa-
tion of the least squares line be y = b+mx.

(a) For each data point (xi, yi), show that the corresponding point directly above or below it
on the least squares line has y-coordinate b+mxi.

(b) For each data point (xi, yi), show that the square of the vertical distance from it to the point
found in part (a) is (yi − (b+mxi))

2.
(c) Form the function f(b,m) which is the sum of all of the n squared distances found in

part (b). That is,

f(b,m) =

n∑
i=1

(yi − (b+mxi))
2.

Show that the partial derivatives
∂f

∂b
and

∂f

∂m
are given by

∂f

∂b
= −2

n∑
i=1

(yi − (b +mxi))

and
∂f

∂m
= −2

n∑
i=1

(yi − (b+mxi)) · xi.

(d) Show that the critical point equations
∂f

∂b
= 0 and

∂f

∂m
= 0 lead to a pair of simultaneous

linear equations in b and m:

nb+
(∑

xi

)
m =

∑
yi(∑

xi

)
b+
(∑

x2
i

)
m =

∑
xiyi



PROJECTS FOR CHAPTER FIFTEEN 865

(e) Solve the equations in part (d) for b and m, getting

b =

(
n∑

i=1

x2
i

n∑
i=1

yi −

n∑
i=1

xi

n∑
i=1

xiyi

)/⎛⎝n n∑
i=1

x2
i −

(
n∑

i=1

xi

)2
⎞
⎠

m =

(
n

n∑
i=1

xiyi −

n∑
i=1

xi

n∑
i=1

yi

)/⎛⎝n

n∑
i=1

x2
i −

(
n∑

i=1

xi

)2
⎞
⎠

(f) Apply the formulas of part (e) to the data points (1, 1), (2, 1), (3, 3) to check that you get
the same result as in Example 3 on page 842.

3. Hockey and Entropy
Thirty teams compete for the Stanley Cup in the National Hockey League (after expansion in
2000). At the beginning of the season an experienced fan estimates that the probability that
team i will win is some number pi, where 0 ≤ pi ≤ 1 and

30∑
i=1

pi = 1.

Exactly one team will actually win, so the probabilities have to add to 1. If one of the teams,
say team i, is certain to win then pi is equal to 1 and all the other pj are zero. Another extreme
case occurs if all the teams are equally likely to win, so all the pi are equal to 1/30, and the
outcome of the hockey season is completely unpredictable. Thus, the uncertainty in the outcome
of the hockey season depends on the probabilities p1, . . . , p30. In this problem we measure this
uncertainty quantitatively using the following function:

S(p1, . . . , p30) = −

30∑
i=1

pi
ln pi
ln 2

.

Note that as pi ≤ 1, we have − ln pi ≥ 0 and hence S ≥ 0.

(a) Show that limp→0 p ln p = 0. (This means that S is a continuous function of the pi, where
0 ≤ pi ≤ 1 and 1 ≤ i ≤ 30, if we set p ln p|p=0 equal to zero. Since S is then a continuous
function on a closed and bounded region, it attains a maximum and a minimum value on
this region.)

(b) Find the maximum value of S(p1, . . . , p30) subject to the constraint p1+· · ·+p30 = 1. What
are the values of pi in this case? What does your answer mean in terms of the uncertainty
in the outcome of the hockey season?

(c) Find the minimum value of S(p1, . . . , p30), subject to the constraint p1 + · · ·+ p30 = 1.
What are the values of pi in this case? What does your answer mean in terms of the uncer-
tainty in the outcome of the hockey season?

[Note: The function S is an example of an entropy function; the concept of entropy is used in
information theory, statistical mechanics, and thermodynamics when measuring the uncertainty
in an experiment (the hockey season in this problem) or physical system.]
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16.1 THE DEFINITE INTEGRAL OF A FUNCTION OF TWO VARIABLES

The definite integral of a continuous one-variable function, f , is a limit of Riemann sums:∫ b

a

f(x) dx = lim
Δx→0

∑
i

f(xi)Δx,

where xi is a point in the ith subdivision of the interval [a, b]. In this section we extend this definition
to functions of two variables. We start by considering how to estimate total population from a two-
variable population density.

Population Density of Foxes in England
The fox population in parts of England is important to public health officials concerned about the
disease rabies, which is spread by animals. Biologists use a contour diagram to display the fox
population density, D; see Figure 16.1, where D is in foxes per square kilometer.1 The bold contour
is the coastline, which may be thought of as the D = 0 contour; clearly the density is zero outside
it. We can think of D as a function of position, D = f(x, y) where x and y are in kilometers from
the southwest corner of the map.
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Figure 16.1: Population density of foxes in southwestern England

Example 1 Estimate the total fox population in the region represented by the map in Figure 16.1.

Solution We subdivide the map into the rectangles shown in Figure 16.1 and estimate the population in each
rectangle. For simplicity, we use the population density at the northeast corner of each rectangle. For
example, in the bottom left rectangle, the density is 0 at the northeast corner, in the next rectangle to
the east (right), the density in the northeast corner is 1. Continuing in this way, we get the estimates
in Table 16.1. To estimate the population in a rectangle, we multiply the density by the area of the
rectangle, 30 · 25 = 750 km2. Adding the results, we obtain

Estimate of population = (0.2 + 0.7 + 1.2 + 1.2 + 0.1 + 1.6 + 0.5 + 1.4

+ 1.1 + 1.6 + 1.5 + 1.8 + 1.5 + 1.3 + 1.1 + 2.0

+ 1.4 + 1.0 + 1.0 + 0.6 + 1.2)750 = 18,000 foxes.

Taking the upper and lower bounds for the population density on each rectangle enables us to find
upper and lower estimates for the population. Using the same rectangles, the upper estimate is
approximately 35,000 and the lower estimate is 4,000. There is a wide discrepancy between the
upper and lower estimates; we could make them closer by taking finer subdivisions.

1Adapted from J. D. Murray, Mathematical Biology, Springer-Verlag, 1989.
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Table 16.1 Estimates of population density (northeast corner)

0.0 0.0 0.2 0.7 1.2 1.2

0.0 0.0 0.0 0.0 0.1 1.6

0.0 0.0 0.5 1.4 1.1 1.6

0.0 0.0 1.5 1.8 1.5 1.3

0.0 1.1 2.0 1.4 1.0 0.0

0.0 1.0 0.6 1.2 0.0 0.0

Definition of the Definite Integral
The sums used to approximate the fox population are Riemann sums. We now define the definite
integral for a function f of two variables on a rectangular region. Given a continuous function
f(x, y) defined on a region a ≤ x ≤ b and c ≤ y ≤ d, we subdivide each of the intervals
a ≤ x ≤ b and c ≤ y ≤ d into n and m equal subintervals respectively, giving nm subrectangles.
(See Figure 16.2.)

x1 x2 x3

y1

y2

y3

x

y

a = x0 xn = b

c = y0

d = ym

Figure 16.2: Subdivision of a rectangle into nm subrectangles

The area of each subrectangle is ΔA = Δx Δy, where Δx = (b − a)/n is the width of each
subdivision on the x-axis, and Δy = (d − c)/m is the width of each subdivision on the y-axis. To
compute the Riemann sum, we multiply the area of each subrectangle by the value of the function at
a point in the rectangle and add the resulting numbers. Choosing the point which gives the maximum
value, Mij , of the function on each rectangle, we get the upper sum,

∑
i,j MijΔxΔy.

The lower sum,
∑

i,j LijΔxΔy, is obtained by taking the minimum value on each rectangle. If
(uij , vij) is any point in the ij-th subrectangle, any other Riemann sum satisfies∑

i,j

LijΔxΔy ≤
∑
i,j

f(uij , vij)ΔxΔy ≤
∑
i,j

MijΔxΔy.

We define the definite integral by taking the limit as the numbers of subdivisions, n and m, tend to
infinity. By comparing upper and lower sums, as we did for the fox population, it can be shown that
the limit exists when the function, f , is continuous. We get the same limit by letting Δx and Δy
tend to 0. Thus, we have the following definition:

Suppose the function f is continuous on R, the rectangle a ≤ x ≤ b, c ≤ y ≤ d. If (uij , vij)
is any point in the ij-th subrectangle, we define the definite integral of f over R∫

R

f dA = lim
Δx,Δy→0

∑
i,j

f(uij , vij)ΔxΔy.

Such an integral is called a double integral.
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The case when R is not rectangular is considered on page 872. Sometimes we think of dA as
being the area of an infinitesimal rectangle of length dx and height dy, so that dA = dx dy. Then
we use the notation2 ∫

R

f dA =

∫
R

f(x, y) dx dy.

For this definition, we used a particular type of Riemann sum with equal-sized rectangular
subdivisions. In a general Riemann sum, the subdivisions do not all have to be the same size.

Interpretation of the Double Integral as Volume
Just as the definite integral of a positive one-variable function can be interpreted as an area, so the
double integral of a positive two-variable function can be interpreted as a volume. In the one-variable
case we visualize the Riemann sums as the total area of rectangles above the subdivisions. In the
two-variable case we get solid bars instead of rectangles. As the number of subdivisions grows, the
tops of the bars approximate the surface better, and the volume of the bars gets closer to the volume
under the graph of the function. (See Figure 16.3.)

y

x

z

y

x

z

Figure 16.3: Approximating volume under a graph with finer and finer Riemann sums

Thus, we have the following result:

If x, y, z represent length and f is positive, then

Volume under graph

of f above region R
=

∫
R

f dA.

Example 2 Let R be the rectangle 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Use Riemann sums to make upper and lower
estimates of the volume of the region above R and under the graph of z = e−(x2+y2).

Solution If R is the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, the volume we want is given by

Volume =

∫
R

e−(x2+y2) dA.

We divide R into 16 subrectangles by dividing each edge into four parts. Figure 16.4 shows that
f(x, y) = e−(x2+y2) decreases as we move away from the origin. Thus, to get an upper sum we
evaluate f on each subrectangle at the corner nearest the origin. For example, in the rectangle
0 ≤ x ≤ 0.25, 0 ≤ y ≤ 0.25, we evaluate f at (0, 0). Using Table 16.2, we find that

2Another common notation for the double integral is
∫ ∫

R
fdA.
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x

y

z

Figure 16.4: Graph of e−(x2+y2) above the rectangle R

Upper sum = ( 1 +0.9394 + 0.7788 + 0.5698

+0.9394 + 0.8825 + 0.7316 + 0.5353

+0.7788 + 0.7316 + 0.6065 + 0.4437

+0.5698 + 0.5353 + 0.4437 + 0.3247)(0.0625) = 0.68.

To get a lower sum, we evaluate f at the opposite corner of each rectangle because the surface
slopes down in both the x and y directions. This yields a lower sum of 0.44. Thus,

0.44 ≤

∫
R

e−(x2+y2) dA ≤ 0.68.

To get a better approximation, we use more subdivisions. See Table 16.3.

Table 16.2 Values of f(x, y) = e−(x2+y2) on the rectangle R

x

y

0.0 0.25 0.50 0.75 1.00

0.0 1 0.9394 0.7788 0.5698 0.3679

0.25 0.9394 0.8825 0.7316 0.5353 0.3456

0.50 0.7788 0.7316 0.6065 0.4437 0.2865

0.75 0.5698 0.5353 0.4437 0.3247 0.2096

1.00 0.3679 0.3456 0.2865 0.2096 0.1353

Table 16.3 Riemann sum approximations to
∫
R
e−(x2+y2) dA

Number of subdivisions in x and y directions

8 16 32 64

Upper 0.6168 0.5873 0.5725 0.5651

Lower 0.4989 0.5283 0.5430 0.5504

The true value of the double integral, 0.5577 . . ., is trapped between the lower and upper sums.
Notice that the lower sum increases and the upper sum decreases as the number of subdivisions
increases. However, even with 64 subdivisions, the lower and upper sums agree with the true value
of the integral only in the first decimal place.

Interpretation of the Double Integral as Area

In the special case that f(x, y) = 1 for all points (x, y) in the region R, each term in the Riemann
sum is of the form 1 ·ΔA = ΔA and the double integral gives the area of the region R:



872 Chapter Sixteen INTEGRATING FUNCTIONS OF SEVERAL VARIABLES

Area(R) =

∫
R

1 dA =

∫
R

dA

Interpretation of the Double Integral as Average Value
As in the one-variable case, the definite integral can be used to compute the average value of a
function:

Average value of f

on the region R
=

1

Area of R

∫
R

f dA

We can rewrite this as

Average value × Area of R =

∫
R

f dA.

If we interpret the integral as the volume under the graph of f , then we can think of the average
value of f as the height of the box with the same volume that is on the same base. (See Figure 16.5.)
Imagine that the volume under the graph is made out of wax. If the wax melted within the perimeter
of R, then it would end up box-shaped with height equal to the average value of f .

x

y

z

�

�

Average value of f�Base of the box
is the rectangle R

Figure 16.5: Volume and average value

Integral over Regions that Are Not Rectangles
We defined the definite integral

∫
R
f(x, y) dA, for a rectangular region R. Now we extend the

definition to regions of other shapes, including triangles, circles, and regions bounded by the graphs
of piecewise continuous functions.

To approximate the definite integral over a region, R, which is not rectangular, we use a grid
of rectangles approximating the region. We obtain this grid by enclosing R in a large rectangle and
subdividing that rectangle; we consider just the subrectangles which are inside R.

As before, we pick a point (uij , vij) in each subrectangle and form a Riemann sum∑
i,j

f(uij, vij)ΔxΔy.

This time, however, the sum is over only those subrectangles within R. For example, in the case of
the fox population we can use the rectangles which are entirely on land. As the subdivisions become
finer, the grid approximates the region R more closely. For a function, f , which is continuous on R,
we define the definite integral as follows:∫

R

f dA = lim
Δx,Δy→0

∑
i,j

f(uij , vij)ΔxΔy

where the Riemann sum is taken over the subrectangles inside R.
You may wonder why we can leave out the rectangles which cover the edge of R—if we in-

cluded them, might we get a different value for the integral? The answer is that for any region that
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we are likely to meet, the area of the subrectangles covering the edge tends to 0 as the grid becomes
finer. Therefore, omitting these rectangles does not affect the limit.

Convergence of Upper and Lower Sums to Same Limit
We have said that if f is continuous on the rectangle R, then the difference between upper and lower
sums for f converges to 0 as Δx and Δy approach 0. In the following example, we show this in a
particular case. The ideas in this example can be used in a general proof.

Example 3 Let f(x, y) = x2y and let R be the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Show that the difference
between upper and lower Riemann sums for f on R converges to 0, as Δx and Δy approach 0.

Solution The difference between the sums is∑
MijΔxΔy −

∑
Lij ΔxΔy =

∑
(Mij − Lij)ΔxΔy,

where Mij andLij are the maximum and minimum of f on the ij-th subrectangle. Since f increases
in both the x and y directions, Mij occurs at the corner of the subrectangle farthest from the origin
and Lij at the closest. Moreover, since the slopes in the x and y directions don’t decrease as x and
y increase, the difference Mij − Lij is largest in the subrectangle Rnm which is farthest from the
origin. Thus,∑

(Mij − Lij)ΔxΔy ≤ (Mnm − Lnm)
∑

ΔxΔy = (Mnm − Lnm)Area(R).

Thus, the difference converges to 0 as long as (Mnm − Lnm) does. The maximum Mnm of f on
the nm-th subrectangle occurs at (1, 1), the subrectangle’s top right corner, and the minimum Lnm

occurs at the opposite corner, (1− 1/n, 1− 1/m). Substituting into f(x, y) = x2y gives

Mnm − Lnm = (1)
2
(1)−

(
1−

1

n

)2(
1−

1

m

)
=

2

n
−

1

n2
+

1

m
−

2

nm
+

1

n2m
.

The right-hand side converges to 0 as n,m → ∞, that is, as Δx,Δy → 0.

Exercises and Problems for Section 16.1
Exercises

1. Table 16.4 gives values of the function f(x, y), which
is increasing in x and decreasing in y on the region
R : 0 ≤ x ≤ 6, 0 ≤ y ≤ 1. Make the best possible
upper and lower estimates of

∫
R
f(x, y) dA.

Table 16.4

y

x

0 3 6

0 5 7 10

0.5 4 5 7

1 3 4 6

2. Values of f(x, y) are in Table 16.5. Let R be the rect-
angle 1 ≤ x ≤ 1.2, 2 ≤ y ≤ 2.4. Find Riemann
sums which are reasonable over and underestimates for∫
R
f(x, y) dA with Δx = 0.1 and Δy = 0.2.

Table 16.5

y

x

1.0 1.1 1.2

2.0 5 7 10

2.2 4 6 8

2.4 3 5 4

3. Figure 16.6 shows contours of g(x, y) on the region R,
with 5 ≤ x ≤ 11 and 4 ≤ y ≤ 10. Using Δx =
Δy = 2, find an overestimate and an underestimate for∫
R
g(x, y)dA.

5 7 9 11
4

6

8

10

1
2

3

4

5

x

y

Figure 16.6
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4. Figure 16.7 shows contours of f(x, y) on the rectangle
R with 0 ≤ x ≤ 30 and 0 ≤ y ≤ 15. Using Δx = 10
and Δy = 5, find an overestimate and an underestimate
for
∫
R
f(x, y)dA.

10 20 30

5

10

15

2
4

6

8

10

x

y

Figure 16.7

5. Figure 16.8 shows a contour plot of population density,
people per square kilometer, in a rectangle of land 3 km

by 2 km. Estimate the population in the region repre-
sented by Figure 16.8.

1 2 3

1

2

1000
800

40
0

600

400 20
0

20
0

40
0

60
0

600

x

y

Figure 16.8

Problems

In Problems 6–12, decide (without calculation) whether the
integrals are positive, negative, or zero. Let D be the region
inside the unit circle centered at the origin, let R be the right
half of D and let B be the bottom half of D.

6.
∫
D

dA 7.
∫
R
5x dA

8.
∫
B
5x dA 9.

∫
D
(y3 + y5) dA

10.
∫
B
(y3 + y5) dA 11.

∫
D
(y − y3) dA

12.
∫
B
(y − y3) dA

13. Figure 16.9 shows contours of f(x, y). Let R be the
square −0.5 ≤ x ≤ 1, −0.5 ≤ y ≤ 1. Is the integral∫
R
f dA positive or negative? Explain your reasoning.

−1.0 −0.5 0 0.5 1.0 1.5 2.0
−1.0

−0.5

0

0.5

1.0

1.5

2.0

x

y

−1

0

1

2

2

3

4

Figure 16.9

14. Table 16.6 gives values of f(x, y), the number of mil-
ligrams of mosquito larvae per square meter in a swamp.

If x and y are in meters and R is the rectangle 0 ≤ x ≤ 8,
0 ≤ y ≤ 6, estimate

∫
R
f(x, y)dA. Give units and inter-

pret your answer.

Table 16.6

y

x

0 4 8

0 1 3 6

3 2 5 9

6 4 9 15

15. Figure 16.10 shows the temperature, in ◦C, in a 5 meter
by 5 meter heated room. Using Riemann sums, estimate
the average temperature in the room.

1 2 3 4 5

1

2

3

4

5

29
28

27

26

25

24

23

22
21

x (m)

y (m)

Figure 16.10

16. Use four subrectangles to approximate the volume of the
object whose base is the region 0 ≤ x ≤ 4 and 0 ≤ y ≤
6, and whose height is given by f(x, y) = x+y. Find an
overestimate and an underestimate and average the two.
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Strengthen Your Understanding

In Problems 17–18, explain what is wrong with the statement.

17. For all f , the integral
∫
R
f(x, y) dA gives the volume of

the solid under the graph of f over the region R.

18. If R is a region in the third quadrant where x < 0, y < 0,
then
∫
R
f(x, y) dA is negative.

In Problems 19–20, give an example of:

19. A function f(x, y) and rectangle R such that the Rie-
mann sums obtained using the lower left-hand corner of
each subrectangle are an overestimate.

20. A function f(x, y) whose average value over the square
0 ≤ x ≤ 1, 0 ≤ y ≤ 1 is negative.

Are the statements in Problems 21–30 true or false? Give rea-
sons for your answer.

21. The double integral
∫
R
f dA is always positive.

22. If f(x, y) = k for all points (x, y) in a region R then∫
R
f dA = k · Area(R).

23. If R is the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 then∫
R
exy dA > 3.

24. If R is the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 3 and
S is the rectangle −2 ≤ x ≤ 0,−3 ≤ y ≤ 0 then∫
R
f dA = −

∫
S
f dA.

25. Let ρ(x, y) be the population density of a city, in people
per km2. If R is a region in the city, then

∫
R
ρ dA gives

the total number of people in the region R.

26. If
∫
R
f dA = 0 then f(x, y) = 0 at all points of R.

27. If g(x, y) = kf(x, y), where k is constant, then∫
R
g dA = k

∫
R
f dA.

28. If f and g are two functions continuous on a region R,
then
∫
R
f · g dA =

∫
R
f dA ·

∫
R
g dA.

29. If R is the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 2 and S is
the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, then

∫
R
f dA =

2
∫
S
f dA.

30. If R is the rectangle 2 ≤ x ≤ 4, 5 ≤ y ≤ 9,
f(x, y) = 2x and g(x, y) = x + y, then the average
value of f on R is less than the average value of g on R.

16.2 ITERATED INTEGRALS

In Section 16.1 we approximated double integrals using Riemann sums. In this section we see how
to compute double integrals exactly using one-variable integrals.

The Fox Population Again: Expressing a Double Integral as an Iterated Integral
To estimate the fox population, we computed a sum of the form

Total population ≈
∑
i,j

f(uij , vij)ΔxΔy,

where 1 ≤ i ≤ n and 1 ≤ j ≤ m and the values f(uij , vij) can be arranged as in Table 16.7.

Table 16.7 Estimates for fox population densities for n = m = 6

0.0 0.0 0.2 0.7 1.2 1.2

0.0 0.0 0.0 0.0 0.1 1.6

0.0 0.0 0.5 1.4 1.1 1.6

0.0 0.0 1.5 1.8 1.5 1.3

0.0 1.1 2.0 1.4 1.0 0.0

0.0 1.0 0.6 1.2 0.0 0.0

For any values of n and m, we can either add across the rows first or add down the columns
first. If we add rows first, we can write the sum in the form

Total population ≈

m∑
j=1

(
n∑

i=1

f(uij , vij)Δx

)
Δy.
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The inner sum,
n∑

i=1

f(uij , vij)Δx, approximates the integral
∫ 180
0

f(x, vij) dx. Thus, we have

Total population ≈

m∑
j=1

(∫ 180

0

f(x, vij) dx

)
Δy.

The outer Riemann sum approximates another integral, this time with integrand
∫ 180
0

f(x, y) dx,
which is a function of y. Thus, we can write the total population in terms of nested, or iterated, one-
variable integrals:

Total population =

∫ 150

0

(∫ 180

0

f(x, y) dx

)
dy.

Since the total population is represented by
∫
R
f dA, this suggests the method of computing

double integrals in the following theorem:3

Theorem 16.1: Writing a Double Integral as an Iterated Integral

If R is the rectangle a ≤ x ≤ b, c ≤ y ≤ d and f is a continuous function on R, then the
integral of f over R exists and is equal to the iterated integral

∫
R

f dA =

∫ y=d

y=c

(∫ x=b

x=a

f(x, y) dx

)
dy.

The expression
∫ y=d

y=c

(∫ x=b

x=a
f(x, y) dx

)
dy can be written

∫ d
c

∫ b
a
f(x, y) dx dy.

To evaluate the iterated integral, first perform the inside integral with respect to x, holding y
constant; then integrate the result with respect to y.

Example 1 A building is 8 meters wide and 16 meters long. It has a flat roof that is 12 meters high at one corner,
and 10 meters high at each of the adjacent corners. What is the volume of the building?

Solution If we put the high corner on the z-axis, the long side along the y-axis, and the short side along the
x-axis, as in Figure 16.11, then the roof is a plane with z-intercept 12, and x slope (−2)/8 = −1/4,
and y slope (−2)/16 = −1/8. Hence, the equation of the roof is

z = 12− 1
4x− 1

8y.

The volume is given by the double integral

Volume =

∫
R

(12− 1
4x− 1

8y) dA,

where R is the rectangle 0 ≤ x ≤ 8, 0 ≤ y ≤ 16. Setting up an iterated integral, we get

Volume =

∫ 16

0

∫ 8

0

(12− 1
4x− 1

8y) dx dy.

The inside integral is∫ 8

0

(12− 1
4x− 1

8y) dx =
(
12x− 1

8x
2 − 1

8xy
) ∣∣∣∣x=8

x=0

= 88− y.

3For a proof, see M. Spivak, Calculus on Manifolds, pp. 53 and 58 (New York: Benjamin, 1965).
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Then the outside integral gives

Volume =

∫ 16

0

(88− y) dy = (88y − 1
2y

2
)

∣∣∣∣16
0

= 1280.

The volume of the building is 1280 cubic meters.

x (m)
y (m)

z (m)

�

�

10

�

�
12

�

�

10

�

�

16 �

�

8

Figure 16.11: A slant-roofed building

x
y

z

x = 8

�
x = 0

�

�

�

Height = 12− 1
4
x− 1

8
y

Figure 16.12: Cross-section of a building

Notice that the inner integral
∫ 8
0
(12 − 1

4x − 1
8y) dx in Example 1 gives the area of the cross

section of the building perpendicular to the y-axis in Figure 16.12.
The iterated integral

∫ 16
0

∫ 8
0
(12 − 1

4x − 1
8y) dxdy thus calculates the volume by adding the

volumes of thin cross-sectional slabs.

The Order of Integration
In computing the fox population, we could have chosen to add columns (fixed x) first, instead of the
rows. This leads to an iterated integral where x is constant in the inner integral instead of y. Thus,∫

R

f(x, y) dA =

∫ b

a

(∫ d

c

f(x, y) dy

)
dx

where R is the rectangle a ≤ x ≤ b and c ≤ y ≤ d.
For any function we are likely to meet, it does not matter in which order we integrate over a

rectangular region R; we get the same value for the double integral either way.

∫
R

f dA =

∫ d

c

(∫ b

a

f(x, y) dx

)
dy =

∫ b

a

(∫ d

c

f(x, y) dy

)
dx

Example 2 Compute the volume of Example 1 as an iterated integral by integrating with respect to y first.

Solution Rewriting the integral, we have

Volume =

∫ 8

0

(∫ 16

0

(12− 1
4x− 1

8y) dy

)
dx =

∫ 8

0

(
(12y − 1

4xy −
1
16y

2)

∣∣∣∣y=16

y=0

)
dx

=

∫ 8

0

(176− 4x) dx = (176x− 2x2
)

∣∣∣∣8
0

= 1280 meter3.
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Iterated Integrals Over Non-Rectangular Regions

Example 3 The density at the point (x, y) of a triangular metal plate, as shown in Figure 16.13, is δ(x, y).
Express its mass as an iterated integral.

y = 2− 2x

2

1

y

x

Figure 16.13: A triangular metal plate with density δ(x, y) at the point (x, y)

Solution Approximate the triangular region using a grid of small rectangles of sides Δx and Δy. The mass
of one rectangle is given by

Mass of rectangle ≈ Density · Area ≈ δ(x, y)ΔxΔy.

Summing over all rectangles gives a Riemann sum which approximates the double integral:

Mass =
∫
R

δ(x, y) dA,

where R is the triangle. We want to compute this integral using an iterated integral.
Think about how the iterated integral over the rectangle a ≤ x ≤ b, c ≤ y ≤ d works:∫ b

a

∫ d

c

f(x, y) dy dx.

The inside integral with respect to y is along vertical strips which begin at the horizontal line y = c
and end at the line y = d. There is one such strip for each x between x = a and x = b. (See
Figure 16.14.)

a b

c

d

x

y

x

Figure 16.14: Integrating over a
rectangle using vertical strips

(x, 0)

(x, 2− 2x)

y

x
1

2

Figure 16.15: Integrating over a
triangle using vertical strips

1

2

(0, y)
(1− 1

2
y, y)

x

y

Figure 16.16: Integrating over a
triangle using horizontal strips

For the triangular region in Figure 16.13, the idea is the same. The only difference is that the
individual vertical strips no longer all go from y = c to y = d. The vertical strip that starts at the
point (x, 0) ends at the point (x, 2−2x), because the top edge of the triangle is the line y = 2−2x.
See Figure 16.15. On this vertical strip, y goes from 0 to 2− 2x. Hence, the inside integral is∫ 2−2x

0

δ(x, y) dy.

Finally, since there is a vertical strip for each x between 0 and 1, the outside integral goes from
x = 0 to x = 1. Thus, the iterated integral we want is

Mass =
∫ 1

0

∫ 2−2x

0

δ(x, y) dy dx.
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We could have chosen to integrate in the opposite order, keeping y fixed in the inner integral
instead of x. The limits are formed by looking at horizontal strips instead of vertical ones, and
expressing the x-values at the end points in terms of y. To find the right endpoint of the strip, we
use the equation of the top edge of the triangle in the form x = 1− 1

2y. Thus, a horizontal strip goes
from x = 0 to x = 1− 1

2y. Since there is a strip for every y from 0 to 2, the iterated integral is

Mass =
∫ 2

0

∫ 1− 1
2
y

0

δ(x, y) dx dy.

Limits on Iterated Integrals

• The limits on the outer integral must be constants.

• The limits on the inner integral can involve only the variable in the outer integral. For
example, if the inner integral is with respect to x, its limits can be functions of y.

Example 4 Find the mass M of a metal plate R bounded by y = x and y = x2, with density given by δ(x, y) =
1 + xy kg/meter2. (See Figure 16.17.)

y = x2

y = x

(1, 1)
y (meters)

x (meters)

Figure 16.17: A metal plate with density δ(x, y)

Solution The mass is given by

M =

∫
R

δ(x, y) dA.

We integrate along vertical strips first; this means we do the y integral first, which goes from the
bottom boundary y = x2 to the top boundary y = x. The left edge of the region is at x = 0 and the
right edge is at the intersection point of y = x and y = x2, which is (1, 1). Thus, the x-coordinate
of the vertical strips can vary from x = 0 to x = 1, and so the mass is given by

M =

∫ 1

0

∫ x

x2

δ(x, y) dy dx =

∫ 1

0

∫ x

x2

(1 + xy) dy dx.

Calculating the inner integral first gives

M =

∫ 1

0

∫ x

x2

(1 + xy) dy dx =

∫ 1

0

(
y + x

y2

2

) ∣∣∣∣y=x

y=x2

dx

=

∫ 1

0

(
x− x2

+
x3

2
−

x5

2

)
dx =

(
x2

2
−

x3

3
+

x4

8
−

x6

12

) ∣∣∣∣1
0

=
5

24
= 0.208 kg.

Example 5 A city occupies a semicircular region of radius 3 km bordering on the ocean. Find the average
distance from points in the city to the ocean.

Solution Think of the ocean as everything below the x-axis in the xy-plane and think of the city as the upper
half of the circular disk of radius 3 bounded by x2 + y2 = 9. (See Figure 16.18.)
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(
√

9− y2, y)(−
√

9− y2, y)

(x, 0)

(x,
√
9− x2)

x2 + y2 = 9

x

y

−3 3

3

Figure 16.18: The city by the ocean showing a typical vertical strip and a typical horizontal strip

The distance from any point (x, y) in the city to the ocean is the vertical distance to the x-axis,
namely y. Thus, we want to compute

Average distance =
1

Area(R)

∫
R

y dA,

where R is the region between the upper half of the circle x2 + y2 = 9 and the x-axis. The area of
R is π32/2 = 9π/2.

To compute the integral, let’s take the inner integral with respect to y. A vertical strip goes from
the x-axis, namely y = 0, to the semicircle. The upper limit must be expressed in terms of x, so we
solve x2 + y2 = 9 to get y =

√
9− x2. Since there is a strip for every x from −3 to 3, the integral

is: ∫
R

y dA =

∫ 3

−3

(∫ √
9−x2

0

y dy

)
dx =

∫ 3

−3

(
y2

2

∣∣∣∣y=
√
9−x2

y=0

)
dx

=

∫ 3

−3

1

2
(9 − x2

) dx =
1

2

(
9x−

x3

3

) ∣∣∣∣3
−3

=
1

2
(18− (−18)) = 18.

Therefore, the average distance is 18/(9π/2) = 4/π = 1.273 km.
What if we choose the inner integral with respect to x? Then we get the limits by looking at

horizontal strips, not vertical, and we solve x2 + y2 = 9 for x in terms of y. We get x = −
√
9− y2

at the left end of the strip and x =
√

9− y2 at the right. There is a strip for every y from 0 to 3, so

∫
R

y dA =

∫ 3

0

(∫ √
9−y2

−
√

9−y2

y dx

)
dy =

∫ 3

0

⎛
⎝yx∣∣∣∣x=

√
9−y2

x=−
√

9−y2

⎞
⎠ dy =

∫ 3

0

2y
√
9− y2 dy

= −
2

3
(9− y2)3/2

∣∣∣∣3
0

= −
2

3
(0− 27) = 18.

We get the same result as before. The average distance to the ocean is (2/(9π))18 = 4/π = 1.273 km.

In the examples so far, a region was given and the problem was to determine the limits for an
iterated integral. Sometimes the limits are known and we want to determine the region.

Example 6 Sketch the region of integration for the iterated integral
∫ 6

0

∫ 2

x/3

x
√
y3 + 1 dy dx.

Solution The inner integral is with respect to y, so we imagine the region built of vertical strips. The bottom
of each strip is on the line y = x/3, and the top is on the horizontal line y = 2. Since the limits of
the outer integral are 0 and 6, the whole region is contained between the vertical lines x = 0 and
x = 6. Notice that the lines y = 2 and y = x/3 meet where x = 6. See Figure 16.19.
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6
x

y

(6, 2)

y = x/3

y = 2
2

Figure 16.19: The region of integration for Example 6, showing the vertical strip

Reversing the Order of Integration

It is sometimes helpful to reverse the order of integration in an iterated integral. An integral which
is difficult or impossible with the integration in one order can be quite straightforward in the other.
The next example is such a case.

Example 7 Evaluate
∫ 6

0

∫ 2

x/3

x
√

y3 + 1 dy dx using the region sketched in Figure 16.19.

Solution Since
√
y3 + 1 has no elementary antiderivative, we cannot calculate the inner integral symboli-

cally. We try reversing the order of integration. From Figure 16.19, we see that horizontal strips go
from x = 0 to x = 3y and that there is a strip for every y from 0 to 2. Thus, when we change the
order of integration we get∫ 6

0

∫ 2

x/3

x
√

y3 + 1 dy dx =

∫ 2

0

∫ 3y

0

x
√
y3 + 1 dx dy.

Now we can at least do the inner integral because we know the antiderivative of x. What about the
outer integral?∫ 2

0

∫ 3y

0

x
√

y3 + 1 dx dy =

∫ 2

0

(
x2

2

√
y3 + 1

) ∣∣∣∣x=3y

x=0

dy =

∫ 2

0

9y2

2
(y3 + 1)

1/2 dy

= (y3 + 1)
3/2

∣∣∣∣2
0

= 27− 1 = 26.

Thus, reversing the order of integration made the integral in the previous problem much easier.
Notice that to reverse the order it is essential first to sketch the region over which the integration is
being performed.

Exercises and Problems for Section 16.2
Exercises

In Exercises 1–4, sketch the region of integration.

1.

∫ π

0

∫ x

0

y sin xdy dx 2.

∫ 1

0

∫ y

y2

xy dx dy

3.

∫ 2

0

∫ y2

0

y2x dx dy 4.

∫ 1

0

∫ cosπx

x−2

y dy dx

For Exercises 5–12, evaluate the integral.

5. ∫ 3

0

∫ 4

0

(4x+ 3y) dx dy

6. ∫ 2

0

∫ 3

0

(x2 + y2) dy dx

7.

∫ 3

0

∫ 2

0

6xy dy dx 8.

∫ 1

0

∫ 2

0

x2y dy dx

9.

∫ 1

0

∫ 1

0

yexy dx dy 10.

∫ 2

0

∫ y

0

y dx dy

11.

∫ 3

0

∫ y

0

sin xdx dy 12.

∫ π/2

0

∫ sinx

0

x dy dx

For Exercises 13–16, sketch the region of integration and eval-
uate the integral.

13.

∫ 3

1

∫ 4

0

ex+y dy dx 14.

∫ 2

0

∫ x

0

ex
2

dy dx

15.

∫ 5

1

∫ 2x

x

sin xdy dx 16.

∫ 4

1

∫ y

√
y

x2y3 dx dy
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In Exercises 17–22, write
∫
R
fdA as an iterated integral for

the shaded region R.

17.

1 2 3 4
0

1

2

x

y 18.

4

12

x

y

19.

−1 1 2 3

−2

1

x

y 20.

3 5

6

x

y

21.

1 2 3
0

1

2

3

x

y 22.

1 2 3 4
0

1

2

x

y

For Exercises 23–27, evaluate the integral.

23.
∫
R

√
x+ y dA, where R is the rectangle 0 ≤ x ≤ 1,

0 ≤ y ≤ 2.

24. Calculate the integral in Exercise 23 using the other order
of integration.

25.
∫
R
(5x2 + 1) sin 3y dA, where R is the rectangle −1 ≤

x ≤ 1, 0 ≤ y ≤ π/3.

26.
∫
R
xy dA, where R is the triangle x + y ≤ 1, x ≥

0, y ≥ 0.

27.
∫
R
(2x + 3y)2 dA, where R is the triangle with vertices

at (−1, 0), (0, 1), and (1, 0).

Problems

In Problems 28–31, integrate f(x, y) = xy over the region R.

28.

1

2

R
x

y 29.

−1

1

R

x

y

30.

2

R

(1, 1)

x

y 31.

2

1

R

x

y

32. (a) Use four subrectangles to approximate the volume
of the object whose base is the region 0 ≤ x ≤ 4
and 0 ≤ y ≤ 6, and whose height is given by
f(x, y) = xy. Find an overestimate and an under-
estimate and average the two.

(b) Integrate to find the exact volume of the three-
dimensional object described in part (a).

In Problems 33–37, evaluate the integral by reversing the or-
der of integration.

33.

∫ 1

0

∫ 1

y

ex
2

dx dy 34.

∫ 1

0

∫ 1

y

sin (x2) dx dy

35.

∫ 1

0

∫ 1

√
y

√
2 + x3 dx dy

36.

∫ 3

0

∫ 9

y2

y sin(x2) dx dy

37.

∫ 1

0

∫ e

ey

x

ln x
dx dy

38. Find the volume under the graph of the function
f(x, y) = 6x2y over the region shown in Figure 16.20.

1 2 3 4
0

2

4

6

8

x

y

Figure 16.20

39. (a) Find the volume below the surface z = x2 + y2 and
above the xy-plane for −1 ≤ x ≤ 1,−1 ≤ y ≤ 1.

(b) Find the volume above the surface z = x2 + y2

and below the plane z = 2 for −1 ≤ x ≤ 1,
−1 ≤ y ≤ 1.
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40. Compute the integral

∫ ∫
R

(2x2 + y) dA,

where R is the triangular region with vertices at (0, 1),
(−2, 3) and (2, 3).

41. (a) Sketch the region in the xy-plane bounded by the
x-axis, y = x, and x+ y = 1.

(b) Express the integral of f(x, y) over this region in
terms of iterated integrals in two ways. (In one, use
dx dy; in the other, use dy dx.)

(c) Using one of your answers to part (b), evaluate the
integral exactly with f(x, y) = x.

42. Let f(x, y) = x2ex
2

and let R be the triangle bounded
by the lines x = 3, x = y/2, and y = x in the xy-plane.

(a) Express
∫
R
f dA as a double integral in two differ-

ent ways.
(b) Evaluate one of them.

43. Find the average value of f(x, y) = x2 +4y on the rect-
angle 0 ≤ x ≤ 3 and 0 ≤ y ≤ 6.

44. Find the average value of f(x, y) = xy2 on the rectangle
0 ≤ x ≤ 4, 0 ≤ y ≤ 3.

In Problems 45–47 set up, but do not evaluate, an iterated in-
tegral for the volume of the solid.

45. Under the graph of f(x, y) = 25 − x2 − y2 and above
the xy-plane.

46. Below the graph of f(x, y) = 25 − x2 − y2 and above
the plane z = 16.

47. The three-sided pyramid whose base is on the xy-plane
and whose three sides are the vertical planes y = 0 and
y − x = 4, and the slanted plane 2x+ y + z = 4.

In Problems 48–53, find the volume of the solid region.

48. Under the graph of f(x, y) = xy and above the square
0 ≤ x ≤ 2, 0 ≤ y ≤ 2 in the xy-plane.

49. Under the graph of f(x, y) = x2 + y2 and above the
triangle 0 ≤ y ≤ x, 0 ≤ x ≤ 1.

50. Under the graph of f(x, y) = x+y and above the region
y2 ≤ x, 0 ≤ x ≤ 9, y ≥ 0.

51. Under the graph of 2x+ y + z = 4 in the first octant.

52. The solid between the planes z = 3x + 2y + 1 and
z = x+ y, and above the triangle with vertices (1, 0, 0),
(2, 2, 0), and (0, 1, 0) in the xy-plane. See Figure 16.21.

x

y

zz = 3x+ 2y + 1

z = x+ y

(2, 2, 0)
(0, 1, 0)

Figure 16.21

53. The solid region R bounded by the coordinate planes and
the graph of ax+ by+ cz = 1. Assume a, b, and c > 0.

54. If R is the region x+ y ≥ a, x2 + y2 ≤ a2, with a > 0,
evaluate the integral ∫

R

xy dA.

55. The region W lies below the surface f(x, y) =

2e−(x−1)2−y2

and above the disk x2 + y2 ≤ 4 in the
xy-plane.

(a) Describe in words the contours of f , using
f(x, y) = 1 as an example.

(b) Write an integral giving the area of the cross-section
of W in the plane x = 1.

(c) Write an iterated double integral giving the volume
of W .

56. Find the average distance to the x-axis for points in the
region bounded by the x-axis and the graph of y =
x− x2.

57. Give the contour diagram of a function f whose average
value on the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 is

(a) Greater than the average of the values of f at the four
corners of the square.

(b) Less than the average of the values of f at the four
corners of the square.

58. The function f(x, y) = ax+ by has an average value of
20 on the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 3.

(a) What can you say about the constants a and b?
(b) Find two different choices for f that have average

value 20 on the rectangle, and give their contour di-
agrams on the rectangle.

59. The function f(x, y) = ax2 + bxy+ cy2 has an average
value of 20 on the square 0 ≤ x ≤ 2, 0 ≤ y ≤ 2.

(a) What can you say about the constants a, b, and c?
(b) Find two different choices for f that have average

value 20 on the square, and give their contour dia-
grams on the square.
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60. Show that for a right triangle the average distance from
any point in the triangle to one of the legs is one-third the
length of the other leg. (The legs of a right triangle are
the two sides that are not the hypotenuse.)

61. A rectangular plate of sides a and b is subjected to a nor-
mal force (that is, perpendicular to the plate). The pres-
sure, p, at any point on the plate is proportional to the
square of the distance of that point from one corner. Find
the total force on the plate. [Note that pressure is force
per unit area.]

62. Find the area of the crescent-moon shape with circular
arcs as edges and the dimensions shown in Figure 16.22.

�

�

8′′

��2′′ ��2′′

Figure 16.22

Strengthen Your Understanding

In Problems 63–64, explain what is wrong with the statement.

63.
∫ 1

0

∫ x

0
f(x, y) dy dx =

∫ 1

0

∫ y

0
f(x, y) dx dy

64.
∫ 1

0

∫ y

0
xy dx dy =

∫ y

0

∫ 1

0
xy dy dx

In Problems 65–67, give an example of:

65. An iterated double integral, with limits of integration,
giving the volume of a cylinder standing vertically with
a circular base in the xy-plane.

66. A nonconstant function, f , whose integral is 4 over the
triangular region with vertices (0, 0), (1, 0), (1, 1).

67. A double integral representing the volume of a triangular
prism of base area 6.

Are the statements in Problems 68–75 true or false? Give rea-
sons for your answer.

68. The iterated integral
∫ 1

0

∫ 12

5
f dxdy is computed over the

rectangle 0 ≤ x ≤ 1, 5 ≤ y ≤ 12.

69. If R is the region inside the triangle with vertices
(0, 0), (1, 1) and (0, 2), then the double integral

∫
R
f dA

can be evaluated by an iterated integral of the form∫ 2

0

∫ 1

0
f dxdy.

70. The region of integration of the iterated integral∫ 2

1

∫ x3

x2
f dydx lies completely in the first quadrant (that

is, x ≥ 0, y ≥ 0).

71. If the limits a, b, c and d in the iterated inte-
gral
∫ b

a

∫ d

c
fdydx are all positive, then the value of∫ b

a

∫ d

c
fdydx is also positive.

72. If f(x, y) is a function of y only, then
∫ b

a

∫ 1

0
fdxdy =∫ b

a
fdy.

73. If R is the region inside a circle of radius a, centered at

the origin, then
∫
R
f dA =

∫ a

−a

∫√a2
−x2

0
fdydx.

74. If f(x, y) = g(x) · h(y), where g and h are single-
variable functions, then∫ b

a

∫ d

c

f dydx =

(∫ b

a

g(x)dx

)
·
(∫ d

c

h(y) dy

)
.

75. If f(x, y) = g(x) + h(y), where g and h are single-
variable functions, then∫ b

a

∫ d

c

f dxdy =

(∫ b

a

g(x)dx

)
+

(∫ d

c

h(y) dy

)
.

16.3 TRIPLE INTEGRALS

A continuous function of three variables can be integrated over a solid region W in 3-space in the
same way as a function of two variables is integrated over a flat region in 2-space. Again, we start
with a Riemann sum. First we subdivide W into smaller regions, then we multiply the volume of
each region by a value of the function in that region, and then we add the results. For example, if W
is the box a ≤ x ≤ b, c ≤ y ≤ d, p ≤ z ≤ q, then we subdivide each side into n, m, and l pieces,
thereby chopping W into nml smaller boxes, as shown in Figure 16.23.
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b
a c d

p

q
z

y

x

Figure 16.23: Subdividing a three-dimensional box

The volume of each smaller box is

ΔV = ΔxΔyΔz,

where Δx = (b − a)/n, and Δy = (d − c)/m, and Δz = (q − p)/l. Using this subdivision, we
pick a point (uijk, vijk, wijk) in the ijk-th small box and construct a Riemann sum∑

i,j,k

f(uijk, vijk, wijk)ΔV.

If f is continuous, as Δx, Δy, and Δz approach 0, this Riemann sum approaches the definite

integral,
∫
W

f dV , called a triple integral, which is defined as∫
W

f dV = lim
Δx,Δy,Δz→0

∑
i,j,k

f(uijk, vijk , wijk)ΔxΔyΔz.

As in the case of a double integral, we can evaluate this integral as an iterated integral:

Triple integral as an iterated integral

∫
W

f dV =

∫ q

p

(∫ d

c

(∫ b

a

f(x, y, z) dx

)
dy

)
dz,

where y and z are treated as constants in the innermost (dx) integral, and z is treated as a
constant in the middle (dy) integral. Other orders of integration are possible.

Example 1 A cube C has sides of length 4 cm and is made of a material of variable density. If one corner is at
the origin and the adjacent corners are on the positive x, y, and z axes, then the density at the point
(x, y, z) is δ(x, y, z) = 1 + xyz gm/cm3. Find the mass of the cube.

Solution Consider a small piece ΔV of the cube, small enough so that the density remains close to constant
over the piece. Then

Mass of small piece = Density · Volume ≈ δ(x, y, z)ΔV.

To get the total mass, we add the masses of the small pieces and take the limit as ΔV → 0. Thus,
the mass is the triple integral

M =

∫
C

δ dV =

∫ 4

0

∫ 4

0

∫ 4

0

(1 + xyz) dx dy dz =

∫ 4

0

∫ 4

0

(
x+

1

2
x2yz

)∣∣∣∣x=4

x=0

dy dz

=

∫ 4

0

∫ 4

0

(4 + 8yz) dy dz =

∫ 4

0

(
4y + 4y2z

) ∣∣∣∣y=4

y=0

dz =

∫ 4

0

(16 + 64z) dz = 576 gm.
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Example 2 Express the volume of the building described in Example 1 on page 876 as a triple integral.

Solution The building is given by 0 ≤ x ≤ 8, 0 ≤ y ≤ 16, and 0 ≤ z ≤ 12−x/4− y/8. (See Figure 16.24.)
To find its volume, divide it into small cubes of volume ΔV = ΔxΔyΔz and add. First, make a
vertical stack of cubes above the point (x, y, 0). This stack goes from z = 0 to z = 12−x/4− y/8,
so

Volume of vertical stack ≈
∑
z

ΔV =
∑
z

ΔxΔyΔz =

(∑
z

Δz

)
ΔxΔy.

Next, line up these stacks parallel to the y-axis to form a slice from y = 0 to y = 16. So

Volume of slice ≈

(∑
y

∑
z

ΔzΔy

)
Δx.

Finally, line up the slices along the x-axis from x = 0 to x = 8 and add up their volumes, to get

Volume of building ≈
∑
x

∑
y

∑
z

ΔzΔyΔx.

Thus, in the limit,

Volume of building =

∫ 8

0

∫ 16

0

∫ 12−x/4−y/8

0

1 dz dy dx.

x

y

z

(0, 16, 10)

(0, 16, 0)

(8, 16, 0)

�

(8, 16, 8)

�

(x, y, 12− 1
4
x− 1

8
y)

(x, y, 0)
�

�
�

�

8

16

(0, 0, 12)

(8, 0, 10)

(8, 0, 8)

(8, 0, 0)

x

y

z

Δx

Δy

�

�
Δz

(8, 0, 10)

(0, 0, 12)

8

16

Figure 16.24: Volume of building (shown to left) divided into blocks and slabs for a triple integral

Example 3 Set up an iterated integral to compute the mass of the solid cone bounded by z =
√
x2 + y2 and

z = 3, if the density is given by δ(x, y, z) = z.

x y

z

� z =
√

x2 + y2

� x2 + y2 ≤ 9

� z = 3

Figure 16.25
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Solution We break the cone in Figure 16.25 into small cubes of volume ΔV = ΔxΔyΔz, on which the
density is approximately constant, and approximate the mass of each cube by δ(x, y, z)ΔxΔyΔz.
Stacking the cubes vertically above the point (x, y, 0), starting on the cone at height z =

√
x2 + y2

and going up to z = 3, tells us that the inner integral is∫ 3

√
x2+y2

δ(x, y, z) dz =

∫ 3

√
x2+y2

z dz.

There is a stack for every point in the xy-plane in the shadow of the cone. The cone z =
√

x2 + y2

intersects the horizontal plane z = 3 in the circle x2+ y2 = 9, so there is a stack for all (x, y) in the
region x2 + y2 ≤ 9. Lining up the stacks parallel to the y-axis gives a slice from y = −

√
9− x2 to

y =
√
9− x2, for each fixed value of x. Thus, the limits on the middle integral are

∫ √
9−x2

−
√
9−x2

∫ 3

√
x2+y2

z dz dy.

Finally, there is a slice for each x between −3 and 3, so the integral we want is

Mass =
∫ 3

−3

∫ √
9−x2

−
√
9−x2

∫ 3

√
x2+y2

z dz dy dx.

Notice that setting up the limits on the two outer integrals was just like setting up the limits for
a double integral over the region x2 + y2 ≤ 9.

As the previous example illustrates, for a region W contained between two surfaces, the inner-
most limits correspond to these surfaces. The middle and outer limits ensure that we integrate over
the “shadow” of W in the xy-plane.

Limits on Triple Integrals

• The limits for the outer integral are constants.
• The limits for the middle integral can involve only one variable (that in the outer integral).
• The limits for the inner integral can involve two variables (those on the two outer integrals).

Exercises and Problems for Section 16.3
Exercises

In Exercises 1–4, find the triple integrals of the function over
the region W .

1. f(x, y, z) = x2 + 5y2 − z, W is the rectangular box
0 ≤ x ≤ 2, −1 ≤ y ≤ 1, 2 ≤ z ≤ 3.

2. h(x, y, z) = ax + by + cz, W is the rectangular box
0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 2.

3. f(x, y, z) = sin x cos(y+z), W is the cube 0 ≤ x ≤ π,
0 ≤ y ≤ π, 0 ≤ z ≤ π.

4. f(x, y, z) = e−x−y−z, W is the rectangular box with
corners at (0, 0, 0), (a, 0, 0), (0, b, 0), and (0, 0, c).

Sketch the region of integration in Exercises 5–13.

5.

∫ 1

0

∫ 1

−1

∫ √
1−x2

0

f(x, y, z) dz dx dy

6.

∫ 1

0

∫ 1

−1

∫ √
1−z2

0

f(x, y, z) dy dz dx

7.

∫ 1

0

∫ 1

−1

∫ √
1−x2

−

√
1−x2

f(x, y, z) dz dx dy
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8.

∫ 1

−1

∫ 1

0

∫ √
1−z2

−

√
1−z2

f(x, y, z) dy dz dx

9.

∫ 1

−1

∫ √
1−x2

−

√
1−x2

∫ √
1−x2

−z2

0

f(x, y, z) dy dz dx

10.

∫ 1

0

∫ √
1−z2

−

√
1−z2

∫ √
1−x2

−z2

0

f(x, y, z) dy dx dz

11.

∫ 1

0

∫ √
1−y2

0

∫ √
1−x2

−y2

−

√
1−x2

−y2

f(x, y, z) dz dx dy

12.

∫ 1

0

∫ √
1−z2

−

√
1−z2

∫ √
1−y2

−z2

−

√
1−y2

−z2

f(x, y, z) dx dy dz

13.

∫ 1

0

∫ √
1−z2

0

∫ √
1−x2

−z2

−

√
1−x2

−z2

f(x, y, z) dy dx dz

Problems

In Problems 14–18, decide whether the integrals are positive,
negative, or zero. Let S be the solid sphere x2+ y2+ z2 ≤ 1,
and T be the top half of this sphere (with z ≥ 0), and B be
the bottom half (with z ≤ 0), and R be the right half of the
sphere (with x ≥ 0), and L be the left half (with x ≤ 0).

14.

∫
T

ez dV 15.

∫
B

ez dV 16.

∫
S

sin z dV

17.

∫
T

sin z dV 18.

∫
R

sin z dV

Let W be the solid cone bounded by z =
√

x2 + y2 and
z = 2. For Problems 19–27, decide (without calculating its
value) whether the integral is positive, negative, or zero.

19.
∫
W

y dV 20.
∫
W

x dV

21.
∫
W

z dV 22.
∫
W

xy dV

23.
∫
W

xyz dV 24.
∫
W
(z − 2) dV

25.
∫
W

√
x2 + y2 dV 26.

∫
W

e−xyz dV

27.
∫
W
(z−
√

x2 + y2) dV

28. Find the volume of the region bounded by the planes
z = 3y, z = y, y = 1, x = 1, and x = 2.

29. Find the volume of the region bounded by z = x2,
0 ≤ x ≤ 5, and the planes y = 0, y = 3, and z = 0.

30. Find the volume of the region in the first octant bounded
by the coordinate planes and the surface x+ y + z = 2.

31. A trough with triangular cross-section lies along the x-
axis for 0 ≤ x ≤ 10. The slanted sides are given by
z = y and z = −y for 0 ≤ z ≤ 1 and the ends by x = 0
and x = 10, where x, y, z are in meters. The trough
contains a sludge whose density at the point (x, y, z) is
δ = e−3x kg per m3.

(a) Express the total mass of sludge in the trough in
terms of triple integrals.

(b) Find the mass.

32. Find the volume of the region bounded by z = x+y, z =
10, and the planes x = 0, y = 0.

In Problems 33–38, write a triple integral, including limits of
integration, that gives the specified volume.

33. Between z = x + y and z = 1 + 2x + 2y and above
0 ≤ x ≤ 1, 0 ≤ y ≤ 2.

34. Between the paraboloid z = x2 + y2 and the sphere
x2 + y2 + z2 = 4 and above the disk x2 + y2 ≤ 1.

35. Between 2x + 2y + z = 6 and 3x + 4y + z = 6 and
above x+ y ≤ 1, x ≥ 0, y ≥ 0.

36. Under the sphere x2+ y2+ z2 = 9 and above the region
between y = x and y = 2x − 2 in the xy-plane in the
first quadrant.

37. Between the top portion of the sphere x2 + y2 + z2 = 9
and the plane z = 2.

38. Under the sphere x2+ y2+ z2 = 4 and above the region
x2 + y2 ≤ 4, 0 ≤ x ≤ 1, 0 ≤ y ≤ 2 in the xy-plane.

In Problems 39–42, write limits of integration for the integral∫
W

f(x, y, z) dV where W is the quarter or half sphere or
cylinder shown.

39.

x y

z

r 1

r
40.

1
2

2

x

y

z

41.

r
r

r

x
y

z 42.

r
r

r

x

y

z
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43. Find the volume of the region between the plane z = x
and the surface z = x2, and the planes y = 0, and y = 3.

44. Find the volume of the region bounded by z = x + y,
0 ≤ x ≤ 5, 0 ≤ y ≤ 5, and the planes x = 0, y = 0,
and z = 0.

45. Find the volume of the pyramid with base in the plane
z = −6 and sides formed by the three planes y = 0 and
y − x = 4 and 2x+ y + z = 4.

46. Find the volume between the planes z = 1 + x + y and
x+ y + z = 1 and above the triangle x+ y ≤ 1, x ≥ 0,
y ≥ 0 in the xy-plane.

47. Find the volume between the plane x + y + z = 1 and
the xy-plane, for x+ y ≤ 2, x ≥ 0, y ≥ 0.

48. A solid shaped like a wedge of cheese has as its base the
xy-plane, bounded by the x-axis, the line y = x and the
line x + y = 1. Its sides are vertical, and its top is the
plane x + y + z = 2. At any point, the density of the
solid is four times the distance from the xy-plane.

(a) Express the mass of the region in terms of triple in-
tegrals.

(b) Find the mass.

49. Find the mass of a triangular-shaped solid bounded by
the planes z = 1 + x, z = 1 − x, z = 0, and with
0 ≤ y ≤ 3. The density is δ = 10 − z gm/(cm)3, and
x, y, z are in cm.

50. Find the mass of the solid bounded by the xy-plane, yz-
plane, xz-plane, and the plane (x/3)+(y/2)+(z/6) =
1, if the density of the solid is given by δ(x, y, z) = x+y.

51. Find the mass of the pyramid with base in the plane
z = −6 and sides formed by the three planes y = 0
and y − x = 4 and 2x+ y + z = 4, if the density of the
solid is given by δ(x, y, z) = y.

52. Let E be the solid pyramid bounded by the planes x +
z = 6, x− z = 0, y + z = 6, y − z = 0, and above the
plane z = 0 (see Figure 16.26). The density at any point
in the pyramid is given by δ(x, y, z) = z grams per cm3,
where x, y, and z are measured in cm.

(a) Explain in practical terms what the triple integral∫
E
z dV represents.

(b) In evaluating the integral from part (a), how many
separate triple integrals would be required if we
chose to integrate in the z-direction first?

(c) Evaluate the triple integral from part (a) by integrat-
ing in a well-chosen order.

x

y

z

Figure 16.26

53. (a) What is the equation of the plane passing through
the points (1, 0, 0), (0, 1, 0), and (0, 0, 1)?

(b) Find the volume of the region bounded by this plane
and the planes x = 0, y = 0, and z = 0.

Problems 54–56 refer to Figure 16.27, which shows triangular
portions of the planes 2x+4y+ z = 4, 3x− 2y = 0, z = 2,
and the three coordinate planes x = 0, y = 0, and z = 0.
For each solid region E, write down an iterated integral for
the triple integral

∫
E
f(x, y, z) dV.

x y

z

Figure 16.27

54. E is the region bounded by y = 0, z = 0, 3x− 2y = 0,
and 2x+ 4y + z = 4.

55. E is the region bounded by x = 0, y = 0, z = 0, z = 2,
and 2x+ 4y + z = 4.

56. E is the region bounded by x = 0, z = 0, 3x− 2y = 0,
and 2x+ 4y + z = 4.

57. Figure 16.28 shows part of a spherical ball of radius 5 cm.
Write an iterated triple integral which represents the vol-
ume of this region.

�

�

2 cm

Figure 16.28
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58. A solid region D is a half cylinder of radius 1 lying hori-
zontally with its rectangular base in the xy-plane and its
axis along the y-axis from y = 0 to y = 10. (The region
is above the xy-plane.)

(a) What is the equation of the curved surface of this
half cylinder?

(b) Write the limits of integration of the integral∫
D
f(x, y, z) dV in Cartesian coordinates.

59. Set up, but do not evaluate, an iterated integral for the
volume of the solid formed by the intersections of the
cylinders x2 + z2 = 1 and y2 + z2 = 1.

Problems 60–62 refer to Figure 16.29, which shows E, the
region in the first octant bounded by the parabolic cylinder
z = 6y2 and the elliptical cylinder x2 + 3y2 = 12. For the
given order of integration, write an iterated integral equivalent
to the triple integral

∫
E
f(x, y, z) dV.

x

y

z

Figure 16.29

60. dz dx dy 61. dx dz dy 62. dy dz dx

63. Find the average value of the sum of the squares of three
numbers x, y, z, where each number is between 0 and 2.

64. Let E be the region in the first octant bounded between
the plane x + 2y + z = 4, the parabolic cylinder
x = 2y2, and the coordinate planes (see Figure 16.30).
For each of the following orders of integration, write
down an iterated integral equivalent to the triple integral∫
E
f(x, y, z) dV.

(a) dz dy dx
(b) dy dz dx

x

y

z

Figure 16.30

Problems 65–66 concern the center of mass, the point at which
the mass of a solid body in motion can be considered to
be concentrated. If the object has density ρ(x, y, z) at the
point (x, y, z) and occupies a region W , then the coordinates
(x̄, ȳ, z̄) of the center of mass are given by

x̄ =
1

m

∫
W

xρ dV ȳ =
1

m

∫
W

yρ dV z̄ =
1

m

∫
W

zρ dV

where m =
∫
W

ρ dV is the total mass of the body.

65. A solid is bounded below by the square z = 0, 0 ≤ x ≤
1, 0 ≤ y ≤ 1 and above by the surface z = x + y + 1.
Find the total mass and the coordinates of the center of
mass if the density is 1 gm/cm3 and x, y, z are measured
in centimeters.

66. Find the center of mass of the tetrahedron that is bounded
by the xy, yz, xz planes and the plane x+2y+3z = 1.
Assume the density is 1 gm/cm3 and x, y, z are in cen-
timeters.

Problems 67–69 concern a rotating solid body and its moment
of inertia about an axis; this moment relates angular acceler-
ation to torque (an analogue of force). For a body of constant
density and mass m occupying a region W of volume V , the
moments of inertia about the coordinate axes are

Ix =
m

V

∫
W

(y2 + z2) dV Iy =
m

V

∫
W

(x2 + z2) dV

Iz =
m

V

∫
W

(x2 + y2) dV.

67. Find the moment of inertia about the z-axis of the rectan-
gular solid of mass m given by 0 ≤ x ≤ 1, 0 ≤ y ≤ 2,
0 ≤ z ≤ 3.

68. Find the moment of inertia about the x-axis of the rectan-
gular solid −a ≤ x ≤ a, −b ≤ y ≤ b and −c ≤ z ≤ c
of mass m.

69. Let a, b, and c denote the moments of inertia of a homo-
geneous solid object about the x, y and z-axes respec-
tively. Explain why a+ b > c.
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Strengthen Your Understanding

In Problems 70–71, explain what is wrong with the statement.

70. Let S be the solid sphere x2 + y2 + z2 ≤ 1 and let U be
the upper half of S where z ≥ 0. Then∫
S
f(x, y, z) dV = 2

∫
U
f(x, y, z) dV .

71.
∫ 1

0

∫ x

0

∫ y

0
f(x, y, z) dz dy dx =

∫ 1

0

∫ 1

y

∫ x

0
f(x, y, z) dz dx dy

In Problems 72–73, give an example of:

72. A function f such that
∫
R
fdV = 7, where R is the

cylinder x2 + y2 ≤ 4, 0 ≤ z ≤ 3.

73. A nonconstant function f(x, y, z) such that if B is the
region enclosed by the sphere of radius 1 centered at the
origin, the integral

∫
B
f(x, y, z) dx dy dz is zero.

Are the statements in Problems 74–83 true or false? Give rea-
sons for your answer.

74. If ρ(x, y, z) is mass density of a material in 3-space, then∫
W

ρ(x, y, z) dV gives the volume of the solid region
W .

75. The region of integration of the triple iterated integral∫ 1

0

∫ 1

0

∫ x

0
f dzdydx lies above a square in the xy-plane

and below a plane.

76. If W is the entire unit ball x2 + y2 + z2 ≤
1 then an iterated integral over W has limits∫ 1

0

∫√1−x2

0

∫√1−x2
−y2

0
f dz dy dx.

77. The iterated integrals
∫ 1

0

∫ 1−x

0

∫ 1−x−y

0
f dzdydx and∫ 1

0

∫ 1−z

0

∫ 1−y−z

0
f dxdydz are equal.

78. The iterated integrals
∫ 1

−1

∫ 1

0

∫ 1−x2

0
f dzdydx and∫ 1

0

∫ 1

0

∫ √

1−z

−

√

1−z
f dxdydz are equal.

79. If W is a rectangular solid in 3-space, then
∫
W

f dV =∫ b

a

∫ d

c

∫ k

e
fdz dy dx, where a, b, c, d, e, and k are con-

stants.

80. If W is the unit cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1
and
∫
W

f dV = 0, then f = 0 everywhere in the unit
cube.

81. If f > g at all points in the solid region W , then∫
W

f dV >
∫
W

g dV.

82. If W1 and W2 are solid regions with volume(W1) >
volume(W2) then

∫
W1

f dV >
∫
W2

f dV.

83. Both double and triple integrals can be used to compute
volume.

16.4 DOUBLE INTEGRALS IN POLAR COORDINATES

Integration in Polar Coordinates
We started this chapter by putting a rectangular grid on the fox population density map, to estimate
the total population using a Riemann sum. However, sometimes a polar grid is more appropriate.

Example 1 A biologist studying insect populations around a circular lake divides the area into the polar sectors
in Figure 16.31. The approximate population density in each sector is shown in millions per square
km. Estimate the total insect population around the lake.

Shore of the lake

Lake

13

20
17

10

14

8

17
10

2 3 4

Figure 16.31: An insect-infested lake showing the insect population density by sector
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Solution To get the estimate, we multiply the population density in each sector by the area of that sector.
Unlike the rectangles in a rectangular grid, the sectors in this grid do not all have the same area. The
inner sectors have area

1

4
(π32 − π22) =

5π

4
≈ 3.93 km2,

and the outer sectors have area
1

4
(π42 − π32) =

7π

4
≈ 5.50 km2,

so we estimate

Population ≈ (20)(3.93) + (17)(3.93) + (14)(3.93) + (17)(3.93) +

(13)(5.50) + (10)(5.50) + (8)(5.50) + (10)(5.50)

= 492.74 million insects.

What Is dA in Polar Coordinates?

The previous example used a polar grid rather than a rectangular grid. A rectangular grid is con-
structed from vertical and horizontal lines of the form x = k (a constant) and y = l (another
constant). In polar coordinates, r = k gives a circle of radius k centered at the origin and θ = l
gives a ray emanating from the origin (at angle l with the x-axis). A polar grid is built out of these
circles and rays. Suppose we want to integrate f(r, θ) over the region R in Figure 16.32.

θ0 = α

θn = β

r0 = a

rm = b

x

y

�

R

Figure 16.32: Dividing up a region using a polar grid

�
�

�

�

Δr

Δθ

	
θ

r

�
Arc of circle
of radius r

rΔθ

�
ΔA

x

y

Figure 16.33: Calculating area ΔA in polar coordinates

Choosing (rij , θij) in the ij-th bent rectangle in Figure 16.32 gives a Riemann sum:∑
i,j

f(rij , θij)ΔA.

To calculate the area ΔA, look at Figure 16.33. If Δr and Δθ are small, the shaded region is
approximately a rectangle with sides rΔθ and Δr, so

ΔA ≈ rΔθΔr.

Thus, the Riemann sum is approximately∑
i,j

f(rij , θij) rij ΔθΔr.

If we take the limit as Δr and Δθ approach 0, we obtain∫
R

f dA =

∫ β

α

∫ b

a

f(r, θ) r dr dθ.

When computing integrals in polar coordinates, use x = r cos θ, y = r sin θ, x2 + y2 = r2.
Put dA = r dr dθ or dA = r dθ dr.
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Example 2 Compute the integral of f(x, y) = 1/(x2 + y2)3/2 over the region R shown in Figure 16.34.

π
4

x

y

1 2

R

Figure 16.34: Integrate f over the polar region

Solution The region R is described by the inequalities 1 ≤ r ≤ 2, 0 ≤ θ ≤ π/4. In polar coordinates,
r =
√
x2 + y2, so we can write f as

f(x, y) =
1

(x2 + y2)3/2
=

1

(r2)3/2
=

1

r3
.

Then ∫
R

f dA =

∫ π/4

0

∫ 2

1

1

r3
r dr dθ =

∫ π/4

0

(∫ 2

1

r−2 dr

)
dθ

=

∫ π/4

0

−
1

r

∣∣∣∣r=2

r=1

dθ =

∫ π/4

0

1

2
dθ =

π

8
.

Example 3 For each region in Figure 16.35, decide whether to integrate using polar or Cartesian coordinates.
On the basis of its shape, write an iterated integral of an arbitrary function f(x, y) over the region.

1 3

−1

1

2

x

y(a)

−3 3

−3

3

x

y(b)

2−1

1

2

3

x

y(c)

1

2

−2 −1
x

y(d)

Figure 16.35

Solution (a) Since this is a rectangular region, Cartesian coordinates are likely to be a better choice. The
rectangle is described by the inequalities 1 ≤ x ≤ 3 and −1 ≤ y ≤ 2, so the integral is∫ 2

−1

∫ 3

1

f(x, y) dx dy.

(b) A circle is best described in polar coordinates. The radius is 3, so r goes from 0 to 3, and to
describe the whole circle, θ goes from 0 to 2π. The integral is∫ 2π

0

∫ 3

0

f(r cos θ, r sin θ) r dr dθ.

(c) The bottom boundary of this trapezoid is the line y = (x/2)− 1 and the top is the line y = 3,
so we use Cartesian coordinates. If we integrate with respect to y first, the lower limit of the
integral is (x/2)− 1 and the upper limit is 3. The x limits are x = 0 to x = 2. So the integral is∫ 2

0

∫ 3

(x/2)−1

f(x, y) dy dx.
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(d) This is another polar region: it is a piece of a ring in which r goes from 1 to 2. Since it is in the
second quadrant, θ goes from π/2 to π. The integral is∫ π

π/2

∫ 2

1

f(r cos θ, r sin θ) r dr dθ.

Exercises and Problems for Section 16.4
Exercises

For the regions R in Exercises 1–4, write
∫
R
f dA as an iter-

ated integral in polar coordinates.

1. y

x
0.5

0.5

2. √
2

−
√
2

−
√
2

√
2

x

y

3.

−1 1

2

x

y 4.

1

2

−2 −1
x

y

In Exercises 5–8, choose rectangular or polar coordinates to
set up an iterated integral of an arbitrary function f(x, y) over
the region.

5.

1 5

2

4

x

y 6.

−5 5

−5

5

x

y

7. −4 −2 2 4

−4

−2

x
y 8.

2

1

3

5

x

y

Sketch the region of integration in Exercises 9–15.

9.

∫ 4

0

∫ π/2

−π/2

f(r, θ) r dθ dr

10.

∫ π

π/2

∫ 1

0

f(r, θ) r dr dθ

11.

∫ 2π

0

∫ 2

1

f(r, θ) r dr dθ

12.

∫ π/3

π/6

∫ 1

0

f(r, θ) r dr dθ

13.

∫ π/4

0

∫ 1/ cos θ

0

f(r, θ) r dr dθ

14.

∫ 4

3

∫ 3π/2

3π/4

f(r, θ) r dθ dr

15.

∫ π/2

π/4

∫ 2/ sin θ

0

f(r, θ) r dr dθ

Problems

In Exercises 16–18, evaluate the integral.

16.
∫
R

√
x2 + y2 dxdy where R is 4 ≤ x2 + y2 ≤ 9.

17.
∫
R
sin(x2+y2) dA, where R is the disk of radius 2 cen-

tered at the origin.

18.
∫
R
(x2 − y2) dA, where R is the first quadrant region

between the circles of radius 1 and radius 2.

Convert the integrals in Problems 19–21 to polar coordinates
and evaluate.

19.

∫ 0

−1

∫ √
1−x2

−

√
1−x2

x dy dx 20.

∫ √

6

0

∫ x

−x

dy dx

21.

∫ √

2

0

∫ √
4−y2

y

xy dx dy
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22. Consider the integral
∫ 3

0

∫ 1

x/3
f(x, y) dy dx.

(a) Sketch the region R over which the integration is be-
ing performed.

(b) Rewrite the integral with the order of integration re-
versed.

(c) Rewrite the integral in polar coordinates.

23. (a) Use integration in the following coordinates to find
the volume of a solid orange wedge with x ≥ 0 and
cut out by the planes y = 0, y = x/

√
3, and a sphere

of radius 5 centered at the origin. Which coordinates
are the most efficient?

(i) Spherical coordinates

(ii) Cylindrical coordinates, in two different ways

(b) Calculate the volume without integration

24. Evaluate the integral by converting it into Cartesian co-
ordinates: ∫ π/6

0

∫ 2/ cos θ

0

r dr dθ.

25. (a) Sketch the region of integration of

∫ 1

0

∫ √
4−x2

√
1−x2

xdy dx+

∫ 2

1

∫ √
4−x2

0

x dy dx

(b) Evaluate the quantity in part (a).

26. Find the volume of the region between the graph of
f(x, y) = 25− x2 − y2 and the xy plane.

27. Find the volume of an ice cream cone bounded by the
hemisphere z =

√
8− x2 − y2 and the cone z =√

x2 + y2.

28. (a) For a > 0, find the volume under the graph of
z = e−(x2+y2) above the disk x2 + y2 ≤ a2.

(b) What happens to the volume as a → ∞?

29. A circular metal disk of radius 3 lies in the xy-plane with
its center at the origin. At a distance r from the origin, the

density of the metal per unit area is δ =
1

r2 + 1
.

(a) Write a double integral giving the total mass of the
disk. Include limits of integration.

(b) Evaluate the integral.

30. A city surrounds a bay as shown in Figure 16.36. The
population density of the city (in thousands of people per
square km) is δ(r, θ), where r and θ are polar coordinates
and distances are in km.

(a) Set up an iterated integral in polar coordinates giving
the total population of the city.

(b) The population density decreases the farther you live
from the shoreline of the bay; it also decreases the
farther you live from the ocean. Which of the fol-
lowing functions best describes this situation?

(i) δ(r, θ) = (4− r)(2 + cos θ)

(ii) δ(r, θ) = (4− r)(2 + sin θ)

(iii) δ(r, θ) = (r + 4)(2 + cos θ)

(c) Estimate the population using your answers to
parts (a) and (b).

City

�
Bay

x (km)

y (km)

Ocean

1

4

Figure 16.36

31. A disk of radius 5 cm has density 10 gm/cm2 at its center
and density 0 at its edge, and its density is a linear func-
tion of the distance from the center. Find the mass of the
disk.

32. Electric charge is distributed over the xy-plane, with den-
sity inversely proportional to the distance from the ori-
gin. Show that the total charge inside a circle of radius
R centered at the origin is proportional to R. What is the
constant of proportionality?

33. (a) Graph r = 1/(2 cos θ) for −π/2 ≤ θ ≤ π/2 and
r = 1.

(b) Write an iterated integral representing the area inside
the curve r = 1 and to the right of r = 1/(2 cos θ).
Evaluate the integral.

34. (a) Sketch the circles r = 2 cos θ for −π/2 ≤ θ ≤ π/2
and r = 1.

(b) Write an iterated integral representing the area inside
the circle r = 2 cos θ and outside the circle r = 1.
Evaluate the integral.

35. Two circular disks, each of radius 1, have centers which
are 1 unit apart. Write, but do not evaluate, a double in-
tegral, including limits of integration, giving the area of
overlap of the disks in

(a) Cartesian coordinates (b) Polar coordinates

36. Find the area inside the curve r = 2+3 cos θ and outside
the circle r = 2.

Strengthen Your Understanding

In Problems 37–38, explain what is wrong with the statement.

37. If R is the region bounded by x = 1, y = 0, y = x, then

in polar coordinates
∫
R
xdA =

∫ π/4

0

∫ 1

0
r2 cos θ dr dθ.

38. If R is the region x2 + y2 ≤ 4, then
∫
R
(x2 + y2) dA =∫ 2π

0

∫ 2

0
r2 dr dθ.
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In Problems 39–40, give an example of:

39. A region R of integration in the first quadrant which sug-
gests the use of polar coordinates.

40. An integrand f(x, y) that suggests the use of polar coor-
dinates.

41. Which of the following integrals give the area of the unit
circle?

(a)

∫ 1

−1

∫ √
1−x2

−

√
1−x2

dy dx (b)

∫ 1

−1

∫ √
1−x2

−

√
1−x2

x dy dx

(c)

∫ 2π

0

∫ 1

0

r dr dθ (d)

∫ 2π

0

∫ 1

0

dr dθ

(e)

∫ 1

0

∫ 2π

0

r dθ dr (f)

∫ 1

0

∫ 2π

0

dθ dr

42. Describe the region of integration for
∫ π/2

π/4

∫ 4/ sin θ

1/ sin θ
f(r, θ)r dr dθ.

16.5 INTEGRALS IN CYLINDRICAL AND SPHERICAL COORDINATES

Some double integrals are easier to evaluate in polar, rather than Cartesian, coordinates. Similarly,
some triple integrals are easier in non-Cartesian coordinates.

Cylindrical Coordinates
The cylindrical coordinates of a point (x, y, z) in 3-space are obtained by representing the x and y
coordinates in polar coordinates and letting the z-coordinate be the z-coordinate of the Cartesian
coordinate system. (See Figure 16.37.)

Relation Between Cartesian and Cylindrical Coordinates

Each point in 3-space is represented using 0 ≤ r < ∞, 0 ≤ θ ≤ 2π, −∞ < z < ∞.

x = r cos θ,

y = r sin θ,

z = z.

As with polar coordinates in the plane, note that x2 + y2 = r2.

x

y

z

θ r

(r, θ, 0)

P = (r, θ, z)

z

Figure 16.37: Cylindrical
coordinates: (r, θ, z)

A useful way to visualize cylindrical coordinates is to sketch the surfaces obtained by setting
one of the coordinates equal to a constant. See Figures 16.38–16.40.
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x y

z

�

r = 1

�r = 2

Figure 16.38: The surfaces r = 1 and
r = 2

x
y

z

� θ = 3π
4

�

θ = π
4

Figure 16.39: The surfaces θ = π/4 and
θ = 3π/4

x

y

z

z = 3

z = −1

Figure 16.40: The surfaces z = −1
and z = 3

Setting r = c (where c is constant) gives a cylinder around the z-axis whose radius is c. Setting
θ = c gives a half-plane perpendicular to the xy plane, with one edge along the z-axis, making an
angle c with the x-axis. Setting z = c gives a horizontal plane |c| units from the xy-plane. We call
these fundamental surfaces.

The regions that can most easily be described in cylindrical coordinates are those regions whose
boundaries are such fundamental surfaces. (For example, vertical cylinders, or wedge-shaped parts
of vertical cylinders.)

Example 1 Describe in cylindrical coordinates a wedge of cheese cut from a cylinder 4 cm high and 6 cm in
radius; this wedge subtends an angle of π/6 at the center. (See Figure 16.41.)

Solution The wedge is described by the inequalities 0 ≤ r ≤ 6, and 0 ≤ z ≤ 4, and 0 ≤ θ ≤ π/6.

x

y

z

�
�

4 cm

�

�

6 cm
� π

6

Figure 16.41: A wedge of cheese

Integration in Cylindrical Coordinates
To integrate in polar coordinates, we had to express the area element dA in terms of polar coordi-
nates: dA = r dr dθ. To evaluate a triple integral

∫
W

f dV in cylindrical coordinates, we need to
express the volume element dV in cylindrical coordinates.

In Figure 16.42, consider the volume element ΔV bounded by fundamental surfaces. The area
of the base is ΔA ≈ rΔrΔθ. Since the height is Δz, the volume element is given approximately
by ΔV ≈ rΔrΔθΔz.

When computing integrals in cylindrical coordinates, put dV = r dr dθ dz. Other orders of
integration are also possible.
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� ΔV

Δθ

�

�

�

�
Δz

�

�

z

� �� �rΔθ Δr

r

z

x

y

Figure 16.42: Volume element in cylindrical coordinates

Example 2 Find the mass of the wedge of cheese in Example 1, if its density is 1.2 grams/cm3.

Solution If the wedge is W , its mass is ∫
W

1.2 dV.

In cylindrical coordinates this integral is∫ 4

0

∫ π/6

0

∫ 6

0

1.2 r dr dθ dz =

∫ 4

0

∫ π/6

0

0.6r2
∣∣∣∣6
0

dθ dz = 21.6

∫ 4

0

∫ π/6

0

dθ dz

= 21.6
(π
6

)
4 = 45.239 grams.

Example 3 A water tank in the shape of a hemisphere has radius a; its base is its plane face. Find the volume,
V , of water in the tank as a function of h, the depth of the water.

Solution In Cartesian coordinates, a sphere of radius a has the equation x2+y2+z2 = a2. (See Figure 16.43.)
In cylindrical coordinates, r2 = x2 + y2, so this becomes

r2 + z2 = a2.

Thus, if we want to describe the amount of water in the tank in cylindrical coordinates, we let r go
from 0 to

√
a2 − z2, we let θ go from 0 to 2π, and we let z go from 0 to h, giving

Volume

of water
=

∫
W

dV =

∫ 2π

0

∫ h

0

∫ √
a2−z2

0

r dr dz dθ =

∫ 2π

0

∫ h

0

r2

2

∣∣∣∣r=
√
a2−z2

r=0

dz dθ

=

∫ 2π

0

∫ h

0

1

2
(a2 − z2) dz dθ =

∫ 2π

0

1

2

(
a2z −

z3

3

) ∣∣∣∣z=h

z=0

dθ

=

∫ 2π

0

1

2

(
a2h−

h3

3

)
dθ = π

(
a2h−

h3

3

)
.

x

z

�

�

h
�

�

r

r2 + z2 = a2

Figure 16.43: Hemispherical water tank with radius a and water of depth h
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Spherical Coordinates
In Figure 16.44, the point P has coordinates (x, y, z) in the Cartesian coordinate system. We define
spherical coordinates ρ, φ, and θ for P as follows: ρ =

√
x2 + y2 + z2 is the distance of P from

the origin; φ is the angle between the positive z-axis and the line through the origin and the point
P ; and θ is the same as in cylindrical coordinates.

x

y

z

θ

φ
ρ

r

(x, y, 0)

P = (x, y, z)

Figure 16.44: Spherical coordinates: (ρ, φ, θ)

In cylindrical coordinates,

x = r cos θ, and y = r sin θ, and z = z.

From Figure 16.44 we have z = ρ cosφ and r = ρ sinφ, giving the following relationship:

Relation Between Cartesian and Spherical Coordinates

Each point in 3-space is represented using 0 ≤ ρ < ∞, 0 ≤ φ ≤ π, and 0 ≤ θ ≤ 2π.

x = ρ sinφ cos θ

y = ρ sinφ sin θ

z = ρ cosφ.

Also, ρ2 = x2 + y2 + z2.

This system of coordinates is useful when there is spherical symmetry with respect to the ori-
gin, either in the region of integration or in the integrand. The fundamental surfaces in spherical
coordinates are ρ = k (a constant), which is a sphere of radius k centered at the origin, θ = k (a
constant), which is the half-plane with its edge along the z-axis, and φ = k (a constant), which is a
cone if k �= π/2 and the xy-plane if k = π/2. (See Figures 16.45–16.47.)

x y

z

�ρ = 2
�

ρ = 1

Figure 16.45: The surfaces ρ = 1 and
ρ = 2

x

y

z

� θ = 3π
4

�θ = π
4

Figure 16.46: The surfaces
θ = π/4 and θ = 3π/4

x

y

z

φ = 2π/3

φ = π/6

Figure 16.47: The surfaces φ = π/6 and
φ = 2π/3
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Integration in Spherical Coordinates
To use spherical coordinates in triple integrals we need to express the volume element, dV , in
spherical coordinates. From Figure 16.48, we see that the volume element can be approximated by
a box with curved edges. One edge has length Δρ. The edge parallel to the xy-plane is an arc of
a circle made from rotating the cylindrical radius r (= ρ sinφ) through an angle Δθ, and so has
length ρ sinφΔθ. The remaining edge comes from rotating the radius ρ through an angle Δφ, and
so has length ρΔφ. Therefore, ΔV ≈ Δρ(ρΔφ)(ρ sin φΔθ) = ρ2 sinφΔρΔφΔθ.

x

y

z


Δθ

Δθ

�

ρΔφ
ρ sinφΔθ

�
Δρ

φ

θ

�

�

�
ρ

�

�ρ sinφ

Figure 16.48: Volume element in spherical coordinates

Thus,

When computing integrals in spherical coordinates, put dV = ρ2 sinφdρ dφ dθ. Other orders
of integration are also possible.

Example 4 Use spherical coordinates to derive the formula for the volume of a ball of radius a.

Solution In spherical coordinates, a ball of radius a is described by the inequalities 0 ≤ ρ ≤ a, 0 ≤ θ ≤ 2π,
and 0 ≤ φ ≤ π. Note that θ goes from 0 to 2π, whereas φ goes from 0 to π. We find the volume by
integrating the constant density function 1 over the ball:

Volume =

∫
R

1 dV =

∫ 2π

0

∫ π

0

∫ a

0

ρ2 sinφdρ dφ dθ =

∫ 2π

0

∫ π

0

1

3
a3 sinφdφdθ

=
1

3
a3
∫ 2π

0

− cosφ

∣∣∣∣π
0

dθ =
2

3
a3
∫ 2π

0

dθ =
4πa3

3
.

Example 5 Find the magnitude of the gravitational force exerted by a solid hemisphere of radius a and constant
density δ on a unit mass located at the center of the base of the hemisphere.

Solution Assume the base of the hemisphere rests on the xy-plane with center at the origin. (See Fig-
ure 16.49.) Newton’s law of gravitation says that the force between two masses m1 and m2 at a
distance r apart is F = Gm1m2/r

2, where G is the gravitation constant.
In this example, symmetry shows that the net component of the force on the particle at the

origin due to the hemisphere is in the z direction only. Any force in the x or y direction from some
part of the hemisphere is canceled by the force from another part of the hemisphere directly opposite
the first.

To compute the net z-component of the gravitational force, we imagine a small piece of the
hemisphere with volume ΔV , located at spherical coordinates (ρ, θ, φ). This piece has mass δΔV ,
and exerts a force of magnitude F on the unit mass at the origin. The z-component of this force
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is given by its projection onto the z-axis, which can be seen from the figure to be F cosφ. The
distance from the mass δΔV to the unit mass at the origin is the spherical coordinate ρ. Therefore,
the z-component of the force due to the small piece ΔV is

z-component

of force
=

G(δΔV )(1)

ρ2
cosφ.

Adding the contributions of the small pieces, we get a vertical force with magnitude

F =

∫ 2π

0

∫ π/2

0

∫ a

0

(
Gδ

ρ2

)
(cosφ)ρ2 sinφdρ dφ dθ =

∫ 2π

0

∫ π/2

0

Gδ(cosφ sinφ)ρ

∣∣∣∣ρ=a

ρ=0

dφdθ

=

∫ 2π

0

∫ π/2

0

Gδa cosφ sin φdφdθ =

∫ 2π

0

Gδa

(
−
(cosφ)2

2

)∣∣∣∣φ=π/2

φ=0

dθ

=

∫ 2π

0

Gδa

(
1

2

)
dθ = Gδaπ.

The integral in this example is improper because the region of integration contains the origin, where
the force is undefined. However, it can be shown that the result is nevertheless correct.

x

y

z

�
ΔV

φ

� �a�

Unit mass

�z-component
of force

� Force, F , due
to mass δdV

Figure 16.49: Gravitational force of hemisphere on mass at origin

Exercises and Problems for Section 16.5
Exercises

1. Match the equations in (a)–(f) with one of the surfaces in
(I)–(VII).

(a) x = 5 (b) x2 + z2 = 7 (c) ρ = 5

(d) z = 1 (e) r = 3 (f) θ = 2π

(I) Cylinder, centered on x-axis.
(II) Cylinder, centered on y-axis.

(III) Cylinder, centered on z-axis.
(IV) Plane, perpendicular to the x-axis.
(V) Plane, perpendicular to the y-axis.

(VI) Plane, perpendicular to the z-axis.
(VII) Sphere.

In Exercises 2–7, find an equation for the surface.

2. The vertical plane y = x in cylindrical coordinates.

3. The top half of the sphere x2+y2+z2 = 1 in cylindrical
coordinates.

4. The cone z =
√

x2 + y2 in cylindrical coordinates.

5. The cone z =
√

x2 + y2 in spherical coordinates.

6. The plane z = 10 in spherical coordinates.

7. The plane z = 4 in spherical coordinates.

In Exercises 8–9, evaluate the triple integrals in cylindrical
coordinates over the region W .

8. f(x, y, z) = sin(x2 + y2), W is the solid cylinder with
height 4 and with base of radius 1 centered on the z axis
at z = −1.

9. f(x, y, z) = x2 + y2 + z2, W is the region 0 ≤ r ≤ 4,
π/4 ≤ θ ≤ 3π/4, −1 ≤ z ≤ 1.
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In Exercises 10–11, evaluate the triple integrals in spherical
coordinates.

10. f(ρ, θ, φ) = sinφ, over the region 0 ≤ θ ≤ 2π,
0 ≤ φ ≤ π/4, 1 ≤ ρ ≤ 2.

11. f(x, y, z) = 1/(x2 + y2 + z2)1/2 over the bottom half
of the sphere of radius 5 centered at the origin.

For Exercises 12–18, choose coordinates and set up a triple
integral, including limits of integration, for a density function
f over the region.

12.

5

31

�

��

���
13.

�
�
1

�� 4

14.

�

�2

�

�

4

�

π/2

15.

2

3

�

�
�

�

16. A piece of a sphere; angle at the center is π/3.

�

�

3

17.

�

�

2 cm

�

�

5 cm

�

�

1 cm

18.

�

�
4

�

�

2

Problems

19. Write a triple integral in cylindrical coordinates giving
the volume of a sphere of radius K centered at the ori-
gin. Use the order dz dr dθ.

20. Write a triple integral in spherical coordinates giving the
volume of a sphere of radius K centered at the origin.
Use the order dθ dρ dφ.

If W is the region in Figure 16.50, what are the limits of inte-
gration in Exercises 21–23?

x

y

z

4

(2, 0, 4)

Figure 16.50: Cone with flat top,
symmetric about z-axis

21.

∫ ?

?

∫ ?

?

∫ ?

?

f(r, θ, z)r dz dr dθ

22.

∫ ?

?

∫ ?

?

∫ ?

?

g(ρ, φ, θ)ρ2 sinφ dρ dφdθ

23.

∫ ?

?

∫ ?

?

∫ ?

?

h(x, y, z) dz dy dx

For the regions W shown in Problems 24–26, write the limits
of integration for

∫
W

dV in the following coordinates:

(a) Cartesian (b) Cylindrical (c) Spherical

24.

x

One-eighth sphere

y
z

1

1

−1
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25.

x
y

z

1

Cone, topped by sphere
of radius 1 centered at origin, 90◦ at vertex

26.

x
y

z

1/
√
2

Cone, flat on top,
π/2 at vertex

27. Write a triple integral representing the volume above the
cone z =

√
x2 + y2 and below the sphere of radius 2

centered at the origin. Include limits of integration but do
not evaluate. Use:

(a) Cylindrical coordinates
(b) Spherical coordinates

28. Write a triple integral representing the volume of the re-
gion between spheres of radius 1 and 2, both centered at
the origin. Include limits of integration but do not evalu-
ate. Use:

(a) Spherical coordinates.
(b) Cylindrical coordinates. Write your answer as the

difference of two integrals.

In Problems 29–34, write a triple integral including limits of
integration that gives the specified volume.

29. Under ρ = 3 and above φ = π/3.

30. Under ρ = 3 and above z = r.

31. The region between z = 5 and z = 10, with 2 ≤
x2 + y2 ≤ 3 and 0 ≤ θ ≤ π.

32. Between the cone z =
√

x2 + y2 and the first quadrant
of the xy-plane, with x2 + y2 ≤ 7.

33. The cap of the solid sphere x2+ y2+ z2 ≤ 10 cut off by
the plane z = 1.

34. Below the cone z = r, above the xy-plane, and inside
the sphere x2 + y2 + z2 = 8.

35. (a) Write an integral (including limits of integration)
representing the volume of the region inside the cone
z =
√

3(x2 + y2) and below the plane z = 1.
(b) Evaluate the integral.

36. Find the volume between the cone z =
√

x2 + y2 and
the plane z = 10 + x above the disk x2 + y2 ≤ 1.

37. Find the volume between the cone x =
√

y2 + z2 and
the sphere x2 + y2 + z2 = 4.

38. The sphere of radius 2 centered at the origin is sliced hor-
izontally at z = 1. What is the volume of the cap above
the plane z = 1?

39. Suppose W is the region outside the cylinder x2+y2 = 1
and inside the sphere x2 + y2 + z2 = 2. Calculate∫

W

(x2 + y2) dV.

40. Write a triple integral representing the volume of a slice
of the cylindrical cake of height 2 and radius 5 between
the planes θ = π/6 and θ = π/3. Evaluate this integral.

41. Write a triple integral representing the volume of the
cone in Figure 16.51 and evaluate it.

�

�

5
cm

�� 5/
√
2 cm

Figure 16.51

Without performing the integration, decide whether each of
the integrals in Problems 42–43 is positive, negative, or zero.
Give reasons for your decision.

42. W1 is the unit ball, x2 + y2 + z2 ≤ 1.

(a)
∫
W1

sinφ dV (b)
∫
W1

cos φ dV

43. W2 is 0 ≤ z ≤
√

1− x2 − y2, the top half of the unit
ball.

(a)
∫
W2

(z2 − z) dV (b)
∫
W2

(−xz)dV

44. The insulation surrounding a pipe of length l is the re-
gion between two cylinders with the same axis. The in-
ner cylinder has radius a, the outer radius of the pipe,
and the insulation has thickness h. Write a triple integral,
including limits of integration, giving the volume of the
insulation. Evaluate the integral.

45. Assume p, q, r are positive constants. Find the volume
contained between the coordinate planes and the plane

x

p
+

y

q
+

z

r
= 1.
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46. A cone stands with its flat base on a table. The cone’s
circular base has radius a; the vertex (tip) is at a height
of h above the center of the base. Write a triple integral,
including limits of integration, representing the volume
of the cone. Evaluate the integral.

47. A half-melon is approximated by the region between two
concentric spheres, one of radius a and the other of radius
b, with 0 < a < b. Write a triple integral, including lim-
its of integration, giving the volume of the half-melon.
Evaluate the integral.

48. A bead is made by drilling a cylindrical hole of radius
1 mm through a sphere of radius 5 mm. See Figure 16.52.

(a) Set up a triple integral in cylindrical coordinates rep-
resenting the volume of the bead.

(b) Evaluate the integral.

��
5 mm

���

1 mm

Figure 16.52

49. A pile of hay is approximately in the shape of 0 ≤ z ≤
2− x2 − y2, where x, y, z are in meters. At height z, the
density of the hay is δ = (2− z) kg/m3.

(a) Write an integral representing the mass of hay in the
pile.

(b) Evaluate the integral.

50. Find the mass M of the solid region W given in spherical
coordinates by 0 ≤ ρ ≤ 3, 0 ≤ θ < 2π, 0 ≤ φ ≤ π/4.
The density, δ(P ), at any point P is given by the distance
of P from the origin.

51. Write an integral representing the mass of a sphere of ra-
dius 3 if the density of the sphere at any point is twice the
distance of that point from the center of the sphere.

52. A sphere is made of material whose density at each point
is proportional to the square of the distance of the point
from the z-axis. The density is 2 gm/cm3 at a distance
of 2 cm from the axis. What is the mass of the sphere if
it is centered at the origin and has radius 3 cm?

53. The density of a solid sphere at any point is proportional
to the square of the distance of the point to the center of
the sphere. What is the ratio of the mass of a sphere of
radius 1 to a sphere of radius 2?

54. A spherical shell centered at the origin has an inner ra-
dius of 6 cm and an outer radius of 7 cm. The density, δ,
of the material increases linearly with the distance from
the center. At the inner surface, δ = 9 gm/cm3; at the
outer surface, δ = 11 gm/cm3.

(a) Using spherical coordinates, write the density, δ, as
a function of radius, ρ.

(b) Write an integral giving the mass of the shell.
(c) Find the mass of the shell.

55. (a) Write an iterated integral which represents the mass
of a solid ball of radius a. The density at each point
in the ball is k times the distance from that point to
a fixed plane passing through the center of the ball.

(b) Evaluate the integral.

56. Use appropriate coordinates to find the average distance
to the origin for points in the ice cream cone region
bounded by the hemisphere z =

√
8− x2 − y2 and the

cone z =
√

x2 + y2. [Hint: The volume of this region is
computed in Problem 27 on page 895.]

For Problems 57–60, use the definition of center of mass given
on page 890. Assume x, y, z are in cm.

57. Let C be a solid cone with both height and radius 1
and contained between the surfaces z =

√
x2 + y2 and

z = 1. If C has constant mass density of 1 gm/cm3, find
the z-coordinate of C’s center of mass.

58. The density of the cone C in Problem 57 is given by
δ(z) = z2 gm/cm3. Find

(a) The mass of C.
(b) The z-coordinate of C’s center of mass.

59. For a > 0, consider the family of solids bounded be-
low by the paraboloid z = a(x2 + y2) and above by the
plane z = 1. If the solids all have constant mass den-
sity 1 gm/cm3, show that the z-coordinate of the center
of mass is 2/3 and so independent of the parameter a.

60. Find the location of the center of mass of a hemisphere
of radius a and density b gm/cm3.

For Problems 61–62, use the definition of moment of inertia
given on page 890.

61. The moment of inertia of a solid homogeneous ball B of
mass 1 and radius a centered at the origin is the same
about any of the coordinate axes (due to the symmetry of
the ball). It is easier to evaluate the sum of the three inte-
grals involved in computing the moment of inertia about
each of the axes than to compute them individually. Find
the sum of the moments of inertia about the x, y and z-
axes and thus find the individual moments of inertia.

62. Find the moment of inertia about the z-axis of the solid
“fat ice cream cone” given in spherical coordinates by
0 ≤ ρ ≤ a, 0 ≤ φ ≤ π

3
and 0 ≤ θ ≤ 2π. Assume that

the solid is homogeneous with mass m.
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Problems 63–64 deal with the energy stored in an electric
field. If a region of space W contains an electric field whose
magnitude at a point (x, y, z) is E(x, y, z), then

Energy stored by field =
1

2

∫
W

εE2 dV,

where ε is a property of the material called the permittivity.

63. The region between two concentric spheres, with radii
a < b, contains an electric field with magnitude E =
q/(4περ2), where ρ is the distance from the center of the
spheres and q is the charge on the inner sphere. Assum-
ing the permittivity, ε, is constant, find the total energy
stored in the region between the two spheres.

64. Figure 16.53 shows a coaxial cable consisting of two
cylindrical conductors centered on the same axis, of radii
a < b. The electric field between the conductors has
magnitude E = q/(2πεr), where r is the distance from
the axis and q is the charge per unit length on the cable.
The permittivity of the material between the conductors
is constant.4 Show that the stored energy per unit length
is proportional to ln(b/a).

�

�

2a

�

�

2b

Figure 16.53

65. The density, δ, of a gas in the region under z = 4 −
x2 − y2 and above the xy-plane is δ = e−x−ygm/cm3,
where x, y, z are in cm. Write an integral, with limits of
integration, representing the mass of gas.

66. The density, δ, of the cylinder x2 + y2 ≤ 4, 0 ≤ z ≤ 3
varies with the distance, r, from the z-axis:

δ = 1 + r gm/cm3.

Find the mass of the cylinder, assuming x, y, z are in cm.

67. The density of material at a point in a solid cylinder is
proportional to the distance of the point from the z-axis.
What is the ratio of the mass of the cylinder x2+y2 ≤ 1,
0 ≤ z ≤ 2 to the mass of the cylinder x2 + y2 ≤ 9,
0 ≤ z ≤ 2?

68. A region W consists of the points above the xy-plane
and outside the sphere of radius 1 centered at the origin
and within the sphere of radius 3 centered at (0, 0,−1).
Write an expression for the volume of W. Use cylindrical
coordinates and include limits of integration.

69. Compute the force of gravity exerted by a solid cylinder
of radius R, height H , and constant density δ on a unit
mass at the center of the base of the cylinder.

70. Electric charge is distributed throughout 3-space, with
density proportional to the distance from the xy-plane.
Show that the total charge inside a cylinder of radius R
and height h, sitting on the xy-plane and centered along
the z-axis, is proportional to R2h2.

71. Electric charge is distributed throughout 3-space with
density inversely proportional to the distance from the
origin. Show that the total charge inside a sphere of ra-
dius R is proportional to R2.

72. Figure 16.54 shows an alternative notation for spherical
coordinates, used often in electrical engineering. Write
the volume element dV in this coordinate system.

x

y

z

φ

θ
r

P = (x, y, z)

Figure 16.54

Strengthen Your Understanding

73. Which of the following integrals give the volume of the
unit sphere?

(a)

∫ 2π

0

∫ 2π

0

∫ 1

0

dρ dθ dφ

(b)

∫ π

0

∫ 2π

0

∫ 1

0

dρ dθ dφ

(c)

∫ π

0

∫ 2π

0

∫ 1

0

ρ2 sinφ dρ dθ dφ

(d)

∫ π

0

∫ 2π

0

∫ 1

0

ρ2 sinφ dρ dφ dθ

(e)

∫ π

0

∫ 2π

0

∫ 1

0

ρ dρ dφ dθ

In Problems 74–75, explain what is wrong with the statement.

74. The integral

∫ 2π

0

∫ π

0

∫ 1

0

1 dρ dφ dθ gives the volume

inside the sphere of radius 1.

4See C. R. Paul and S. A. Nasar, Introduction to Electromagnetic Fields, 2nd ed. (New York: McGraw-Hill, 1987).



906 Chapter Sixteen INTEGRATING FUNCTIONS OF SEVERAL VARIABLES

75. Changing the order of integration gives∫ 2π

0

∫ π/4

0

∫ 2/ cosφ

0

ρ2 sinφ dρ dφdθ

=

∫ 2/ cosφ

0

∫ π/4

0

∫ 2π

0

ρ2 sinφdθ dφdρ.

In Problems 76–77, give an example of:

76. An integral in spherical coordinates that gives the volume
of a hemisphere.

77. An integral for which it is more convenient to use spher-
ical coordinates than to use Cartesian coordinates.

16.6 APPLICATIONS OF INTEGRATION TO PROBABILITY

To represent how a quantity such as height or weight is distributed throughout a population, we use
a density function. To study two or more quantities at the same time and see how they are related,
we use a multivariable density function.

Density Functions

Distribution of Weight and Height in Expectant Mothers

Table 16.8 shows the distribution of weight and height in a survey of expectant mothers. The his-
togram in Figure 16.55 is constructed so that the volume of each bar represents the percentage in the
corresponding weight and height range. For example, the bar representing the mothers who weighed
60–70 kg and were 160–165 cm tall has base of area 10 kg · 5 cm = 50 kg cm. The volume of this
bar is 12%, so its height is 12%/50 kg cm = 0.24%/ kg cm. Notice that the units on the vertical
axis are % per kg cm, so the volume of a bar is a %. The total volume is 100% = 1.

Table 16.8 Distribution of weight and height in a survey of expectant mothers, in %

45-50 kg 50-60 kg 60-70 kg 70-80 kg 80-105 kg Totals by height

150-155 cm 2 4 4 2 1 13

155-160 cm 0 12 8 2 1 23

160-165 cm 1 7 12 4 3 27

165-170 cm 0 8 12 6 2 28

170-180 cm 0 1 3 4 1 9

Totals by weight 3 32 39 18 8 100

0.05%

0.10%

0.15%

0.20%

0.25%

45

65

85

105
150

155
160

165
170

175
180kg

cm

percent

per kg cm

Figure 16.55: Histogram representing the data in Table 16.8
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Example 1 Find the percentage of mothers in the survey with height between 170 and 180 cm.

Solution We add the percentages across the row corresponding to the 170–180 cm height range; this is equiv-
alent to adding the volumes of the corresponding rectangular solids in the histogram.

Percentage of mothers = 0 + 1 + 3 + 4 + 1 = 9%.

Smoothing the Histogram

If we group the data using narrower weight and height groups (and a larger sample), we can draw
a smoother histogram and get finer estimates. In the limit, we replace the histogram with a smooth
surface, in such a way that the volume under the surface above a rectangle is the percentage of
mothers in that rectangle. We define a density function, p(w, h), to be the function whose graph is
the smooth surface. It has the property that

Fraction of sample with

weight between a and b and

height between c and d

=

Volume under graph of p

over the rectangle

a ≤ w ≤ b, c ≤ h ≤ d

=

∫ b

a

∫ d

c

p(w, h) dh dw.

This density also gives the probability that a mother is in these height and weight groups.

Joint Probability Density Functions
We generalize this idea to represent any two characteristics, x and y, distributed throughout a pop-
ulation.

A function p(x, y) is called a joint probability density function, or pdf, for x and y if

Probability that member of

population has x between a and b

and y between c and d

=

Volume under graph of p

above the rectangle

a ≤ x ≤ b, c ≤ y ≤ d

=

∫ b

a

∫ d

c

p(x, y) dy dx

where ∫ ∞

−∞

∫ ∞

−∞

p(x, y) dy dx = 1 and p(x, y) ≥ 0 for all x and y.

The probability that x falls in an interval of width Δx around x0 and y falls in an interval of
width Δy around y0 is approximately p(x0, y0)ΔxΔy.

A joint density function need not be continuous, as in Example 2. In addition, as in Example 4,
the integrals involved may be improper and must be computed by methods similar to those used for
improper one-variable integrals.

Example 2 Let p(x, y) be defined on the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 by p(x, y) = x + y; let p(x, y) = 0 if
(x, y) is outside this square. Check that p is a joint density function. In terms of the distribution of
x and y in the population, what does it mean that p(x, y) = 0 outside the square?
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Solution First, we have p(x, y) ≥ 0 for all x and y. To check that p is a joint density function, we show that
the total volume under the graph is 1:∫ ∞

−∞

∫ ∞

−∞

p(x, y) dy dx =

∫ 1

0

∫ 1

0

(x+ y) dy dx

=

∫ 1

0

(
xy +

y2

2

) ∣∣∣∣1
0

dx =

∫ 1

0

(
x+

1

2

)
dx =

(
x2

2
+

x

2

) ∣∣∣∣1
0

= 1.

The fact that p(x, y) = 0 outside the square means that the variables x and y never take values
outside the interval [0, 1]; that is, the value of x and y for any individual in the population is always
between 0 and 1.

Example 3 Two variables x and y are distributed in a population according to the density function of Example 2.
Find the fraction of the population with x ≤ 1/2, the fraction with y ≤ 1/2, and the fraction with
both x ≤ 1/2 and y ≤ 1/2.

Solution The fraction with x ≤ 1/2 is the volume under the graph to the left of the line x = 1/2:∫ 1/2

0

∫ 1

0

(x + y) dy dx =

∫ 1/2

0

(
xy +

y2

2

) ∣∣∣∣1
0

dx =

∫ 1/2

0

(
x+

1

2

)
dx

=

(
x2

2
+

x

2

) ∣∣∣∣1/2
0

=
1

8
+

1

4
=

3

8
.

Since the function and the regions of integration are symmetric in x and y, the fraction with y ≤ 1/2
is also 3/8. Finally, the fraction with both x ≤ 1/2 and y ≤ 1/2 is∫ 1/2

0

∫ 1/2

0

(x+ y) dy dx =

∫ 1/2

0

(
xy +

y2

2

) ∣∣∣∣1/2
0

dx =

∫ 1/2

0

(
1

2
x+

1

8

)
dx

=

(
1

4
x2

+
1

8
x

) ∣∣∣∣1/2
0

=
1

16
+

1

16
=

1

8
.

Recall that a one-variable density function p(x) is a function such that p(x) ≥ 0 for all x, and∫∞
−∞

p(x) dx = 1.

Example 4 Let p1 and p2 be one-variable density functions for x and y, respectively. Check that p(x, y) =

p1(x)p2(y) is a joint density function.

Solution Since both p1 and p2 are density functions, they are nonnegative everywhere. Thus, their product
p1(x)p2(x) = p(x, y) is nonnegative everywhere. Now we must check that the volume under the
graph of p is 1. Since

∫∞
−∞

p2(y) dy = 1 and
∫∞
−∞

p1(x) dx = 1, we have∫ ∞

−∞

∫ ∞

−∞

p(x, y) dy dx =

∫ ∞

−∞

∫ ∞

−∞

p1(x)p2(y) dy dx =

∫ ∞

−∞

p1(x)

(∫ ∞

−∞

p2(y) dy

)
dx

=

∫ ∞

−∞

p1(x)(1) dx =

∫ ∞

−∞

p1(x) dx = 1.
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Example 5 A machine in a factory is set to produce components 10 cm long and 5 cm in diameter. In fact,
there is a slight variation from one component to the next. A component is usable if its length and
diameter deviate from the correct values by less than 0.1 cm. With the length, x, in cm and the
diameter, y, in cm, the probability density function is

p(x, y) =
50

√
2

π
e−100(x−10)2e−50(y−5)2 .

What is the probability that a component is usable? (See Figure 16.56.)

Figure 16.56: The density function p(x, y) = 50
√

2
π

e−100(x−10)2e−50(y−5)2

Solution We know that

Probability that x and y satisfy

x0 −Δx ≤ x ≤ x0 +Δx

y0 −Δy ≤ y ≤ y0 +Δy

=
50

√
2

π

∫ y0+Δy

y0−Δy

∫ x0+Δx

x0−Δx

e−100(x−10)2e−50(y−5)2 dx dy.

Thus,

Probability that

component is usable
=

50
√
2

π

∫ 5.1

4.9

∫ 10.1

9.9

e−100(x−10)2e−50(y−5)2 dx dy.

The double integral must be evaluated numerically. This yields

Probability that

component is usable
=

50
√
2

π
(0.02556) = 0.57530.

Thus, there is a 57.530% chance that the component is usable.

Exercises and Problems for Section 16.6
Exercises

In Exercises 1–6, check whether p is a joint density function.
Assume p(x, y) = 0 outside the region R.

1. p(x, y) = 1/2, where R is 4 ≤ x ≤ 5,−2 ≤ y ≤ 0

2. p(x, y) = 1, where R is 0 ≤ x ≤ 1, 0 ≤ y ≤ 2

3. p(x, y) = x+ y, where R is −1 ≤ x ≤ 1, 0 ≤ y ≤ 1

4. p(x, y) = 6(y − x), where R is 0 ≤ x ≤ y ≤ 2

5. p(x, y) = (2/π)(1− x2 − y2), where R is x2 + y2 ≤ 1

6. p(x, y) = xye−x−y, where R is x ≥ 0, y ≥ 0

In Exercises 7–14, let p be the joint density function such that
p(x, y) = xy in R, the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 1, and

p(x, y) = 0 outside R. Find the fraction of the population
satisfying the given constraints.

7. x ≥ 3 8. x = 1

9. x+ y ≤ 3 10. −1 ≤ x ≤ 1

11. x ≥ y 12. x+ y ≤ 1

13. 0 ≤ x ≤ 1, 0 ≤ y ≤ 1/2

14. Within a distance 1 from the origin
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Problems

15. Let x and y have joint density function

p(x, y) =

{
2
3
(x+ 2y) for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0 otherwise.

Find the probability that

(a) x > 1/3. (b) x < (1/3) + y.

16. The joint density function for x, y is given by

f(x, y) =

{
kxy for 0 ≤ x ≤ y ≤ 1,

0 otherwise.

(a) Determine the value of k.
(b) Find the probability that (x, y) lies in the shaded re-

gion in Figure 16.57.

1
0

1

x

y
y = x

y =
√
x

Figure 16.57

17. A joint density function is given by

f(x, y) =

{
kx2 for 0 ≤ x ≤ 2 and 0 ≤ y ≤ 1,

0 otherwise.

(a) Find the value of the constant k.
(b) Find the probability that (x, y) satisfies x+ y ≤ 2.
(c) Find the probability that (x, y) satisfies x ≤ 1 and

y ≤ 1/2.

18. A point is chosen at random from the region S in the xy-
plane containing all points (x, y) such that −1 ≤ x ≤
1,−2 ≤ y ≤ 2 and x− y ≥ 0 (“at random” means that
the density function is constant on S).

(a) Determine the joint density function for x and y.
(b) If T is a subset of S with area α, then find the prob-

ability that a point (x, y) is in T .

19. A health insurance company wants to know what propor-
tion of its policies are going to cost the company a lot of
money because the insured people are over 65 and sick.
In order to compute this proportion, the company defines
a disability index, x, with 0 ≤ x ≤ 1, where x = 0
represents perfect health and x = 1 represents total dis-
ability. In addition, the company uses a density function,
f(x, y), defined in such a way that the quantity

f(x, y)ΔxΔy

approximates the fraction of the population with disabil-
ity index between x and x + Δx, and aged between y
and y+Δy. The company knows from experience that a
policy no longer covers its costs if the insured person is
over 65 and has a disability index exceeding 0.8. Write
an expression for the fraction of the company’s policies
held by people meeting these criteria.

20. The probability that a radioactive substance will decay at
time t is modeled by the density function

p(t) = λe−λt

for t ≥ 0, and p(t) = 0 for t < 0. The positive constant
λ depends on the material, and is called the decay rate.

(a) Check that p is a density function.
(b) Two materials with decay rates λ and μ decay inde-

pendently of each other; their joint density function
is the product of the individual density functions.
Write the joint density function for the probability
that the first material decays at time t and the second
at time s.

(c) Find the probability that the first substance decays
before the second.

21. Figure 16.58 represents a baseball field, with the bases at
(1, 0), (1, 1), (0, 1), and home plate at (0, 0). The outer
bound of the outfield is a piece of a circle about the origin
with radius 4. When a ball is hit by a batter we record the
spot on the field where the ball is caught. Let p(r, θ) be
a function in the plane that gives the density of the distri-
bution of such spots. Write an expression that represents
the probability that a hit is caught in

(a) The right field (region R).
(b) The center field (region C).

1 4

1

4

x

y

C

R

π

6

π

6

π

6

Figure 16.58
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22. Two independent random numbers x and y between 0
and 1 have joint density function

p(x, y) =
{
1 if 0 ≤ x, y ≤ 1
0 otherwise.

This problem concerns the average z = (x+y)/2, which
has a one-variable probability density function of its own.

(a) Find F (t), the probability that z ≤ t. Treat sepa-
rately the cases t ≤ 0, 0 < t ≤ 1/2, 1/2 < t ≤ 1,
1 < t. Note that F (t) is the cumulative distribution
function of z.

(b) Find and graph the probability density function of z.
(c) Are x and y more likely to be near 0, 1/2, or 1?

What about z?

Strengthen Your Understanding

In Problems 23–24, explain what is wrong with the statement.

23. If p1(x, y) and p2(x, y) are joint density functions, then
p1(x, y) + p2(x, y) is a joint density function.

24. If p(w, h) is the probability density function of the
weight and height of mothers discussed in Section 16.6,
then the probability that a mother weighs 60 kg and has
a height of 170 cm is p(60, 170).

In Problems 25–26, give an example of:

25. Values for a, b, c and d such that f is a joint density
function:

f(x, y) =

{
1 for a ≤ x ≤ b and c ≤ y ≤ d,

0 otherwise

26. A one-variable function g(y) such that f is a joint density

function:

f(x, y) =

{
g(y) for 0 ≤ x ≤ 2 and 0 ≤ y ≤ 1,

0 otherwise

For Problems 27–30, let p(x, y) be a joint density function for
x and y. Are the following statements true or false?

27.

∫ b

a

∫
∞

−∞

p(x, y) dy dx is the probability that a ≤ x ≤
b.

28. 0 ≤ p(x, y) ≤ 1 for all x.

29.

∫ b

a

p(x, y) dx is the probability that a ≤ x ≤ b.

30.

∫
∞

−∞

∫
∞

−∞

p(x, y) dy dx = 1.

CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• Double Integral
Definition as a limit of Riemann sum; interpretation as
volume under graph, as area, as average value, or as to-
tal mass from density; estimating from contour diagrams
or tables; evaluating using iterated integrals; setting up in
polar coordinates.

• Triple Integral

Definition as a limit of Riemann sum; interpretation as
volume of solid, as total mass, or as average value; eval-
uating using iterated integrals; setting up in cylindrical or
spherical coordinates.

• Probability
Joint density functions, using integrals to calculate prob-
ability.
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Exercises

For Exercises 1–3, sketch the region of integration and evalu-
ate the integral.

1.

∫ 3

0

∫ 2x

0

(x2 + y2) dy dx

2.

∫ π

0

∫ x

0

sin x dy dx

3.

∫ 0

−2

∫ 0

−

√
9−x2

2xy dy dx

In Exercises 4–9, sketch the region of integration.

4.

∫ 1

−1

∫ √
1−x2

−

√
1−x2

f(x, y) dy dx

5.

∫ 2

0

∫ 0

−

√
4−y2

f(x, y) dx dy

6.

∫ 4

1

∫ √
y

−
√

y

f(x, y) dx dy
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7.

∫ 1

0

∫ sin−1 y

0

f(x, y) dx dy

8.

∫ 1

−1

∫ 1

−1

∫ √
1−z2

0

f(x, y, z) dy dz dx

9.

∫ 1

0

∫ y

0

∫ x

0

f(x, y, z) dz dx dy

In Exercises 10–13, choose coordinates and write a triple in-
tegral for a function over the region. Include limits of integra-
tion.
10.

�

�

5 cm

�

�

2 cm

�

�

3 cm

11. ��2 cm

�

�
3 cm

12.
� �5 cm ��2 cm 13. �

�

5 cm

π/2

14. Write
∫
R
f(x, y) dA as an iterated integral if R is the

region in Figure 16.59.

−2 4

4

R

x

y

Figure 16.59

15. Consider the integral
∫ 4

0

∫
−(y−4)/2

0
g(x, y) dx dy.

(a) Sketch the region over which the integration is being
performed.

(b) Write the integral with the order of the integration
reversed.

16. Evaluate
∫
R

√
x2 + y2 dA where R is the region in Fig-

ure 16.60.

−1−2 1 2

1

2

x

y

R

Figure 16.60

In Exercises 17–23, calculate the integral exactly.

17.

∫ 10

0

∫ 0.1

0

xexy dy dx

18.

∫ 1

0

∫ 4

3

(sin (2− y)) cos (3x− 7) dx dy

19.

∫ 1

0

∫ y

0

(sin3 x)(cosx)(cos y) dx dy

20.

∫ 4

3

∫ 1

0

x2y cos (xy) dy dx

21.

∫ 1

0

∫ √
1−x2

−

√
1−x2

e−(x2+y2) dy dx

22.

∫ 1

0

∫ z

0

∫ 2

0

(y + z)7 dx dy dz

23.

∫ 1

0

∫ z

0

∫ y

0

xyz dx dy dz

24. Using Cartesian, cylindrical, or spherical coordinates,
write an equation for the following surfaces. Each equa-
tion should be of the form “Coordinate = Constant.”

x

y

2

z(a)

x

y

z

3

(b)

x

y

z

√
3

(c)

x

y

z

1
�� 1

(d)

x

y
z

−5

(e)

x

y

z

(1, 1, 1)

(1, 1, 0)

(f)
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If W is the region in Figure 16.61, what are the limits of inte-
gration in Problems 25–27?

y

x

z

−
√
2

(1, 0,−1)

Figure 16.61: Cone with spherical cap

25.

∫ ?

?

∫ ?

?

∫ ?

?

f(ρ, φ, θ)ρ2 sinφ dρ dφdθ

26.

∫ ?

?

∫ ?

?

∫ ?

?

g(r, θ, z)r dz dr dθ

27.

∫ ?

?

∫ ?

?

∫ ?

?

h(x, y, z) dz dy dx

28. Set up
∫
R
f dV as an iterated integral in all six possible

orders of integration, where R is the hemisphere bounded
by the upper half of x2 + y2 + z2 = 1 and the xy-plane.

Problems

In Problems 29–37, decide (without calculating its value)
whether the integral is positive, negative, or zero. Let W be
the solid half-cone bounded by z =

√
x2 + y2, z = 2 and

the yz-plane with x ≥ 0.

29.
∫
W

x dV 30.
∫
W

z dV

31.
∫
W
(z−
√

x2 + y2) dV 32.
∫
W

√
x2 + y2 dV

33.
∫
W
(z − 2) dV 34.

∫
W

y dV

35.
∫
W

xy dV 36.
∫
W

xyz dV

37.
∫
W

e−xyz dV

38. (a) Set up a triple integral giving the volume of the tetra-
hedron bounded by the three coordinate planes and
the plane z − x+ y = 2.

(b) Evaluate the integral.

39. Let B be the solid sphere of radius 1 centered at the ori-
gin; let T be the top half of the sphere (z ≥ 0); let R be
the right half of the sphere (x ≥ 0).

(a) Without calculation, decide which of the following
integrals are zero. What are the signs of the others?

(i)
∫
B
dV (ii)

∫
T
zdV (iii)

∫
R
zdV

(b) Evaluate, numerically where necessary, any of the
three integrals that is not zero.

40. Sketch the region R over which the integration is being
performed:∫ π/2

0

∫ π

π/2

∫ 1

0

f(ρ, φ, θ)ρ2 sinφ dρ dφdθ.

41. (a) Convert the following triple integral to spherical co-
ordinates: ∫ 2π

0

∫ 3

0

∫ r

0

r dzdrdθ.

(b) Evaluate either the original integral or your answer
to part (a).

In Problems 42–45, sketch the region of integration and write
a triple integral, including limits, over the region.

42. Region: 0 ≤ z ≤ 1 + x, 0 ≤ x ≤ 2, 0 ≤ y ≤ 1.

43. Region: 2 ≤ z ≤ 3, 5 ≤ x2 + y2 ≤ 6.

44. Region: 3 ≤ x2 + y2 + z2 ≤ 4, 0 ≤ θ ≤ π.

45. Region: x2 + y2 + z2 ≤ 9, x2 + y2 ≤ 1, z ≥ 0.

In Problems 46–50, is the double integral positive or negative,
or is it impossible to tell? The finite regions T,B,R,L are in
the xy-plane.

T lies in the region where y > 0,
R lies in the region where x > 0,
B lies in the region where y < 0,
L lies in the region where x < 0.

46.

∫
T

e−x dA 47.

∫
B

y3 dA

48.

∫
R

(x+ y2) dA 49.

∫
L

y3 dA

50.

∫
L

(x+ y2) dA

In Problems 51–58, decide (without calculating its value)
whether the integral is positive, negative, or zero. Let W be
the solid sphere bounded by x2 + y2 + z2 = 1.

51.
∫
W

z dV 52.
∫
W

x dV

53.
∫
W

xy dV 54.
∫
W

sin(π
2
xy)dV

55.
∫
W

xyz dV 56.
∫
W

e−xyz dV

57.
∫
W
(z2 − 1) dV 58. ∫

W

√
x2 + y2 + z2 dV
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In Problems 59–62, evaluate the integral by changing it to
cylindrical or spherical coordinates.

59.

∫ √

3

−

√

3

∫ √
3−x2

−

√
3−x2

∫ 4−x2
−y2

1

1

z2
dz dy dx

60.

∫ 1

0

∫ √
1−x2

0

∫ √
x2+y2

0

(z +
√

x2 + y2) dz dy dx

61.

∫ 3

0

∫ √
9−z2

−

√
9−z2

∫ √
9−y2

−z2

−

√
9−y2

−z2

x2 dx dy dz

62.

∫
W

z

(x2 + y2)3/2
dV , if W is 1 ≤ x2 + y2 ≤ 4,

0 ≤ z ≤ 4

63. (a) Sketch the region of integration of

∫ √

8

2

∫ √
8−y2

0

e−x2
−y2

dx dy+

∫ 2

0

∫ y

0

e−x2
−y2

dx dy

(b) Evaluate the quantity in part (a).

64. A circular lake 10 km in diameter has a circular island
2 km in diameter at its center. At t kilometers from the
island the depth of the lake is 100t(4− t) meters, where
0 ≤ t ≤ 4. What is the volume of water in the lake?

65. A solid region D is a half cylinder with radius 1 lying
horizontally with its rectangular base in the xy-plane and
its axis along the line y = 1 from x = 0 to x = 10. (The
region is above the xy-plane.)

(a) What is the equation of the curved surface of this
half cylinder?

(b) Write the limits of integration of the integral∫
D
f(x, y, z) dV in Cartesian coordinates.

66. Find the volume of the region bounded by z = x + y,
0 ≤ x ≤ 5, 0 ≤ y ≤ 5, and the planes x = 0, y = 0,
and z = 0.

67. (a) Sketch the region of integration, or describe it pre-
cisely in words, for the following integral:

∫ 1

−1

∫ 1

−1

∫ √
1−z2

0

f(x, y, z) dy dz dx.

(b) Evaluate the integral with f(x, y, z) = (y2+z2)3/2.

68. A thin circular disk of radius 12 cm has density which
increases linearly from 1 gm/cm2 at the center to 25
gm/cm2 at the rim.

(a) Write an iterated integral representing the mass of
the disk.

(b) Evaluate the integral.

69. Figure 16.62 shows part of a spherical ball of radius 5 cm.
Write an integral in cylindrical coordinates representing
the volume of this region and evaluate it.

�

�

2 cm

Figure 16.62

70. Find the mass of the solid bounded by the xy-plane, yz-
plane, xz-plane, and the plane 4x+ 3y + z = 12, if the
density of the solid is given by δ(x, y, z) = x2.

71. Figure 16.63 shows part of a spherical ball of radius 5 cm.
Write an integral in spherical coordinates representing
the volume of this region and evaluate it.

�

�

2 cm

Figure 16.63

72. A forest next to a road has the shape in Figure 16.64. The
population density of rabbits is proportional to the dis-
tance from the road. It is 0 at the road, and 10 rabbits per
square mile at the opposite edge of the forest. Find the
total rabbit population in the forest.

Road

Forest

�

�

5 miles

�� 10 miles

�� 6 miles

(−2, 5)

(0, 0) (6, 0)

(8, 5)

Figure 16.64

73. A solid hemisphere of radius 2 cm has density, in
gm/cm3, at each point equal to the distance in centime-
ters from the point to the center of the base. Write a triple
integral representing the total mass of the hemisphere.
Evaluate the integral.

74. Find the volume that remains after a cylindrical hole of
radius R is bored through a sphere of radius a, where
0 < R < a, passing through the center of the sphere
along the pole.

75. Two spheres, one of radius 1, one of radius
√
2, have cen-

ters that are 1 unit apart. Write a triple integral, including
limits of integration, giving the volume of the smaller re-
gion that is outside one sphere and inside the other. Eval-
uate the integral.

For Problems 76–77, use the definition of moment of inertia
on page 890.
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76. Consider a rectangular brick with length 5, width 3, and
height 1, and of uniform density 1. Compute the moment
of inertia about each of the three axes passing through the
center of the brick, perpendicular to one of the sides.

77. Compute the moment of inertia of a ball of radius R
about an axis passing through its center. Assume that the
ball has a constant density of 1.

78. A particle of mass m is placed at the center of one base
of a circular cylindrical shell of inner radius r1, outer ra-

dius r2, height h, and constant density δ. Find the force
of gravity exerted by the cylinder on the particle.

79. (a) Find the constant k such that f(x, y) = k(x + y)
is a probability density function the quarter disk
x2 + y2 ≤ 100, x ≥ 0, y ≥ 0. [Hint: Use polar
coordinates.]

(b) Find the probability that a point chosen in the quarter
disk according to the probability density in part (a)
is less than 7 units from the origin.

CAS Challenge Problems

80. Let D be the region inside the triangle with vertices
(0, 0), (1, 1) and (0, 1). Express the double integral∫
D
ey

2

dA as an iterated integral in two different ways.
Calculate whichever of the two you can do by hand, and
calculate the other with a computer algebra system if pos-
sible. Compare the answers.

81. Let D be the region inside the circle x2 + y2 = 1. Ex-
press the integral

∫
D

3
√

x2 + y2dA as an iterated inte-
gral in both Cartesian and polar coordinates. Calculate
whichever of the two you can do by hand, and calcu-
late the other with a computer algebra system if possible.
Compare the answers.

82. Compute the iterated integrals

∫ 1

0

∫ 0

−1

x+ y

(x− y)3
dydx

and

∫ 0

−1

∫ 1

0

x+ y

(x− y)3
dxdy. Explain why your answers

do not contradict Theorem 16.1 on page 876.

83. For each of the following functions, find its average value
over the square −h ≤ x ≤ h, −h ≤ y ≤ h, calculate
the limit of your answer as h → 0, and compare with the
value of the function at (0, 0). Assume a, b, c, d, e, and
k are constants.

F (x, y) = a+ bx4 + cy4 + dx2y2 + ex3y3

G(x, y) = a sin(kx) + b cos(ky) + c

H(x, y) = ax2ex+y + by2ex−y

Formulate a conjecture from your results and explain
why it makes sense.

PROJECTS FOR CHAPTER SIXTEEN

1. A Connection Between e and π
In this problem you will derive one of the remarkable formulas of mathematics, namely that∫ ∞

−∞

e−x2

dx =
√
π.

(a) Change the following double integral into polar coordinates and evaluate it:∫ ∞

−∞

∫ ∞

−∞

e−(x2+y2)dxdy.

(b) Explain why ∫ ∞

−∞

∫ ∞

−∞

e−(x2+y2)dxdy =

(∫ ∞

−∞

e−x2

dx

)2

.

(c) Explain why the answers to parts (a) and (b) give the formula we want.

2. Average Distance Walked to an Airport Gate
At airports, departure gates are often lined up in a terminal like points along a line. If you arrive
at one gate and proceed to another gate for a connecting flight, what proportion of the length of
the terminal will you have to walk, on average?

(a) One way to model this situation is to randomly choose two numbers, 0 ≤ x ≤ 1 and
0 ≤ y ≤ 1, and calculate the average value of |x − y|. Use a double integral to show that,
on average, you have to walk 1/3 the length of the terminal.
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(b) The terminal gates are not actually located continuously from 0 to 1, as we assumed in part
(a). There are only a finite number of gates and they are likely to be equally spaced. Suppose
there are n+ 1 gates located 1/n units apart from one end of the terminal (x0 = 0) to the
other (xn = 1). Assuming that all pairs (i, j) of arrival and departure gates are equally
likely, show that

Average distance between gates =
1

(n+ 1)2
·

n∑
i=0

n∑
j=0

∣∣∣∣ in −
j

n

∣∣∣∣ .
Identify this sum as approximately (but not exactly) a Riemann sum with n subdivisions
for the integrand used in part (a). Compute this sum for n = 5 and n = 10 and compare to
the answer of 1/3 obtained in part (a).
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17.1 PARAMETERIZED CURVES

A curve in the plane may be parameterized by a pair of equations of the form x = f(t), y = g(t).
As the parameter t changes, the point (x, y) traces out the curve. In this section we find paramet-
ric equations for curves in three dimensions, and we see how to write parametric equations using
position vectors.

Parametric Equations in Three Dimensions
We describe motion in the plane by giving parametric equations for x and y in terms of t. To describe
a motion in 3-space parametrically, we need a third equation giving z in terms of t.

Example 1 Find parametric equations for the curve y = x2 in the xy-plane.

Solution A possible parameterization in two dimensions is x = t, y = t2. Since the curve is in the xy-plane,
the z-coordinate is zero, so a parameterization in three dimensions is

x = t, y = t2, z = 0.

Example 2 Find parametric equations for a particle that starts at (0, 3, 0) and moves around a circle as shown
in Figure 17.1.

x

y

z

� Start

Figure 17.1: Circle of radius 3 in the yz-plane, centered at origin

Solution Since the motion is in the yz-plane, we have x = 0 at all times t. Looking at the yz-plane from the
positive x-direction we see motion around a circle of radius 3 in the clockwise direction. Thus,

x = 0, y = 3 cos t, z = −3 sin t.

Example 3 Describe in words the motion given parametrically by

x = cos t, y = sin t, z = t.

Solution The particle’s x- and y-coordinates give circular motion in the xy-plane, while the z-coordinate
increases steadily. Thus, the particle traces out a rising spiral, like a coiled spring. (See Figure 17.2.)
This curve is called a helix.

x

y

z

Figure 17.2: The helix x = cos t, y = sin t, z = t
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Example 4 Find parametric equations for the line parallel to the vector 2�i + 3�j + 4�k and through the point
(1, 5, 7).

Solution Let’s imagine a particle at the point (1, 5, 7) at time t = 0 and moving through a displacement of
2�i + 3�j + 4�k for each unit of time, t. When t = 0, x = 1 and x increases by 2 units for every unit
of time. Thus, at time t, the x-coordinate of the particle is given by

x = 1 + 2t.

Similarly, the y-coordinate starts at y = 5 and increases at a rate of 3 units for every unit of time.
The z-coordinate starts at y = 7 and increases by 4 units for every unit of time. Thus, the parametric
equations of the line are

x = 1 + 2t, y = 5 + 3t, z = 7 + 4t.

We can generalize the previous example as follows:

Parametric Equations of a Line through the point (x0, y0, z0) and parallel to the vector
a�i + b�j + c�k are

x = x0 + at, y = y0 + bt, z = z0 + ct.

Notice that the coordinates x, y, and z are linear functions of the parameter t.

Example 5 (a) Describe in words the curve given by the parametric equations x = 3 + t, y = 2t, z = 1− t.
(b) Find parametric equations for the line through the points (1, 2,−1) and (3, 3, 4).

Solution (a) The curve is a line through the point (3, 0, 1) and parallel to the vector�i + 2�j − �k.
(b) The line is parallel to the vector between the points P = (1, 2,−1) and Q = (3, 3, 4).

−−→
PQ = (3 − 1)�i + (3− 2)�j + (4 − (−1))�k = 2�i +�j + 5�k .

Thus, using the point P , the parametric equations are

x = 1 + 2t, y = 2 + t, z = −1 + 5t.

Using the point Q gives the equations x = 3 + 2t, y = 3 + t, z = 4 + 5t, which represent the
same line.

Using Position Vectors to Write Parameterized Curves as Vector-Valued Functions
A point in the plane with coordinates (x, y) can be represented by the position vector �r = x�i + y�j

in Figure 17.3. Similarly, in 3-space we write �r = x�i + y�j + z�k . (See Figure 17.4.)

x

y (x, y)

�r

x�i

y�j

Figure 17.3: Position vector �r for the
point (x, y)

x

y

z

x�i

y�j

z�k

(x, y, z)

�r

Figure 17.4: Position vector �r for the
point (x, y, z)
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x

y

z

a b

�r (b)

�r (a)
�r (t)

C

Figure 17.5: The parameterization sends the interval, a ≤ t ≤ b, to the curve, C, in 3-space

We can write the parametric equations x = f(t), y = g(t), z = h(t) as a single vector equation

�r (t) = f(t)�i + g(t)�j + h(t)�k

called a parameterization. As the parameter t varies, the point with position vector �r (t) traces out
a curve in 3-space. For example, the circular motion in the plane

x = cos t, y = sin t can be written as �r = (cos t)�i + (sin t)�j

and the helix in 3-space

x = cos t, y = sin t, z = t can be written as �r = (cos t)�i + (sin t)�j + t�k .

See Figure 17.5.

Example 6 Use vectors to give a parameterization for the circle of radius 1
2 centered at the point (−1, 2).

Solution The circle of radius 1 centered at the origin is parameterized by the vector-valued function

�r 1(t) = cos t�i + sin t�j , 0 ≤ t ≤ 2π.

The point (−1, 2) has position vector �r 0 = −�i + 2�j . The position vector, �r (t), of a point on the
circle of radius 1

2 centered at (−1, 2) is found by adding 1
2�r 1 to �r 0. (See Figures 17.6 and 17.7.)

Thus,

�r (t) = �r 0 +
1
2�r 1(t) = −�i + 2�j + 1

2 (cos t
�i + sin t�j ) = (−1 + 1

2 cos t)
�i + (2 + 1

2 sin t)
�j ,

or, equivalently,
x = −1 + 1

2 cos t, y = 2 + 1
2 sin t, 0 ≤ t ≤ 2π.

−1 1

1

−1

x

y

�

�r1 (t) = cos t�i + sin t�j

Figure 17.6: The circle x2 + y2 = 1
parameterized by �r 1(t) = cos t�i + sin t�j

−1

1.5

2.5

1

0.5

2

�r 0

1
2
�r 1

�r

x

y

Figure 17.7: The circle of radius 1
2

and center
(−1, 2) parameterized by �r (t) = �r 0 +

1
2
�r 1(t)
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Parametric Equation of a Line

Consider a straight line in the direction of a vector �v passing through the point (x0, y0, z0) with
position vector �r 0. We start at �r 0 and move up and down the line, adding different multiples of �v
to �r 0. (See Figure 17.8.)

�v

�r�r 0

t = −1
t = 0

t = 1
t = 2

t = 3

Figure 17.8: The line �r (t) = �r 0 + t�v

In this way, every point on the line can be written as �r 0 + t�v , which yields the following:

Parametric Equation of a Line in Vector Form

The line through the point with position vector �r0 = x0
�i + y0�j + z0�k in the direction of the

vector �v = a�i + b�j + c�k has parametric equation

�r (t) = �r 0 + t�v .

Example 7 (a) Find parametric equations for the line passing through the points (2,−1, 3) and (−1, 5, 4).
(b) Represent the line segment from (2,−1, 3) to (−1, 5, 4) parametrically.

Solution (a) The line passes through (2,−1, 3) and is parallel to the displacement vector �v = −3�i +6�j +�k
from (2,−1, 3) to (−1, 5, 4). Thus, the parametric equation is

�r (t) = 2�i −�j + 3�k + t(−3�i + 6�j + �k ).

(b) In the parameterization in part (a), t = 0 corresponds to the point (2,−1, 3) and t = 1 corre-
sponds to the point (−1, 5, 4). So the parameterization of the segment is

�r (t) = 2�i −�j + 3�k + t(−3�i + 6�j + �k ), 0 ≤ t ≤ 1.

Intersection of Curves and Surfaces
Parametric equations for a curve enable us to find where a curve intersects a surface.

Example 8 Find the points at which the line x = t, y = 2t, z = 1 + t pierces the sphere of radius 10 centered
at the origin.

Solution The equation for the sphere of radius 10 and centered at the origin is

x2
+ y2 + z2 = 100.

To find the intersection points of the line and the sphere, substitute the parametric equations of the
line into the equation of the sphere, giving

t2 + 4t2 + (1 + t)2 = 100,

so
6t2 + 2t− 99 = 0,

which has the two solutions at approximately t = −4.23 and t = 3.90. Using the parametric
equation for the line, (x, y, z) = (t, 2t, 1 + t), we see that the line cuts the sphere at the two points

(x, y, z) = (−4.23, 2(−4.23), 1+ (−4.23)) = (−4.23,−8.46,−3.23),
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and
(x, y, z) = (3.90, 2(3.90), 1+ 3.90) = (3.90, 7.80, 4.90).

We can also use parametric equations to find the intersection of two curves.

Example 9 Two particles move through space, with equations �r 1(t) = t�i + (1 + 2t)�j + (3 − 2t)�k and
�r 2(t) = (−2− 2t)�i + (1 − 2t)�j + (1 + t)�k . Do the particles ever collide? Do their paths cross?

Solution To see if the particles collide, we must find out if they pass through the same point at the same time
t. So we must find a solution to the vector equation �r 1(t) = �r 2(t), which is the same as finding a
common solution to the three scalar equations

t = −2− 2t, 1 + 2t = 1− 2t, 3− 2t = 1 + t.

Separately, the solutions are t = −2/3, t = 0, and t = 2/3, so there is no common solution, and the
particles don’t collide. To see if their paths cross, we find out if they pass through the same point at
two possibly different times, t1 and t2. So we solve the equations

t1 = −2− 2t2, 1 + 2t1 = 1− 2t2, 3− 2t1 = 1 + t2.

We solve the first two equations simultaneously and get t1 = 2, t2 = −2. Since these values also
satisfy the third equation, the paths cross. The position of the first particle at time t = 2 is the same
as the position of the second particle at time t = −2, namely the point (2, 5,−1).

Example 10 Are the lines x = −1+ t, y = 1+ 2t, z = 5− t and x = 2+ 2t, y = 4+ t, z = 3+ t parallel? Do
they intersect?

Solution In vector form the lines are parameterized by

�r = −�i +�j + 5�k + t(�i + 2�j − �k )

�r = 2�i + 4�j + 3�k + t(2�i +�j + �k )

Their direction vectors�i +2�j − �k and 2�i +�j +�k are not multiples of each other, so the lines are
not parallel. To find out if they intersect, we see if they pass through the same point at two possibly
different times, t1 and t2:

−1 + t1 = 2 + 2t2, 1 + 2t1 = 4 + t2, 5− t1 = 3 + t2.

The first two equations give t1 = 1, t2 = −1. Since these values do not satisfy the third equation,
the paths do not cross, and so the lines do not intersect.

The next example shows how to tell if two different parameterizations give the same line.

Example 11 Show that the following two lines are the same:

�r = −�i −�j + �k + t(3�i + 6�j − 3�k )

�r =�i + 3�j − �k + t(−�i − 2�j + �k )

Solution The direction vectors of the two lines, 3�i +6�j − 3�k and −�i − 2�j +�k , are multiples of each other,
so the lines are parallel. To see if they are the same, we pick a point on the first line and see if it is on
the second line. For example, the point on the first line with t = 0 has position vector −�i −�j + �k .
Solving

�i + 3�j − �k + t(−�i − 2�j + �k ) = −�i −�j + �k

we get t = 2, so the two lines have a point in common. Thus, they are the same line, parameterized
in two different ways.
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Exercises and Problems for Section 17.1
Exercises

In Exercises 1–6, find a parameterization for the curve shown.

1.

−1 1

−2

−1

x

y

1

2.

2

2

x

y

3.

1 2

1

2

x

y

3

4.

−1 1
x

y

1

5.

1 2 3

1

2

x

y 6.

1 2

1

x

y

2 Segment
of parabola

In Exercises 7–17, find parametric equations for the line.

7. The line in the direction of the vector�i −�k and through
the point (0, 1, 0).

8. The line in the direction of the vector�i + 2�j − �k and
through the point (3, 0,−4).

9. The line parallel to the z-axis passing through the point
(1, 0, 0).

10. The line in the direction of the vector 5�j + 2�k and
through the point (5,−1, 1).

11. The line in the direction of the vector 3�i − 3�j + �k and
through the point (1, 2, 3).

12. The line in the direction of the vector 2�i +2�j − 3�k and
through the point (−3, 4,−2).

13. The line through (−3,−2, 1) and (−1,−3,−1).

14. The line through the points (1, 5, 2) and (5, 0,−1).

15. The line through the points (2, 3,−1) and (5, 2, 0).

16. The line through (3,−2, 2) and intersecting the y-axis at
y = 2.

17. The line intersecting the x-axis at x = 3 and the z-axis
at z = −5.

In Exercises 18–34, find a parameterization for the curve.

18. A line segment between (2, 1, 3) and (4, 3, 2).

19. A circle of radius 3 centered on the z-axis and lying in
the plane z = 5.

20. A line perpendicular to the plane z = 2x − 3y + 7 and
through the point (1, 1, 6).

21. The circle of radius 2 in the xy-plane, centered at the ori-
gin, clockwise.

22. The circle of radius 2 parallel to the xy-plane, centered at
the point (0, 0, 1), and traversed counterclockwise when
viewed from below.

23. The circle of radius 2 in the xz-plane, centered at the ori-
gin.

24. The circle of radius 3 parallel to the xy-plane, centered
at the point (0, 0, 2).

25. The circle of radius 3 in the yz-plane, centered at the
point (0, 0, 2).

26. The circle of radius 5 parallel to the yz-plane, centered
at the point (−1, 0,−2).

27. The curve x = y2 in the xy-plane.

28. The curve y = x3 in the xy-plane.

29. The curve x = −3z2 in the xz-plane.

30. The curve in which the plane z = 2 cuts the surface
z =
√

x2 + y2.

31. The curve y = 4 − 5x4 through the point (0, 4, 4), par-
allel to the xy-plane.

32. The ellipse of major diameter 5 parallel to the y-axis
and minor diameter 2 parallel to the z-axis, centered at
(0, 1,−2).

33. The ellipse of major diameter 6 along the x-axis and mi-
nor diameter 4 along the y-axis, centered at the origin.

34. The ellipse of major diameter 3 parallel to the x-axis
and minor diameter 2 parallel to the z-axis, centered at
(0, 1,−2).

In Exercises 35–42, find a parametric equation for the curve
segment. (There are many possible answers.)

35. Line from (−1, 2,−3) to (2, 2, 2).

36. Line from P0 = (−1,−3) to P1 = (5, 2).

37. Line from P0 = (1,−3, 2) to P1 = (4, 1,−3).

38. Semicircle from (0, 0, 5) to (0, 0,−5) in the yz-plane
with y ≥ 0.

39. Semicircle from (1, 0, 0) to (−1, 0, 0) in the xy-plane
with y ≥ 0.

40. Graph of y =
√
x from (1, 1) to (16, 4).

41. Arc of a circle of radius 5 from P = (0, 0) to Q =
(10, 0).

42. Quarter-ellipse from (4, 0, 3) to (0,−3, 3) in the plane
z = 3.
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Problems

In Problems 43–47, parameterize the line through P = (2, 5)
and Q = (12, 9) so that the points P and Q correspond to the
given parameter values.

43. t = 0 and 1 44. t = 0 and 5

45. t = 20 and 30 46. t = 10 and 11

47. t = 0 and −1

48. At the point where t = −1, find an equation for the plane
perpendicular to the line

x = 5− 3t, y = 5t− 7,
z

t
= 6.

49. Determine whether the following line is parallel to the
plane 2x− 3y + 5z = 5:

x = 5 + 7t, y = 4 + 3t, z = −3− 2t.

50. Show that the equations x = 3 + t, y = 2t, z = 1 − t
satisfy the equations x+ y+3z = 6 and x− y− z = 2.
What does this tell you about the curve parameterized by
these equations?

51. (a) Explain why the line of intersection of two planes
must be parallel to the cross product of a normal
vector to the first plane and a normal vector to the
second.

(b) Find a vector parallel to the line of intersection of
the two planes x+2y−3z = 7 and 3x−y+z = 0.

(c) Find parametric equations for the line in part (b).

52. Find an equation for the plane containing the point
(2, 3, 4) and the line x = 1 + 2t, y = 3− t, z = 4 + t.

53. (a) Find an equation for the line perpendicular to the
plane 2x− 3y = z and through the point (1, 3, 7).

(b) Where does the line cut the plane?
(c) What is the distance between the point (1, 3, 7) and

the plane?

54. Consider two points P0 and P1 in 3-space.

(a) Show that the line segment from P0 to P1 can be
parametrized by

�r (t) = (1− t)
−−→
OP0 + t

−−→
OP1, 0 ≤ t ≤ 1.

(b) What is represented by the parametric equation

�r (t) = t
−−→
OP0 + (1− t)

−−→
OP1, 0 ≤ t ≤ 1?

55. (a) Find a vector parallel to the line of intersection of
the planes 2x− y − 3z = 0 and x+ y + z = 1.

(b) Show that the point (1,−1, 1) lies on both planes.
(c) Find parametric equations for the line of intersec-

tion.

56. Find the intersection of the line x = 5+ 7t, y = 4+ 3t,
z = −3− 2t and the plane 2x− 3y + 5z = −7.

In Problems 57–59 two parameterized lines are given. Are
they the same line?

57. �r 1(t) = (5− 3t)�i + 2t�j + (7 + t)�k

�r 2(t) = (5− 6t)�i + 4t�j + (7 + 3t)�k

58. �r 1(t) = (5− 3t)�i + (1 + t)�j + 2t�k

�r 2(t) = (2 + 6t)�i + (2− 2t)�j + (2− 4t)�k

59. �r 1(t) = (5− 3t)�i + (1 + t)�j + 2t�k

�r 2(t) = (2 + 6t)�i + (2− 2t)�j + (3− 4t)�k

60. If it exists, find the value of c for which the lines l(t) =
(c+t, 1+t, 5+t) and m(s) = (s, 1−s, 3+s) intersect.

61. (a) Where does the line �r = 2�i +5�j +t(3�i +�j +2�k )
cut the plane x+ y + z = 1?

(b) Find a vector perpendicular to the line and lying in
the plane.

(c) Find an equation for the line that passes through the
point of intersection of the line and plane, is perpen-
dicular to the line, and lies in the plane.

In Problems 62–65, find parametric equations for the line.

62. The line of intersection of the planes x− y + z = 3 and
2x+ y − z = 5.

63. The line of intersection of the planes x+ y + z = 3 and
x− y + 2z = 2.

64. The line perpendicular to the surface z = x2 + y2 at the
point (1, 2, 5).

65. The line through the point (−4, 2, 3) and parallel to a
line in the yz-plane which makes a 45◦ angle with the
positive y-axis and the positive z-axis.

66. Is the point (−3,−4, 2) visible from the point (4, 5, 0) if
there is an opaque ball of radius 1 centered at the origin?

67. Two particles are traveling through space. At time t the
first particle is at the point (−1 + t, 4− t,−1 + 2t) and
the second particle is at (−7 + 2t,−6 + 2t,−1 + t).

(a) Describe the two paths in words.
(b) Do the two particles collide? If so, when and where?
(c) Do the paths of the two particles cross? If so, where?

68. For t > 0, a particle moves along the curve x =
a + b sin kt, y = a + b cos kt, where a, b, k are posi-
tive constants.

(a) Describe the motion in words.
(b) What is the effect on the curve of the following

changes?
(i) Increasing b

(ii) Increasing a

(iii) Increasing k

(iv) Setting a and b equal
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69. In the Atlantic Ocean off the coast of Newfoundland,
Canada, the temperature and salinity (saltiness) vary
throughout the year. Figure 17.9 shows a parametric
curve giving the average temperature, T (in ◦C) and
salinity (in grams of salt per kg of water) for t in months,
with t = 1 corresponding to mid-January.1

(a) Why does the parameterized curve form a loop?
(b) When is the water temperature highest?
(c) When is the water saltiest?
(d) Estimate dT/dt at t = 6, and give the units. What is

the meaning of your answer for seawater?

�
t = 1

�t = 3

T (◦C)

salinity (gm/kg)

14 16 18 20 22
35.7

35.9

36.1

Figure 17.9

70. The concentration (in micrograms/m3) of a pollutant at
the point (x, y, z) is given, for x, y, z in meters, by

c(x, y, z) = e−(x
2+y2+z2).

(a) A particle at point (0, 1, 0) moves in the direction of
the point (−2, 2,−2). What is the rate at which the
concentration is changing with respect to distance at
the moment the particle leaves the point (0, 1, 0)?

(b) Now suppose the particle is moving along the path,
with time, t, in seconds, given by

x = 1−t2, y = t, z = 1−t2 for −∞ < t < ∞.

When is the concentration a maximum?

71. A light shines on the helix of Example 3 on page 918
from far down each axis. Sketch the shadow the helix
casts on each of the coordinate planes: xy, xz, and yz.

72. For a positive constant a and t ≥ 0, the parametric equa-
tions I-V represent the curves described in (a)-(e). Match
each description (a)-(e) with its parametric equations and
write an equation involving only x and y for the curve.

(a) Line through the origin.
(b) Line not through the origin.
(c) Hyperbola opening along x-axis.
(d) Circle traversed clockwise.
(e) Circle traversed counterclockwise.

I. x = a sin t, y = a cos t II. x = a sin t, y = a sin t

III. x = a cos t, y = a sin t IV. x = a cos2 t, y = a sin2 t

V. x = a/ cos t, y = a tan t

73. (a) Find a parametric equation for the line through the
point (2, 1, 3) and in the direction of a�i + b�j + c�k .

(b) Find conditions on a, b, c so that the line you found
in part (a) goes through the origin. Give a reason for
your answer.

74. Consider the line x = 5−2t, y = 3+7t, z = 4t and the
plane ax+by+cz = d. All the following questions have
many possible answers. Find values of a, b, c, d such that:

(a) The plane is perpendicular to the line.
(b) The plane is perpendicular to the line and through

the point (5, 3, 0).
(c) The line lies in the plane.

75. Explain the significance of the constants α > 0 and
β > 0 in the family of helices given by �r = α cos t�i +
α sin t�j + βt�k .

76. Find parametric equations of the line passing through the
points (1, 2, 3), (3, 5, 7) and calculate the shortest dis-
tance from the line to the origin.

77. A line has equation �r = �a + t�b where �r = x�i +
y�j + z�k and �a and �b are constant vectors such that
�a �= �0 ,�b �= �0 , �b not parallel or perpendicular to �a .
For each of the planes (a)–(c), pick the equation (i)–(ix)
which represents it. Explain your choice.

(a) A plane perpendicular to the line and through the
origin.

(b) A plane perpendicular to the line and not through the
origin.

(c) A plane containing the line.

(i) �a · �r = ||�b || (ii) �b · �r = ||�a ||
(iii) �a · �r = �b · �r (iv) (�a ×�b )·(�r −�a ) = 0

(v) �r − �a = �b (vi) �a · �r = 0

(vii) �b · �r = 0 (viii) �a + �r = �b

(ix) (�a×�b )·(�r −�b ) = ||�a ||

78. (a) Find a parametric equation for the line through the
point (1, 5, 2) and in the direction of the vector
2�i + 3�j − �k .

(b) By minimizing the square of the distance from a
point on the line to the origin, find the exact point
on the line which is closest to the origin.

79. A plane from Denver, Colorado, (altitude 1650 meters)
flies to Bismark, North Dakota (altitude 550 meters). It
travels at 650 km/hour along a horizontal line at 8,000
meters above the line joining Denver and Bismark. Bis-
mark is about 850 km in the direction 60◦ north of east
from Denver. Find parametric equations describing the
plane’s motion. Assume the origin is at sea level beneath
Denver, that the x-axis points east and the y-axis points
north, and that the earth is flat. Measure distances in kilo-
meters and time in hours.

1Based on http://www.vub.ac.be. Accessed Nov 2011.
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80. The plane x+3y− 2z = 6 is colored blue and the plane
2x + y + z = 3 is colored yellow. The planes intersect
in a line, which is colored green. You are at the point
P = (1,−2,−1).

(a) You look in the direction �v =�i + 2�j + �k . Do you
see the blue plane or the yellow plane?

(b) In what direction(s) are you looking directly at the
green line?

(c) In what direction(s) should you look to see the yel-
low plane? The blue plane?

81. The vector �n is perpendicular to the plane P1. The vector
�v is parallel to the line L.

(a) If �n ·�v = 0, what does this tell you about the direc-
tions of P1 and L? (Are they parallel? Perpendicu-
lar? Or is it impossible to tell?)

(b) Suppose �n × �v �= �0 . The plane P2 has normal
�n × �v . What can you say about the directions of

(i) P1 and P2? (ii) L and P2?

82. Figure 17.10 shows the parametric curve x = x(t), y =
y(t) for a ≤ t ≤ b.

x

y

Figure 17.10

(a) Match a graph to each of the parametric curves
given, for the same t values, by

(i) (−x(t),−y(t)) (ii) (−x(t), y(t))
(iii) (x(t) + 1, y(t)) (iv) (x(t)+1, y(t)+1)

x

y(A)

x

y(B)

x

y(C)

x

y(D)

x

y(E)

x

y(F)

x

y(G)

x

y(H)

(b) Which of the following could be the formulas for the
functions x(t), y(t)?

(i) x = 10 cos t y = 10 sin t

(ii) x = (10 + 8t) cos t y = (10 + 8t) sin t

(iii) x = et
2/200 cos t y = et

2/200 sin t

(iv) x = (10− 8t) cos t y = (10− 8t) sin t

(v) x = 10 cos(t2 + t) y = 10 sin(t2 + t)

Strengthen Your Understanding

In Problems 83–84, explain what is wrong with the statement.

83. The curve parameterized by �r 1(t) = �r (t − 2), defined
for all t, is a shift in the�i -direction of the curve parame-
terized by �r (t).

84. All points of the curve �r (t) = R cos t�i +R sin t�j + t�k
are the same distance, R, from the origin.

In Problems 85–87, give an example of:

85. Parameterizations of two different circles that have the
same center and equal radii.

86. Parameterizations of two different lines that intersect at
the point (1, 2, 3).

87. A parameterization of the line x = t, y = 2t, z = 3+4t
that is not given by linear functions.

Are the statements in Problems 88–99 true or false? Give rea-
sons for your answer.

88. The parametric curve x = 3t+2, y = −2t for 0 ≤ t ≤ 5
passes through the origin.

89. The parametric curve x = t2, y = t4 for 0 ≤ t ≤ 1 is a
parabola.

90. A parametric curve x = g(t), y = h(t) for a ≤ t ≤ b is
always the graph of a function y = f(x).

91. The parametric curve x = (3t+ 2)2, y = (3t+ 2)2 − 1
for 0 ≤ t ≤ 3 is a line.
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92. The parametric curve x = − sin t, y = − cos t for
0 ≤ t ≤ 2π traces out a unit circle counterclockwise
as t increases.

93. A parameterization of the graph of y = ln x for x > 0 is
given by x = et, y = t for −∞ < t < ∞.

94. Both x = −t + 1, y = 2t and x = 2s, y = −4s + 2
describe the same line.

95. The line of intersection of the two planes z = x+ y and
z = 1 − x − y can be parameterized by x = t, y =
1
2
− t, z = 1

2
.

96. The two lines given by x = t, y = 2 + t, z = 3 + t and
x = 2s, y = 1− s, z = s do not intersect.

97. The line parameterized by x = 1, y = 2t, z = 3 + t is
parallel to the x-axis.

98. The equation �r (t) = 3t�i + (6t + 1)�j parameterizes a
line.

99. The lines parameterized by �r 1(t) = t�i + (−2t + 1)�j
and �r 2(t) = (2t+ 5)�i + (−t)�j are parallel.

17.2 MOTION, VELOCITY, AND ACCELERATION

In this section we see how to find the vector quantities of velocity and acceleration from a parametric
equation for the motion of an object.

The Velocity Vector
The velocity of a moving particle can be represented by a vector with the following properties:

The velocity vector of a moving object is a vector �v such that:
• The magnitude of �v is the speed of the object.

• The direction of �v is the direction of motion.

Thus, the speed of the object is ‖�v ‖ and the velocity vector is tangent to the object’s path.

Example 1 A child is sitting on a Ferris wheel of diameter 10 meters, making one revolution every 2 minutes.
Find the speed of the child and draw velocity vectors at two different times.

Solution The child moves at a constant speed around a circle of radius 5 meters, completing one revolution
every 2 minutes. One revolution around a circle of radius 5 is a distance of 10π, so the child’s
speed is 10π/2 = 5π ≈ 15.7 m/min. Hence, the magnitude of the velocity vector is 15.7 m/min.
The direction of motion is tangent to the circle, and hence perpendicular to the radius at that point.
Figure 17.11 shows the direction of the vector at two different times.

5 m

5 m Velocity
15.7 m/min

Velocity
15.7 m/min

Figure 17.11: Velocity vectors of a child on a Ferris wheel (Note that vectors
would be in opposite direction if viewed from the other side)

Computing the Velocity

We find the velocity, as in one-variable calculus, by taking a limit. If the position vector of the
particle is �r (t) at time t, then the displacement vector between its positions at times t and t+Δt is
Δ�r = �r (t+Δt)− �r (t). (See Figure 17.12.) Over this interval,

Average velocity =
Δ�r

Δt
.
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In the limit as Δt goes to zero we have the instantaneous velocity at time t:

The velocity vector, �v (t), of a moving object with position vector �r (t) at time t is

�v (t) = lim
Δt→0

Δ�r

Δt
= lim

Δt→0

�r (t+Δt)− �r (t)

Δt
,

whenever the limit exists. We use the notation �v =
d�r

dt
= �r ′

(t).

Notice that the direction of the velocity vector �r ′(t) in Figure 17.12 is approximated by the
direction of the vector Δ�r and that the approximation gets better as Δt → 0.

�r ′(t)

�r (t)

�r (t+Δt)

�

Δ�r = �r (t+Δt)− �r (t)

Figure 17.12: The change, Δ�r , in the position vector for a particle moving on a
curve and the velocity vector �v = �r ′(t)

The Components of the Velocity Vector

If we represent a curve parametrically by x = f(t), y = g(t), z = h(t), then we can write its
position vector as: �r (t) = f(t)�i + g(t)�j + h(t)�k . Now we can compute the velocity vector:

�v (t) = lim
Δt→0

�r (t+Δt)− �r (t)

Δt

= lim
Δt→0

(f(t+Δt)�i + g(t+Δt)�j + h(t+Δt)�k )− (f(t)�i + g(t)�j + h(t)�k )

Δt

= lim
Δt→0

(
f(t+Δt)− f(t)

Δt
�i +

g(t+Δt)− g(t)

Δt
�j +

h(t+Δt)− h(t)

Δt
�k

)
= f ′

(t)�i + g′(t)�j + h′
(t)�k

=
dx

dt
�i +

dy

dt
�j +

dz

dt
�k .

Thus, we have the following result:

The components of the velocity vector of a particle moving in space with position vector
�r (t) = f(t)�i + g(t)�j + h(t)�k at time t are given by

�v (t) = f ′
(t)�i + g′(t)�j + h′

(t)�k =
dx

dt
�i +

dy

dt
�j +

dz

dt
�k .

Example 2 Find the components of the velocity vector for the child on the Ferris wheel in Example 1 using a
coordinate system which has its origin at the center of the Ferris wheel and which makes the rotation
counterclockwise.

Solution The Ferris wheel has radius 5 meters and completes 1 revolution counterclockwise every 2 minutes.
The motion is parameterized by an equation of the form

�r (t) = 5 cos(ωt)�i + 5 sin(ωt)�j ,



17.2 MOTION, VELOCITY, AND ACCELERATION 929

where ω is chosen to make the period 2 minutes. Since the period of cos(ωt) and sin(ωt) is 2π/ω,
we must have

2π

ω
= 2, so ω = π.

Thus, the motion is described by the equation

�r (t) = 5 cos(πt)�i + 5 sin(πt)�j ,

where t is in minutes. The velocity is given by

�v =
dx

dt
�i +

dy

dt
�j = −5π sin(πt)�i + 5π cos(πt)�j .

To check, we calculate the magnitude of �v ,

‖�v ‖ =

√
(−5π)2 sin2(πt) + (5π)2 cos2(πt) = 5π

√
sin

2
(πt) + cos2(πt) = 5π ≈ 15.7,

which agrees with the speed we calculated in Example 1. To see that the direction is correct, we
must show that the vector �v at any time t is perpendicular to the position vector of the particle at
time t. To do this, we compute the dot product of �v and �r :

�v · �r = (−5π sin(πt)�i + 5π cos(πt)�j ) · (5 cos(πt)�i + 5 sin(πt)�j )

= −25π sin(πt) cos(πt) + 25π cos(πt) sin(πt) = 0.

So the velocity vector, �v , is perpendicular to �r and hence tangent to the circle. (See Figure 17.13.)

x

y

�v = −5π sin(πt)�i + 5π cos(πt)�j

�r = 5 cos(πt)�i + 5 sin(πt)�j

Figure 17.13: Velocity and radius vector of motion around a circle

Velocity Vectors and Tangent Lines

Since the velocity vector is tangent to the path of motion, it can be used to find parametric equations
for the tangent line, if there is one.

Example 3 Find the tangent line at the point (1, 1, 2) to the curve defined by the parametric equation

�r (t) = t2�i + t3�j + 2t�k .

Solution At time t = 1 the particle is at the point (1, 1, 2) with position vector �r 0 = �i + �j + 2�k . The
velocity vector at time t is �r ′(t) = 2t�i + 3t2�j + 2�k , so at time t = 1 the velocity is �v = �r ′(1) =

2�i +3�j +2�k . The tangent line passes through (1, 1, 2) in the direction of �v , so it has the parametric
equation

�r (t) = �r 0 + t�v = (�i +�j + 2�k ) + t(2�i + 3�j + 2�k ).
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The Acceleration Vector
Just as the velocity of a particle moving in 2-space or 3-space is a vector quantity, so is the rate of
change of the velocity of the particle, namely its acceleration. Figure 17.14 shows a particle at time
t with velocity vector �v (t) and then a little later at time t+Δt. The vector Δ�v = �v (t+Δt)−�v (t)
is the change in velocity and points approximately in the direction of the acceleration. So,

Average acceleration =
Δ�v

Δt
.

In the limit as Δt → 0, we have the instantaneous acceleration at time t:

The acceleration vector of an object moving with velocity �v (t) at time t is

�a (t) = lim
Δt→0

Δ�v

Δt
= lim

Δt→0

�v (t+Δt)− �v (t)

Δt
,

if the limit exists. We use the notation �a =
d�v

dt
=

d2�r

dt2
= �r ′′

(t).

�v (t)

�v (t+Δt)

�v (t)

�v (t+Δt)
Δ�v = �v (t+Δt)− �v (t)

Figure 17.14: Computing the difference between two velocity vectors

Components of the Acceleration Vector

If we represent a curve in space parametrically by x = f(t), y = g(t), z = h(t), we can express the
acceleration in components. The velocity vector �v (t) is given by

�v (t) = f ′
(t)�i + g′(t)�j + h′

(t)�k .

From the definition of the acceleration vector, we have

�a (t) = lim
Δt→0

�v (t+Δt)− �v (t)

Δt
=

d�v

dt
.

Using the same method to compute d�v /dt as we used to compute d�r /dt on page 928, we obtain

The components of the acceleration vector, �a (t), at time t of a particle moving in space
with position vector �r (t) = f(t)�i + g(t)�j + h(t)�k at time t are given by

�a (t) = f ′′
(t)�i + g′′(t)�j + h′′

(t)�k =
d2x

dt2
�i +

d2y

dt2
�j +

d2z

dt2
�k .

Motion in a Circle and Along a Line
We now consider the velocity and acceleration vectors for two basic motions: uniform motion
around a circle, and motion along a straight line.

Example 4 Find the acceleration vector for the child on the Ferris wheel in Examples 1 and 2.

Solution The child’s position vector is given by �r (t) = 5 cos(πt)�i + 5 sin(πt)�j . In Example 2 we saw that
the velocity vector is

�v (t) =
dx

dt
�i +

dy

dt
�j = −5π sin(πt)�i + 5π cos(πt)�j .
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Thus, the acceleration vector is

�a (t) =
d2x

dt2
�i +

d2y

dt2
�j = −(5π) · π cos(πt)�i − (5π) · π sin(πt)�j

= −5π2
cos(πt)�i − 5π2

sin(πt)�j .

Notice that �a (t) = −π2�r (t). Thus, the acceleration vector is a multiple of �r (t) and points toward
the origin.

The motion of the child on the Ferris wheel is an example of uniform circular motion, whose
properties follow. (See Problem 44.)

Uniform Circular Motion: For a particle whose motion is described by

�r (t) = R cos(ωt)�i +R sin(ωt)�j

• Motion is in a circle of radius R with period 2π/|ω|.

• Velocity, �v , is tangent to the circle and speed is constant ‖�v ‖ = |ω|R.

• Acceleration, �a , points toward the center of the circle with ‖�a ‖ = ‖�v ‖2/R.

In uniform circular motion, the acceleration vector is perpendicular to the velocity vector, �v ,
because �v does not change in magnitude, only in direction. There is no acceleration in the direction
of �v .

We now look at straight-line motion in which the velocity vector always has the same direc-
tion but its magnitude changes. In straight-line motion, the acceleration vector points in the same
direction as the velocity vector if the speed is increasing and in the opposite direction to the velocity
vector if the speed is decreasing.

Example 5 Consider the motion given by the vector equation

�r (t) = 2�i + 6�j + (t3 + t)(4�i + 3�j + �k ).

Show that this is straight-line motion in the direction of the vector 4�i + 3�j + �k and relate the
acceleration vector to the velocity vector.

Solution The velocity vector is
�v = (3t2 + 1)(4�i + 3�j + �k ).

Since (3t2 +1) is a positive scalar, the velocity vector �v always points in the direction of the vector
4�i + 3�j + �k . In addition,

Speed = ‖�v ‖ = (3t2 + 1)
√
42 + 32 + 12 =

√
26(3t2 + 1).

Notice that the speed is decreasing until t = 0, then starts increasing. The acceleration vector is

�a = 6t(4�i + 3�j + �k ).

For t > 0, the acceleration vector points in the same direction as 4�i + 3�j + �k , which is the same
direction as �v . This makes sense because the object is speeding up. For t < 0, the acceleration
vector 6t(4�i + 3�j + �k ) points in the opposite direction to �v because the object is slowing down.
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Motion in a Straight Line: For a particle whose motion is described by

�r (t) = �r 0 + f(t)�v

• Motion is along a straight line through the point with position vector �r 0 parallel to �v .

• Velocity, �v , and acceleration, �a , are parallel to the line.

If f(t) = t, then we have �r (t) = �r 0 + tv, the equation of a line obtained on page 921.

The Length of a Curve
The speed of a particle is the magnitude of its velocity vector:

Speed = ‖�v ‖ =

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

.

As in one dimension, we can find the distance traveled by a particle along a curve by integrating its
speed. Thus,

Distance traveled =

∫ b

a

‖�v (t)‖ dt.

If the particle never stops or reverses its direction as it moves along the curve, the distance it travels
will be the same as the length of the curve. This suggests the following formula, which is justified
in Problem 53:

If the curve C is given parametrically for a ≤ t ≤ b by smooth functions and if the velocity
vector �v is not �0 for a < t < b, then

Length of C =

∫ b

a

‖�v ‖dt.

Example 6 Find the circumference of the ellipse given by the parametric equations

x = 2 cos t, y = sin t, 0 ≤ t ≤ 2π.

Solution The circumference of this curve is given by an integral which must be calculated numerically:

Circumference =
∫ 2π

0

√(
dx

dt

)2

+

(
dy

dt

)2

dt =

∫ 2π

0

√
(−2 sin t)2 + (cos t)2 dt

=

∫ 2π

0

√
4 sin

2 t+ cos2 t dt = 9.69.

Since the ellipse is inscribed in a circle of radius 2 and circumscribes a circle of radius 1, we
would expect the length of the ellipse to be between 2π(2) ≈ 12.57 and 2π(1) ≈ 6.28, so the value
of 9.69 is reasonable.
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Exercises and Problems for Section 17.2
Exercises

In Exercises 1–6, find the velocity and acceleration vectors.

1. x = 2 + 3t, y = 4 + t, z = 1− t

2. x = 2 + 3t2, y = 4 + t2, z = 1− t2

3. x = t, y = t2, z = t3

4. x = t, y = t3 − t

5. x = 3 cos t, y = 4 sin t

6. x = 3 cos (t2), y = 3 sin (t2), z = t2

In Exercises 7–12, find the velocity �v (t) and speed ‖�v (t)‖.
Find any times at which the particle stops.

7. x = t, y = t2, z = t3

8. x = cos 3t, y = sin 5t

9. x = 3t2, y = t3 + 1

10. x = (t− 1)2, y = 2, z = 2t3 − 3t2

11. x = 3 sin(t2)− 1, y = 3 cos(t2)

12. x = 3 sin2 t, y = cos t− 1, z = t2

In Exercises 13–16, find the length of the curve.

13. x = 3+5t, y = 1+4t, z = 3− t for 1 ≤ t ≤ 2. Check
by calculating the length by another method.

14. x = cos 3t, y = sin 5t for 0 ≤ t ≤ 2π.

15. x = cos(et), y = sin(et) for 0 ≤ t ≤ 1. Check by
calculating the length by another method.

16. �r (t) = 2t�i + ln t�j + t2�k for 1 ≤ t ≤ 2.

In Exercises 17–18, find the velocity and acceleration vectors
of the uniform circular motion and check that they are perpen-
dicular. Check that the speed and magnitude of the accelera-
tion are constant.

17. x = 3 cos(2πt), y = 3 sin(2πt), z = 0

18. x = 2π, y = 2 sin(3t), z = 2 cos(3t)

In Exercises 19–20, find the velocity and acceleration vectors
of the straight-line motion. Check that the acceleration vec-
tor points in the same direction as the velocity vector if the
speed is increasing and in the opposite direction if the speed
is decreasing.

19. x = 2 + t2, y = 3− 2t2, z = 5− t2

20. x = −2t3 − 3t+1, y = 4t3 +6t− 5, z = 6t3 +9t− 2

21. Find parametric equations for the tangent line at t = 2
for Exercise 10.

Problems

22. A particle passes through the point P = (5, 4,−2)
at time t = 4, moving with constant velocity �v =
2�i − 3�j +�k . Find a parametric equation for its motion.

In Problems 23–24, find all values of t for which the particle
is moving parallel to the x-axis and to the y-axis. Determine
the end behavior and graph the particle’s path.

23. x = t2 − 6t, y = t3 − 3t

24. x = t3 − 12t, y = t2 + 10t

25. The table gives x and y coordinates of a particle in
the plane at time t. Assuming that the particle moves
smoothly and that the points given show all the major
features of the motion, estimate the following quantities:

(a) The velocity vector and speed at time t = 2.
(b) Any times when the particle is moving parallel to the

y-axis.
(c) Any times when the particle has come to a stop.

t 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

x 1 4 6 7 6 3 2 3 5

y 3 2 3 5 8 10 11 10 9

26. A particle starts at the point P = (3, 2,−5) and moves
along a straight line toward Q = (5, 7,−2) at a speed of
5 cm/sec. Let x, y, z be measured in centimeters.

(a) Find the particle’s velocity vector.
(b) Find parametric equations for the particle’s motion.

27. A particle moves at a constant speed along a line from
the point P = (2,−1, 5) at time t = 0 to the point
Q = (5, 3,−1). Find parametric equations for the parti-
cle’s motion if:

(a) The particle takes 5 seconds to move from P to Q.
(b) The speed of the particle is 5 units per second.

28. A particle travels along the line x = 1 + t, y =
5+2t, z = −7+ t, where t is in seconds and x, y, z are
in meters.

(a) When and where does the particle hit the plane
x+ y + z = 1?

(b) How fast is the particle going when it hits the plane?
Give units.

29. A stone is thrown from a rooftop at time t = 0 seconds.
Its position at time t is given by

�r (t) = 10t�i − 5t�j + (6.4− 4.9t2)�k .
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The origin is at the base of the building, which is stand-
ing on flat ground. Distance is measured in meters. The
vector�i points east, �j points north, and �k points up.

(a) How high is the rooftop above the ground?
(b) At what time does the stone hit the ground?
(c) How fast is the stone moving when it hits the

ground?
(d) Where does the stone hit the ground?
(e) What is the stone’s acceleration when it hits the

ground?

30. A child wanders slowly down a circular staircase from
the top of a tower. With x, y, z in feet and the origin at
the base of the tower, her position t minutes from the start
is given by

x = 10 cos t, y = 10 sin t, z = 90− 5t.

(a) How tall is the tower?
(b) When does the child reach the bottom?
(c) What is her speed at time t?
(d) What is her acceleration at time t?

31. The origin is on flat ground and the z-axis points upward.
For time 0 ≤ t ≤ 10 in seconds and distance in centime-
ters, a particle moves along a path given by

�r = 2t�i + 3t�j + (100− (t− 5)2)�k .

(a) When is the particle at the highest point? What is
that point?

(b) When in the interval 0 ≤ t ≤ 10 is the particle mov-
ing fastest? What is its speed at that moment?

(c) When in the interval 0 ≤ t ≤ 10 is the particle mov-
ing slowest? What is its speed at that moment?

32. The function w = f(x, y, z) has grad f(7, 2, 5) =

4�i − 3�j + �k . A particle moves along the curve �r (t)

arriving at the point (7, 2, 5) with velocity 2�i +3�j +6�k
when t = 0. Find the rate of change of w with respect to
time at t = 0.

33. Suppose x measures horizontal distance in meters, and
y measures distance above the ground in meters. At time
t = 0 in seconds, a projectile starts from a point h meters
above the origin with speed v meters/sec at an angle θ to
the horizontal. Its path is given by

x = (v cos θ)t, y = h+ (v sin θ)t− 1

2
gt2.

Using this information about a general projectile, analyze
the motion of a ball which travels along the path

x = 20t, y = 2 + 25t − 4.9t2.

(a) When does the ball hit the ground?
(b) Where does the ball hit the ground?
(c) At what height above the ground does the ball start?
(d) What is the value of g, the acceleration due to grav-

ity?
(e) What are the values of v and θ?

34. A particle is moving on a path in the xz-plane given by
x = 20t, z = 5t − 0.5t2, where z is the height of the
particle above the ground in meters, x is the horizontal
distance in meters, and t is time in seconds.

(a) What is the equation of the path in terms of x and z
only?

(b) When is the particle at ground level?
(c) What is the velocity of the particle at time t?
(d) What is the speed of the particle at time t?
(e) Is the speed ever 0?
(f) When is the particle at the highest point?

35. The base of a 20-meter tower is at the origin; the base of a
20-meter tree is at (0, 20, 0). The ground is flat and the z-
axis points upward. The following parametric equations
describe the motion of six projectiles each launched at
time t = 0 in seconds.

(I) �r (t) = (20 + t2)�k

(II) �r (t) = 2t2�j + 2t2�k

(III) �r (t) = 20�i + 20�j + (20− t2)�k

(IV) �r (t) = 2t�j + (20− t2)�k

(V) �r (t) = (20− 2t)�i + 2t�j + (20− t)�k

(VI) �r (t) = t�i + t�j + t�k

(a) Which projectile is launched from the top of the
tower and goes downward? When and where does
it hit the ground?

(b) Which projectile hits the top of the tree? When?
From where is it launched?

(c) Which projectile is not launched from somewhere on
the tower and hits the tree? Where and when does it
hit the tree?

36. A particle moves on a circle of radius 5 cm, centered at
the origin, in the xy-plane (x and y measured in centime-
ters). It starts at the point (0, 5) and moves counterclock-
wise, going once around the circle in 8 seconds.

(a) Write a parameterization for the particle’s motion.
(b) What is the particle’s speed? Give units.

37. Determine the position vector �r (t) for a rocket which is
launched from the origin at time t = 0 seconds, reaches
its highest point of (x, y, z) = (1000, 3000, 10,000),
where x, y, z are in meters, and after the launch is subject
only to the acceleration due to gravity, 9.8 m/sec2.

38. Emily is standing on the outer edge of a merry-go-round,
10 meters from the center. The merry-go-round com-
pletes one full revolution every 20 seconds. As Emily
passes over a point P on the ground, she drops a ball
from 3 meters above the ground.

(a) How fast is Emily going?
(b) How far from P does the ball hit the ground? (The

acceleration due to gravity is 9.8 m/sec2.)
(c) How far from Emily does the ball hit the ground?
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39. A point P moves in a circle of radius a. Show that �r (t),
the position vector of P , and its velocity vector �r ′(t) are
perpendicular.

40. A wheel of radius 1 meter rests on the x-axis with its cen-
ter on the y-axis. There is a spot on the rim at the point
(1, 1). See Figure 17.15. At time t = 0 the wheel starts
rolling on the x-axis in the direction shown at a rate of 1
radian per second.

(a) Find parametric equations describing the motion of
the center of the wheel.

(b) Find parametric equations describing the motion of
the spot on the rim. Plot its path.

−1 0 1

2

1

x

y

Spot

Figure 17.15

41. Suppose �r (t) = cos t�i + sin t�j + 2t�k represents the
position of a particle on a helix, where z is the height of
the particle above the ground.

(a) Is the particle ever moving downward? When?
(b) When does the particle reach a point 10 units above

the ground?
(c) What is the velocity of the particle when it is 10 units

above the ground?
(d) When it is 10 units above the ground, the particle

leaves the helix and moves along the tangent. Find
parametric equations for this tangent line.

42. Show that the helix �r = α cos t�i + α sin t�j + βt�k is
parameterized with constant speed.

43. An ant crawls along the radius from the center to the edge
of a circular disk of radius 1 meter, moving at a constant
rate of 1 cm/sec. Meanwhile, the disk is turning counter-
clockwise about its center at 1 revolution per second.

(a) Parameterize the motion of the ant.
(b) Find the velocity and speed of the ant.
(c) Determine the acceleration and magnitude of the ac-

celeration of the ant.

44. The motion of a particle is given by �r (t) =
R cos(ωt)�i +R sin(ωt)�j , with R > 0, ω > 0.

(a) Show that the particle moves on a circle and find the
radius, direction, and period.

(b) Determine the velocity vector of the particle and its
direction and speed.

(c) What are the direction and magnitude of the acceler-
ation vector of the particle?

45. You bicycle along a straight flat road with a safety light
attached to one foot. Your bike moves at a speed of 25
km/hr and your foot moves in a circle of radius 20 cm
centered 30 cm above the ground, making one revolution
per second.

(a) Find parametric equations for x and y which de-
scribe the path traced out by the light, where y is
distance (in cm) above the ground.

(b) Sketch the light’s path.
(c) How fast (in revolutions/sec) would your foot have

to be rotating if an observer standing at the side of
the road sees the light moving backward?

46. How do the motions of objects A and B differ, if A
has position vector �r A(t) and B has position vector
�r B(t) = �r A(2t) for t ≥ 0. Illustrate your answer with
�r A(t) = t�i + t2�j .

47. At time t = 0 an object is moving with velocity vector
�v = 2�i + �j and acceleration vector �a = �i + �j . Can
it be in uniform circular motion about some point in the
plane?

48. Figure 17.16 shows the velocity and acceleration vectors
of an object in uniform circular motion about a point in
the plane at a particular moment. Is it moving round the
circle in the clockwise or counterclockwise direction?

�a

�v

Figure 17.16

49. The position of a particle at time t is given by �r (t). Let
r = ‖�r ‖ and �a be a constant vector. Differentiate:

(a) �r · �r (b) �a × �r (c) r3�r

50. The function f(x, y, z) is defined and smooth at every
point in 3-space and grad f(1, 7, 2) =�i − (

√
6)�j + �k .

The curve C is �r = (t+ 1)2�i + 7 cos t�j + 2et�k .

(a) Find an equation of the tangent plane to the level
surface of f at the point (1, 7, 2).

(b) Find the angle between the normal to the level
surface of f and the tangent to the curve C at
(1, 7, 2). (Note: There are two possible angles; give
the smaller one. Your answer should be in radians.)

(c) With x, y, z in centimeters, let f be the concentra-
tion of a pollutant in parts per million (ppm) at the
point (x, y, z). A particle moves along the curve C
with the given parameterization and t in seconds.
Find how fast the concentration is changing at the
time t = 0. Give units with your answer.



936 Chapter Seventeen PARAMETERIZATION AND VECTOR FIELDS

51. Let �v (t) be the velocity of a particle moving in the plane.
Let s(t) be the magnitude of �v and let θ(t) be the an-
gle of �v (t) with the positive x-axis at time t, so that
�v = s cos θ�i + s sin θ�j .

Let �T be the unit vector in the direction of �v , and
let �N be the unit vector in the direction of �k × �v , per-
pendicular to �v . Show that the acceleration �a (t) is given
by

�a =
ds

dt
�T + s

dθ

dt
�N .

This shows how to separate the acceleration into the sum

of one component,
ds

dt
�T , due to changing speed and a

perpendicular component, s
dθ

dt
�N , due to changing di-

rection of the motion.

52. A point particle P is acted on by a force, �F , which is
directed toward a fixed point O; this is called a central
force. Let �r (t) be the position of the particle with re-
spect to O and let �v (t) be its velocity. Use Newton’s
second law �F = m�a , where m is mass and �a is accel-
eration, to show that �r (t)×�v (t) = �c , a constant vector.
Explain why this tells us that the particle always moves
in the same plane.

53. In this problem we justify the formula for the length of a
curve given on page 932. Suppose the curve C is given
by smooth parametric equations x = x(t), y = y(t),
z = z(t) for a ≤ t ≤ b. By dividing the parameter inter-
val a ≤ t ≤ b at points t1, . . . , tn−1 into small segments

of length Δt = ti+1 − ti, we get a corresponding divi-
sion of the curve C into small pieces. See Figure 17.17,
where the points Pi = (x(ti), y(ti), z(ti)) on the curve
C correspond to parameter values t = ti. Let Ci be the
portion of the curve C between Pi and Pi+1.

(a) Use local linearity to show that

Length of Ci ≈
√

x′(ti)2 + y′(ti)2 + z′(ti)2 Δt.

(b) Use part (a) and a Riemann sum to explain why

Length of C =

∫ b

a

√
x′(t)2 + y′(t)2 + z′(t)2 dt.

P0

P1

P2
Pi

Pi+1

Pn

C

a = t0 t1 t2 ti ti+1 tn = b

Δt

Figure 17.17: A subdivision of the parameter interval and
the corresponding subdivision of the curve C

Strengthen Your Understanding

In Problems 54–56, explain what is wrong with the statement.

54. When a particle moves around a circle its velocity and
acceleration are always orthogonal.

55. A particle with position �r (t) at time t has acceleration
equal to 3 m/sec2 at time t = 0.

56. A parameterized curve �r (t), A ≤ t ≤ B, has length
B −A.

In Problems 57–58, give an example of:

57. A function �r (t) such that the particle with position �r (t)
at time t has velocity �v = �i + 2�j and acceleration
�a = 4�i + 6�k at t = 0.

58. An interval a ≤ t ≤ b corresponding to a piece of the
helix �r (t) = cos t�i + sin t�j + t�k of length 10.

Are the statements in Problems 59–66 true or false? Give rea-
sons for your answer.

59. A particle whose motion in the plane is given by �r (t) =
t2�i+(1−t)�j has the same velocity at t = 1 and t = −1.

60. A particle whose motion in the plane is given by �r (t) =
t2�i +(1− t)�j has the same speed at t = 1 and t = −1.

61. If a particle is moving along a parameterized curve �r (t)
then the acceleration vector at any point is always per-
pendicular to the velocity vector at that point.

62. If a particle is moving along a parameterized curve �r (t)
then the acceleration vector at a point cannot be parallel
to the velocity vector at that point.

63. If �r (t) for a ≤ t ≤ b is a parameterized curve, then
�r (−t) for a ≤ t ≤ b is the same curve traced backward.

64. If �r (t) for a ≤ t ≤ b is a parameterized curve C and the
speed ||�v (t)|| = 1, then the length of C is b− a.

65. If a particle moves with motion �r (t) = 3t�i +2t�j + t�k ,
then the particle stops at the origin.

66. If a particle moves with constant speed, the path of the
particle must be a line.

For Problems 67–70, decide if the statement is true or false for
all smooth parameterized curves �r (t) and all values of t for
which �r ′(t) �= �0 .

67. The vector �r ′(t) is tangent to the curve at the point with
position vector �r (t).

68. �r ′(t)× �r (t) = �0

69. �r ′(t) · �r (t) = 0

70. �r ′′(t) = −ω2�r (t)
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17.3 VECTOR FIELDS

Introduction to Vector Fields
A vector field is a function that assigns a vector to each point in the plane or in 3-space. One example
of a vector field is the gradient of a function f(x, y); at each point (x, y) the vector grad f(x, y)
points in the direction of maximum rate of increase of f . In this section we look at other vector
fields representing velocities and forces.

Velocity Vector Fields

Figure 17.18 shows the flow of a part of the Gulf Stream, a current in the Atlantic Ocean.2 It is
an example of a velocity vector field: each vector shows the velocity of the current at that point.
The current is fastest where the velocity vectors are longest in the middle of the stream. Beside the
stream are eddies where the water flows round and round in circles.

Force Fields

Another physical quantity represented by a vector is force. When we experience a force, sometimes
it results from direct contact with the object that supplies the force (for example, a push). Many
forces, however, can be felt at all points in space. For example, the earth exerts a gravitational pull
on all other masses. Such forces can be represented by vector fields.

Figure 17.19 shows the gravitational force exerted by the earth on a mass of one kilogram at
different points in space. This is a sketch of the vector field in 3-space. You can see that the vectors
all point toward the earth (which is not shown in the diagram) and that the vectors farther from the
earth are smaller in magnitude.

0 100 200 300 400 500 600
0

100

200

300

400

500

600

 

km

km

Figure 17.18: The velocity vector field of the Gulf Stream

2Based on data supplied by Avijit Gangopadhyay of the Jet Propulsion Laboratory.
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Figure 17.19: The gravitational field of the earth

Definition of a Vector Field
Now that you have seen some examples of vector fields, we give a more formal definition.

A vector field in 2-space is a function �F (x, y) whose value at a point (x, y) is a 2-
dimensional vector. Similarly, a vector field in 3-space is a function �F (x, y, z) whose values
are 3-dimensional vectors.

Notice the arrow over the function, �F , indicating that its value is a vector, not a scalar. We often
represent the point (x, y) or (x, y, z) by its position vector �r and write the vector field as �F (�r ).

Visualizing a Vector Field Given by a Formula

Since a vector field is a function that assigns a vector to each point, a vector field can often be given
by a formula.

Example 1 Sketch the vector field in 2-space given by �F (x, y) = −y�i + x�j .

Solution Table 17.1 shows the value of the vector field at a few points. Notice that each value is a vector. To
plot the vector field, we plot �F (x, y) with its tail at (x, y). (See Figure 17.20.)

Table 17.1 Values of �F (x, y) = −y�i + x�j

x

y

−1 0 1

−1 �i −�j −�j −�i −�j

0 �i �0 −�i
1 �i +�j �j −�i +�j

Now we look at the formula. The magnitude of the vector at (x, y) is the distance from (x, y)
to the origin since

‖�F (x, y)‖ = ‖ − y�i + x�j ‖ =
√

x2 + y2.

Therefore, all the vectors at a fixed distance from the origin (that is, on a circle centered at the
origin) have the same magnitude. The magnitude gets larger as we move farther from the origin.

What about the direction? Figure 17.20 suggests that at each point (x, y) the vector �F (x, y) is
perpendicular to the position vector �r = x�i + y�j . We confirm this using the dot product:

�r · �F (x, y) = (x�i + y�j ) · (−y�i + x�j ) = 0.

Thus, the vectors are tangent to circles centered at the origin and get longer as we go out. In Fig-
ure 17.21, the vectors have been scaled so that they do not obscure each other.
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x

y

−1

1

−1

1

Figure 17.20: The value �F (x, y) is
placed at the point (x, y)

x

y

Figure 17.21: The vector field �F (x, y) = −y�i + x�j ,
vectors scaled smaller to fit in diagram

Example 2 Sketch the vector fields in 2-space given by (a) �F (x, y) = x�j (b) �G (x, y) = x�i .

Solution (a) The vector x�j is parallel to the y-direction, pointing up when x is positive and down when x is
negative. Also, the larger |x| is, the longer the vector. The vectors in the field are constant along
vertical lines since the vector field does not depend on y. (See Figure 17.22.)

x

y

Figure 17.22: The vector field �F (x, y) = x�j

x

y

Figure 17.23: The vector field �F (x, y) = x�i

(b) This is similar to the previous example, except that the vector x�i is parallel to the x-direction,
pointing to the right when x is positive and to the left when x is negative. Again, the larger |x|
is the longer the vector, and the vectors are constant along vertical lines, since the vector field
does not depend on y. (See Figure 17.23.)

Example 3 Describe the vector field in 3-space given by �F (�r ) = �r , where �r = x�i + y�j + z�k .

Solution The notation �F (�r ) = �r means that the value of �F at the point (x, y, z) with position vector �r is
the vector �r with its tail at (x, y, z). Thus, the vector field points outward. See Figure 17.24. Note
that the lengths of the vectors have been scaled down so as to fit into the diagram.

Figure 17.24: The vector field �F (�r ) = �r

M

m

�F

Figure 17.25: Force exerted
on mass m by mass M
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Finding a Formula for a Vector Field

Example 4 Newton’s Law of Gravitation states that the magnitude of the gravitational force exerted by an object
of mass M on an object of mass m is proportional to M and m and inversely proportional to the
square of the distance between them. The direction of the force is from m to M along the line
connecting them. (See Figure 17.25.) Find a formula for the vector field �F (�r ) that represents the
gravitational force, assuming M is located at the origin and m is located at the point with position
vector �r .

Solution Since the mass m is located at �r , Newton’s law says that the magnitude of the force is given by

‖�F (�r )‖ =
GMm

‖�r ‖2
,

whereG is the universal gravitational constant. A unit vector in the direction of the force is−�r /‖�r ‖,
where the negative sign indicates that the direction of force is toward the origin (gravity is attractive).
By taking the product of the magnitude of the force and a unit vector in the direction of the force,
we obtain an expression for the force vector field:

�F (�r ) =
GMm

‖�r ‖2

(
−

�r

‖�r ‖

)
=

−GMm�r

‖�r ‖
3 .

We have already seen a picture of this vector field in Figure 17.19.

Gradient Vector Fields
The gradient of a scalar function f is a function that assigns a vector to each point, and is therefore
a vector field. It is called the gradient field of f . Many vector fields in physics are gradient fields.

Example 5 Sketch the gradient field of the functions in Figures 17.26–17.28.

1

7

5

3

x

y

Figure 17.26: The contour map
of f(x, y) = x2 + 2y2

3

−3

−1

1

y

x

Figure 17.27: The contour map of
g(x, y) = 5− x2 − 2y2

5

1

9

−3

y

x

Figure 17.28: The contour map
of h(x, y) = x+ 2y + 3

Solution See Figures 17.29–17.31. For a function f(x, y), the gradient vector of f at a point is perpendicular
to the contours in the direction of increasing f and its magnitude is the rate of change in that
direction. The rate of change is large when the contours are close together and small when they are
far apart. Notice that in Figure 17.29 the vectors all point outward, away from the local minimum of
f , and in Figure 17.30 the vectors of grad g all point inward, toward the local maximum of g. Since
h is a linear function, its gradient is constant, so gradh in Figure 17.31 is a constant vector field.

x

y

Figure 17.29: grad f

x

y

Figure 17.30: grad g

x

y

Figure 17.31: grad h
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Exercises and Problems for Section 17.3
Exercises

For Exercises 1–6, find formulas for the vector fields. (There
are many possible answers.)

1.

x

y 2.

x

y

3.

x

y 4.

x

y

5.

x

y 6.

x

y

In Exercises 7–10, assume x, y > 0 and decide if
(a) The vector field is parallel to the x-axis, parallel to the

y-axis, or neither.
(b) As x increases, the length increases, decreases, or nei-

ther.
(c) As y increases, the length increases, decreases, or nei-

ther.
Assume x, y > 0.

7. �F = x�j 8. �F = y�i +�j

9. �F = (x+ e1−y)�i 10. grad(x4 + e3y)

Sketch the vector fields in Exercises 11–19 in the xy-plane.

11. �F (x, y) = 2�i + 3�j 12. �F (x, y) = y�i

13. �F (x, y) = −y�j 14. �F (�r ) = 2�r

15. �F (�r ) = �r /‖�r ‖ 16. �F (�r ) = −�r /‖�r ‖3
17. �F = y�i − x�j 18. �F (x, y) = 2x�i +x�j

19. �F (x, y) = (x+ y)�i + (x− y)�j

20. For each description of a vector field in (a)-(d), choose
one or more of the vector fields I-IX.

(a) Pointing radially outward, increasing in length away
from the origin.

(b) Pointing in a circular direction around the origin, re-
maining the same length.

(c) Pointing towards the origin, increasing in length far-
ther from the origin.

(d) Pointing clockwise around the origin.

I.
x�i + y�j√
x2 + y2

II.
−y�i + x�j√

x2 + y2
III. �r

IV. −�r V. −y�i + x�j VI. y�i − x�j

VII. y�i + x�j VIII.
�r

||�r ||3 IX. − �r

||�r ||3

21. Each vector field in Figures (I)–(IV) represents the force
on a particle at different points in space as a result of
another particle at the origin. Match up the vector fields
with the descriptions below.

(a) A repulsive force whose magnitude decreases as dis-
tance increases, such as between electric charges of
the same sign.

(b) A repulsive force whose magnitude increases as dis-
tance increases.

(c) An attractive force whose magnitude decreases as
distance increases, such as gravity.

(d) An attractive force whose magnitude increases as
distance increases.

(I) (II)

(III) (IV)
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Problems

In Problems 22–26, give an example of a vector field �F (x, y)
in 2-space with the stated properties.

22. �F is constant

23. �F has a constant direction but ‖�F ‖ is not constant

24. ‖�F ‖ is constant but �F is not constant

25. Neither ‖�F ‖ nor the direction of �F is constant

26. �F is perpendicular to �G = (x + y)�i + (1 + y2)�j at
every point

27. Match the level curves in (I)–(IV) with the gradient fields
in (A)–(D). All figures use the same square window.

−
3

−
2

−
1

0
1

2
3

(I)

3
2

1
0

−
1

−
2

−
3

(II)

−
0.5

0 0.5

1
0.5

0
−
0.5

(III)

0.5

0 −
0.5

−
1

−
0.5

0
0.5

(IV)

(A) (B)

(C) (D)

Problems 28–29 concern the vector fields �F = x�i + y�j ,
�G = −y�i + x�j , and �H = x�i − y�j .

28. Match �F , �G , �H with their sketches in (I)–(III).

x

y(I)

x

y(II)

x

y(III)

29. Match the vector fields with their sketches, (I)–(IV).

(a) �F + �G (b) �F + �H (c) �G + �H (d) −�F + �G

x

y(I)

x

y(II)

x

y(III)

x

y(IV)

In Problems 30–32, write formulas for vector fields with the
given properties.

30. All vectors are parallel to the x-axis; all vectors on a ver-
tical line have the same magnitude.

31. All vectors point toward the origin and have constant
length.

32. All vectors are of unit length and perpendicular to the
position vector at that point.

33. (a) Let �F = x�i + (x + y)�j + (x − y + z)�k . Find a
point at which �F is parallel to l, the line x = 5 + t,
y = 6− 2t, z = 7− 3t.
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(b) Find a point at which �F and l are perpendicular.
(c) Give an equation for and describe in words the set of

all points at which �F and l are perpendicular.

In Problems 34–35, let �F = x�i + y�j and �G = −y�i + x�j .

34. Sketch the vector field �L = a�F + �G if:

(a) a = 0 (b) a > 0 (c) a < 0

35. Sketch the vector field �L = �F + b �G if:

(a) b = 0 (b) b > 0 (c) b < 0

36. In the middle of a wide, steadily flowing river there is a
fountain that spouts water horizontally in all directions.
The river flows in the�i -direction in the xy-plane and the
fountain is at the origin.

(a) If A > 0, K > 0, explain why the following expres-
sion could represent the velocity field for the com-
bined flow of the river and the fountain:

�v = A�i +K(x2 + y2)−1(x�i + y�j ).

(b) What is the significance of the constants A and K?
(c) Using a computer, sketch the vector field �v for K =

1 and A = 1 and A = 2, and for A = 0.2, K = 2.

37. Figures 17.32 and 17.33 show the gradient of the func-
tions z = f(x, y) and z = g(x, y).

(a) For each function, draw a rough sketch of the level
curves, showing possible z-values.

(b) The xz-plane cuts each of the surfaces z = f(x, y)
and z = g(x, y) in a curve. Sketch each of these
curves, making clear how they are similar and how
they are different from one another.

x

y

Figure 17.32: Gradient of
z = f(x, y)

x

y

Figure 17.33: Gradient of
z = g(x, y)

38. Let �F = u�i + v�j be a vector field in 2-space with mag-
nitude F = ‖�F ‖.

(a) Let �T = (1/F )�F . Show that �T is the unit vector
in the direction of �F . See Figure 17.34.

(b) Let �N = (1/F )(�k × �F ) = (1/F )(−v�i + u�j ).
Show that �N is the unit vector pointing to the left of
and at right angles to �F. See Figure 17.34.

�F

�T

�N

x

y

Figure 17.34

Strengthen Your Understanding

In Problems 39–40, explain what is wrong with the statement.

39. A plot of the vector field �G (x, y, z) = �F (2x, 2y, 2z)
can be obtained from a plot of the vector field �F (x, y, z)
by doubling the lengths of all the arrows.

40. A vector field �F is defined by the formula �F (x, y, z) =
x2 − yz.

In Problems 41–42, give an example of:

41. A nonconstant vector field that is parallel to�i + �j + �k
at every point.

42. A nonconstant vector field with magnitude 1 at every
point.

17.4 THE FLOW OF A VECTOR FIELD

When an iceberg is spotted in the North Atlantic, it is important to be able to predict where the
iceberg is likely to be a day or a week later. To do this, one needs to know the velocity vector field
of the ocean currents, that is, how fast and in what direction the water is moving at each point.

In this section we use differential equations to find the path of an object in a fluid flow. This
path is called a flow line. Figure 17.35 shows several flow lines for the Gulf Stream velocity vector
field in Figure 17.18 on page 937. The arrows on each flow line indicate the direction of flow.
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Figure 17.35: Flow lines for objects in the Gulf Stream with different starting points

How Do We Find a Flow Line?
Suppose that �F is the velocity vector field of water on the surface of a creek and imagine a seed
being carried along by the current. We want to know the position vector �r (t) of the seed at time t.
We know

Velocity of seed

at time t
=

Velocity of current at seed’s position

at time t

that is,

�r ′
(t) = �F (�r (t)).

We make the following definition:

A flow line of a vector field �v = �F (�r ) is a path �r (t) whose velocity vector equals �v . Thus,

�r ′
(t) = �v = �F (�r (t)).

The flow of a vector field is the family of all of its flow lines.

A flow line is also called an integral curve or a streamline. We define flow lines for any vector
field, as it turns out to be useful to study the flow of fields (for example, electric and magnetic) that
are not velocity fields.

Resolving �F and �r into components, �F = F1
�i +F2

�j and �r (t) = x(t)�i +y(t)�j , the definition
of a flow line tells us that x(t) and y(t) satisfy the system of differential equations

x′
(t) = F1(x(t), y(t)) and y′(t) = F2(x(t), y(t)).

Solving these differential equations gives a parameterization of the flow line.
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Example 1 Find the flow line of the constant velocity field �v = 3�i + 4�j cm/sec that passes through the point
(1, 2) at time t = 0.

Solution Let �r (t) = x(t)�i + y(t)�j be the position in cm of a particle at time t, where t is in seconds. We
have

x′
(t) = 3 and y′(t) = 4.

Thus,
x(t) = 3t+ x0 and y(t) = 4t+ y0.

Since the path passes the point (1, 2) at t = 0, we have x0 = 1 and y0 = 2 and so

x(t) = 3t+ 1 and y(t) = 4t+ 2.

Thus, the path is the line given parametrically by

�r (t) = (3t+ 1)�i + (4t+ 2)�j .

(See Figure 17.36.) To find an explicit equation for the path, eliminate t between these expressions
to get

x− 1

3
=

y − 2

4
or y =

4

3
x+

2

3
.

(1, 2)

Flow line

x

y

Figure 17.36: Vector field �F = 3�i + 4�j with the flow line through (1, 2)

Example 2 The velocity of a flow at the point (x, y) is �F (x, y) =�i + x�j . Find the path of motion of an object
in the flow that is at the point (−2, 2) at time t = 0.

Solution Figure 17.37 shows this field. Since �r ′(t) = �F (�r (t)), we are looking for the flow line that satisfies
the system of differential equations

x′
(t) = 1, y′(t) = x(t) satisfying x(0) = −2 and y(0) = 2.

x

y

Figure 17.37: The velocity field
�v =�i + x�j

(−2, 2)

Flow line

x

y

Figure 17.38: A flow line of the
velocity field �v =�i + x�j



946 Chapter Seventeen PARAMETERIZATION AND VECTOR FIELDS

Solving for x(t) first, we get x(t) = t + x0, where x0 is a constant of integration. Thus, y′(t) =

t+ x0, so y(t) = 1
2 t

2 + x0t+ y0, where y0 is also a constant of integration. Since x(0) = x0 = −2

and y(0) = y0 = 2, the path of motion is given by

x(t) = t− 2, y(t) = 1
2 t

2 − 2t+ 2,

or, equivalently,
�r (t) = (t− 2)�i + (1

2 t
2 − 2t+ 2)�j .

The graph of this flow line in Figure 17.38 looks like a parabola. We check this by seeing that an
explicit equation for the path is y = 1

2x
2.

Example 3 Determine the flow of the vector field �v = −y�i + x�j .

Solution Figure 17.39 suggests that the flow consists of concentric counterclockwise circles, centered at the
origin. The system of differential equations for the flow is

x′
(t) = −y(t) y′(t) = x(t).

The equations (x(t), y(t)) = (a cos t, a sin t) parameterize a family of counterclockwise circles
of radius a, centered at the origin. We check that this family satisfies the system of differential
equations:

x′
(t) = −a sin t = −y(t) and y′(t) = a cos t = x(t).

x

y

Figure 17.39: The flow of the
vector field �v = −y�i + x�j

Approximating Flow Lines Numerically
Often it is not possible to find formulas for the flow lines of a vector field. However, we can ap-
proximate them numerically by Euler’s method for solving differential equations. Since the flow
lines �r (t) = x(t)�i + y(t)�j of a vector field �v = �F (x, y) satisfy the differential equation �r ′(t) =
�F (�r (t)), we have

�r (t+Δt) ≈ �r (t) + (Δt)�r ′
(t)

= �r (t) + (Δt)�F (�r (t)) for Δt near 0.

To approximate a flow line, we start at a point �r 0 = �r (0) and estimate the position �r 1 of a particle
at time Δt later:

�r 1 = �r (Δt) ≈ �r (0) + (Δt)�F (�r (0))

= �r 0 + (Δt)�F (�r 0).
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We then repeat the same procedure starting at �r 1, and so on. The general formula for getting from
one point to the next is

�r n+1 = �r n + (Δt)�F (�r n).

The points with position vectors �r 0, �r 1, . . . trace out the path, as shown in the next example.

Example 4 Use Euler’s method to approximate the flow line through (1, 2) for the vector field �v = y2�i +2x2�j .

Solution The flow is determined by the differential equations �r ′(t) = �v , or equivalently

x′
(t) = y2, y′(t) = 2x2.

We use Euler’s method with Δt = 0.02, giving

�r n+1 = �r n + 0.02�v (xn, yn)

= xn
�i + yn�j + 0.02(y2n�i + 2x2

n
�j ),

or equivalently,
xn+1 = xn + 0.02yn

2, yn+1 = yn + 0.02 · 2xn
2.

When t = 0, we have (x0, y0) = (1, 2). Then

x1 = x0 + 0.02 · y0
2
= 1 + 0.02 · 22 = 1.08,

y1 = y0 + 0.02 · 2x2
0 = 2 + 0.02 · 2 · 12 = 2.04.

So after one step x(0.02) ≈ 1.08 and y(0.02) ≈ 2.04. Similarly, x(0.04) = x(2Δt) ≈ 1.16,
y(0.04) = y(2Δt) ≈ 2.08 and so on. Farther values along the flow line are given in Table 17.2 and
plotted in Figure 17.40.

Table 17.2 Approximated flow line starting at (1, 2) for the vector field �v = y2�i + 2x2�j

t 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

x 1 1.08 1.16 1.25 1.34 1.44 1.54 1.65 1.77 1.90

y 2 2.04 2.08 2.14 2.20 2.28 2.36 2.45 2.56 2.69

1 2
0

2

3

x

y

Figure 17.40: Euler’s method solution to x′ = y2, y′ = 2x2
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Exercises and Problems for Section 17.4
Exercises

In Exercises 1–3, sketch the vector field and its flow.

1. �v = 2�j 2. �v = 3�i 3. �v = 3�i − 2�j

In Exercises 4–9, sketch the vector field and the flow. Then
find the system of differential equations associated with the
vector field and check that the flow satisfies the system.

4. �v = x�i ; x(t) = aet, y(t) = b

5. �v = x�j ; x(t) = a, y(t) = at+ b

6. �v = x�i + y�j ; x(t) = aet, y(t) = bet

7. �v = x�i − y�j ; x(t) = aet, y(t) = be−t

8. �v = y�i − x�j ; x(t) = a sin t, y(t) = a cos t

9. �v = y�i +x�j ; x(t) = a(et+e−t), y(t) = a(et−e−t)

10. Use a computer or calculator with Euler’s method to ap-
proximate the flow line through (1, 2) for the vector field
�v = y2�i + 2x2�j using 5 steps with Δt = 0.1.

Problems

For Problems 11–14, find the region of the Gulf Stream veloc-
ity field in Figure 17.18 on page 937 represented by the given
table of velocity vectors (in cm/sec).

11.

35�i + 131�j 48�i + 92�j 47�i +�j

−32�i + 132�j −44�i + 92�j −42�i +�j

−51�i + 73�j −119�i + 84�j −128�i + 6�j

12.

10�i − 3�j 11�i + 16�j 20�i + 75�j

53�i − 7�j 58�i + 23�j 64�i + 80�j

119�i − 8�j 121�i + 31�j 114�i + 66�j

13.

97�i − 41�j 72�i − 24�j 54�i − 10�j

134�i − 49�j 131�i − 44�j 129�i − 18�j

103�i − 36�j 122�i − 30�j 131�i − 17�j

14.

−95�i − 60�j 18�i − 48�j 82�i − 22�j

−29�i + 48�j 76�i + 63�j 128�i − 16�j

26�i + 105�j 49�i + 119�j 88�i + 13�j

15. �F (x, y) and �G (x, y) = 2�F (x, y) are two vector fields.
Illustrating your answer with �F (x, y) = −y�i + x�j , de-
scribe the graphical difference between:

(a) The vector fields (b) Their flows

16. Match the vector fields (a)–(f) with their flow lines (I)–
(VI). Put arrows on the flow lines indicating the direction
of flow.

(a) y�i + x�j (b) −y�i + x�j

(c) x�i + y�j (d) −y�i + (x+ y/10)�j

(e) −y�i + (x− y/10)�j (f) (x− y)�i + (x− y)�j

−1 1

−1

1

x

y(I)

−1 1

−1

1

x

y(II)

−1 1

−1

1

x

y(III)

−2 −1 1 2

−1

1

x

y
(IV)

−5 5

−5

5

x

y(V)

−5 5

−5

5

x

y(VI)

17. Show that the acceleration �a of an object flowing in a
velocity field �F (x, y) = u(x, y)�i + v(x, y)�j is given
by �a = (uxu+ uyv)�i + (vxu+ vyv)�j .
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18. A velocity vector field �v = −Hy
�i + Hx

�j is based on
the partial derivatives of a smooth function H(x, y). Ex-
plain why

(a) �v is perpendicular to gradH .
(b) the flow lines of �v are along the level curves of H .

In Problems 19–21, show that every flow line of the vector
field �v lies on a level curve for the function f(x, y).

19. �v = x�i − y�j , f(x, y) = xy

20. �v = y�i + x�j , f(x, y) = x2 − y2

21. �v = ay�i + bx�j , f(x, y) = bx2 − ay2

22. A solid metal ball has its center at the origin of a fixed
set of axes. The ball rotates once every 24 hours around

the z-axis. The direction of rotation is counterclockwise
when viewed from above. Let �v (x, y, z) be the velocity
vector of the particle of metal at the point (x, y, z) inside
the ball. Time is in hours and x, y, z are in meters.

(a) Find a formula for the vector field �v . Give units for
your answer.

(b) Describe in words the flow lines of �v .

23. (a) Show that h(t) = e−2at(x2 + y2) is constant along
any flow line of �v = (ax− y)�i + (x+ ay)�j .

(b) Show that points moving with the flow that are on
the unit circle centered at the origin at time 0 are
on the circle of radius eat centered at the origin at
time t.

Strengthen Your Understanding

In Problems 24–25, explain what is wrong with the statement.

24. The flow lines of a vector field whose components are
linear functions are all straight lines.

25. If the flow lines of a vector field are all straight lines with
the same slope pointing in the same direction, then the
vector field is constant.

In Problems 26–27, give an example of:

26. A vector field �F (x, y, z) such that the path �r (t) =

t�i + t2�j + t3�k is a flow line.

27. A vector field whose flow lines are rays from the origin.

Are the statements in Problems 28–37 true or false? Give rea-
sons for your answer.

28. The flow lines for �F (x, y) = x�j are parallel to the y-
axis.

29. The flow lines of �F (x, y) = y�i − x�j are hyperbolas.

30. The flow lines of �F (x, y) = x�i are parabolas.

31. The vector field in Figure 17.41 has a flow line which lies
in the first and third quadrants.

Figure 17.41

32. The vector field in Figure 17.41 has a flow line on which
both x and y tend to infinity.

33. If �F is a gradient vector field, �F (x, y) = ∇f(x, y),
then the flow lines for �F are the contours for f .

34. If the flow lines for the vector field �F (�r ) are all concen-
tric circles centered at the origin, then �F (�r ) · �r = 0 for
all �r .

35. If the flow lines for the vector field �F (x, y) are all
straight lines parallel to the constant vector �v = 3�i +5�j ,
then �F (x, y) = �v .

36. No flow line for the vector field �F (x, y) = x�i +2�j has
a point where the y-coordinate reaches a relative maxi-
mum.

37. The vector field �F (x, y) = ex�i +y�j has a flow line that
crosses the x-axis.

CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• Parameterized Curves
Parameterizations representing motion in 2- and 3-space,
change of parameter, vector form of parametric equa-
tions, parametric equation of a line.

• Velocity and Acceleration Vectors
Computing velocity and acceleration, uniform circular
motion, the length of a parametric curve.

• Vector Fields
Definition of vector field, visualizing fields, gradient
fields.

• Flow Lines
Parametric equations of flow lines, approximating flow
lines numerically.
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REVIEW EXERCISES AND PROBLEMS FOR CHAPTER SEVENTEEN

Exercises

Write a parameterization for the curves in Exercises 1–13.

1. The equation of the line through (2,−1, 3) and parallel
to 5�i + 4�j − �k .

2. The line passing through the points (1, 2, 3) and (3, 5, 7).

3. The horizontal line through the point (0, 5).

4. The circle of radius 2 centered at the origin starting at the
point (0, 2) when t = 0.

5. The circle of radius 4 centered at the point (4, 4) starting
on the x-axis when t = 0.

6. The circle of radius 1 in the xy-plane centered at the
origin, traversed counterclockwise when viewed from
above.

7. The line through the points (2,−1, 4) and (1, 2, 5).

8. The line through the point (1, 3, 2) perpendicular to the
xz-plane.

9. The line through the point (1, 1, 1) perpendicular to the
plane 2x− 3y + 5z = 4.

10. The circle of radius 3 in the xy-plane, centered at the ori-
gin, counterclockwise.

11. The circle of radius 3 parallel to the xz-plane, centered at
the point (0, 5, 0), and traversed counterclockwise when
viewed from (0, 10, 0).

12. The line of intersection of the planes z = 4 + 2x + 5y
and z = 3 + x+ 3y.

13. The circle of radius 10 centered at the point (0, 0, 7), ly-
ing horizontally, and traversed in a clockwise direction
viewed from the point (0, 0, 11). The parameterization
should have period 30.

In Exercises 14–18, find the velocity vector.

14. x = 3 cos t, y = 4 sin t

15. x = t, y = t3 − t

16. x = 2 + 3t, y = 4 + t, z = 1− t

17. x = 2 + 3t2, y = 4 + t2, z = 1− t2

18. x = t, y = t2, z = t3

In Exercises 19–22, are the following quantities vectors or
scalars? Find them.

19. The velocity of a particle moving, for t ≥ 0, along the
curve x = 2 + 3 sin

√
2t+ 1, y = 4 + 3 cos

√
2t+ 1,

z = 10 +
√
2t + 1.

20. The speed of a particle moving along the curve x = t2,
y = et.

21. The velocity of a particle moving along the curve x =
5−√

3 + sin t, y =
√
3 + cos t.

22. The acceleration of a particle moving along the curve
x = tet, y = e2t.

23. Are the lines x = 3 + 2t, y = 5 − t, z = 7 + 3t and
x = 3 + t, y = 5 + 2t, z = 7 + 2t parallel?

24. Are the lines x = 3 + 2t, y = 5 − t, z = 7 + 3t and
x = 5 + 4t, y = 3− 2t, z = 1 + 6t parallel?

25. Explain how you know the following equations parame-
terize the same line:

�r = (3− t)�i + (3 + 4t)�j − (1 + 2t)�k

�r = (1 + 2t)�i + (11− 8t)�j + (4t− 5)�k

26. A line is parameterized by �r = 10�k + t(�i +2�j +3�k ).

(a) Suppose we restrict ourselves to t < 0. What part of
the line do we get?

(b) Suppose we restrict ourselves to 0 ≤ t ≤ 1. What
part of the line do we get?

Sketch the vector fields in Exercises 27–29.

27. �F (x, y) = −y�i + x�j

28. �F =
y

x2 + y2
�i − x

x2 + y2
�j

29. �F =
y√

x2 + y2

�i − x√
x2 + y2

�j

Problems

30. Where does the line x = 2t+1, y = 3t− 2, z = −t+3
intersect the sphere (x−1)2+(y+1)2+(z−2)2 = 2?

31. A particle travels along a line, with position at time t
given by �r (t) = (2 + 5t)�i + (3 + t)�j + 2t�k .

(a) Where is the particle when t = 0?
(b) When does the particle reach the point (12, 5, 4)?
(c) Does the particle ever reach (12, 4, 4)? Explain.

32. Consider the parametric equations for 0 ≤ t ≤ π:

(I) �r = cos(2t)�i + sin(2t)�j

(II) �r = 2 cos t�i + 2 sin t�j
(III) �r = cos(t/2)�i + sin(t/2)�j
(IV) �r = 2 cos t�i − 2 sin t�j

(a) Match the equations above with four of the curves
C1, C2, C3, C4, C5 and C6 in Figure 17.42. (Each
curve is part of a circle.)

(b) Give parametric equations for the curves which have
not been matched, again assuming 0 ≤ t ≤ π.
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1 2

1

2

C1

C2

C3

C4

C5 C6

x

y

Figure 17.42

33. (a) What is meant by a vector field?
(b) Suppose �a = a1

�i +a2
�j +a3

�k is a constant vector.
Which of the following are vector fields? Explain.

(i) �r + �a (ii) �r · �a
(iii) x2�i + y2�j + z2�k (iv) x2 + y2 + z2

34. Match the level curves in (I)–(IV) with the gradient fields
in (A)–(D). All figures have −2 ≤ x ≤ 2,−2 ≤ y ≤ 2.

12 3 4

(I)

0.51 1.52

(II)

2 1 1 2

−2
−1

−1
−2

(III)

−2 −1 −1−2

2
1

1
2

(IV)

(A) (B)

(C) (D)

35. Each of the vector fields �E , �F , �G , �H is tangent to one
of the families of curves (I)–(IV). Match them.

�E = x�i + y�j �F = x�i − y�j

�G = y�i − x�j �H = y�i + x�j

x

y(I)

x

y(II)

x

y(III)

x

y(IV)

36. A particle passes through the point P = (5, 4, 3) at time
t = 7, moving with constant velocity �v = 3�i +�j +2�k .
Find equations for its position at time t.

37. An object moving with constant velocity in 3-space, with
coordinates in meters, passes through the point (1, 1, 1),
then through (2,−1, 3) five seconds later. What is its ve-
locity vector? What is its acceleration vector?

38. Find parametric equations for a particle moving along the
line y = −2x+ 5 with speed 3.

39. The temperature in ◦C at (x, y) in the plane is H =
f(x, y), where x, y are in centimeters. A particle moves
along the curve x = g(t), y = k(t), with t in seconds.

(a) What does the quantity || grad f || represent in this
context? What is its units?

(b) Write an expression for the speed of the particle.
What is its units?

(c) Write an expression for the rate of change of the par-
ticle’s temperature with time. What is its units?

40. Find parametric equations for motion along the line y =
3x + 7 such that the x-coordinate decreases by 2 units
for each unit of time.

41. The y-axis is vertical and the x-axis is horizontal; t rep-
resents time. The motion of a particle is given by

x = t3 − 3t, y = t2 − 2t.

(a) Does the particle ever come to a stop? If so, when
and where?

(b) Is the particle ever moving straight up or down? If
so, when and where?

(c) Is the particle ever moving straight horizontally right
or left? If so, when and where?
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42. The position of a particle at time t, is given by �r (t) =

cos 4t�i + sin 4t�j + 3t�k .

(a) Find the velocity and acceleration of the particle.
(b) Find the speed of the particle.
(c) Show that the particle moves with constant speed.
(d) Find the angle between the particle’s position and

acceleration vector at time t = 0.

43. A stone is swung around on a string at a constant speed
with period 2π seconds in a horizontal circle centered at
the point (0, 0, 8). When t = 0, the stone is at the point
(0, 5, 8); it travels clockwise when viewed from above.
When the stone is at the point (5, 0, 8), the string breaks
and it moves under gravity.

(a) Parameterize the stone’s circular trajectory.
(b) Find the velocity and acceleration of the stone at the

moment before the string breaks.
(c) Write, but do not solve, the differential equations

(with initial conditions) satisfied by the coordinates
x, y, z giving the position of the stone after it has left
the circle.

44. The origin is on the surface of the earth, and the z-axis
points upward. For t ≥ 0, a particle moves according to

x(t) = 5t, y(t) = 3t, z(t) = 15− t2 + 2t.

(a) What is the position, velocity, and acceleration at
time t = 0?

(b) When and where does the particle hit the ground?
How fast is it moving then?

45. Let f(x, y) =
x2 − y2

x2 + y2
.

(a) In which direction should you move from the point
(1, 1) to obtain the maximum rate of increase of f?

(b) Find a direction in which the directional derivative
at the point (1, 1) is equal to zero.

(c) Suppose you move along the curve x = e2t, y =
2t3 + 6t + 1. What is df/dt at t = 0?

46. An ant, starting at the origin, moves at 2 units/sec along
the x-axis to the point (1, 0). The ant then moves coun-
terclockwise along the unit circle to (0, 1) at a speed of
3π/2 units/sec, then straight down to the origin at a speed
of 2 units/sec along the y-axis.

(a) Express the ant’s coordinates as a function of time,
t, in secs.

(b) Express the reverse path as a function of time.

47. The temperature at the point (x, y) in the plane is given
by F (x, y) = 1/(x2 + y2). A ladybug moves along a
parabola according to the parametric equations

x = t, y = t2.

Assuming that the ladybug’s temperature is the same as
the plane at her current location, find the rate of change
in the temperature of the ladybug at time t. Use the chain

rule to show that for any temperature function F (x, y)
and any path of the ladybug �r = x(t)�i + y(t)�j , then
writing �v (t) = d�r /dt gives:

Rate of change of temperature = ∇F (x, y) · �v .

48. The motion of the particle is given by the parametric
equations

x = t3 − 3t, y = t2 − 2t.

Give parametric equations for the tangent line to the path
of the particle at time t = −2.

49. At time t = 0 a particle in uniform circular motion in
the plane has velocity �v = 6�i − 4�j and acceleration
�a = 2�i +3�j . Find the radius and center of its orbit if at
time t = 0 it is at the point

(a) P = (0, 0) (b) P = (10, 50)

50. Find parametric equations of the line passing through the
points (1, 2, 3), (3, 5, 7) and calculate the shortest dis-
tance from the line to the origin.

51. On a calculator or a computer, plot x = 2t/(t2 + 1),
y = (t2 − 1)/(t2 + 1), first for −50 ≤ t ≤ 50 then for
−5 ≤ t ≤ 5. Explain what you see. Is the curve really a
circle?

52. A cheerleader has a 0.4 m long baton with a light on one
end. She throws the baton in such a way that it moves en-
tirely in a vertical plane. The origin is on the ground and
the y-axis is vertical. The center of the baton moves along
a parabola and the baton rotates counterclockwise around
the center with a constant angular velocity. The baton is
initially horizontal and 1.5 m above the ground; its initial
velocity is 8 m/sec horizontally and 10 m/sec vertically,
and its angular velocity is 2 revolutions per second. Find
parametric equations describing the following motions:

(a) The center of the baton relative to the ground.
(b) The end of the baton relative to its center.
(c) The path traced out by the end of the baton relative

to the ground.
(d) Sketch a graph of the motion of the end of the baton.

53. For a and ω positive constants and t ≥ 0, the position
vector of a particle moving in a spiral counterclockwise
outward from the origin is given by

�r (t) = at cos(ωt)�i + at sin(ωt)�j .

What is the significance of the parameters ω and a?

54. An object is moving on a straight-line path. Can you con-
clude at all times that:

(a) Its velocity vector is parallel to the line? Justify your
answer.

(b) Its acceleration vector is parallel to the line? Justify
your answer.
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55. If �F = �r /‖�r ‖3, find the following quantities in terms
of x, y, z, or t.

(a) ‖�F ‖
(b) �F · �r
(c) A unit vector parallel to �F and pointing in the same

direction
(d) A unit vector parallel to �F and pointing in the op-

posite direction
(e) �F if �r = cos t�i + sin t�j + �k
(f) �F · �r if �r = cos t�i + sin t�j + �k

56. Each of the following vector fields represents an ocean
current. Sketch the vector field, and sketch the path of
an iceberg in this current. Determine the location of an
iceberg at time t = 7 if it is at the point (1, 3) at time

t = 0.

(a) The current everywhere is�i .
(b) The current at (x, y) is 2x�i + y�j .
(c) The current at (x, y) is −y�i + x�j .

57. Wire is stretched taught from the point P = (7, 12,−10)
to the point Q = (−2,−3, 2) and from the point R =
(−20, 17, 1) to the point S = (37, 2, 25). Spherical
beads of radius 8 cm slide along each wire through holes
along an axis through their centers. Can the beads pass
each other without touching, regardless of their position?

58. A particle moves with displacement vector �r and con-
stant speed. Show that the vector representing the veloc-
ity is perpendicular to the vector representing the accel-
eration.

CAS Challenge Problems

59. Let �r 0 = x0
�i + y0�j + z0�k , and let �e1 and �e2 be per-

pendicular unit vectors. A circle of radius R, centered at
(x0, y0, z0), and lying in the plane parallel to �e 1 and �e 2,
is parameterized by �r (t) = �r 0+R cos t�e 1+R sin t�e 2.
We want to parameterize a circle in 3-space with radius 5,
centered at (1, 2, 3), and lying in the plane x+y+z = 6.

(a) Let �e 1 = a�i + b�j and �e 2 = c�i + d�j + e�k . Write
down conditions on �e 1 and �e 2 that make them unit
vectors, perpendicular to each other, and lying in the
given plane.

(b) Solve the equations in part (a) for a, b, c, d, and e
and write a parameterization of the circle.

60. Let �F (x, y) = −y(1− y2)�i + x(1− y2)�j .

(a) Show that �r · �F = 0. What does this tell you about
the shape of the flow lines?

(b) Show that �r (t) = cos t�i + sin t�j has velocity vec-
tor parallel to �F at every point, but is not a flow line.

(c) Show �r (t) = (1/(
√
1 + t2))�i + (t/(

√
1 + t2))�j

is a flow line for �F . What is the difference between
this curve and the one in part (b)?

61. Let �F (x, y) = (x+ y)�i + (4x+ y)�j .

(a) Show that �r (t) = (ae3t + be−t)�i + (2ae3t −
2be−t)�j , for constant a, b, is a flow line for �F .

(b) Find the flow line passing through (1,−2) at t = 0
and describe its behavior as t → ∞. Do the same
for the points (1,−1.99) and (1,−2.01). Compare
the behavior of the three flow lines.

62. Two surfaces generally intersect in a curve. For each
of the following pair of surfaces f(x, y, z) = 0 and
g(x, y, z) = 0, find a parameterization for the curve of
intersection by solving for two of the variables in terms
of the third.

(a) 3x− 5y + z = 5, 2x+ y + z = 3,
(b) 3x2 − 5y + z = 5, 2x+ y + z = 3,
(c) x2 + y2 = 2, 3x− y + z = 5.

PROJECTS FOR CHAPTER SEVENTEEN

1. Shooting a Basketball
A basketball player shoots the ball from 6 feet above the ground toward a basket that is 10 feet
above the ground and 15 feet away horizontally.

(a) Suppose she shoots the ball at an angle of A degrees above the horizontal (0 < A < π/2)
with an initial speed V . Give the x- and y-coordinates of the position of the basketball
at time t. Assume the x-coordinate of the basket is 0 and that the x-coordinate of the
shooter is −15. [Hint: There is an acceleration of −32 ft/sec2 in the y-direction; there
is no acceleration in the x-direction. Ignore air resistance.]

(b) Using the parametric equations you obtained in part (a), experiment with different values
for V and A, plotting the path of the ball on a graphing calculator or computer to see how
close the ball comes to the basket. (The tick marks on the y-axis can be used to locate the
basket.) Find some values of V and A for which the shot goes in.

(c) Find the angle A that minimizes the velocity needed for the ball to reach the basket. (This
is a lengthy computation. First find an equation in V and A that holds if the path of the
ball passes through the point 15 feet from the shooter and 10 feet above the ground. Then
minimize V .)
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2. Kepler’s Second Law
The planets do not orbit in circles with the sun at the center, nor does the moon orbit in a circle
with the earth at the center. In fact, the moon’s distance from the earth varies from 220,000 to
260,000 miles. In the last half of the 16th century the Danish astronomer Tycho Brahe (1546–
1601) made measurements of the positions of the planets. Johann Kepler (1571–1630) studied
this data and arrived at three laws now known as Kepler’s Laws:

I. The orbit of each planet is an ellipse with the sun at one focus. In particular, the orbit lies
in a plane containing the sun.

II. As a planet orbits around the sun, the line segment from the sun to the planet sweeps out
equal areas in equal times. See Figure 17.43.

III. The ratio p2/d3 is the same for every planet orbiting around the sun, where p is the period of
the orbit (time to complete one revolution) and d is the mean distance of the orbit (average
of the shortest and farthest distances from the sun).

Kepler’s Laws, impressive as they are, were purely descriptive; Newton’s great achieve-
ment was to find an underlying cause for them. In this project, you will derive Kepler’s Second
Law from Newton’s Law of Gravity.

Consider a coordinate system centered at the sun.3 Let �r be the position vector of a planet
and let �v and �a be the planet’s velocity and acceleration, respectively. Define �L = �r × �v .
(This is a multiple of the planet’s angular momentum.)

(a) Show that
d�L

dt
= �r × �a .

(b) Consider the planet moving from �r to �r +Δ�r . Explain why the area ΔA about the origin
swept out by the planet is approximately 1

2‖Δ�r × �r ‖.

(c) Using part (b), explain why
dA

dt
=

1

2
‖�L ‖.

(d) Newton’s Laws imply that the planet’s gravitational acceleration, �a , is directed toward the
sun. Using this fact and part (a), explain why �L is constant.

(e) Use parts (c) and (d) to explain Kepler’s Second Law.
(f) Using Kepler’s Second Law, determine whether a planet is moving most quickly when it is

closest to, or farthest from, the sun.

Sun

Planet

Planet

Figure 17.43: The line segment joining a planet to the sun sweeps out equal areas in equal times

3We are assuming the center of the sun is the same as the center of mass of the planet/sun system. This is only approxi-
mately true.
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3. Flux Diagrams
A flux diagram uses flow lines to represent a vector field. The arrows drawn on a flow line
indicate the direction of the vector field. The flow lines are drawn in such a way that their
density is proportional to the magnitude of the vector field at each point. (The density is the
number of flow lines per unit length along a curve perpendicular to the vector field.)

Figure 17.44 is a flux diagram for the vector field in 2-space �F = �r /‖�r ‖2. Since the
field points radially away from the origin, the flow lines are straight lines radiating from the
origin. The number of flow lines passing through any circle centered at the origin is a constant
k. Therefore, the flow lines passing through a small circle are more densely packed than those
passing through a large circle, indicating that the magnitude of the vector field decreases as we
move away from the origin. In fact,

Density of lines =
Number of lines passing through circle

Circumference of circle
=

k

2πr
=

k

2π
1/r,

so that the density is proportional to 1/r, the magnitude of the field.
Sometimes we have to start new lines to make the density proportional to the magnitude.

For example, the flow lines of �v = x�i are horizontal straight lines directed away from the y-
axis. However, since the magnitude of �v increases linearly with x, we have to make the density
of lines increase linearly with x. We achieve this by starting new lines at regular intervals. (See
Figure 17.45.)

Draw flux diagrams for the following vector fields:

(a) �v =�i (b) �v = −y�i + x�j (c) �v = y�i (d) �v = y�j

x

y

Figure 17.44

x

y

Figure 17.45
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18.1 THE IDEA OF A LINE INTEGRAL

Imagine that you are rowing on a river with a noticeable current. At times you may be working
against the current and at other times you may be moving with it. At the end you have a sense
of whether, overall, you were helped or hindered by the current. The line integral, defined in this
section, measures the extent to which a curve in a vector field is, overall, going with the vector field
or against it.

Orientation of a Curve
A curve can be traced out in two directions, as shown in Figure 18.1. We need to choose one
direction before we can define a line integral.

A curve is said to be oriented if we have chosen a direction of travel on it.

P

Q

P

Q

Figure 18.1: A curve with two different orientations represented by arrowheads

Definition of the Line Integral

Consider a vector field �F and an oriented curve C. We begin by dividing C into n small, almost
straight pieces along which �F is approximately constant. Each piece can be represented by a dis-
placement vector Δ�r i = �r i+1 − �r i and the value of �F at each point of this small piece of C is
approximately �F (�r i). See Figures 18.2 and 18.3.

�r 0
�

P

C

�r 1
�
�...

��r i

�r i+1 �
...
�

�r n−1
� �r n!

Q

�

Δ�r i = �r i+1 − �r i

Figure 18.2: The curve C, oriented from P to
Q, approximated by straight line segments

represented by displacement vectors
Δ�r i = �r i+1 − �r i

P

QC

�F (�r 0)

�F (�r 1)

�F (�r i)

�F (�r i+1) �F (�r n−1)

�F (�r n)

Figure 18.3: The vector field �F evaluated at the points with
position vector �r i on the curve C oriented from P to Q

Returning to our initial example, the vector field �F represents the current and the oriented curve
C is the path of the person rowing the boat. We wish to determine to what extent the vector field �F
helps or hinders motion along C. Since the dot product can be used to measure to what extent two
vectors point in the same or opposing directions, we form the dot product �F (�r i) · Δ�r i for each
point with position vector �r i on C. Summing over all such pieces, we get a Riemann sum:

n−1∑
i=0

�F (�r i) ·Δ�r i.

We define the line integral, written
∫
C
�F · d�r , by taking the limit as ‖Δ�r i‖ → 0. Provided the

limit exists, we make the following definition:
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The line integral of a vector field �F along an oriented curve C is

∫
C

�F · d�r = lim
‖Δ�r i‖→0

n−1∑
i=0

�F (�r i) ·Δ�r i.

How Does the Limit Defining a Line Integral Work?

The limit in the definition of a line integral exists if �F is continuous on the curve C and if C is made
by joining end to end a finite number of smooth curves. (A vector field �F = F1

�i + F2
�j + F3

�k is
continuous if F1, F2, and F3 are continuous, and a smooth curve is one that can be parameterized
by smooth functions.) We subdivide the curve using a parameterization which goes from one end
of the curve to the other, in the forward direction, without retracing any portion of the curve. A
subdivision of the parameter interval gives a subdivision of the curve. All the curves we consider in
this book are piecewise smooth in this sense. Section 18.2 shows how to use a parameterization to
compute a line integral.

Example 1 Find the line integral of the constant vector field �F =�i +2�j along the path from (1, 1) to (10, 10)
shown in Figure 18.4.

(1, 1)
(10, 1)

(10, 10)

C1C1

x

y

C2

Figure 18.4: The constant vector field �F =�i + 2�j and the path from (1, 1) to (10, 10)

Solution Let C1 be the horizontal segment of the path going from (1, 1) to (10, 1). When we break this path
into pieces, each piece Δ�r is horizontal, so Δ�r = Δx�i and �F · Δ�r = (�i + 2�j ) · Δx�i = Δx.
Hence, ∫

C1

�F · d�r =

∫ x=10

x=1

dx = 9.

Similarly, along the vertical segmentC2, we haveΔ�r = Δy�j and �F ·Δ�r = (�i +2�j )·Δy�j = 2Δy,
so ∫

C2

�F · d�r =

∫ y=10

y=1

2 dy = 18.

Thus, ∫
C

�F · d�r =

∫
C1

�F · d�r +

∫
C2

�F · d�r = 9 + 18 = 27.

What Does the Line Integral Tell Us?
Remember that for any two vectors �u and �v , the dot product �u · �v is positive if �u and �v point
roughly in the same direction (that is, if the angle between them is less than π/2). The dot product
is zero if �u is perpendicular to �v and is negative if they point roughly in opposite directions (that is,
if the angle between them is greater than π/2).
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The line integral of �F adds the dot products of �F and Δ�r along the path. If ||�F || is constant,
the line integral gives a positive number if �F is mostly pointing in the same direction as C, and a
negative number if �F is mostly pointing in the opposite direction to C. The line integral is zero if
�F is perpendicular to the path at all points or if the positive and negative contributions cancel out.
In general, the line integral of a vector field �F along a curve C measures the extent to which C is
going with �F or against it.

Example 2 The vector field �F and the oriented curves C1, C2, C3, C4 are shown in Figure 18.5. The curves C1

and C3 are the same length. Which of the line integrals
∫
Ci

�F · d�r , for i = 1, 2, 3, 4, are positive?
Which are negative? Arrange these line integrals in ascending order.

C2

C3

C4

C1

Figure 18.5: Vector field and paths C1, C2, C3, C4

Solution The vector field �F and the line segments Δ�r are approximately parallel and in the same direction
for the curves C1, C2, and C3. So the contributions of each term �F · Δ�r are positive for these
curves. Thus,

∫
C1

�F ·d�r ,
∫
C2

�F ·d�r , and
∫
C3

�F ·d�r are each positive. For the curve C4, the vector

field and the line segments are in opposite directions, so each term �F ·Δ�r is negative, and therefore
the integral

∫
C4

�F · d�r is negative.
Since the magnitude of the vector field is smaller along C1 than along C3, and these two curves

are the same length, we have ∫
C1

�F · d�r <

∫
C3

�F · d�r .

In addition, the magnitude of the vector field is the same along C2 and C3, but the curve C2 is longer
than the curve C3. Thus, ∫

C3

�F · d�r <

∫
C2

�F · d�r .

Putting these results together with the fact that
∫
C4

�F · d�r is negative, we have∫
C4

�F · d�r <

∫
C1

�F · d�r <

∫
C3

�F · d�r <

∫
C2

�F · d�r .

Interpretations of the Line Integral

Work

Recall from Section 13.3 that if a constant force �F acts on an object while it moves along a straight
line through a displacement �d , the work done by the force on the object is

Work done = �F · �d .

Now suppose we want to find the work done by gravity on an object moving far above the surface
of the earth. Since the force of gravity varies with distance from the earth and the path may not
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be straight, we can’t use the formula �F · �d . We approximate the path by line segments which are
small enough that the force is approximately constant on each one. Suppose the force at a point with
position vector �r is �F (�r ), as in Figures 18.2 and 18.3. Then

Work done by force �F (�r i)

over small displacement Δ�r i

≈ �F (�r i) ·Δ�r i,

and so,

Total work done by force

along oriented curve C
≈
∑
i

�F (�r i) ·Δ�r i.

Taking the limit as ‖Δ�r i‖ → 0, we get

Work done by force �F (�r )

along curve C
= lim

‖Δ�r i‖→0

∑
i

�F (�r i) ·Δ�r i =

∫
C

�F · d�r .

Example 3 A mass lying on a flat table is attached to a spring whose other end is fastened to the wall. (See
Figure 18.6.) The spring is extended 20 cm beyond its rest position and released. If the axes are as
shown in Figure 18.6, when the spring is extended by a distance of x, the force exerted by the spring
on the mass is given by

�F (x) = −kx�i ,

where k is a positive constant that depends on the strength of the spring.
Suppose the mass moves back to the rest position. How much work is done by the force exerted

by the spring?

�F

0 ��x

�

Rest position

Wall

Figure 18.6: Force on mass due to an extended
spring

0 Δ�r

Δx�� x

20

Figure 18.7: Dividing up the
interval 0 ≤ x ≤ 20 in order to

calculate the work done

Solution The path from x = 20 to x = 0 is divided as shown in Figure 18.7, with a typical segment repre-
sented by

Δ�r = Δx�i .

Since we are moving from x = 20 to x = 0, the quantity Δx will be negative. The work done by
the force as the mass moves through this segment is approximated by

Work done ≈ �F ·Δ�r = (−kx�i ) · (Δx�i ) = −kxΔx.

Thus, we have
Total work done ≈

∑
−kxΔx.

In the limit, as ‖Δx‖ → 0, this sum becomes an ordinary definite integral. Since the path starts at
x = 20, this is the lower limit of integration; x = 0 is the upper limit. Thus, we get

Total work done =

∫ x=0

x=20

−kx dx = −
kx2

2

∣∣∣∣0
20

=
k(20)2

2
= 200k.

Note that the work done is positive, since the force acts in the direction of motion.
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Example 3 shows how a line integral over a path parallel to the x-axis reduces to a one-variable
integral. Section 18.2 shows how to convert any line integral into a one-variable integral.

Example 4 A particle with position vector �r is subject to a force, �F , due to gravity. What is the sign of the
work done by �F as the particle moves along the path C1, a radial line through the center of the
earth, starting 8000 km from the center and ending 10,000 km from the center? (See Figure 18.8.)

Solution We divide the path into small radial segments, Δ�r , pointing away from the center of the earth and
parallel to the gravitational force. The vectors �F and Δ�r point in opposite directions, so each term
�F · Δ�r is negative. Adding all these negative quantities and taking the limit results in a negative
value for the total work. Thus, the work done by gravity is negative. The negative sign indicates that
we would have to do work against gravity to move the particle along the path C1.

Earth

C2

C1

8000

10,000

Figure 18.8: The earth

Example 5 Find the sign of the work done by gravity along the curve C1 in Example 4, but with the opposite
orientation.

Solution Tracing a curve in the opposite direction changes the sign of the line integral because all the seg-
ments Δ�r change direction, and so every term �F · Δ�r changes sign. Thus, the result will be the
negative of the answer found in Example 4. Therefore, the work done by gravity as a particle moves
along C1 toward the center of the earth is positive.

Example 6 Find the work done by gravity as a particle moves along C2, an arc of a circle 8000 km long at a
distance of 8000 km from the center of the earth. (See Figure 18.8.)

Solution Since C2 is everywhere perpendicular to the gravitational force, �F ·Δ�r = 0 for all Δ�r along C2.
Thus,

Work done =

∫
C2

�F · d�r = 0,

so the work done is zero. This is why satellites can remain in orbit without expending any fuel, once
they have attained the correct altitude and velocity.

Circulation

The velocity vector field for the Gulf Stream on page 937 shows distinct eddies or regions where
the water circulates. We can measure this circulation using a closed curve, that is, one that starts and
ends at the same point.

If C is an oriented closed curve, the line integral of a vector field �F around C is called the
circulation of �F around C.
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Circulation is a measure of the net tendency of the vector field to point around the curve C. To
emphasize that C is closed, the circulation is sometimes denoted

∮
C
�F · d�r , with a small circle on

the integral sign.

Example 7 Describe the rotation of the vector fields in Figures 18.9 and 18.10. Find the sign of the circulation
of the vector fields around the indicated paths.

C1

Figure 18.9: A circulating flow

C2

Figure 18.10: A flow with zero
circulation

Solution Consider the vector field in Figure 18.9. If you think of this as representing the velocity of water
flowing in a pond, you see that the water is circulating. The line integral around C1, measuring the
circulation around C1, is positive, because the vectors of the field are all pointing in the direction of
the path. By way of contrast, look at the vector field in Figure 18.10. Here the line integral around C2

is zero because the vertical portions of the path are perpendicular to the field and the contributions
from the two horizontal portions cancel out. This means that there is no net tendency for the water
to circulate around C2.

It turns out that the vector field in Figure 18.10 has the property that its circulation around any
closed path is zero. Water moving according to this vector field has no tendency to circulate around
any point, and a leaf dropped into the water will not spin. We’ll look at such special fields again
later when we introduce the notion of the curl of a vector field.

Properties of Line Integrals
Line integrals share some basic properties with ordinary one-variable integrals:

For a scalar constant λ, vector fields �F and �G , and oriented curves C, C1, and C2,

1.

∫
C

λ�F · d�r = λ

∫
C

�F · d�r . 2.

∫
C

(�F + �G ) · d�r =

∫
C

�F · d�r +

∫
C

�G · d�r .

3.

∫
−C

�F · d�r = −

∫
C

�F · d�r . 4.

∫
C1+C2

�F · d�r =

∫
C1

�F · d�r +

∫
C2

�F · d�r .

Properties 3 and 4 are concerned with the curve C over which the line integral is taken. If C
is an oriented curve, then −C is the same curve traversed in the opposite direction, that is, with the
opposite orientation. (See Figure 18.11 on page 964.) Property 3 holds because if we integrate along
−C, the vectors Δ�r point in the opposite direction and the dot products �F ·Δ�r are the negatives
of what they were along C.
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If C1 and C2 are oriented curves with C1 ending where C2 begins, we construct a new oriented
curve, called C1 + C2, by joining them together. (See Figure 18.12.) Property 4 is the analogue for
line integrals of the property for definite integrals which says that∫ b

a

f(x) dx =

∫ c

a

f(x) dx +

∫ b

c

f(x) dx.

P

QC

P

Q−C

Figure 18.11: A curve, C, and its opposite,
−C

P

Q

R

C1

C2

P

R
C1 + C2

Figure 18.12: Joining two curves, C1, and C2, to make a
new one, C1 + C2

Exercises and Problems for Section 18.1
Exercises

In Exercises 1–6, say whether you expect the line integral of
the pictured vector field over the given curve to be positive,
negative, or zero.

1.

2.

3.

4.

5.

6.

In Exercises 7–15, calculate the line integral of the vector field
along the line between the given points.

7. �F = x�j , from (1, 0) to (3, 0)

8. �F = x�j , from (2, 0) to (2, 5)

9. �F = 6�i − 7�j , from (0, 0) to (7, 6)

10. �F = 6�i + y2�j , from (3, 0) to (7, 0)

11. �F = 3�i + 4�j , from (0, 6) to (0, 13)

12. �F = x�i , from (2, 0) to (6, 0)

13. �F = x�i + y�j , from (2, 0) to (6, 0)

14. �F = �r = x�i + y�j , from (2, 2) to (6, 6)

15. �F = x�i + 6�j − �k , from (0,−2, 0) to (0,−10, 0)

In Exercises 16–18, find
∫
C

�F · d�r for the given �F and C.

16. �F = 5�i + 7�j , and C is the x-axis from (−1, 0) to
(−9, 0).

17. �F = x2�i + y2�j , and C is the x-axis from (2, 0) to
(3, 0).

18. �F = 6x�i + (x + y2)�j ; C is the y-axis from (0, 3) to
(0, 5).



18.1 THE IDEA OF A LINE INTEGRAL 965

In Exercises 19–22, calculate the line integral.

19.

∫
C

(2�j +3�k ) ·d�r where C is the y-axis from the origin

to the point (0, 10, 0).

20.
∫
C
(2x�i + 3y�j ) · d�r , where C is the line from (1, 0, 0)

to (1, 0, 5).

21.

∫
C

((2y + 7)�i + 3x�j ) · d�r , where C is the line from

(1, 0, 0) to (5, 0, 0).

22.

∫
C

(x�i + y�j + z�k ) ·d�r where C is the unit circle in the

xy-plane, oriented counterclockwise.

Problems

In Problems 23–26, let C1 be the line from (0, 0) to (0, 1); let
C2 be the line from (1, 0) to (0, 1); let C3 be the semicircle
in the upper half plane from (−1, 0) to (1, 0). Do the line in-
tegrals of the vector field along each of the paths C1, C2, and
C3 appear to be positive, negative, or zero?

23.

x

y 24.

x

y

25.

x

y 26.

x

y

27. Consider the vector field �F shown in Figure 18.13, to-
gether with the paths C1, C2, and C3. Arrange the line
integrals

∫
C1

�F · d�r ,
∫
C2

�F · d�r and
∫
C3

�F · d�r in
ascending order.

C2

C1

C3

Figure 18.13

28. Compute
∫
C

�F · d�r , where C is the oriented curve in

Figure 18.14 and �F is a vector field constant on each of
the three straight segments of C:

�F =

{
�i on PQ
2�i −�j on QR
3�i +�j on RS.

1 2 3 4

1

2

3

4

P

Q

R

S

x

y

Figure 18.14

29. An object moves along the curve C in Figure 18.15 while
being acted on by the force field �F (x, y) = y�i + x2�j .

(a) Evaluate �F at the points (0,−1), (1,−1), (2,−1),
(3,−1), (4,−1), (4, 0), (4, 1), (4, 2), (4, 3).

(b) Make a sketch showing the force field along C.
(c) Find the work done by �F on the object.

x

y

(0,−1) (4,−1)

(4, 3)

Figure 18.15

30. Let �F be the constant force field �j in Figure 18.16. On
which of the paths C1, C2, C3 is zero work done by �F ?
Explain.

C1

C2 C3

x

y

Figure 18.16
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In Problems 31–35, give conditions on one or more of the con-
stants a, b, c to ensure that the line integral

∫
C

�F · d�r has the
given sign.

31. Positive for �F = a�i + b�j + c�k and C is the line from
the origin to (10, 0, 0).

32. Positive for �F = ay�i + c�k and C is the unit circle in
the xy-plane, centered at the origin and oriented counter-
clockwise when viewed from above.

33. Negative for �F = b�j +c�k and C is the parabola y = x2

in the xy-plane from the origin to (3, 9, 0).

34. Positive for �F = ay�i − ax�j + (c − 1)�k and C is the
line segment from the origin to (1, 1, 1).

35. Negative for �F = a�i +b�j −�k and C is the line segment
from (1, 2, 3) to (1, 2, c).

36. (a) For each of the vector fields, �F , shown in Fig-
ure 18.17, sketch a curve for which the integral∫
C

�F · d �r is positive.
(b) For which of the vector fields is it possible to make

your answer to part (a) a closed curve?

x

y(i)

x

y(ii)

x

y(iii)

x

y(iv)

Figure 18.17

For Problems 37–41, say whether you expect the given vector
field to have positive, negative, or zero circulation around the
closed curve C = C1 + C2 + C3 + C4 in Figure 18.18. The
segments C1 and C3 are circular arcs centered at the origin;
C2 and C4 are radial line segments. You may find it helpful to
sketch the vector field.

1 2

2

−2

−1

1

x

y

C4

C2

C3

C1

Figure 18.18

37. �F (x, y) = x�i + y�j 38. �F (x, y) = −y�i + x�j

39. �F (x, y) = y�i − x�j 40. �F (x, y) = x2�i

41. �F (x, y) = − y

x2 + y2
�i +

x

x2 + y2
�j

42. A horizontal square has sides of 1000 km running north-
south and east-west. A wind blows from the east and de-
creases in magnitude toward the north at a rate of 6 me-
ter/sec for every 500 km. Compute the circulation of the
wind counterclockwise around the square.

43. Let �F = x�i + y�j and let C1 be the line joining (1, 0)
to (0, 2) and let C2 be the line joining (0, 2) to (−1, 0).
Is
∫
C1

�F · d�r = −
∫
C2

�F · d�r ? Explain.

44. The vector field �F has ||�F || ≤ 7 everywhere and C is
the circle of radius 1 centered at the origin. What is the
largest possible value of

∫
C

�F · d�r ? The smallest possi-
ble value? What conditions lead to these values?

45. Along a curve C, a vector field �F is everywhere tangent
to C in the direction of orientation and has constant mag-
nitude ‖�F ‖ = m. Use the definition of the line integral
to explain why∫

C

�F · d�r = m · Length of C.

46. Explain why the following statement is true: Whenever
the line integral of a vector field around every closed
curve is zero, the line integral along a curve with fixed
endpoints has a constant value independent of the path
taken between the endpoints.

47. Explain why the converse to the statement in Problem 46
is also true: Whenever the line integral of a vector field
depends only on endpoints and not on paths, the circula-
tion around every closed curve is zero.

In Problems 48–49, use the fact that the force of gravity on a
particle of mass m at the point with position vector �r is

�F = −GMm�r

‖�r ‖3

where and G is a constant and M is the mass of the earth.
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48. Calculate the work done by the force of gravity on a par-
ticle of mass m as it moves radially from 8000 km to
10,000 km from the center of the earth.

49. Calculate the work done by the force of gravity on a par-
ticle of mass m as it moves radially from 8000 km from
the center of the earth to infinitely far away.

In Problems 50–53 we explore the notion of the electric po-
tential of an electric field �E . We chose a point P0 to be the
ground, that is, the potential at P0 is zero. Then the poten-
tial φ(P ) at a point P is defined to be the work done moving
a particle of charge 1 coulomb from P0 to P . (The potential
does not depend on the path chosen.) Q,E are constants.

50. Write a line integral for φ(P ), using the fact that the elec-
tric field acts on a particle with force �E .

51. Let �E =
(

Q

4πε

)
�r

‖�r ‖3 , and let P0 be a point a units

from the origin. Describe the set of points with zero po-
tential.

52. An equipotential surface is a surface on which the po-
tential is constant. Describe the equipotential surfaces of

�E =
Q

4πε

�r

‖�r ‖3 , where the ground P0 is chosen to be at

distance a from the origin.

53. Let �E =
Q

4πε

�r

‖�r ‖3 and let the ground P0 be chosen to

be a units from the origin.

(a) Find a formula for φ.
(b) Engineers often choose the ground point to be “at

infinity.” Why?

Strengthen Your Understanding

In Problems 54–55, explain what is wrong with the statement.

54. If �F is a vector field and C is an oriented curve, then∫
−C

�F · d�r must be less than zero.

55. It is possible that for a certain vector field �F and oriented
path C, we have

∫
C

�F · d�r = 2�i − 3�j .

In Problems 56–57, give an example of:

56. A nonzero vector field �F such that
∫
C

�F ·d�r = 0, where
C is the straight line curve from (0, 0) to (1, 1).

57. Two oriented curves C1 and C2 in the plane such that,
for �F (x, y) = x�j , we have

∫
C1

�F · d�r > 0 and∫
C2

�F · d�r < 0.

Are the statements in Problems 58–60 true or false? Explain
why or give a counterexample.

58.
∫
C

�F · d�r is a vector.

59. Suppose C1 is the unit square joining the points (0, 0),
(1, 0), (1, 1), (0, 1) oriented clockwise and C2 is the
same square but traversed twice in the opposite direction.
If
∫
C1

�F · d�r = 3, then
∫
C2

�F · d�r = −6.

60. The line integral of �F = x�i + y�j = �r along the semi-
circle x2 + y2 = 1, y ≥ 0, oriented counterclockwise, is
zero.

Are the statements in Problems 61–67 true or false? Give rea-
sons for your answer.

61. The line integral
∫
C

�F · d�r is a scalar.

62. If C1 and C2 are oriented curves, and the length of C1

is greater than the length of C2, then
∫
C1

�F · d�r >∫
C2

�F · d�r .

63. If C is an oriented curve and
∫
C

�F · d�r = 0, then
�F = �0 .

64. If �F =�i is a vector field in 2-space, then
∫
C

�F ·d�r > 0,
where C is the oriented line from (0, 0) to (1, 0).

65. If �F =�i is a vector field in 2-space, then
∫
C

�F ·d�r > 0,
where C is the oriented line from (0, 0) to (0, 1).

66. If C1 is the upper semicircle x2 + y2 = 1, y ≥ 0 and C2

is the lower semicircle x2+y2 = 1, y ≤ 0, both oriented
counterclockwise, then for any vector field �F , we have∫
C1

�F · d�r = −
∫
C2

�F · d�r .

67. The work done by the force �F = −y�i + x�j on a parti-
cle moving clockwise around the boundary of the square
−1 ≤ x ≤ 1,−1 ≤ y ≤ 1 is positive.

18.2 COMPUTING LINE INTEGRALS OVER PARAMETERIZED CURVES

The goal of this section is to show how to use a parameterization of a curve to convert a line integral
into an ordinary one-variable integral.

Using a Parameterization to Evaluate a Line Integral

Recall the definition of the line integral,∫
C

�F · d�r = lim
‖Δ�r i‖→0

∑
�F (�r i) ·Δ�r i,
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where the �r i are the position vectors of points subdividing the curve into short pieces. Now suppose
we have a smooth parameterization, �r (t), of C for a ≤ t ≤ b, so that �r (a) is the position vector
of the starting point of the curve and �r (b) is the position vector of the end. Then we can divide C
into n pieces by dividing the interval a ≤ t ≤ b into n pieces, each of size Δt = (b − a)/n. See
Figures 18.19 and 18.20.

At each point �r i = �r (ti) we want to compute

�F (�r i) ·Δ�r i.

t0 = a t1 . . . . . .

��Δt

ti ti+1 tn−1 tn = b
t

Figure 18.19: Subdivision of the interval a ≤ t ≤ b

�

�r (t0) = �r (a)

�r (t1)

...
�r (ti)

�r (ti+1)
... �r (tn−1)

�r (tn) = �r (b)

.

�
Δ�r i = �r (ti+1)− �r (ti)

Figure 18.20: Corresponding subdivision of the
parameterized path C

Since ti+1 = ti +Δt, the displacement vectors Δ�ri are given by

Δ�ri = �r (ti+1)− �r (ti)

= �r (ti +Δt)− �r (ti)

=
�r (ti +Δt)− �r (ti)

Δt
·Δt

≈ �r ′
(ti)Δt,

where we use the facts that Δt is small and that �r (t) is differentiable to obtain the last approxima-
tion.

Therefore, ∫
C

�F · d�r ≈
∑

�F (�r i) ·Δ�r i ≈
∑

�F (�r (ti)) · �r
′
(ti)Δt.

Notice that �F (�r (ti)) · �r
′(ti) is the value at ti of a one-variable function of t, so this last sum is

really a one-variable Riemann sum. In the limit as Δt → 0, we get a definite integral:

lim
Δt→0

∑
�F (�r (ti)) · �r

′
(ti)Δt =

∫ b

a

�F (�r (t)) · �r ′
(t) dt.

Thus, we have the following result:

If �r (t), for a ≤ t ≤ b, is a smooth parameterization of an oriented curve C and �F is a vector
field which is continuous on C, then∫

C

�F · d�r =

∫ b

a

�F (�r (t)) · �r ′
(t) dt.

In words: To compute the line integral of �F over C, take the dot product of �F evaluated on C
with the velocity vector, �r ′(t), of the parameterization of C, then integrate along the curve.

Even though we assumed that C is smooth, we can use the same formula to compute line
integrals over curves which are piecewise smooth, such as the boundary of a rectangle. If C is
piecewise smooth, we apply the formula to each one of the smooth pieces and add the results by
applying property 4 on page 963.
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Example 1 Compute
∫
C
�F · d�r where �F = (x + y)�i + y�j and C is the quarter unit circle, oriented counter-

clockwise as shown in Figure 18.21.

C

x

y

Figure 18.21: The vector field �F = (x+ y)�i + y�j and the quarter circle C

Solution Since most of the vectors in �F along C point generally in a direction opposite to the orientation of
C, we expect our answer to be negative. The first step is to parameterize C by

�r (t) = x(t)�i + y(t)�j = cos t�i + sin t�j , 0 ≤ t ≤
π

2
.

Substituting the parameterization into �F , we get �F (x(t), y(t)) = (cos t + sin t)�i + sin t�j . The
vector �r ′(t) = x′(t)�i + y′(t)�j = − sin t�i + cos t�j . Then∫

C

�F · d�r =

∫ π/2

0

((cos t+ sin t)�i + sin t�j ) · (− sin t�i + cos t�j )dt

=

∫ π/2

0

(− cos t sin t− sin
2 t+ sin t cos t)dt

=

∫ π/2

0

− sin
2 t dt = −

π

4
≈ −0.7854.

So the answer is negative, as expected.

Example 2 Consider the vector field �F = x�i + y�j .

(a) Suppose C1 is the line segment joining (1, 0) to (0, 2) and C2 is a part of a parabola with its
vertex at (0, 2), joining the same points in the same order. (See Figure 18.22.) Verify that∫

C1

�F · d�r =

∫
C2

�F · d�r .

(b) If C is the triangle shown in Figure 18.23, show that
∫
C
�F · d�r = 0.

1

1

2

x

y

C1

C2

Figure 18.22

1

1

2

x

y

C

Figure 18.23

Solution (a) We parameterize C1 by �r (t) = (1− t)�i + 2t�j with 0 ≤ t ≤ 1. Then �r ′(t) = −�i + 2�j , so∫
C1

�F · d�r =

∫ 1

0

�F (1− t, 2t) · (−�i + 2�j ) dt =

∫ 1

0

((1− t)�i + 2t�j ) · (−�i + 2�j ) dt

=

∫ 1

0

(5t− 1) dt =
3

2
.
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To parameterize C2, we use the fact that it is part of a parabola with vertex at (0, 2), so its
equation is of the form y = −kx2 + 2 for some k. Since the parabola crosses the x-axis
at (1, 0), we find that k = 2 and y = −2x2 + 2. Therefore, we use the parameterization
�r (t) = t�i + (−2t2 + 2)�j with 0 ≤ t ≤ 1, which has �r ′ = �i − 4t�j . This traces out C2 in
reverse, since t = 0 gives (0, 2), and t = 1 gives (1, 0). Thus, we make t = 0 the upper limit of
integration and t = 1 the lower limit:∫

C2

�F · d�r =

∫ 0

1

�F (t,−2t2 + 2) · (�i − 4t�j ) dt = −

∫ 1

0

(t�i + (−2t2 + 2)�j ) · (�i − 4t�j ) dt

= −

∫ 1

0

(8t3 − 7t) dt =
3

2
.

So the line integrals of �F along C1 and C2 have the same value.
(b) We break

∫
C
�F · d�r into three pieces, one of which we have already computed (namely, the

piece connecting (1, 0) to (0, 2), where the line integral has value 3/2). The piece running from
(0, 2) to (0, 0) can be parameterized by �r (t) = (2 − t)�j with 0 ≤ t ≤ 2. The piece running
from (0, 0) to (1, 0) can be parameterized by �r (t) = t�i with 0 ≤ t ≤ 1. Then∫

C

�F · d�r =
3

2
+

∫ 2

0

�F (0, 2− t) · (−�j ) dt+

∫ 1

0

�F (t, 0) ·�i dt

=
3

2
+

∫ 2

0

(2− t)�j · (−�j ) dt+

∫ 1

0

t�i ·�i dt

=
3

2
+

∫ 2

0

(t− 2) dt+

∫ 1

0

t dt =
3

2
+ (−2) +

1

2
= 0.

Example 3 Let C be the closed curve consisting of the upper half-circle of radius 1 and the line forming its
diameter along the x-axis, oriented counterclockwise. (See Figure 18.24.) Find

∫
C
�F · d�r where

�F (x, y) = −y�i + x�j .

−1 1

1 C1

C2
x

y

Figure 18.24: The curve C = C1 + C2 for Example 3

Solution We write C = C1 +C2 where C1 is the half-circle and C2 is the line, and compute
∫
C1

�F · d�r and∫
C2

�F · d�r separately. We parameterize C1 by �r (t) = cos t�i + sin t�j , with 0 ≤ t ≤ π. Then∫
C1

�F · d�r =

∫ π

0

(− sin t�i + cos t�j ) · (− sin t�i + cos t�j ) dt

=

∫ π

0

(sin
2 t+ cos

2 t) dt =

∫ π

0

1 dt = π.

For C2, we have
∫
C2

�F · d�r = 0, since the vector field �F has no�i component along the x-axis
(where y = 0) and is therefore perpendicular to C2 at all points.

Finally, we can write∫
C

�F · d�r =

∫
C1

�F · d�r +

∫
C2

�F · d�r = π + 0 = π.

It is no accident that the result for
∫
C1

�F · d�r is the same as the length of the curve C1. See
Problem 45 on page 966 and Problem 35 on page 973.
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The next example illustrates the computation of a line integral over a path in 3-space.

Example 4 A particle travels along the helix C given by �r (t) = cos t�i + sin t�j + 2t�k and is subject to a force
�F = x�i + z�j − xy�k . Find the total work done on the particle by the force for 0 ≤ t ≤ 3π.

Solution The work done is given by a line integral, which we evaluate using the given parameterization:

Work done =

∫
C

�F · d�r =

∫ 3π

0

�F (�r (t)) · �r ′
(t) dt

=

∫ 3π

0

(cos t�i + 2t�j − cos t sin t�k ) · (− sin t�i + cos t�j + 2�k ) dt

=

∫ 3π

0

(− cos t sin t+ 2t cos t− 2 cos t sin t) dt

=

∫ 3π

0

(−3 cos t sin t+ 2t cos t) dt = −4.

The Differential Notation
∫
C
P dx +Qdy +Rdz

There is an alternative notation for line integrals that is often useful. For the vector field �F =

P (x, y, z)�i+Q(x, y, z)�j +R(x, y, z)�k and an oriented curveC, if we write d�r = dx�i +dy�j +dz�k
we have ∫

C

�F · d�r =

∫
C

P (x, y, z)dx+Q(x, y, z)dy +R(x, y, z)dz.

Example 5 Evaluate
∫
C

xy dx− y2 dy where C is the line segment from (0, 0) to (2, 6).

Solution We parameterize C by x = t, y = 3t, 0 ≤ t ≤ 2. Thus, dx = dt, dy = 3dt, so∫
C

xy dx− y2 dy =

∫ 2

0

t(3t)dt− (3t)2(3dt) =

∫ 2

0

(−24t2) dt = −64.

Line integrals can be expressed either using vectors or using differentials. If the independent
variables are distances, then visualizing a line integral in terms of dot products can be useful. How-
ever, if the independent variables are, for example, temperature and volume, then the dot product
does not have physical meaning, so differentials are more natural.

Independence of Parameterization
Since there are many different ways of parameterizing a given oriented curve, you may be wondering
what happens to the value of a given line integral if you choose another parameterization. The
answer is that the choice of parameterization makes no difference. Since we initially defined the line
integral without reference to any particular parameterization, this is exactly as we would expect.

Example 6 Consider the oriented path which is a straight-line segmentL running from (0, 0) to (1, 1). Calculate
the line integral of the vector field �F = (3x−y)�i +x�j along L using each of the parameterizations

(a) A(t) = (t, t), 0 ≤ t ≤ 1, (b) D(t) = (et − 1, et − 1), 0 ≤ t ≤ ln 2.

Solution The line L has equation y = x. Both A(t) and D(t) give a parameterization of L: each has both
coordinates equal and each begins at (0,0) and ends at (1,1). Now let’s calculate the line integral of
the vector field �F = (3x− y)�i + x�j using each parameterization.

(a) Using A(t), we get∫
L

�F · d�r =

∫ 1

0

((3t− t)�i + t�j ) · (�i +�j ) dt =

∫ 1

0

3t dt =
3t2

2

∣∣∣∣1
0

=
3

2
.
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(b) Using D(t), we get∫
L

�F · d�r =

∫ ln 2

0

((
3(et − 1)− (et − 1)

)
�i + (et − 1)�j

)
· (et�i + et�j ) dt

=

∫ ln 2

0

3(e2t − et) dt = 3

(
e2t

2
− et
) ∣∣∣∣ln 2

0

=
3

2
.

The fact that both answers are the same illustrates that the value of a line integral is independent
of the parameterization of the path. Problems 38–40 at the end of this section give another way of
seeing this.

Exercises and Problems for Section 18.2
Exercises

In Exercises 1–3, write
∫
C

�F ·d�r in the form
∫ b

a
g(t)dt. (Give

a formula for g and numbers for a and b. You do not need to
evaluate the integral.)

1. �F = y�i + x�j and C is the semicircle from (0, 1) to
(0,−1) with x > 0.

2. �F = x�i + z2�k and C is the line from (0, 1, 0) to
(2, 3, 2).

3. �F = (cosx)�i + (cos y)�j + (cos z)�k and C is the unit
circle in the plane z = 10, centered on the z-axis and
oriented counterclockwise when viewed from above.

In Exercises 4–8, find the line integral.

4.

∫
C

(3�i + (y +5)�j ) · d�r where C is the line from (0, 0)

to (0, 3).

5.

∫
C

(2x�i + 3y�j ) · d�r where C is the line from (1, 0, 0)

to (5, 0, 0).

6.
∫
C
(2y2�i + x�j ) · d�r where C is the line segment from

(3, 1) to (0, 0).

7.
∫
C
(x�i + y�j ) · d�r where C is the semicircle with cen-

ter at (2, 0) and going from (3, 0) to (1, 0) in the region
y > 0.

8. Find
∫
C
((x2 + y)�i + y3�j ) · d�r where C consists of the

three line segments from (4, 0, 0) to (4, 3, 0) to (0, 3, 0)
to (0, 3, 5).

In Exercises 9–23, find
∫
C

�F · d�r for the given �F and C.

9. �F = 2�i +�j ; C is the x-axis from x = 10 to x = 7.

10. �F = 3�j −�i ; C is the line y = x from (1, 1) to (5, 5).

11. �F = x�i + y�j and C is the line from (0, 0) to (3, 3).

12. �F = y�i − x�j and C is the right-hand side of the unit
circle, starting at (0, 1).

13. �F = x2�i + y2�j and C is the line from the point (1, 2)
to the point (3, 4).

14. �F = −y sin x�i + cos x�j and C is the parabola y = x2

between (0, 0) and (2, 4).

15. �F = y3�i + x2�j and C is the line from (0, 0) to (3, 2).

16. �F = 2y�i − (sin y)�j counterclockwise around the unit
circle C starting at the point (1, 0).

17. �F = ln y�i + ln x�j and C is the curve given parametri-
cally by (2t, t3), for 2 ≤ t ≤ 4.

18. �F = x�i + 6�j − �k , and C is the line x = y = z from
(0, 0, 0) to (2, 2, 2).

19. �F = (2x − y + 4)�i + (5y + 3x − 6)�j and C is the
triangle with vertices (0, 0), (3, 0), (3, 2) traversed coun-
terclockwise.

20. �F = x�i + 2zy�j + x�k and C is �r = t�i + t2�j + t3�k
for 1 ≤ t ≤ 2.

21. �F = x3�i + y2�j + z�k and C is the line from the origin
to the point (2, 3, 4).

22. �F = −y�i +x�j +5�k and C is the helix x = cos t, y =
sin t, z = t, for 0 ≤ t ≤ 4π.

23. �F = ey�i +ln(x2+1)�j +�k and C is the circle of radius
2 centered at the origin in the yz-plane in Figure 18.25.

x

y

z

�
Start

Figure 18.25

In Exercises 24–25, express the line integral
∫
C

�F · d�r in
differential notation.

24. �F = 3x�i − y sin x�j

25. �F = y2�i + z2�j + (x2 − 5)�k
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In Exercises 26–27, find �F so that the line integral equals∫
C

�F · d�r .

26.
∫
C
(x+ 2y)dx+ x2ydy

27.
∫
C
e−3ydx− yz(sinx)dy + (y + z)dy

Evaluate the line integrals in Exercises 28–29.

28.
∫
C
ydx+xdy where C is the parameterized path x = t2,

y = t3, 1 ≤ t ≤ 5.

29.
∫
C
dx + ydy + zdz where C is one turn of the helix

x = cos t, y = sin t, z = 3t, 0 ≤ t ≤ 2π.

Evaluate the line integrals in Exercises 30–31.

30.
∫
C
3ydx + 4xdy where C is the straight-line path from

(1, 3) to (5, 9).

31.
∫
C
xdx + zdy − ydz where C is the circle of radius 3

in the yz plane centered at the origin, oriented counter-
clockwise when viewed from the positive y-axis.

Problems

32. In Example 6 on page 971 we integrated �F = (3x −
y)�i + x�j over two parameterizations of the line from
(0, 0) to (1, 1), getting 3/2 each time. Now compute the
line integral along two different paths with the same end-
points, and show that the answers are different.

(a) The path (t, t2), with 0 ≤ t ≤ 1
(b) The path (t2, t), with 0 ≤ t ≤ 1

33. Curves C1 and C2 are parametrized as follows:

C1 is (x(t), y(t)) = (0, t) for − 1 ≤ t ≤ 1

C2 is (x(t), y(t)) = (cos t, sin t) for
π

2
≤ t ≤ 3π

2
.

(a) Sketch C1 and C2 with arrows showing their orien-
tation.

(b) Suppose �F = (x+3y)�i +y�j . Calculate
∫
C

�F ·d�r ,
where C is the curve given by C = C1 +C2.

34. Calculate the line integral of �F = (3x−y)�i +x�j along
the line segment L from (0, 0) to (1, 1) using each of the
parameterizations

(a) B(t) = (2t, 2t), 0 ≤ t ≤ 1/2

(b) C(t) =

(
t2 − 1

3
,
t2 − 1

3

)
, 1 ≤ t ≤ 2

35. Let �F = −y�i + x�j and let C be the unit circle oriented
counterclockwise.

(a) Show that �F has a constant magnitude of 1 on C.
(b) Show that �F is always tangent to the circle C.
(c) Show that

∫
C

�F · d�r = Length of C.

36. A spiral staircase in a building is in the shape of a helix of
radius 5 meters. Between two floors of the building, the
stairs make one full revolution and climb by 4 meters. A
person carries a bag of groceries up two floors. The com-
bined mass of the person and the groceries is 70 kg and
the gravitational force is 70g downward, where g is the
acceleration due to gravity. Calculate the work done by
the person against gravity.

37. If C is �r = (t + 1)�i + 2t�j + 3t�k for 0 ≤ t ≤ 1, we
know

∫
C

�F (�r ) ·d�r = 5. Find the value of the integrals:

(a)
∫ 0

1
�F ((t+ 1)�i + 2t�j + 3t�k ) · (�i + 2�j + 3�k )dt

(b)
∫ 1

0
�F ((t2+1)�i+2t2�j +3t2�k )·(2t�i+4t�j +6t�k )dt

(c)
∫ 1

−1
�F ((t2 + 1)�i + 2t2�j + 3t2�k ) · (2t�i + 4t�j +

6t�k )dt

In Example 6 on page 971 two parameterizations, A(t), and
D(t), are used to convert a line integral into a definite integral.
In Problem 34, two other parameterizations, B(t) and C(t),
are used on the same line integral. In Problems 38–40 show
that two definite integrals corresponding to two of the given
parameterizations are equal by finding a substitution which
converts one integral to the other. This gives us another way
of seeing why changing the parameterization of the curve does
not change the value of the line integral.

38. A(t) and B(t) 39. A(t) and C(t)

40. A(t) and D(t)

41. Suppose C is the line segment from the point (0, 0) to
the point (4, 12) and �F = xy�i + x�j .

(a) Is
∫
C

�F ·d�r greater than, less than, or equal to zero?
Give a geometric explanation.

(b) A parameterization of C is (x(t), y(t)) = (t, 3t) for
0 ≤ t ≤ 4. Use this to compute

∫
C

�F · d�r .
(c) Suppose a particle leaves the point (0, 0), moves

along the line toward the point (4, 12), stops before
reaching it and backs up, stops again and reverses
direction, then completes its journey to the endpoint.
All travel takes place along the line segment joining
the point (0, 0) to the point (4, 12). If we call this
path C′, explain why

∫
C′

�F · d�r =
∫
C

�F · d�r .
(d) A parameterization for a path like C′ is given, for

0 ≤ t ≤ 4, by

(x(t), y(t)) =

(
t3 − 6t2 + 11t

3
, (t3 − 6t2 + 11t)

)
.

Check that this parameterization begins at the point
(0, 0) and ends at the point (4, 12). Check also that
all points of C′ lie on the line segment connecting
the point (0, 0) to the point (4, 12). What are the
values of t at which the particle changes direction?

(e) Find
∫
C′

�F · d�r using the parameterization in
part (d). Do you get the same answer as in part (b)?
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Strengthen Your Understanding

In Problems 42–43, explain what is wrong with the statement.

42. For the vector field �F = x�i − y�j and oriented path C
parameterized by x = cos t, y = sin t, 0 ≤ t ≤ π/2, we
have∫
C

�F ·d�r =

∫ π/2

0

(cos t�i−sin t�j )·(cos t�i+sin t�j ) dt.

43.
∫
C
3 dx+ 4 dy > 0

In Problems 44–45, give an example of:

44. A vector field �F such that, for the parameterized path
�r (t) = 3 cos t�i + 3 sin t�j , −π/2 ≤ t ≤ π/2, the inte-
gral
∫
C

�F · d�r can be computed geometrically, without
using the parameterization.

45. A parameterized path C such that, for the vector field
�F (x, y) = sin y�i , the integral

∫
C

�F ·d�r is nonzero and
can be computed geometrically, without using the param-
eterization.

Are the statements in Problems 46–54 true or false? Give rea-
sons for your answer.

46. If C1 and C2 are oriented curves with C2 beginning
where C1 ends, then

∫
C1+C2

�F · d�r >
∫
C1

�F · d�r .

47. The line integral
∫
C
4�i · d�r over the curve C parameter-

ized by �r (t) = t�i + t2�j , for 0 ≤ t ≤ 2, is positive.

48. If C1 is the curve parameterized by �r 1(t) = cos t�i +
sin t�j , with 0 ≤ t ≤ π, and C2 is the curve parameter-
ized by �r 2(t) = cos t�i − sin t�j , 0 ≤ t ≤ π, then for
any vector field �F we have

∫
C1

�F · d�r =
∫
C2

�F · d�r .
49. If C1 is the curve parameterized by �r 1(t) = cos t�i +

sin t�j , with 0 ≤ t ≤ π, and C2 is the curve parameter-
ized by �r 2(t) = cos(2t)�i + sin(2t)�j , 0 ≤ t ≤ π

2
,

then for any vector field �F we have
∫
C1

�F · d�r =∫
C2

�F · d�r .
50. If C is the curve parameterized by �r (t), for a ≤ t ≤ b

with �r (a) = �r (b), then
∫
C

�F · d�r = 0 for any vector

field �F . (Note that C starts and ends at the same place.)

51. If C1 is the line segment from (0, 0) to (1, 0) and C2 is
the line segment from (0, 0) to (2, 0), then for any vector
field �F , we have

∫
C2

�F · d�r = 2
∫
C1

�F · d�r .
52. If C is a circle of radius a, centered at the origin and

oriented counterclockwise, then
∫
C
2x�i + y�j · d�r = 0.

53. If C is a circle of radius a, centered at the origin and
oriented counterclockwise, then

∫
C
2y�i +x�j · d�r = 0.

54. If C1 is the curve parameterized by �r 1(t) = t�i + t2�j ,
with 0 ≤ t ≤ 2, and C2 is the curve parameterized by
�r 2(t) = (2− t)�i + (2− t)2�j , 0 ≤ t ≤ 2, then for any
vector field �F we have

∫
C1

�F · d�r = −
∫
C2

�F · d�r .
55. If C1 is the path parameterized by �r 1(t) = (t, t),

0 ≤ t ≤ 1, and if C2 is the path parameterized by
�r 2(t) = (1− t, 1− t), 0 ≤ t ≤ 1, and if �F = x�i +y�j ,
which of the following is true?

(a)
∫
C1

�F · d�r >
∫
C2

�F · d�r
(b)
∫
C1

�F · d�r <
∫
C2

�F · d�r
(c)
∫
C1

�F · d�r =
∫
C2

�F · d�r

56. If C1 is the path parameterized by �r 1(t) = (t, t), for
0 ≤ t ≤ 1, and if C2 is the path parameterized by
�r 2(t) = (sin t, sin t), for 0 ≤ t ≤ 1, and if �F =
x�i + y�j , which of the following is true?

(a)
∫
C1

�F · d�r >
∫
C2

�F · d�r
(b)
∫
C1

�F · d�r <
∫
C2

�F · d�r
(c)
∫
C1

�F · d�r =
∫
C2

�F · d�r

18.3 GRADIENT FIELDS AND PATH-INDEPENDENT FIELDS

For a function, f , of one variable, the Fundamental Theorem of Calculus tells us that the definite
integral of a rate of change, f ′, gives the total change in f :

∫ b

a

f ′
(t) dt = f(b)− f(a).

What about functions of two or more variables? The quantity that describes the rate of change
is the gradient vector field. If we know the gradient of a function f , can we compute the total change
in f between two points? The answer is yes, using a line integral.
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Finding the Total Change in f from grad f : The Fundamental Theorem
To find the change in f between two points P and Q, we choose a smooth path C from P to Q, then
divide the path into many small pieces. See Figure 18.26.

First we estimate the change in f as we move through a displacement Δ�r i from �r i to �r i+1.
Suppose �u is a unit vector in the direction of Δ�r i. Then the change in f is given by

f(�r i+1)− f(�r i) ≈ Rate of change of f × Distance moved in direction of �u

= f�u (�r i)‖Δ�r i‖

= grad f · �u ‖Δ�r i‖

= grad f ·Δ�r i. since Δ�r i = ‖Δ�r i‖�u

Therefore, summing over all pieces of the path, the total change in f is given by

Total change = f(Q)− f(P ) ≈

n−1∑
i=0

gradf(�r i) ·Δ�r i.

In the limit as ‖Δ�ri ‖ approaches zero, this suggests the following result:

Theorem 18.1: The Fundamental Theorem of Calculus for Line Integrals

Suppose C is a piecewise smooth oriented path with starting point P and ending point Q. If
f is a function whose gradient is continuous on the path C, then∫

C

grad f · d�r = f(Q)− f(P ).

Notice that there are many different paths from P to Q. (See Figure 18.27.) However, the value
of the line integral

∫
C
gradf ·d�r depends only on the endpoints ofC; it does not depend on whereC

goes in between. Problem 61 on page 984 shows how the Fundamental Theorem for Line Integrals
can be derived from the one-variable Fundamental Theorem of Calculus.

�

�r 0
P

�r 1

...
�r i

�r i+1
... �r n−1

�r n

Q

�

Δ�r i = �r i+1 − �r i

Figure 18.26: Subdivision of the path from
P to Q. We estimate the change in f along Δ�r i

P

Q

Figure 18.27: There are many different paths from P
to Q: all give the same value of

∫
C
grad f · d�r

Example 1 Suppose that gradf is everywhere perpendicular to the curve joining P and Q shown in Fig-
ure 18.28.

(a) Explain why you expect the path joining P and Q to be a contour.
(b) Using a line integral, show that f(P ) = f(Q).

P

Q

Figure 18.28: The gradient vector field of the function f
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Solution (a) The gradient of f is everywhere perpendicular to the path from P to Q, as you expect along a
contour.

(b) Consider the path from P to Q shown in Figure 18.28 and evaluate the line integral∫
C

gradf · d�r = f(Q)− f(P ).

Since gradf is everywhere perpendicular to the path, the line integral is 0. Thus, f(Q) = f(P ).

Example 2 Consider the vector field �F = x�i + y�j . In Example 2 on page 969 we calculated
∫
C1

�F · d�r and∫
C2

�F · d�r over the oriented curves shown in Figure 18.29 and found they were the same. Find a

scalar function f with grad f = �F . Hence, find an easy way to calculate the line integrals, and
explain how we could have expected them to be the same.

1

1

2

x

y

C1

C2

Figure 18.29: Find the line integral of �F = x�i + y�j over the curves C1 and C2

Solution One possibility for f is

f(x, y) =
x2

2
+

y2

2
.

You can check that gradf = x�i + y�j . Now we can use the Fundamental Theorem to compute the
line integral. Since �F = gradf we have∫

C1

�F · d�r =

∫
C1

gradf · d�r = f(0, 2)− f(1, 0) =
3

2
.

Notice that the calculation looks exactly the same for C2. Since the value of the integral depends
only on the values of f at the endpoints, it is the same no matter what path we choose.

Path-Independent, or Conservative, Vector Fields
In the previous example, the line integral was independent of the path taken between the two (fixed)
endpoints. We give vector fields whose line integrals have this property a special name.

A vector field �F is said to be path-independent, or conservative, if for any two points P
and Q, the line integral

∫
C
�F · d�r has the same value along any piecewise smooth path C

from P to Q lying in the domain of �F .

If, on the other hand, the line integral
∫
C
�F · d�r does depend on the path C joining P to Q,

then �F is said to be a path-dependent vector field.
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Now suppose that �F is any continuous gradient field, so �F = gradf . If C is a path from P to
Q, the Fundamental Theorem for Line Integrals tells us that∫

C

�F · d�r = f(Q)− f(P ).

Since the right-hand side of this equation does not depend on the path, but only on the endpoints of
the path, the vector field �F is path-independent. Thus, we have the following important result:

If �F is a continuous gradient vector field, then �F is path-
independent.

Why Do We Care About Path-Independent, or Conservative, Vector Fields?

Many of the fundamental vector fields of nature are path-independent—for example, the gravi-
tational field and the electric field of particles at rest. The fact that the gravitational field is path-
independent means that the work done by gravity when an object moves depends only on the starting
and ending points and not on the path taken. For example, the work done by gravity (computed by
the line integral) on a bicycle being carried to a sixth floor apartment is the same whether it is carried
up the stairs in a zig-zag path or taken straight up in an elevator.

When a vector field is path-independent, we can define the potential energy of a body. When the
body moves to another position, the potential energy changes by an amount equal to the work done
by the vector field, which depends only on the starting and ending positions. If the work done had
not been path-independent, the potential energy would depend both on the body’s current position
and on how it got there, making it impossible to define a useful potential energy.

Project 1 on page 1002 explains why path-independent force vector fields are also called con-
servative vector fields: When a particle moves under the influence of a conservative vector field, the
total energy of the particle is conserved. It turns out that the force field is obtained from the gradient
of the potential energy function.

Path-Independent Fields and Gradient Fields
We have seen that every gradient field is path-independent. What about the converse? That is, given
a path-independent vector field �F , can we find a function f such that �F = grad f? The answer is
yes, provided that �F is continuous.

How to Construct f from
−→

F

First, notice that there are many different choices for f , since we can add a constant to f without
changing grad f . If we pick a fixed starting point P , then by adding or subtracting a constant to f ,
we can ensure that f(P ) = 0. For any other point Q, we define f(Q) by the formula

f(Q) =

∫
C

�F · d�r , where C is any path from P to Q.

Since �F is path-independent, it does not matter which path we choose from P to Q. On the other
hand, if �F is not path-independent, then different choices might give different values for f(Q), so
f would not be a function (a function has to have a single value at each point).

We still have to show that the gradient of the function f really is �F ; we do this on page 979.
However, by constructing a function f in this manner, we have the following result:
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Theorem 18.2: Path-independent Fields Are Gradient Fields

If �F is a continuous path-independent vector field on an open region R, then �F = gradf
for some f defined on R.

Combining Theorems 18.1 and 18.2, we have

A continuous vector field �F defined on an open region is path-independent if
and only if �F is a gradient vector field.

The function f is sufficiently important that it is given a special name:

If a vector field �F is of the form �F = gradf for some scalar function f , then f is called a
potential function for the vector field �F .

Warning

Physicists use the convention that a function φ is a potential function for a vector field �F if
�F = − gradφ. See Problem 62 on page 984.

Example 3 Show that the vector field �F (x, y) = y cosx�i + (sinx+ y)�j is path-independent.

Solution Let’s suppose �F does have a potential function f , so that �F = grad f . This means

∂f

∂x
= y cosx and

∂f

∂y
= sinx+ y.

Integrating the expression for ∂f/∂x with respect to x shows that

f(x, y) = y sinx+ C(y) where C(y) is a function of y only.

The constant of integration here is an arbitrary function C(y) of y, since ∂(C(y))/∂x = 0. Differ-
entiating this expression for f(x, y) with respect to y and using ∂f/∂y = sinx+ y gives

∂f

∂y
= sinx+ C′

(y) = sinx+ y.

Thus, we must have C′(y) = y, so g(y) = y2/2 +A, where A is some constant. Thus,

f(x, y) = y sinx+
y2

2
+A

is a potential function for �F . Therefore, �F is path-independent.

Example 4 The gravitational field, �F , of an object of mass M is given by

�F = −
GM

r3
�r .

Show that �F is a gradient field by finding a potential function for �F .

Solution The vector �F points directly in toward the origin. If �F = gradf , then �F must be perpendicular
to the level surfaces of f , so the level surfaces of f must be spheres. Also, if grad f = �F , then
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‖ gradf‖ = ‖�F ‖ = GM/r2 is the rate of change of f in the direction toward the origin. Now,
differentiating with respect to r gives the rate of change in a radially outward direction. Thus, if
w = f(x, y, z) we have

dw

dr
= −

GM

r2
= GM

(
−

1

r2

)
= GM

d

dr

(
1

r

)
.

So let’s try

w =
GM

r
or f(x, y, z) =

GM√
x2 + y2 + z2

.

We calculate

fx =
∂

∂x

GM√
x2 + y2 + z2

=
−GMx

(x2 + y2 + z2)3/2
,

fy =
∂

∂y

GM√
x2 + y2 + z2

=
−GMy

(x2 + y2 + z2)3/2
,

fz =
∂

∂z

GM√
x2 + y2 + z2

=
−GMz

(x2 + y2 + z2)3/2
.

So

grad f = fx�i + fy�j + fz�k =
−GM

(x2 + y2 + z2)3/2
(x�i + y�j + z�k ) =

−GM

r3
�r = �F .

Our computations show that �F is a gradient field and that f = GM/r is a potential function for �F .

Path-independent vector fields are rare, but often important. Section 18.4 gives a method for
determining whether a vector field has the property.

Why Path-Independent Vector Fields Are Gradient Fields: Showing grad f =
−→

F

Suppose �F is a path-independent vector field. On page 977 we defined the function f , which we
hope will satisfy gradf = �F , as follows:

f(x0, y0) =

∫
C

�F · d�r ,

where C is a path from a fixed starting point P to a point Q = (x0, y0). This integral has the same
value for any path from P to Q because �F is path-independent. Now we show why grad f = �F .
We consider vector fields in 2-space; the argument in 3-space is essentially the same.

First, we write the line integral in terms of the components �F (x, y) = F1(x, y)�i + F2(x, y)�j
and the components d�r = dx�i + dy�j :

f(x0, y0) =

∫
C

F1(x, y)dx + F2(x, y)dy.

We want to compute the partial derivatives of f , that is, the rate of change of f at (x0, y0)
parallel to the axes. To do this easily, we choose a path which reaches the point (x0, y0) on a
horizontal or vertical line segment. Let C′ be a path from P which stops short of Q at a fixed point
(a, b) and let Lx and Ly be the paths shown in Figure 18.30. Then we can split the line integral into
three pieces. Since d�r = �j dy on Ly and d�r =�i dx on Lx, we have:

f(x0, y0) =

∫
C′

�F ·d�r +

∫
Ly

�F ·d�r+

∫
Lx

�F ·d�r =

∫
C′

�F ·d�r +

∫ y0

b

F2(a, y)dy+

∫ x0

a

F1(x, y0)dx.
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P

Q = (x0, y0)

C′

Lx

Ly

(a, b)

(a, y0)

�

�

�

Figure 18.30: The path C′ + Ly + Lx is used
to show fx = F1

P

Q = (x0, y0)

C′ Kx

Ky(a, b)

(x0, b)

�

� �

Figure 18.31: The path C′ +Kx +Ky is used
to show fy = F2

The first two integrals do not involve x0. Thinking of x0 as a variable and differentiating with
respect to it gives

fx0
(x0, y0) =

∂

∂x0

∫
C′

�F · d�r +
∂

∂x0

∫ y0

b

F2(a, y)dy +
∂

∂x0

∫ x0

a

F1(x, y0)dx

= 0 + 0 + F1(x0, y0) = F1(x0, y0),

and thus
fx(x, y) = F1(x, y).

A similar calculation for y using the path from P to Q shown in Figure 18.31 gives

fy0
(x0, y0) = F2(x0, y0).

Therefore, as we claimed,

gradf = fx�i + fy�j = F1
�i + F2

�j = �F .

Exercises and Problems for Section 18.3
Exercises

1. If �F = grad(x2 + y4), find
∫
C

�F · d�r where C is the
quarter of the circle x2 + y2 = 4 in the first quadrant,
oriented counterclockwise.

2. If �F = grad(sin(xy) + ez), find
∫
C

�F · d�r where C
consists of a line from (0, 0, 0) to (0, 0, 1) followed by a
line to (0,

√
2, 3), followed by a line to (

√
2,
√
5, 2).

In Exercises 3–6, let C be the curve consisting of a square of
side 2, centered at the origin with sides on the lines x = ±1,
y = ±1 and traversed counterclockwise. What is the sign of
the line integrals of the vector fields around the curve C? In-
dicate whether each vector field is path-independent.

3.

x

y 4.

x

y

5.

x

y 6.

x

y

In Exercises 7–12, does the vector field appear to be path-
independent (conservative)?

7. 8.
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9. 10.

11. 12.

13. Find f if grad f = 2xy�i + x2�j .

14. Find f if grad f = 2xy�i + (x2 + 8y3)�j .

15. Find f if grad f = (yzexyz + z2 cos(xz2))�i +

xzexyz�j + (xyexyz + 2xz cos(xz2))�k .

16. Let f(x, y, z) = x2 +2y3 +3z4 and �F = grad f . Find∫
C

�F · d�r where C consists of four line segments from
(4, 0, 0) to (4, 3, 0) to (0, 3, 0) to (0, 3, 5) to (0, 0, 5).

In Exercises 17–25, use the Fundamental Theorem of Line In-
tegrals to calculate

∫
C

�F · d�r exactly.

17. �F = 3x2�i +4y3�j around the top of the unit circle from
(1, 0) to (−1, 0).

18. �F = (x+2)�i +(2y+3)�j and C is the line from (1, 0)
to (3, 1).

19. �F = 2 sin(2x+y)�i +sin(2x+y)�j along the path con-
sisting of a line from (π, 0) to (2, 5) followed by a line
to (5π, 0) followed by a quarter circle to (0, 5π).

20. �F = 2x�i − 4y�j + (2z − 3)�k and C is the line from
(1, 1, 1) to (2, 3,−1).

21. �F = x2/3�i + e7y�j , and C is the unit circle oriented
clockwise.

22. �F = x2/3�i + e7y�j , and C is the quarter of the unit
circle in the first quadrant, traced counterclockwise from
(1, 0) to (0, 1).

23. �F = yexy�i + xexy�j + (cos z)�k along the curve con-
sisting of a line from (0, 0, π) to (1, 1, π) followed by
the parabola z = πx2 in the plane y = 1 to the point
(3, 1, 9π).

24. �F = y sin(xy)�i + x sin(xy)�j and C is the parabola
y = 2x2 from (1, 2) to (3, 18).

25. �F = 2xy2zex
2y2z�i + 2x2yzex

2y2z�j + x2y2ex
2y2z�k

and C is the circle of radius 1 in the plane z = 1, centered
on the z-axis, starting at (1, 0, 1) and oriented counter-
clockwise viewed from above.

Problems

26. Let �v = grad(x2 + y2). Consider the path C which is a
line between any two of the following points:
(0, 0); (5, 0); (−5, 0); (0, 6); (0,−6); (5, 4); (−3,−5).
Suppose you want to choose the path C in order to max-
imize

∫
C
�v · d�r . What point should be the start of C?

What point should be the end of C? Explain your answer.

27. Let �F = grad(2x2+3y2). Which one of the three paths
PQ, QR, and RS in Figure 18.32 should you choose as
C in order to maximize

∫
C

�F · d�r ?

1 2 3 4

1

2

3

4

P

Q

R

S

x

y

Figure 18.32

28. Compute

∫
C

(
cos(xy)esin(xy)(y�i + x�j ) + �k

)
· d�r

where C is the line from (π, 2, 5) to (0.5, π, 7).

29. The vector field �F (x, y) = x�i+y�j is path-independent.
Compute geometrically the line integrals over the three
paths A, B, and C shown in Figure 18.33 from (1, 0)
to (0, 1) and check that they are equal. Here A is a por-
tion of a circle, B is a line, and C consists of two line
segments meeting at a right angle.

y

x

B

A

C

�

(1, 0)

(0, 1)

Figure 18.33
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30. The vector field �F (x, y) = x�i+y�j is path-independent.
Compute algebraically the line integrals over the three
paths A, B, and C shown in Figure 18.34 from (0, 0)
to (1, 1) and check that they are equal. Here A is a line
segment, B is part of the graph of f(x) = x2, and C
consists of two line segments meeting at a right angle.

(1, 1)

A
C

B

x

y

Figure 18.34

In Problems 31–34, decide whether the vector field could be a
gradient vector field. Justify your answer.

31. �F (x, y) = x�i

32. �G (x, y) = (x2 − y2)�i − 2xy�j

33. �F (�r ) = �r /||�r ||3, where �r = x�i + y�j + z�k

34. �F (x, y, z) =
−z√

x2 + z2
�i+

y√
x2 + z2

�j +
x√

x2 + z2
�k

35. If �F (x, y, z) = 2xex
2+yz�i + zex

2+yz�j + yex
2+yz�k ,

find exactly the line integral of �F along the curve con-
sisting of the two half circles in the plane z = 0 in Fig-
ure 18.35.

3
x

y

Figure 18.35

36. Let grad f = 2xex
2

sin y�i + ex
2

cos y�j . Find the
change in f between (0, 0) and (1, π/2):

(a) By computing a line integral.
(b) By computing f .

37. Let C be the quarter of the unit circle centered at the ori-
gin, traversed counterclockwise starting on the negative
x-axis. Find the exact values of

(a)

∫
C

(2πx�i +y2�j ) ·d�r (b)

∫
C

(−2y�i + x�j ) · d�r

For the vector fields in Problems 38–41, find the line integral
along the curve C from the origin along the x-axis to the point
(3, 0) and then counterclockwise around the circumference of
the circle x2 + y2 = 9 to the point (3/

√
2, 3/

√
2).

38. �F = x�i + y�j

39. �H = −y�i + x�j

40. �F = y(x+ 1)−1�i + ln(x+ 1)�j

41. �G = (yexy + cos(x+ y))�i + (xexy +cos(x+ y))�j

42. Let C be the helix x = cos t, y = sin t, z = t for
0 ≤ t ≤ 1.25π. Find

∫
C

�F · d�r exactly for

�F = yz2exyz
2
�i + xz2exyz

2
�j + 2xyzexyz

2�k .

43. Let �F = 2x�i + 2y�j + 2z�k and �G = (2x + y)�i +

2y�j + 2z�k . Let C be the line from the origin to the
point (1, 5, 9). Find

∫
C

�F · d�r and use the result to find∫
C

�G · d�r .

44. (a) If �F = yex�i + ex�j , explain how the Fundamen-
tal Theorem of Line Integrals enables you to calcu-
late
∫
C

�F · d�r where C is any curve going from the
point (1, 2) to the point (3, 7). Explain why it does
not matter how the curve goes.

(b) If C is the line from the point (1, 2) to the point
(3, 7), calculate the line integral in part (a) without
using the Fundamental Theorem.

45. Calculate the line integral
∫
C

�F ·d�r exactly, where C is
the curve from P to Q in Figure 18.36 and

�F = sin
(
x

2

)
sin
(
y

2

)
�i − cos

(
x

2

)
cos
(
y

2

)
�j .

The curves PR, RS and SQ are trigonometric functions
of period 2π and amplitude 1.

(− 3π
2
, 3π

2
)P

R( 3π
2
, 3π

2
)

S( 3π
2
,− 3π

2
)

(− 3π
2
,− 3π

2
)Q

x

y

Figure 18.36

46. The domain of f(x, y) is the xy-plane; values of f are in
Table 18.1. Find

∫
C

grad f · d�r , where C is

(a) A line from (0, 2) to (3, 4).
(b) A circle of radius 1 centered at (1, 2) traversed coun-

terclockwise.

Table 18.1

y \ x 0 1 2 3 4

0 53 57 59 58 56

1 56 58 59 59 57

2 57 58 59 60 59

3 59 60 61 62 61

4 62 63 65 66 69
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47. Figure 18.37 shows the vector field �F (x, y) = x�j .

(a) Find paths C1, C2, and C3 from P to Q such that∫
C1

�F ·d�r = 0,

∫
C2

�F ·d�r > 0,

∫
C3

�F ·d�r < 0.

(b) Is �F a gradient field? Explain.

x

y

Q P

Figure 18.37

48. (a) Figure 18.38 shows level curves of f(x, y). Sketch
a vector at P in the direction of grad f .

(b) Is the length of grad f at P longer, shorter, or the
same length as the length of grad f at Q?

(c) If C is a curve going from P to Q, evaluate∫
C
grad f · d�r .

P

Q

1
3
5 7

9

x

y

Figure 18.38

49. Consider the line integrals,
∫
C

i

�F ·d�r , for i = 1, 2, 3, 4,
where Ci is the path from Pi to Qi shown in Figure 18.39
and �F = grad f . Level curves of f are also shown in
Figure 18.39.

(a) Which of the line integral(s) is (are) zero?
(b) Arrange the four line integrals in ascending order

(from least to greatest).
(c) Two of the nonzero line integrals have equal and op-

posite values. Which are they? Which is negative
and which is positive?

P1
P2

P3

P4

Q1

Q2

Q3

Q4 �

Increasing
values of f

Figure 18.39

50. Consider the vector field �F shown in Figure 18.40.

C

x

y

Figure 18.40

(a) Is
∫
C

�F · �dr positive, negative, or zero?
(b) From your answer to part (a), can you determine

whether or not �F = grad f for some function f?
(c) Which of the following formulas best fits �F ?

�F1 =
x

x2 + y2
�i +

y

x2 + y2
�j ,

�F2 = −y�i + x�j ,

�F3 =
−y

(x2 + y2)2
�i +

x

(x2 + y2)2
�j .

51. If �F is a path-independent vector field, with∫ (1,0)

(0,0)
�F · d�r = 5.1 and

∫ (1,1)

(1,0)
�F · d�r = 3.2 and∫ (1,1)

(0,1)
�F · d�r = 4.7, find

∫ (0,0)

(0,1)

�F · d�r .

52. The path C is a line segment of length 10 in the plane
starting at (2, 1). For f(x, y) = 3x+ 4y, consider∫

C

grad f · d�r .

(a) Where should the other end of the line segment C be
placed to maximize the value of the integral?

(b) What is the maximum value of the integral?
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53. Let �r = x�i + y�j + z�k and �a = a1
�i + a2

�j + a3
�k , a

constant vector.

(a) Find grad(�r · �a )
(b) Let C be a path from the origin to the point with

position vector �r0 . Find
∫
C
grad(�r · �a ) · d�r .

(c) If ||�r 0|| = 10, what is the maximum possible value
of
∫
C
grad(�r · �a ) · d�r ? Explain.

54. The force exerted by gravity on a refrigerator of mass m
is �F = −mg�k .

(a) Find the work done against this force in moving
from the point (1, 0, 0) to the point (1, 0, 2π) along
the curve x = cos t, y = sin t, z = t by calculating
a line integral.

(b) Is �F conservative (that is, path independent)? Give
a reason for your answer.

55. A particle subject to a force �F (x, y) = y�i − x�j moves
clockwise along the arc of the unit circle, centered at the
origin, that begins at (−1, 0) and ends at (0, 1).

(a) Find the work done by �F . Explain the sign of your
answer.

(b) Is �F path-independent? Explain.

56. Suppose �F (x, y) − �G (x, y) is parallel to grad h(x, y)
at every point, and that C is an oriented path from P to
Q lying entirely on a contour of h.

(a) Show that
∫
C

�F · d�r =
∫
C

�G · d�r .

(b) If �G = gradφ, show that
∫
C

�F · d�r = φ(Q) −
φ(P ). This result can be useful when �F is not a gra-
dient field.

In Problems 57–60, let �F = y�i + 2x�j .

(a) Show that �F − grad φ is parallel to grad h.

(b) Use φ and the Fundamental Theorem of Calculus for
Line Integrals to evaluate

∫
C

�F · d�r , where C is the
oriented path on a contour of h from P to Q.

57. φ = xy, h = y, P = (3, 10), Q = (8, 10)

58. φ = 2xy, h = x, P = (3, 5), Q = (3, 10)

59. φ = 2x3/3 + xy, h = y − x2, P = (0, 4), Q = (6, 40)

60. φ = x2/2 + 3xy + y2, h = x + y, P = (10, 30),
Q = (20, 20)

61. In this problem, we see how the Fundamental Theorem
for Line Integrals can be derived from the Fundamen-
tal Theorem for ordinary definite integrals. Suppose that

(x(t), y(t)), for a ≤ t ≤ b, is a parameterization of C,
with endpoints P = (x(a), y(a)) and Q = (x(b), y(b)).
The values of f along C are given by the single variable
function h(t) = f(x(t), y(t)).

(a) Use the chain rule to show that
h′(t) = fx(x(t), y(t))x

′(t) + fy(x(t), y(t))y
′(t).

(b) Use the Fundamental Theorem of Calculus applied
to h(t) to show∫

C

grad f · d�r = f(Q)− f(P ).

62. Let �F be a path-independent vector field. In physics,
the potential function φ is usually required to satisfy the
equation �F = −∇φ. This problem illustrates the signif-
icance of the negative sign.1

(a) Let the xy-plane represent part of the earth’s surface
with the z-axis pointing upward. (The scale is small
enough that a flat plane is a good approximation to
the earth’s surface.) Let �r = x�i + y�j + z�k , with
z ≥ 0 and x, y, z in meters, be the position vector of
a rock of unit mass. The gravitational potential en-
ergy function for the rock is φ(x, y, z) = gz, where
g ≈ 9.8 m/sec2. Describe in words the level surfaces
of φ. Does the potential energy increase or decrease
with height above the earth?

(b) What is the relation between the gravitational vector,
�F , and the vector ∇φ? Explain the significance of
the negative sign in the equation �F = −∇φ.

63. An ideal electric dipole consists of two equal and oppo-
site charges separated by a small distance and is repre-
sented by a dipole moment vector �p . The electric field
�D , at the point with position vector �r , due to an ideal
electric dipole located at the origin is given by

�D (�r ) = 3
(�r · �p )�r
||�r ||5 − �p

||�r ||3 .

(a) Check that ϕ is a potential function for �D , in the
sense that �D = − gradϕ, where

ϕ(�r ) =
�p · �r
||�r ||3 .

(b) Is �D a path-independent vector field?

Strengthen Your Understanding

In Problems 64–66, explain what is wrong with the statement.

64. If �F is a gradient field and C is an oriented path from
point P to point Q, then

∫
C

�F · d�r = �F (Q)− �F (P ).

65. Given any vector field �F and a point P , the function
f(Q) =

∫
C

�F · d�r , where C is a path from P to Q, is a

potential function for �F .

1Adapted from V.I. Arnold, Mathematical Methods of Classical Mechanics, 2nd edition, Graduate Texts in Mathematics,
Springer, 1989. Potential energy is also discussed in Project 1 on page 1002.
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66. If a vector field �F is not a gradient vector field, then∫
C

�F · d�r can’t be evaluated.

In Problems 67–68, give an example of:

67. A vector field �F such that
∫
C

�F · d�r = 100, for every
oriented path C from (0, 0) to (1, 2).

68. A path-independent vector field.

In Problems 69–72, each of the statements is false. Explain
why or give a counterexample.

69. If
∫
C

�F · d�r = 0 for one particular closed path C, then
�F is path-independent.

70.
∫
C

�F · d�r is the total change in �F along C.

71. If the vector fields �F and �G have
∫
C

�F · d�r =
∫
C

�G ·
d�r for a particular path C, then �F = �G .

72. If the total change of a function f along a curve C is zero,
then C must be a contour of f .

Are the statements in Problems 73–74 true or false? Explain
why or give a counterexample.

73. The fact that the line integral of a vector field �F is zero
around the unit circle x2 + y2 = 1 means that �F must
be a gradient vector field.

74. If C is the line segment that starts at (0, 0) and ends at
(a, b) then

∫
C
(x�i + y�j ) · d�r = 1

2
(a2 + b2).

Are the statements in Problems 75–83 true or false? Give rea-
sons for your answer.

75. The circulation of any vector field �F around any closed
curve C is zero.

76. If �F = grad f , then �F is path-independent.

77. If �F is path-independent, then
∫
C1

�F ·d�r =
∫
C2

�F ·d�r ,
where C1 and C2 are any paths.

78. The line integral
∫
C

�F ·d�r is the total change of �F along
C.

79. If �F is path-independent, then there is a potential func-
tion for �F .

80. If f(x, y) = ecos(xy), and C1 is the upper semicircle
x2 + y2 = 1 from (−1, 0) to (1, 0), and C2 is the
line from (−1, 0) to (1, 0), then

∫
C1

grad f · d�r =∫
C2

grad f · d�r .

81. If �F is path-independent, and C is any closed curve, then∫
C

�F · d�r = 0.

82. The vector field �F (x, y) = y2�i + k�j , where k is con-
stant, is a gradient field.

83. If
∫
C

�F · d�r = 0, where C is any circle of the form

x2 + y2 = a2, then �F is path-independent.

18.4 PATH-DEPENDENT VECTOR FIELDS AND GREEN’S THEOREM

Suppose we are given a vector field but are not told whether it is path-independent. How can we tell
if it has a potential function, that is, if it is a gradient field?

How to Tell If a Vector Field Is Path-Dependent Using Line Integrals
One way to decide if a vector field is path-dependent is to find two paths with the same endpoints
such that the line integrals of the vector field along the two paths have different values.

Example 1 Is the vector field �G shown in Figure 18.41 path-independent? At any point �G has magnitude equal
to the distance from the origin and direction perpendicular to the line joining the point to the origin.

x

y

C1

C2

C2

Q

P

Figure 18.41: Is this vector field
path-independent?

Solution We choose P = (1, 0) and Q = (0, 1) and two paths between them: C1, a quarter circle of radius 1,
and C2, formed by parts of the x- and y-axes. (See Figure 18.41.)
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Along C1, the line integral
∫
C1

�G · d�r > 0, since �G points in the direction of the curve.

Along C2, however, we have
∫
C2

�G · d�r = 0, since �G is perpendicular to C2 everywhere.

Thus, �G is not path-independent.

Path-Dependent Fields and Circulation

Notice that the vector field in the previous example has nonzero circulation around the origin. What
can we say about the circulation of a general path-independent vector field �F around a closed curve,
C? Suppose C is a simple closed curve, that is, a closed curve that does not cross itself. If P and Q
are any two points on the path, then we can think of C (oriented as shown in Figure 18.42) as made
up of the path C1 followed by −C2. Since �F is path-independent, we know that∫

C1

�F · d�r =

∫
C2

�F · d�r .

Thus, we see that the circulation around C is zero:∫
C

�F · d�r =

∫
C1

�F · d�r +

∫
−C2

�F · d�r =

∫
C1

�F · d�r −

∫
C2

�F · d�r = 0.

If the closed curveC does cross itself, we break it into simple closed curves as shown in Figure 18.43
and apply the same argument to each one.

Now suppose we know that the line integral around any closed curve is zero. For any two points,
P and Q, with two paths, C1 and C2, between them, create a closed curve, C, as in Figure 18.42.
Since the circulation around this closed curve, C, is zero, the line integrals along the two paths, C1

and C2, are equal.2 Thus, �F is path-independent.

P

Q

C2

C1

C

Figure 18.42: A simple closed curve C
broken into two pieces, C1 and C2

C

Figure 18.43: A curve C which crosses
itself can be broken into simple closed

curves

Thus, we have the following result:

A vector field is path-independent if and only if
∫
C

�F · d�r = 0 for every closed curve C.

Hence, to see if a field is path-dependent, we look for a closed path with nonzero circulation.
For instance, the vector field in Example 1 has nonzero circulation around a circle around the origin,
showing it is path-dependent.

How to Tell If a Vector Field Is Path-Dependent Algebraically: The Curl

Example 2 Does the vector field �F = 2xy�i + xy�j have a potential function? If so, find it.

Solution Let’s suppose �F does have a potential function, f , so �F = gradf . This means that

∂f

∂x
= 2xy and

∂f

∂y
= xy.

2A similar argument is used in Problems 46 and 47 on page 966.
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Integrating the expression for ∂f/∂x shows that we must have

f(x, y) = x2y + C(y) where C(y) is a function of y.

Differentiating this expression for f(x, y) with respect to y and using the fact that ∂f/∂y = xy, we
get

∂f

∂y
= x2

+ C′
(y) = xy.

Thus, we must have
C ′

(y) = xy − x2.

But this expression for C′(y) is impossible because C ′(y) is a function of y alone. This argument
shows that there is no potential function for the vector field �F .

Is there an easier way to see that a vector field has no potential function, other than by trying to
find the potential function and failing? The answer is yes. First we look at a 2-dimensional vector
field �F = F1

�i + F2
�j . If �F is a gradient field, then there is a potential function f such that

�F = F1
�i + F2

�j =
∂f

∂x
�i +

∂f

∂y
�j .

Thus,

F1 =
∂f

∂x
and F2 =

∂f

∂y
.

Let us assume that f has continuous second partial derivatives. Then, by the equality of mixed
partial derivatives,

∂F1

∂y
=

∂2f

∂y∂x
=

∂2f

∂x∂y
=

∂F2

∂x
.

Thus, we have the following result:

If �F (x, y) = F1
�i + F2

�j is a gradient vector field with continuous partial derivatives, then

∂F2

∂x
−

∂F1

∂y
= 0.

If �F (x, y) = F1
�i + F2

�j is an arbitrary vector field, then we define the 2-dimensional or
scalar curl of the vector field �F to be

∂F2

∂x
−

∂F1

∂y
.

Notice that we now know that if �F is a gradient field, then its curl is 0. We do not (yet) know
whether the converse is true. (That is: If the curl is 0, does �F have to be a gradient field?) However,
the curl already enables us to show that a vector field is not a gradient field.

Example 3 Show that �F = 2xy�i + xy�j cannot be a gradient vector field.

Solution We have F1 = 2xy and F2 = xy. Since ∂F1/∂y = 2x and ∂F2/∂x = y, in this case

∂F2/∂x− ∂F1/∂y �= 0

so �F cannot be a gradient field.
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Green’s Theorem
We now have two ways of seeing that a vector field �F in the plane is path-dependent. We can
evaluate

∫
C
�F · d�r for some closed curve and find it is not zero, or we can show that

∂F2/∂x− ∂F1/∂y �= 0. It’s natural to think that∫
C

�F · d�r and
∂F2

∂x
−

∂F1

∂y

might be related. The relation is called Green’s Theorem.

Theorem 18.3: Green’s Theorem

Suppose C is a piecewise smooth simple closed curve that is the boundary of a region R
in the plane and oriented so that the region is on the left as we move around the curve. See
Figure 18.44. Suppose �F = F1

�i +F2
�j is a smooth vector field on an open region containing

R and C. Then ∫
C

�F · d�r =

∫
R

(
∂F2

∂x
−

∂F1

∂y

)
dx dy.

The online supplement at www.wiley.com/college/hughes-hallett contains a proof of Green’s
Theorem with different, but equivalent, conditions on the region R.

We first prove Green’s Theorem in the case where the region R is the rectangle a ≤ x ≤ b, c ≤
y ≤ d. Figure 18.45 shows the boundary of R divided into four curves.

On C1, where y = c and dy = 0, we have d�r = dx�i and thus∫
C1

�F · d�r =

∫ b

a

F1(x, c) dx.

Similarly, on C3 where y = d we have∫
C3

�F · d�r =

∫ a

b

F1(x, d) dx = −

∫ b

a

F1(x, d) dx.

Hence∫
C1+C3

�F · d�r =

∫ b

a

F1(x, c) dx −

∫ b

a

F1(x, d) dx = −

∫ b

a

(F1(x, d)− F1(x, c)) dx.

By the Fundamental Theorem of Calculus,

F1(x, d) − F1(x, c) =

∫ d

c

∂F1

∂y
dy

and therefore ∫
C1+C3

�F · d�r = −

∫ b

a

∫ d

c

∂F1

∂y
dy dx = −

∫ d

c

∫ b

a

∂F1

∂y
dx dy.

R

C

x

y

Figure 18.44: Boundary C oriented
with R on the left
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Along the curve C2, where x = b, and the curve C4, where x = a, we get, by a similar argument,∫
C2+C4

�F · d�r =

∫ d

c

(F2(b, y)− F2(a, y)) dy =

∫ d

c

∫ b

a

∂F2

∂x
dx dy.

Adding the line integrals over C1 + C3 and C2 + C4, we get∫
C

�F · d�r =

∫
R

(
∂F2

∂x
−

∂F1

∂y

)
dx dy.

If R is not a rectangle, we subdivide it into small rectangular pieces as shown in Figure 18.46.
The contribution to the integral of the non-rectangular pieces can be made as small as we like by
making the subdivision fine enough. The double integrals over each piece add up to the double
integral over the whole region R. Figure 18.47 shows how the circulations around adjacent pieces
cancel along the common edge, so the circulations around all the pieces add up to the circulation
around the boundary C. Since Green’s Theorem holds for the rectangular pieces, it holds for the
whole region R.

a b

c

d

C1

C2

C3

C4

x

y

Figure 18.45: The
boundary of a rectangle

broken into C1, C2,
C3, C4

" � R
C

Figure 18.46: Region R
bounded by a closed curve C

and split into many small
regions, ΔR

Figure 18.47: Two adjacent
small closed curves

Example 4 Use Green’s Theorem to evaluate
∫
C

(
y2�i + x�j

)
·d�r where C is the counterclockwise path around

the perimeter of the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 3.

Solution We have F1 = y2 and F2 = x. By Green’s Theorem∫
C

(
y2�i + x�j

)
· d�r =

∫
R

(
∂F2

∂x
−

∂F1

∂y

)
dx dy =

∫ 3

0

∫ 2

0

(1− 2y) dx dy = −12.

The Curl Test for Vector Fields in the Plane
We already know that if �F = F1

�i +F2
�j is a gradient field with continuous partial derivatives, then

∂F2

∂x
−

∂F1

∂y
= 0.

Now we show that the converse is true if the domain of �F has no holes in it. This means that we
assume that

∂F2

∂x
−

∂F1

∂y
= 0

and show that �F is path-independent. If C is any oriented simple closed curve in the domain of �F
and R is the region inside C, then∫

R

(
∂F2

∂x
−

∂F1

∂y

)
dx dy = 0

since the integrand is identically 0. Therefore, by Green’s Theorem,∫
C

�F · d�r =

∫
R

(
∂F2

∂x
−

∂F1

∂y

)
dxdy = 0.
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Thus, �F is path-independent and therefore a gradient field. This argument is valid for every closed
curve, C, provided the region R is entirely in the domain of �F . Thus, we have the following result:

The Curl Test for Vector Fields in 2-Space

Suppose �F = F1
�i + F2

�j is a vector field with continuous partial derivatives such that
• The domain of �F has the property that every closed curve in it encircles a region that

lies entirely within the domain. In particular, the domain of �F has no holes.

•
∂F2

∂x
−

∂F1

∂y
= 0.

Then �F is path-independent, so �F is a gradient field and has a potential function.

Why Are Holes in the Domain of the Vector Field Important?

The reason for assuming that the domain of the vector field �F has no holes is to ensure that the
region R inside C is actually contained in the domain of �F . Otherwise, we cannot apply Green’s
Theorem. The next two examples show that if ∂F2/∂x−∂F1/∂y = 0 but the domain of �F contains
a hole, then �F can either be path-independent or path-dependent.

Example 5 Let �F be the vector field given by �F (x, y) =
−y�i + x�j

x2 + y2
.

(a) Calculate
∂F2

∂x
−

∂F1

∂y
. Does the curl test imply that �F is path-independent?

(b) Calculate
∫
C

�F ·d�r , where C is the unit circle centered at the origin and oriented counterclock-

wise. Is �F a path-independent vector field?
(c) Explain why the answers to parts (a) and (b) do not contradict Green’s Theorem.

Solution (a) Taking partial derivatives, we have

∂F2

∂x
=

∂

∂x

(
x

x2 + y2

)
=

1

x2 + y2
−

x · 2x

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
.

Similarly,

∂F1

∂y
=

∂

∂y

(
−y

x2 + y2

)
=

−1

x2 + y2
+

y · 2y

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
.

Thus,
∂F2

∂x
−

∂F1

∂y
= 0.

Since �F is undefined at the origin, the domain of �F contains a hole. Therefore, the curl test
does not apply.

(b) On the unit circle, �F is tangent to the circle and ||�F || = 1. Thus,3∫
C

�F · d�r = ||�F || · Length of curve = 1 · 2π = 2π.

Since the line integral around the closed curve C is nonzero, �F is not path-independent. We ob-
serve that �F = grad(arctan(y/x)) and arctan(y/x) is θ from polar coordinates, for −π/2 <
θ < π/2. The fact that θ increases by 2π each time we wind once around the origin counter-
clockwise explains why �F is not path-independent.

3See Problem 45 on page 966.
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(c) The domain of �F is the “punctured plane,” as shown in Figure 18.48. Since �F is not defined at
the origin, which is inside C, Green’s Theorem does not apply. In this case

2π =

∫
C

�F · d�r �=

∫
R

(
∂F2

∂x
−

∂F1

∂y

)
dxdy = 0.

x

y

Figure 18.48: The domain of �F (x, y) = −y
i +x
j
x2+y2

is the plane minus the origin

x

y

R

C

1

Figure 18.49: The region R is not contained in the

domain of �F (x, y) = −y
i +x
j
x2+y2

Although the vector field �F in the last example was not defined at the origin, this by itself does
not prevent the vector field from being path-independent, as we see in the following example.

Example 6 Consider the vector field �F given by �F (x, y) =
x�i + y�j

x2 + y2
.

(a) Calculate
∂F2

∂x
−

∂F1

∂y
. Does the curl test imply that �F is path-independent?

(b) Explain how we know that
∫
C

�F · d�r = 0, where C is the unit circle centered at the origin and

oriented counterclockwise. Does this imply that �F is path-independent?
(c) Check that f(x, y) = 1

2 ln(x
2 + y2) is a potential function for �F . Does this imply that �F is

path-independent?

Solution (a) Taking partial derivatives, we have

∂F2

∂x
=

∂

∂x

(
y

x2 + y2

)
=

−2xy

(x2 + y2)2
, and

∂F1

∂y
=

∂

∂y

(
x

x2 + y2

)
=

−2xy

(x2 + y2)2
.

Therefore,
∂F2

∂x
−

∂F1

∂y
= 0.

This does not imply that �F is path-independent: The domain of �F contains a hole since �F is
undefined at the origin. Thus, the curl test does not apply.

(b) Since �F (x, y) = x�i + y�j = �r on the unit circle C, the field �F is everywhere perpendicular to
C. Thus ∫

C

�F · d�r = 0.

The fact that
∫
C
�F ·d�r = 0 when C is the unit circle does not imply that �F is path-independent.

To be sure that �F is path-independent, we would have to show that
∫
C
�F · d�r = 0 for every

closed curve C in the domain of �F , not just the unit circle.
(c) To check that gradf = �F , we differentiate f :

fx =
1

2

∂

∂x
ln(x2

+ y2) =
1

2

2x

x2 + y2
=

x

x2 + y2
,
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and

fy =
1

2

∂

∂y
ln(x2

+ y2) =
1

2

2y

x2 + y2
=

y

x2 + y2
,

so that

grad f =
x�i + y�j

x2 + y2
= �F .

Thus, �F is a gradient field and therefore is path-independent—even though �F is undefined at
the origin.

The Curl Test for Vector Fields in 3-Space
The curl test is a convenient way of deciding whether a 2-dimensional vector field is path-independent.
Fortunately, there is an analogous test for 3-dimensional vector fields, although we cannot justify it
until Chapter 20.

If �F (x, y, z) = F1
�i + F2

�j + F3
�k is a vector field on 3-space we define a new vector field,

curl �F , on 3-space by

curl �F =

(
∂F3

∂y
−

∂F2

∂z

)
�i +

(
∂F1

∂z
−

∂F3

∂x

)
�j +

(
∂F2

∂x
−

∂F1

∂y

)
�k .

The vector field curl �F can be used to determine whether the vector field �F is path-independent.

The Curl Test for Vector Fields in 3-Space

Suppose �F is a vector field on 3-space with continuous partial derivatives such that
• The domain of �F has the property that every closed curve in it can be contracted to a

point in a smooth way, staying at all times within the domain.

• curl �F = �0 .
Then �F is path-independent, so �F is a gradient field and has a potential function.

For the 2-dimensional curl test, the domain of �F must have no holes. This meant that if �F was
defined on a simple closed curve C, then it was also defined at all points inside C. One way to test
for holes is to try to “lasso” them with a closed curve. If every closed curve in the domain can be
pulled to a point without hitting a hole, that is, without straying outside the domain, then the domain
has no holes. In 3-space, we need the same condition to be satisfied: we must be able to pull every
closed curve to a point, like a lasso, without straying outside the domain.

Example 7 Decide if the following vector fields are path-independent and whether or not the curl test applies.

(a) �F =
x�i + y�j + z�k

(x2 + y2 + z2)3/2
(b) �G =

−y�i + x�j

x2 + y2
+ z2�k

Solution (a) Suppose f = −(x2+ y2+ z2)−1/2. Then fx = x(x2 + y2+ z2)−3/2 and fy and fz are similar,
so gradf = �F . Thus, �F is a gradient field and therefore path-independent. Calculations show
curl �F = �0 . The domain of �F is all of 3-space minus the origin, and any closed curve in the
domain can be pulled to a point without leaving the domain. Thus, the curl test applies.

(b) Let C be the circle x2 + y2 = 1, z = 0 traversed counterclockwise when viewed from the
positive z-axis. Since z = 0 on the curve C, the vector field �G reduces to the vector field in
Example 5 and is everywhere tangent to C and of magnitude 1, so∫

C

�G · d�r = ‖�G ‖ · Length of curve = 1 · 2π = 2π.
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Since the line integral around this closed curve is nonzero, �G is path-dependent. Computations
show curl �G = �0 . However, the domain of �G is all of 3-space minus the z-axis, and it does not
satisfy the curl test domain criterion. For example, the circle, C, is lassoed around the z-axis,
and cannot be pulled to a point without hitting the z-axis. Thus, the curl test does not apply.

Exercises and Problems for Section 18.4
Exercises

In Exercises 1–10, decide if the given vector field is the gradi-
ent of a function f . If so, find f . If not, explain why not.

1. y�i − x�j

2. 2xy�i + x2�j

3. y�i + y�j

4. 2xy�i + 2xy�j

5. (x2 + y2)�i + 2xy�j

6. (2xy3 + y)�i + (3x2y2 + x)�j

7.
�i

x
+

�j

y
+

�k

z

8.
�i

x
+

�j

y
+

�k

xy

9. 2x cos(x2+z2)�i +sin(x2+z2)�j +2z cos(x2+z2)�k

10.
y

x2 + y2
�i − x

x2 + y2
�j

11. Use Green’s Theorem to evaluate
∫
C

(
y2�i + x�j

)
· d�r

where C is the counterclockwise path around the perime-
ter of the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 3.

In Exercises 12–15, use Green’s Theorem to calculate the cir-
culation of �F around the curve, oriented counterclockwise.

12. �F = y�i − x�j around the unit circle.

13. �F = xy�j around the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

14. �F = (2x2 + 3y)�i + (2x + 3y2)�j around the triangle
with vertices (2, 0), (0, 3), (−2, 0).

15. �F = 3y�i + xy�j around the unit circle.

16. Calculate
∫
C
((3x+5y)�i +(2x+7y)�j ) ·d�r where C is

the circular path with center (a, b) and radius m, oriented
counterclockwise. Use Green’s Theorem.

17. (a) Sketch �F = y�i and determine the sign of the cir-
culation of �F around the unit circle centered at the
origin and traversed counterclockwise.

(b) Use Green’s Theorem to compute the circulation in
part (a) exactly.

Problems

18. Let �F = (sin x)�i +(x+y)�j . Find the line integral of �F
around the perimeter of the rectangle with corners (3, 0),
(3, 5), (−1, 5), (−1, 0), traversed in that order.

19. Find

∫
C

(sin(x2) cos y)�i + (sin(y2) + ex)�j · d�r where

C is the square of side 1 in the first quadrant of the xy-
plane, with one vertex at the origin and sides along the
axes, and oriented counterclockwise when viewed from
above.

20. Find the line integral of �F = (x− y)�i + x�j around the
closed curve in Figure 18.50. (The arc is part of a circle.)

3

45◦
x

y

Figure 18.50

21. Find the line integral of �F = (x+ y)�i + sin y�j around
the closed curve in Figure 18.50. (The arc is part of a
circle.)

22. Let �F = 2xey�i +x2ey�j and �G = (x−y)�i +(x+y)�j .
Let C be the line from (0, 0) to (2, 4). Find exactly:

(a)
∫
C

�F · d�r (b)
∫
C

�G · d�r

23. Let �F = y�i + x�j and �G = 3y�i − 3x�j . In Fig-
ure 18.51, the curve C2 is the semicircle centered at the
origin from (−1, 1) to (1,−1) and C1 is the line seg-
ment from (−1, 1) to (1,−1), and C = C2 − C1. Find
the following line integrals:

(a)

∫
C1

�F · d�r (b)

∫
C

�F · d�r

(c)

∫
C2

�F · d�r (d)

∫
C2

�G · d�r

(e)

∫
C

�G · d�r (f)

∫
C1

�G · d�r

(g)

∫
C

(�F + �G ) · d�r
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C1

C2

x

y

Figure 18.51

24. Calculate
∫
C

(
(x2 − y)�i + (y2 + x)�j

)
· d�r if:

(a) C is the circle (x − 5)2 + (y − 4)2 = 9 oriented
counterclockwise.

(b) C is the circle (x − a)2 + (y − b)2 = R2 in the
xy-plane oriented counterclockwise.

25. Consider the following parametric equations:

C1 : �r (t) = t cos(2πt)�i + t sin(2πt)�k , 0 ≤ t ≤ 2

C2 : �r (t) = t cos(2πt)�i + t�j + t sin(2πt)�k , 0 ≤ t ≤ 2

(a) Describe, in words, the motion of a particle moving
through each of the paths.

(b) Evaluate
∫
C2

�F · d�r , for the vector field �F =

yz�i + z(x+ 1)�j + (xy + y + 1)�k .
(c) Find a non-zero vector field �G such that:∫

C1

�G · d�r =

∫
C2

�G · d�r .

Explain how you reasoned to find �G .
(d) Find two different, non-zero vector fields �H1 , �H2

such that: ∫
C1

�H1 · d�r =

∫
C1

�H2 · d�r .

Explain how you reasoned to find the two fields.

26. Show that the line integral of �F = x�j around a closed
curve in the xy-plane, oriented as in Green’s Theorem,
measures the area of the region enclosed by the curve.

In Problems 27–29, use the result of Problem 26 to calculate
the area of the region within the parameterized curves. In each
case, sketch the curve.

27. The ellipse x2/a2 + y2/b2 = 1 parameterized by x =
a cos t, y = b sin t, for 0 ≤ t ≤ 2π.

28. The hypocycloid x2/3 + y2/3 = a2/3 parameterized by
x = a cos3 t, y = a sin3 t, 0 ≤ t ≤ 2 π.

29. The folium of Descartes, x3 + y3 = 3xy, parameterized

by x =
3t

1 + t3
, y =

3t2

1 + t3
, for 0 ≤ t < ∞.

30. The vector field �F is defined on the disk D of radius 5
centered at the origin in the plane:

�F = (−y3+y sin (xy))�i +(4x(1−y2)+x sin (xy))�j .

Consider the line integral
∫
C

�F · d�r , where C is some
closed curve contained in D. For which C is the value
of this integral the largest? [Hint: Assume C is a closed
curve, made up of smooth pieces and never crossing it-
self, and oriented counterclockwise.]

31. Example 1 on page 985 showed that the vector field in
Figure 18.52 could not be a gradient field by showing
that it is not path-independent. Here is another way to
see the same thing. Suppose that the vector field were
the gradient of a function f . Draw and label a diagram
showing what the contours of f would have to look like,
and explain why it would not be possible for f to have a
single value at any given point.

x

y

Figure 18.52

32. Repeat Problem 31 for the vector field in Problem 47 on
page 983.

33. (a) By finding potential functions, show that each of the
vector fields �F , �G , �H is a gradient field on some
domain (not necessarily the whole plane).

(b) Find the line integrals of �F , �G , �H around the unit
circle in the xy-plane, centered at the origin, and tra-
versed counterclockwise.

(c) For which of the three vector fields can Green’s The-
orem be used to calculate the line integral in part (b)?
Why or why not?

�F = y�i+x�j , �G =
y�i − x�j

x2 + y2
, �H =

x�i + y�j

(x2 + y2)1/2

34. (a) For which of the following can you use Green’s The-
orem to evaluate the integral? Explain.

I

∫
C

(x2+y2) dx+(x2+y2) dy where C is the

curve defined by y = x, y = x2, 0 ≤ x ≤ 1
with counterclockwise orientation.

II

∫
C

1√
x2 + y2

dx − 1√
x2 + y2

dy where C

is the unit circle centered at the origin, oriented
counterclockwise.
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III

∫
C

�F · d�r where �F = x�i + y�j and C is the

line segment from the origin to (1, 1).
(b) Use Green’s Theorem to evaluate the integrals in

part (a) that can be done that way.
35. Arrange the line integrals L1, L2, L3 in ascending order,

where

Li =

∫
C

i

(−x2y�i + (xy2 − x)�j ) · d�r .

The points A, B, D lie on the unit circle and Ci is one of
the curves shown in Figure 18.53.

C1: Line segment A to B

C2: Line segment A to D followed by line segment
D to B

C3: Semicircle ADB

−1 1

A

C1C1

C2 C2

C3 C3

D

B
x

y

Figure 18.53

36. For all x, y, let �F = F1(x, y)�i + F2(x, y)�j satisfy

∂F2

∂x
− ∂F1

∂y
= 3.

(a) Calculate
∫
C1

�F · d�r where C1 is the unit circle in
the xy-plane centered at the origin, oriented coun-
terclockwise.

(b) Calculate
∫
C2

�F · d�r where C2 is the boundary of
the rectangle of 4 ≤ x ≤ 7, 5 ≤ y ≤ 7, oriented
counterclockwise.

(c) Let C3 be the circle of radius 7 centered at the point
(10, 2); let C4 be the circle of radius 8 centered at
the origin; let C5 be the square of side 14 centered at
(7, 7) with sides parallel to the axes; C3, C4, C5 are
all oriented counterclockwise. Arrange the integrals∫
C3

�F · d�r ,
∫
C4

�F · d�r ,
∫
C5

�F · d�r in increasing
order.

37. Let �F = (3x2y + y3 + ex)�i + (ey
2

+ 12x)�j . Con-
sider the line integral of �F around the circle of radius a,
centered at the origin and traversed counterclockwise.

(a) Find the line integral for a = 1.
(b) For which value of a is the line integral a maximum?

Explain.

38. Let

�F (x, y) =
−y�i + x�j

x2 + y2

and let oriented curves C1 and C2 be as in Figure 18.54.
The curve C2 is an arc of the unit circle centered at the
origin. Show that

(a) The curl of �F is zero.
(b)
∫
C1

�F · d�r =
∫
C2

�F · d�r .

(c)
∫
C1

�F · d�r = θ, the angle at the origin subtended
by the oriented curve C1.

A

B

C

D

θ

C1

C2

x

y

Figure 18.54

39. The electric field �E , at the point with position vector �r
in 3-space, due to a charge q at the origin is given by

�E (�r ) = q
�r

||�r ||3 .

(a) Compute curl �E . Is �E a path-independent vector
field? Explain.

(b) Find a potential function ϕ for �E , if possible.

Strengthen Your Understanding

In Problems 40–41, explain what is wrong with the statement.

40. If
∫
C

�F · d�r = 0 for a specific closed path C, then �F
must be path-independent.

41. Let �F = F1(x, y)�i + F2(x, y)�j with

∂F2

∂x
− ∂F1

∂y
= 3

and let C be the path consisting of line segments from

(0, 0) to (1, 1) to (2, 0). Then

∫
C

�F · d�r = 3.
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In Problems 42–44, give an example of:

42. A function Q(x, y) such that �F = xy�i +Q(x, y)�j is a
gradient field.

43. Two oriented curves, C1 and C2, from (1, 0) to (0, 1)
such that if

�F (x, y) =
−y�i + x�j

x2 + y2
,

then ∫
C1

�F · d�r �=
∫
C2

�F · d�r .

[Note that the scalar curl of �F is 0 where �F is defined.]

44. A vector field that is not a gradient field.

Are the statements in Problems 45–52 true or false? Give rea-
sons for your answer.

45. If f(x) and g(y) are continuous one-variable functions,
then the vector field �F = f(x)�i + g(y)�j is path-
independent.

46. If �F = grad f , and C is the perimeter of a square of
side length a oriented counterclockwise and surrounding
the region R, then∫

C

�F · d�r =

∫
R

f dA.

47. If �F and �G are both path-independent vector fields, then
�F + �G is path-independent.

48. If �F and �G are both path-dependent vector fields, then
�F + �G is path-dependent.

49. The vector field �F (�r ) = �r in 3-space is path-
independent.

50. A constant vector field �F = a�i + b�j is path-
independent.

51. If �F is path-independent and k is a constant, then the
vector field k �F is path-independent.

52. If �F is path-independent and h(x, y) is a scalar function,
then the vector field h(x, y)�F is path-independent.

CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• Line Integrals
Oriented curves, definition as a limit of a Riemann
sum, work interpretation, circulation, algebraic proper-
ties, computing line integrals over parameterized curves,
independence of parameterization, differential notation.

• Gradient Fields

Fundamental Theorem for line integrals, path-
independent (conservative) fields and their relation to
gradient fields, potential functions.

• Green’s Theorem
Statement of the theorem, curl test for path-
independence, holes in the domain.
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Exercises

The figures in Exercises 1–2 show a vector field �F and a curve
C. Decide if

∫
C

�F · d�r is positive, zero, or negative.

1. 2.

For the vector fields in Exercises 3–4, is the line integral pos-
itive, negative, or zero along

(a) A? (b) C1, C2, C3, C4?
(c) C, the closed curve consisting of all the Cs together?

3.

A

C2

C3

C4

C1

4.

A

C1

C2

C3

C4

5. Is

∫
C

(3�i + 4�j ) · d�r , where C is the line from (5, 2) to

(1, 8), a vector or a scalar? Calculate it.

6. Is

∫
C

(x�i + y�j ) · d�r , where C is the line from (0, 2) to

(0, 6), a vector or a scalar? Calculate it.

In Exercises 7–12, find
∫
C

�F · d�r for the given �F and C.

7. �F = 6�i − 7�j , and C is an oriented curve from (2,−6)
to (4, 4).

8. �F = x�i + y�j and C is the unit circle in xy-plane ori-
ented counterclockwise.

9. �F = x�i + y�j and C is the y-axis from the origin to
(0, 10).

10. �F = (x2 − y)�i + (y2 + x)�j and C is the parabola
y = x2 + 1 traversed from (0, 1) to (1, 2).

11. �F = x�i + y�j + z�k and C is the path consisting of
a line from (2, 3, 0) to (4, 5, 0), followed by a line from
(4, 5, 0) to (0, 0, 7).

12. �F = xy�i +(x−y)�j and C is the triangle joining (1, 0),
(0, 1) and (−1, 0) in the clockwise direction.

In Exercises 13–14, evaluate the line integrals.

13.
∫
C
3x2dx+4ydy where C is the path y = x2 from (1, 1)

to (5, 25).

14.
∫
C
ydx+xdy where C is the path y = sin x from (0, 0)

to (π/2, 1).

In Exercises 15–21, which of the vector fields are path-
independent on all of 3-space?

15. y�i 16. y�j 17. z�k

18. z�j + z�k 19. y�i + x�j 20. (x+ y)�i

21. yz�i + zx�j + xy�k

In Exercises 22–27, find the line integral of �F = 5x�i + 3x�j
along the path C.

22. C is the line from (2, 3) to (2, 8).

23. C is the line from (2, 3) to (12, 3).

24. C is the curve y = x2 from (1, 1) to (2, 4).

25. C is the semicircle of radius 3 from (3, 0) to (−3, 0) in
the upper half plane.

26. C is the path in Figure 18.55.

−2 2

3 (3, 3)(−2, 3)

(−2, 0)

(0, 0)
x

y

Figure 18.55
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27. C is the path in Figure 18.56.

1 3

1

4

(7, 3)

x

y

Figure 18.56

In Exercises 28–30, find the line integral of �F around C1 and
C2, where C1 is the circle of radius 3, centered at (5, 4) and
oriented clockwise and C2 is the semicircle starting at (3, 4)
and ending at (7, 4), passing above the line y = 4.

28. �F = 5�i + 4�j

29. �F = 5x�i + 4y�j

30. �F = 5y�i + 4x�j

Problems

31. Which two of the vector fields (i)-(iv) could represent
gradient vector fields on the whole plane? Give reasons
for your answer.

x

y(i)

x

y(ii)

x

y(iii)

x

y(iv)

32. Let �F (x, y) be the path-independent vector field in Fig-
ure 18.57. The vector field �F associates with each
point a unit vector pointing radially outward. The curves
C1, C2, . . . , C7 have the directions shown. Consider the
line integrals

∫
C

i

�F ·d�r , i = 1, . . . , 7. Without comput-
ing any integrals,

(a) List all the line integrals which you expect to be
zero.

(b) List all the line integrals which you expect to be neg-
ative.

(c) Arrange the positive line integrals in ascending or-
der.

C4

C2

C3

C1

C6

C7

C5

x

y

Figure 18.57

33. If C is �r = (cos t)�i +(sin t)�j for 0 ≤ t ≤ 2π, we know∫
C

�F (�r ) · d�r = 12. Find the value of the integrals:

(a)
∫ 4π

0
�F ((cos t)�i + (sin t)�j ) · ((− sin t)�i +

(cos t)�j )dt

(b)
∫ 0

2π
�F ((cos t)�i +(sin t)�j ) ·((sin t)�i −(cos t)�j )dt

(c)
∫ 2π

0
�F ((sin t)�i + (cos t)�j ) · ((− cos t)�i −

(sin t)�j )dt

34. Let C be the straight path from (0, 0) to (5, 5) and let
�F = (y − x+ 2)�i + (sin(y − x) + 2)�j .

(a) At each point of C, what angle does �F make with a
tangent vector to C?

(b) Find the magnitude ‖�F ‖ at each point of C.
(c) Evaluate

∫
C

�F · d�r .

35. The line integral of �F = (x + y)�i + x�j along each of
the following paths is 3/2:

(i) The path (t, t2), with 0 ≤ t ≤ 1
(ii) The path (t2, t), with 0 ≤ t ≤ 1

(iii) The path (t, tn), with n > 0 and 0 ≤ t ≤ 1

Show this

(a) Using the given parameterization to compute the line
integral.
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(b) Using the Fundamental Theorem of Calculus for
Line Integrals.

Problems 36–39 refer to the star-shaped region R in Fig-
ure 18.58.

(4,7)

(5,5)

(7,4)

(5,3)

(4,1)

(3,3)

(1,4)

(3,5)

Figure 18.58

36. Let C be the path from (5, 5) to (4, 7). Find∫
C

(2�i + 13�j ) · d�r .

37. Let C be the path from (5, 5) to (4, 7). Find∫
C

(4x�i + 3y�j ) · d�r .

38. Let C be the path from (5, 5) to (4, 7). Find∫
C

((4x+ 5y)�i + (2x+ 3y)�j ) · d�r .

39. Let C be the path around the outside of the star, traced
counterclockwise. Find

∫
C
((4x+5y)�i +(2x+3y)�j ) ·

d�r .

40. Let �F = 2y�i + 5x�j . Let C be the M-shaped closed
curve consisting of line segments starting at (−5, 1), go-
ing along the line y = 1 to (15, 1), then to (10, 9), then
to (5, 1), then to (0, 9), and then back to (−5, 1). Let C1

be the part of C along the line y = 1; let C2 be the rest
of C and C = C1 + C2.

(a) Find
∫
C

�F · d�r .

(b) Find
∫
C1

�F · d�r .

(c) Find
∫
C2

�F · d�r .

41. Let �F = 2xey�i +x2ey�j and �G = (x−y)�i +(x+y)�j .
Let C be the path consisting of lines from (0, 0) to (3, 0)
to (3, 8) to (0, 0). Find exactly:

(a)
∫
C

�F · d�r (b)
∫
C

�G · d�r
42. Let �F = (x2 + 3x2y4)�i + 4x3y3�j and �G = (x4 +

x3y2)�i + x2y3�j . Let C1 be the path along the x-axis
from (2, 0) to (−2, 0); let C2 be the semi-circle in the
upper half plane from (2, 0) to (−2, 0). Find exactly:

(a)
∫
C1

�F · d�r (b)
∫
C2

�F · d�r
(c)
∫
C1

�G · d�r (d)
∫
C2

�G · d�r

43. Calculate the line integral of �F = −y�i + x�j along the
following paths in the xy-plane.

(a) Line from the origin to the point (2, 3).
(b) Line from (2, 3) to (0, 3).
(c) Counterclockwise around a circle of radius 5 cen-

tered at the origin, starting from (5, 0) to (0,−5).
(d) Counterclockwise around the perimeter of a triangle

of area 7.

44. Let C1 and C2 be the curves in Figure 18.59. Let �F =
(6x + y2)�i + 2xy�j and �G = (x − y)�i + (x + y)�j .
[Note C1 is made up of line segments and C2 is part of a
circle.] Compute the following line integrals.

(a)

∫
C1

�F · d�r (b)

∫
C1

�G · d�r

(c)

∫
C2

�F · d�r (d)

∫
C2

�G · d�r

2

2
C1

x

y

−2 2

−2

2 C2

x

y

Figure 18.59

45. Let �F = x�i + y�j . Find the line integral of �F :

(a) Along the x-axis from the origin to the point (3, 0).
(b) Around the path from A to B to O in Figure 18.60.

(The curve is part of a circle centered at the origin.)

3

45◦
O

A

B

x

y

Figure 18.60
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46. (a) Sketch the curves C1 and C2:

C1 is (x, y) = (0, t) for − 1 ≤ t ≤ 1

C2 is (x, y) = (cos t, sin t) for π/2 ≤ t ≤ 3/π/2.

(b) Find
∫
C
((x+3y)�i +y�j ·)d�r , where C = C1+C2.

47. Draw an oriented curve C and a vector field �F along
C that is not always perpendicular to C, but for which∫
C

�F · d�r = 0.

48. (a) Sketch the curve, C, consisting of three parts, C =
C1 + C2 + C3, where C1 is �r = t�i for 0 ≤ t ≤ 1,
and C2 is x = 1− t, y = t for 0 ≤ t ≤ 1, and C3 is
�r = (1− t)�j for 0 ≤ t ≤ 1. Label the coordinates
of the points where C1, C2, C3 meet. Each curve is
oriented in the direction of increasing t.

(b) Sketch the vector field �F = −�i +�j
(c) Find

(i)
∫
C1

�F · d�r (ii)
∫
C2

�F · d�r
(iii)

∫
C3

�F · d�r (iv)
∫
C

�F · d�r

49. For each of the following vector fields in the plane, use
Green’s Theorem to sketch a closed curve, C, in the plane
with
∫
C

�F ·d�r > 0. Show the orientation of your curve.

(a) �F = (x3 − y)�i + (y5 + x)�j
(b) �F = x3�i + (y5 − xy)�j

50. Suppose P and Q both lie on the same contour of f .
What can you say about the total change in f from P
to Q? Explain your answer in terms of

∫
C
grad f · d�r

where C is a part of the contour that goes from P to Q.

51. Figure 18.61 shows level curves of the function f(x, y).

(a) Sketch ∇f at P .
(b) Is the vector ∇f at P longer than, shorter than, or

the same length as, ∇f at Q?
(c) If C is a curve from P to Q, evaluate

∫
C
∇f · d�r .

1 2

1

22.7

23
23.3

Q

P

x

y

Figure 18.61

52. (a) Compute
∫
C
�v · d�r where �v = y�i + 2x�j and C is

(i) The line joining (0, 1) to (1, 0)

(ii) The arc of the unit circle joining (0, 1) to (1, 0)

(b) What can you conclude about �v ?

53. Let C be the straight path from (0, 0) to (5, 5) and let
�F = (y − x+ 2)�i + (sin(y − x)− 2)�j .

(a) At each point of C, what angle does �F make with a
tangent vector to C?

(b) Evaluate
∫
C

�F · d�r .

54. Let �F = F1
�i + F2

�j and

∂F2

∂x
− ∂F1

∂y
= 3(x2 + y2)− (x2 + y2)3/2.

Let Ca be the circle of radius a in the xy-plane, cen-
tered at the origin and oriented counterclockwise. For
what value of a is the line integral

∫
Ca

�F · d�r largest?
What is the largest value?

55. The fact that an electric current gives rise to a magnetic
field is the basis for some electric motors. Ampère’s Law
relates the magnetic field �B to a steady current I . It says∫

C

�B · d�r = kI

where I is the current4 flowing through a closed curve
C and k is a constant. Figure 18.62 shows a rod carry-
ing a current and the magnetic field induced around the
rod. If the rod is very long and thin, experiments show
that the magnetic field �B is tangent to every circle that
is perpendicular to the rod and has center on the axis of
the rod (like C in Figure 18.62). The magnitude of �B is
constant along every such circle. Use Ampère’s Law to
show that around a circle of radius r, the magnetic field
due to a current I has magnitude given by

‖ �B ‖ =
kI

2πr
.

(In other words, the strength of the field is inversely pro-
portional to the radial distance from the rod.)

� I

�

C

�B

Figure 18.62

4More precisely, I is the net current through any surface that has C as its boundary.
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56. A central vector field is a vector field whose direction is
always toward (or away from) a fixed point O (the center)
and whose magnitude at a point P is a function only of
the distance from P to O. In two dimensions this means
that the vector field has constant magnitude on circles
centered at O. The gravitational and electrical fields of
spherically symmetric sources are both central fields.

(a) Sketch an example of a central vector field.
(b) Suppose that the central field �F is a gradient field,

that is, �F = grad f . What must be the shape of the
contours of f? Sketch some contours for this case.

(c) Is every gradient field a central vector field? Explain.
(d) In Figure 18.63, two paths are shown between the

points Q and P . Assuming that the three circles
C1, C2, and C3 are centered at O, explain why the
work done by a central vector field �F is the same
for either path.

(e) It is in fact true that every central vector field is a
gradient field. Use an argument suggested by Fig-
ure 18.63 to explain why any central vector field
must be path-independent.

O

P

Q

C1 C2 C3

Figure 18.63

57. A free vortex circulating about the origin in the xy-
plane (or about the z-axis in 3-space) has vector field
�v = K(x2 + y2)−1(−y�i + x�j ) where K is a con-
stant. The Rankine model of a tornado hypothesizes an
inner core that rotates at constant angular velocity, sur-
rounded by a free vortex. Suppose that the inner core has
radius 100 meters and that ‖�v ‖ = 3 · 105 meters/hr at a
distance of 100 meters from the center.

(a) Assuming that the tornado rotates counterclockwise
(viewed from above the xy-plane) and that �v is con-
tinuous, determine ω and K such that

�v =

⎧⎪⎨
⎪⎩

ω(−y�i + x�j ) if
√

x2 + y2 < 100

K(x2 + y2)−1(−y�i + x�j )

if
√

x2 + y2 ≥ 100.

(b) Sketch the vector field �v .
(c) Find the circulation of �v around the circle of radius

r centered at the origin, traversed counterclockwise.

58. Figure 18.64 shows the tangential velocity as a function
of radius for the tornado that hit Dallas on April 2, 1957.
Use it and Problem 57 to estimate K and ω for the Rank-
ine model of this tornado.5

200 400 600 800 1000 1200

100

200

meters

km/hr

Figure 18.64

CAS Challenge Problems

59. Let Ca be the circle of radius a, centered at the origin,
oriented in the counterclockwise direction, and let

�F = (−y +
2

3
y3)�i + (2x− x3

3
+ xy2)�j .

(a) Evaluate
∫
Ca

�F · d�r . For what positive value of a
does the integral take its maximum value?

(b) Use Green’s Theorem to convert the integral to a
double integral. Without evaluating the double inte-
gral, give a geometric explanation of the value of a
you found in part (a).

60. If f is a potential function for the two-dimensional vector
field �F then the Fundamental Theorem of Calculus for
Line Integrals says that

∫
C

�F · d�r = f(x, y) − f(0, 0)

where C is any path from (0, 0) to (x, y). Using this fact
and choosing C to be a straight line, find potential func-
tions for the following conservative fields (where a, b, c
are constants):

(a) �F = ay�i + ax�j
(b) �F = abyebxy�i + (c+ abxebxy)�j

61. Let �F = (ax + by)�i + (cx + dy)�j . Evaluate the line
integral of �F along the paths

C1 : �r (t) = 2t�i + t2�j , 0 ≤ t ≤ 3

C2 : �r (t) = 2(3− t)�i + (3− t)2�j , 0 ≤ t ≤ 3

Describe and explain the relationship between the two
integrals.

5Adapted from Encyclopædia Britannica, Macropædia, Vol. 16, page 477, “Climate and the Weather,” Tornados and
Waterspouts, 1991.
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PROJECTS FOR CHAPTER EIGHTEEN

1. Conservation of Energy

(a) A particle moves with position vector �r (t) = x(t)�i + y(t)�j + z(t)�k . Let �v (t) and �a (t)
be its velocity and acceleration vectors. Show that

1

2

d

dt
‖�v (t)‖2 = �a (t) · �v (t).

(b) We now derive the principle of Conservation of Energy. The kinetic energy of a particle of
mass m moving with speed v is (1/2)mv2. Suppose the particle has potential energy f(�r )

at the position �r due to a force field �F = −∇f . If the particle moves with position vector
�r (t) and velocity �v (t), then the Conservation of Energy principle says that

Total energy = Kinetic energy + Potential energy =
1

2
m‖�v (t)‖2 + f(�r (t)) = Constant.

Let P and Q be two points in space and let C be a path from P to Q parameterized by �r (t)
for t0 ≤ t ≤ t1, where �r (t0) = P and �r (t1) = Q.

(i) Using part (a) and Newton’s law �F = m�a , show

Work done by �F

as particle moves along C
= Kinetic energy at Q− Kinetic energy at P .

(ii) Use the Fundamental Theorem of Calculus for Line Integrals to show that

Work done by �F

as particle moves along C
= Potential energy at P − Potential energy at Q.

(iii) Use parts (a) and (b) to show that the total energy at P is the same as at Q.

This problem explains why force vector fields which are path-independent are usually called
conservative (force) vector fields.

2. Planimeters
A planimeter is a mechanical device that exploits Green’s Theorem to find the area of a planar
region by tracing out its boundary.

A linear planimeter is a rod with one end, the foot, that moves along a straight track as
a wheel at the other end rolls and slides along a curve being traced. The rod acts as an axle
for the wheel so that the wheel rolls without sliding for motion perpendicular to the rod, and
slides without rolling for motion parallel to the rod. The wheel vector is defined by rotating the
displacement vector from wheel to foot clockwise 90◦. For motion in a direction making an
angle θ with the wheel vector, the ratio of roll to distance traveled is cos θ. (This counts rolling
as positive for one direction of rotation and negative for the other.) A meter on the planimeter
measures the amount the wheel rolls. When the user has finished tracing out a closed curve, the
total roll of the wheel determines the area of the enclosed region. In Figure 18.65 the foot of a
planimeter of length L slides up and down the x-axis as the wheel moves along C from P to Q.

The key fact that makes this work is that the planimeter computes the line integral of the
vector field of unit vectors �F in the direction of the wheel vector along the oriented curve C:∫

C

�F · d�r = Total roll of wheel.

To see this, divide C into n small, almost straight pieces along which �F has approximately
constant direction. Each piece can be represented by a displacement vector Δ�r i = �r i+1 − �r i,
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and �F (�r i) is the unit vector in the direction of the wheel vector at the point of C with position
vector �r i. We have

�F (�r i)·Δ�r i = ‖�F (�r i)‖‖Δ�r i‖ cos θi ≈ 1·(Length of ith piece of C)·cos θi ≈ Roll on ith piece of C.

Summing over all the pieces and taking the limit as ‖Δ�r i‖ → 0 gives the result.
In the problems, we find a formula for �F and use it to show how area is computed.

L C

P

Q

θ

x

Figure 18.65

(a) Let L > 0, and define �F (x, y) in the horizontal strip −L < y < L as follows. Let �m
be the displacement vector of magnitude L from a point (a, 0) on the x-axis to the point
(x, y) in the strip, where a < x. Let �F (x, y) be the unit vector in the direction of �k × �m ,
perpendicular to �m . The flow lines of �F are arcs of circles of radius L with center on the
x-axis, oriented counterclockwise. See Figure 18.66. Show that

�F (x, y) =
−y

L
�i +

1

L

√
L2 − y2�j .

L
�m

�F

(a, 0)

(x, y)

L

x

Figure 18.66

(b) Show that curl �F = 1/L, for �F as in part (a).
(c) Let C be a simple closed curve oriented counterclockwise in the strip −L < y < L, and

let R be the enclosed region. Use Green’s Theorem to show that

Area of R = L

∫
C

�F · d�r = L · (Total roll of planimeter wheel).

3. Ampère’s Law
Ampère’s Law, introduced in Problem 55 on page 1000, relates the net current, I , flowing
through a surface to the magnetic field around the boundary, C, of the surface. The law says
that ∫

C

�B · d�r = kI, for some constant k.

The orientation of C is given by the right-hand rule: if the fingers of your right hand lie against
the surface and curl in the direction of the oriented curve C, then your thumb points in the
direction of positive current.

(a) We consider an infinitely long cylindrical wire having a radius r0, where r0 > 0. Suppose
the wire is centered on the z-axis and carries a constant current, I , uniformly distributed
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across a cross-section of the wire. The magnitude of �B is constant along any circle which
is centered on and perpendicular to the z-axis. The direction of �B is tangent to such circles.
Show that the magnitude of �B , at a distance r from the z-axis, is given by

‖ �B ‖ =

⎧⎪⎪⎨
⎪⎪⎩

aI

2πr
for r ≥ r0

aIr

2πr20
for r < r0.

(b) A torus is a doughnut-shaped surface obtained by rotating around the z-axis the circle
(x−β)2+ z2 = α2 of radius α and center (β, 0, 0), where 0 < α < β. A toroidal solenoid
is constructed by wrapping a thin wire a large number, say N , times around the torus.
Experiments show that if a constant current I flows though the wire, then the magnitude
of the magnetic field is constant on circles inside the torus which are centered on and
perpendicular to the z-axis. The direction of �B is tangent to such circles. Explain why, at
all points inside the torus,

‖ �B ‖ =
aNI

2πr
,

and ‖ �B ‖ = 0 otherwise. [Hint: Apply Ampère’s Law to a suitably chosen surface S with
boundary curve C. What is the net current passing through S?]

4. Conservative Forces, Friction, and Gravity
The work done by a conservative force on an object does not depend on the path taken but only
on the endpoints—in other words, the vector field representing the force is path-independent.
Only for a conservative force is the work done stored as energy; for a non-conservative force,
the work may be dissipated.

(a) The frictional drag force �F on an airplane flying through the air with velocity �v is given
by

�F = −c||�v ||�v .

The constant c is positive and depends on the shape of the airplane. One airplane takes off
from an airport located at the point (2, 0, 0) and follows the path

�r (t) = (2 cos t)�ı + (2 sin t)�j + 3t�k , from t = 0 to t = π.

An identical airplane takes off from the same point and follows the path

�r (t) =
2− 4t

π
t�ı + 3t�k also from t = 0 to t = π.

(i) Compute the total work done by the drag force �F on each airplane.

(ii) Is the drag force conservative? Explain.

(b) Suppose the two airplanes of the preceding problem each have mass m, while the earth has
mass M . The gravitational force �F acting on either airplane at a point with position vector
�r is given by

�F (�r ) = −GMm
�r

||�r ||3
, where G is the gravitational constant.

(i) Compute the total work done by the gravitational force �F on each airplane as it moves
from the point (2, 0, 0) to the point (−2, 0, 3π).

(ii) Is the gravitational force conservative? Explain.



©
 P

at
ric

k 
Z

ep
hy

r/
P

at
ric

k 
Z

ep
hy

r 
N

at
ur

e 
P

ho
to

g
ra

p
hy

Chapter Nineteen

FLUX INTEGRALS AND 
DIVERGENCE

Contents
19.1 The Idea of a Flux Integral . . . . . . . . . . . . . . 1006

Flow Through a Surface . . . . . . . . . . . . . . . . 1006

Orientation of a Surface  . . . . . . . . . . 1006

The Area Vector . . . . . . . . . . . . . . . . . 1007

The Flux of a Constant Vector Field

Through a Flat Surface . . . . . . 1007

The Flux Integral . . . . . . . . . . . . . . . . . . . . . 1008

Flux and Fluid Flow  . . . . . . . . . . . . . 1009

Calculating Flux Integrals Using dA�  =  n�  d A  1010

Notes on Orientation  . . . . . . . . . . . . . . . . . . 1012

19.2 Flux Integrals for Graphs, Cylinders, and
Spheres  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016

Flux of a Vector Field Through the Graph of

z = f(x, y)  . . . . . . . . . . . . . . . . . . . 1016

The Area Vector of a Coordinate Patch  1017

Flux of a Vector Field Through a Cylindrical

Surface . . . . . . . . . . . . . . . . . . . . . . . . 1018

Flux of a Vector Field Through a Spherical

Surface . . . . . . . . . . . . . . . . . . . . . . . . 1020

19.3 The Divergence of a Vector Field . . . . . . . . . 1025

Defi nition of Divergence . . . . . . . . . . . . . . . 1025

Why Do the Two Defi nitions of Divergence

Give the Same Result? . . . . . . . . . . . . 1027

Divergence-Free Vector Fields . . . . . . . . . . . 1028

Magnetic Fields . . . . . . . . . . . . . . . . . 1029

19.4 The Divergence Theorem . . . . . . . . . . . . . . . 1034

The Boundary of a Solid Region . . . . . . . . . 1034

Calculating the Flux from the Flux Density 1034

The Divergence Theorem and

Divergence-Free Vector Fields  . . . . . 1036

Electric Fields . . . . . . . . . . . . . . . . . . 1037

REVIEW PROBLEMS . . . . . . . . . . . . . . . . . 1040

PROJECTS  . . . . . . . . . . . . . . . . . . . . . . . . . . 1044



1006 Chapter Nineteen FLUX INTEGRALS AND DIVERGENCE

19.1 THE IDEA OF A FLUX INTEGRAL

Flow Through a Surface
Imagine water flowing through a fishing net stretched across a stream. Suppose we want to measure
the flow rate of water through the net, that is, the volume of fluid that passes through the surface per
unit time.

Example 1 A flat square surface of area A, in m2, is immersed in a fluid. The fluid flows with constant velocity
�v , in m/sec, perpendicular to the square. Write an expression for the rate of flow in m3/sec.

�v

� A

Figure 19.1: Fluid flowing perpendicular
to a surface

Solution In one second a given particle of water moves a distance of ‖�v ‖ in the direction perpendicular to the
square. Thus, the entire body of water moving through the square in one second is a box of length
‖�v ‖ and cross-sectional area A. So the box has volume ‖�v ‖A m3, and

Flow rate = ‖�v ‖A m3/sec.

This flow rate is called the flux of the fluid through the surface. We can also compute the flux
of vector fields, such as electric and magnetic fields, where no flow is actually taking place. If the
vector field is constant and perpendicular to the surface, and if the surface is flat, as in Example 1,
the flux is obtained by multiplying the speed by the area.

Next we find the flux of a constant vector field through a flat surface that is not perpendicular
to the vector field, using a dot product. In general, we break a surface into small pieces which are
approximately flat and where the vector field is approximately constant, leading to a flux integral.

Orientation of a Surface

Before computing the flux of a vector field through a surface, we need to decide which direction of
flow through the surface is the positive direction; this is described as choosing an orientation.1

At each point on a smooth surface there are two unit normals, one in each direction. Choosing
an orientation means picking one of these normals at every point of the surface in a contin-
uous way. The unit normal vector in the direction of the orientation is denoted by �n . For a
closed surface (that is, the boundary of a solid region), we choose the outward orientation
unless otherwise specified.

We say the flux through a piece of surface is positive if the flow is in the direction of the
orientation and negative if it is in the opposite direction. (See Figure 19.2.)

1Although we will not study them, there are a few surfaces for which this cannot be done. See page 1012.
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Negative flow

Direction of orientation:
Positive flow

Figure 19.2: An oriented surface showing
directions of positive and negative flow

�A

�n

S

Figure 19.3: Area vector �A = �n A of flat surface
with area A and orientation �n

The Area Vector

The flux through a flat surface depends both on the area of the surface and its orientation. Thus, it
is useful to represent its area by a vector as shown in Figure 19.3.

The area vector of a flat, oriented surface is a vector �A such that
• The magnitude of �A is the area of the surface.

• The direction of �A is the direction of the orientation vector �n .

The Flux of a Constant Vector Field Through a Flat Surface

Suppose the velocity vector field, �v , of a fluid is constant and �A is the area vector of a flat surface.
The flux through this surface is the volume of fluid that flows through in one unit of time. The
skewed box in Figure 19.4 has cross-sectional area ‖ �A ‖ and height ‖�v ‖ cos θ, so its volume is
(‖�v ‖ cos θ) ‖ �A ‖ = �v · �A . Thus, we have the following result:

If �v is constant and �A is the area vector of a flat surface, then

Flux through surface = �v · �A .

�

�

‖�v ‖ cos θ

�v

�A

θ

Figure 19.4: Flux of �v through a surface with area vector �A is the volume of this skewed box

Example 2 Water is flowing down a cylindrical pipe 2 cm in radius with a velocity of 3 cm/sec. Find the flux of
the velocity vector field through the ellipse-shaped region shown in Figure 19.5. The normal to the
ellipse makes an angle of θ with the direction of flow and the area of the ellipse is 4π/(cos θ) cm2.

θ

� �A (where ‖ �A ‖ = 4π/ (cos θ) cm2)

� �v ( where ‖�v ‖ = 3 cm/sec)

�

�
2 cm

Figure 19.5: Flux through ellipse-shaped region across a cylindrical pipe
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Solution There are two ways to approach this problem. One is to use the formula we just derived, which gives

Flux through ellipse = �v · �A = ‖�v ‖‖ �A ‖ cos θ = 3(Area of ellipse) cos θ

= 3

(
4π

cos θ

)
cos θ = 12π cm3/sec.

The second way is to notice that the flux through the ellipse is equal to the flux through the
circle perpendicular to the pipe in Figure 19.5. Since the flux is the rate at which water is flowing
down the pipe, we have

Flux through circle =
Velocity

of water
×

Area of

circle
=

(
3

cm
sec

)
(π22 cm2

) = 12π cm3/sec.

The Flux Integral

If the vector field, �F , is not constant or the surface, S, is not flat, we divide the surface into a
patchwork of small, almost flat pieces. (See Figure 19.6.) For a particular patch with area ΔA, we
pick a unit orientation vector �n at a point on the patch and define the area vector of the patch, Δ �A ,
as

Δ �A = �nΔA.

(See Figure 19.7.) If the patches are small enough, we can assume that �F is approximately constant
on each piece. Then we know that

Flux through patch ≈ �F ·Δ �A ,

so, adding the fluxes through all the small pieces, we have

Flux through whole surface ≈
∑

�F ·Δ �A ,

As each patch becomes smaller and ‖Δ �A ‖ → 0, the approximation gets better and we get

Flux through S = lim
‖Δ �A ‖→0

∑
�F ·Δ �A .

Thus, provided the limit exists, we make the following definition:

The flux integral of the vector field �F through the oriented surface S is∫
S

�F · d �A = lim
‖Δ �A ‖→0

∑
�F ·Δ �A .

If S is a closed surface oriented outward, we describe the flux through S as the flux out of S.

�n Δ �A

�

Area ΔA



P

Figure 19.6: Surface S divided into small, almost flat pieces,
showing a typical orientation vector �n and area vector Δ �A

�n Δ �A

Vector field
�F (x, y, z)

S

Figure 19.7: Flux of a vector field
through a curved surface S
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In computing a flux integral, we have to divide the surface up in a reasonable way, or the limit
might not exist. In practice this problem seldom arises; however, one way to avoid it is to define flux
integrals by the method used to compute them shown in Section 21.3.

Flux and Fluid Flow

If �v is the velocity vector field of a fluid, we have

Rate fluid flows
through surface S

=
Flux of �v
through S

=

∫
S

�v · d �A

The rate of fluid flow is measured in units of volume per unit time.

Example 3 Find the flux of the vector field �B (x, y, z) shown in Figure 19.8 through the square S of side 2
shown in Figure 19.9, oriented in the �j direction, where

�B (x, y, z) =
−y�i + x�j

x2 + y2
.

x

y

z

Figure 19.8: The vector field
�B (x, y, z) = −y
i +x
j

x2+y2

x

y

z

3

1

2S

�B

Figure 19.9: Flux of �B through the
square S of side 2 in xy-plane and

oriented in �j direction

x
y

z

S 2

1
3

Δ �A

�

� �

Δx

�

�

Δz

Figure 19.10: A small patch of surface with
area ‖Δ �A ‖ = ΔxΔz

Solution Consider a small rectangular patch with area vector Δ �A in S, with sides Δx and Δz so that
‖Δ �A ‖ = ΔxΔz. Since Δ �A points in the �j direction, we have Δ �A = �j ΔxΔz. (See Fig-
ure 19.10.)

At the point (x, 0, z) in S, substituting y = 0 into �B gives �B (x, 0, z) = (1/x)�j . Thus, we
have

Flux through small patch ≈ �B ·Δ �A =

(
1

x
�j

)
· (�j ΔxΔz) =

1

x
ΔxΔz.

Therefore,

Flux through surface =

∫
S

�B · d �A = lim
‖Δ �A ‖→0

∑
�B ·Δ �A = lim

Δx → 0

Δz → 0

∑ 1

x
ΔxΔz.

This last expression is a Riemann sum for the double integral
∫
R

1
x dA, where R is the square

1 ≤ x ≤ 3, 0 ≤ z ≤ 2. Thus,

Flux through surface =

∫
S

�B · d �A =

∫
R

1

x
dA =

∫ 2

0

∫ 3

1

1

x
dx dz = 2 ln 3.

The result is positive since the vector field is passing through the surface in the positive direction.
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Example 4 Each of the vector fields in Figure 19.11 consists entirely of vectors parallel to the xy-plane, and is
constant in the z direction (that is, the vector field looks the same in any plane parallel to the xy-
plane). For each one, say whether you expect the flux through a closed surface surrounding the origin
to be positive, negative, or zero. In part (a) the surface is a closed cube with faces perpendicular to
the axes; in parts (b) and (c) the surface is a closed cylinder. In each case we choose the outward
orientation. (See Figure 19.12.)

y

x

(a) y

x

(b) y

x

(c)

Figure 19.11: Flux of a vector field through the closed surfaces whose cross-sections are shown in the xy-plane

x
y

z

�n
x

y

z

�n

Figure 19.12: The closed cube and closed cylinder, both oriented outward

Solution (a) Since the vector field appears to be parallel to the faces of the cube which are perpendicular to
the y- and z-axes, we expect the flux through these faces to be zero. The fluxes through the two
faces perpendicular to the x-axis appear to be equal in magnitude and opposite in sign, so we
expect the net flux to be zero.

(b) Since the top and bottom of the cylinder are parallel to the flow, the flux through them is zero.
On the curved surface of the cylinder, �v and Δ �A appear to be everywhere parallel and in the
same direction, so we expect each term �v · Δ �A to be positive, and therefore the flux integral∫
S
�v · d �A to be positive.

(c) As in part (b), the flux through the top and bottom of the cylinder is zero. In this case �v and Δ �A
are not parallel on the round surface of the cylinder, but since the fluid appears to be flowing
inward as well as swirling, we expect each term �v ·Δ �A to be negative, and therefore the flux
integral to be negative.

Calculating Flux Integrals Using d

−→

A = −→

n dA

For a small patch of surface ΔS with unit normal �n and area ΔA, the area vector is Δ �A = �n ΔA.
The next example shows how we can use this relationship to compute a flux integral.

Example 5 An electric charge q is placed at the origin in 3-space. The resulting electric field �E (�r ) at the point
with position vector �r is given by

�E (�r ) = q
�r

‖�r ‖3
, �r �= �0 .

Find the flux of �E out of the sphere of radius R centered at the origin. (See Figure 19.13.)
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Δ �A

�

S

Figure 19.13: Flux of �E = q�r /‖�r ‖3 through the surface of a sphere of radius R centered at the origin

Solution This vector field points radially outward from the origin in the same direction as �n . Thus, since �n
is a unit vector,

�E ·Δ �A = �E · �n ΔA = ‖ �E ‖ΔA.

On the sphere, ‖ �E ‖ = q/R2, so∫
S

�E · d �A = lim
‖Δ �A ‖→0

∑
�E ·Δ �A = lim

ΔA→0

∑ q

R2
ΔA =

q

R2
lim

ΔA→0

∑
ΔA.

The last sum approximates the surface area of the sphere. In the limit as the subdivisions get finer
we have

lim
ΔA→0

∑
ΔA = Surface area of sphere.

Thus, the flux is given by∫
S

�E · d �A =
q

R2
lim

ΔA→0

∑
ΔA =

q

R2
· (Surface area of sphere) =

q

R2
(4πR2

) = 4πq.

This result is known as Gauss’s law.

To compute a flux with an integral instead of Riemann sums, we often write d �A = �n dA, as in
the next example.

Example 6 Suppose S is the surface of the cube bounded by the six planes x = ±1, y = ±1, and z = ±1.
Compute the flux of the electric field �E of the previous example outward through S.

Solution It is enough to compute the flux of �E through a single face, say the top face S1 defined by z = 1,
where −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1. By symmetry, the flux of �E through the other five faces of S
must be the same.

On the top face, S1, we have d �A = �n dA = �k dx dy and

�E (x, y, 1) = q
x�i + y�j + �k

(x2 + y2 + 1)3/2
.

The corresponding flux integral is given by∫
S1

�E · d �A = q

∫ 1

−1

∫ 1

−1

x�i + y�j + �k

(x2 + y2 + 1)3/2
· �k dx dy = q

∫ 1

−1

∫ 1

−1

1

(x2 + y2 + 1)3/2
dx dy.

Computing this integral numerically shows that

Flux through top face =

∫
S1

�E · d �A ≈ 2.0944q.

Thus,

Total flux of �E out of cube =

∫
S

�E · d �A ≈ 6(2.0944q) = 12.5664q.
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Example 5 on page 1010 showed that the flux of �E through a sphere of radius R centered at
the origin is 4πq. Since 4π ≈ 12.5664, Example 6 suggests that

Total flux of �E out of cube = 4πq.

By computing the flux integral in Example 6 exactly, it is possible to verify that the flux of �E
through the cube and the sphere are exactly equal. When we encounter the Divergence Theorem in
Chapter 20 we will see why this is so.

Notes on Orientation
Two difficulties can occur in choosing an orientation. The first is that if the surface is not smooth,
it may not have a normal vector at every point. For example, a cube does not have a normal vector
along its edges. When we have a surface, such as a cube, which is made of a finite number of smooth
pieces, we choose an orientation for each piece separately. The best way to do this is usually clear.
For example, on the cube we choose the outward orientation on each face. (See Figure 19.14.)

�n
�

P

Figure 19.14: The orientation vector field �n on the
cube surface determined by the choice of unit

normal vector at the point P

Figure 19.15: The Möbius strip
is an example of a

non-orientable surface

The second difficulty is that there are some surfaces which cannot be oriented at all, such as the
Möbius strip in Figure 19.15.

Exercises and Problems for Section 19.1
Exercises

In Exercises 1–4, find the area vector of the oriented flat sur-
face.

1. The triangle with vertices (0, 0, 0), (0, 2, 0), (0, 0, 3) ori-
ented in the negative x direction.

2. Circular disc of radius 5 in the xy-plane, oriented up-
ward.

3. y = 10, 0 ≤ x ≤ 5, 0 ≤ z ≤ 3, oriented away from the
xz-plane.

4. y = −10, 0 ≤ x ≤ 5, 0 ≤ z ≤ 3, oriented away from
the xz-plane.

5. Find an oriented flat surface with area vector 150�j .

6. Let S be the disk of radius 3 perpendicular the the y-axis,
centered at (0, 6, 0) and oriented away from the origin. Is∫
S

(x�i + y�j ) · d �A a vector or a scalar?

7. Compute

∫
S

(4�i + 5�k ) · d �A , where S is the square

of side length 3 perpendicular to the z-axis, centered at
(0, 0,−2) and oriented

(a) Toward the origin. (b) Away from the origin.

8. Compute

∫
S

(2�i + 3�k ) · d �A , where S is the disk of ra-

dius 4 perpendicular to the x-axis, centered at (5, 0, 0)
and oriented

(a) Toward the origin. (b) Away from the origin.

9. Let �F (x, y, z) = z�i . For each of the surfaces in (a)–(e),
say whether the flux of �F through the surface is posi-
tive, negative, or zero. The orientation of the surface is
indicated by a normal vector.
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x
y

z(a)

x y

z(b)

x

y

z(c)

x

y

z(d)

x

y

z(e)

10. Repeat Exercise 9 with �F (x, y, z) = −z�i + x�k .

11. Repeat Exercise 9 with the vector field �F (�r ) = �r .

In Exercises 12–15, compute the flux of �v = �i + 2�j − 3�k
through the rectangular region with the orientation shown.

12.

x

y

z

(0, 0, 2)

(2, 0, 2)

(0, 2, 2)

(2, 2, 2)

13.

x

y

z

(3, 0, 0)

(3, 2, 0)

(3, 2, 4)

(3, 0, 4)

14.

x
y

z

(2, 2, 0)

(2, 0, 4)
(0, 0, 4)

(0, 2, 0)

15.

x

y

z

(2, 0, 0)

(2, 2, 0)

(0, 2, 3)
(0, 0, 3)

For Exercises 16–19 find the flux of the constant vector field
�v =�i −�j + 3�k through the given surface.

16. A disk of radius 2 in the xy-plane oriented upward.

17. A triangular plate of area 4 in the yz-plane oriented in
the positive x-direction.

18. A square plate of area 4 in the yz-plane oriented in the
positive x-direction.

19. The triangular plate with vertices (1, 0, 0), (0, 1, 0),
(0, 0, 1), oriented away from the origin.

In Exercises 20–22, find the flux of �H = 2�i + 3�j + 5�k
through the surface S.

20. S is the cylinder x2 + y2 = 1, closed at the ends by the
planes z = 0 and z = 1 and oriented outward.

21. S is the disk of radius 1 in the plane x = 2 oriented in
the positive x-direction.

22. S is the disk of radius 1 in the plane x + y + z = 1
oriented in upward.

Find the flux of the vector fields in Exercises 23–25 out of the
closed box 0 ≤ x ≤ 1, 0 ≤ y ≤ 2, 0 ≤ z ≤ 3.

23. �F = 3�i + 2�j + �k 24. �G = x�i

25. �H = zx�k

In Exercises 26–29, calculate the flux integral.

26.

∫
S

(x�i + 4�j ) · d �A where S is the disk of radius 5 per-

pendicular to the x-axis, centered at (3, 0, 0) and oriented
toward the origin.

27.
∫
S
�r · d �A where S is the sphere of radius 3 centered at

the origin.

28.
∫
S
(sin x�i +(y2+z2)�j +y2�k )·d �A where S is a disk of

radius π in the plane x = 3π/2, oriented in the positive
x-direction.

29.
∫
S
(5�i +5�j +5�k ) · d �A where S is a disk of radius 3 in

the plane x+ y + z = 1, oriented upward.

In Exercises 30–52, calculate the flux of the vector field
through the surface.

30. �F = 2�ı + 3�j through the square of side π in the xy-
plane, oriented upward.

31. �F = 2�ı + 3�j through the unit disk in the yz-plane,
centered at the origin and oriented in the positive x-
direction.

32. �F = x�i + y�j + z�k through the square of side 1.6 cen-
tered at (2, 5, 8), parallel to the xz-plane and oriented
away from the origin.

33. �F = z�k through a square of side
√
14 in a horizontal

plane 2 units below the xy-plane and oriented downward.

34. �F = −y�i + x�j and S is the square plate in the yz-
plane with corners at (0, 1, 1), (0,−1, 1), (0, 1,−1), and
(0,−1,−1), oriented in the positive x-direction.

35. �F = 7�i +6�j +5�k and S is a disk of radius 2 in the yz-
plane, centered at the origin and oriented in the positive
x-direction.

36. �F = x�i +2y�j +3z�k and S is a square of side 2 in the
plane y = 3, oriented in the positive y-direction.
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37. �F = 7�i +6�j +5�k and S is a sphere of radius π centered
at the origin.

38. �F = −5�r through the sphere of radius 2 centered at the
origin.

39. �F = x�i +y�j +(z2+3)�k and S is the rectangle z = 4,
0 ≤ x ≤ 2, 0 ≤ y ≤ 3, oriented in the positive z-
direction.

40. �F = 6�i + 7�j through triangle of area 10 in the plane
x+ y = 5, oriented in the positive x-direction.

41. �F = 6�i + x2�j − �k , through the square of side 4 in the
plane y = 3, centered on the y-axis, with sides parallel to
the x and z axes, and oriented in the positive y-direction.

42. �F = (x + 3)�i + (y + 5)�j + (z + 7)�k through the
rectangle x = 4, 0 ≤ y ≤ 2, 0 ≤ z ≤ 3, oriented in the
positive x-direction.

43. �F = 7�r through the sphere of radius 3 centered at the
origin.

44. �F = −3�r through the sphere of radius 2 centered at the
origin.

45. �F = 2z�i + x�j + x�k through the rectangle x = 4,
0 ≤ y ≤ 2, 0 ≤ z ≤ 3, oriented in the positive x-
direction.

46. �F =�i +2�j through a square of side 2 lying in the plane
x+ y + z = 1, oriented away from the origin.

47. �F = (x2 + y2)�k through the disk of radius 3 in the
xy-plane and centered at the origin and oriented upward.

48. �F = cos(x2 + y2)�k through the disk x2 + y2 ≤ 9
oriented upward in the plane z = 1.

49. �F = ey
2+z2�i through the disk of radius 2 in the yz-

plane, centered at the origin and oriented in the positive
x-direction.

50. �F = −y�i + x�j through the disk in the xy-plane with
radius 2, oriented upward and centered at the origin.

51. �F = �r through the disk of radius 2 parallel to the xy-
plane oriented upward and centered at (0, 0, 2).

52. �F = (2 − x)�i through the cube whose vertices include
the points (0, 0, 0), (3, 0, 0), (0, 3, 0), (0, 0, 3), and ori-
ented outward.

Problems

53. Let B be the surface of a box centered at the origin, with
edges parallel to the axes and in the planes x = ±1,
y = ±1, z = ±1, and let S be the sphere of radius 1
centered at origin.

(a) Indicate whether the following flux integrals are pos-
itive, negative, or zero. No reasons needed.

(a)
∫
B
x�i · d �A (b)

∫
B
y�i · d �A

(c)
∫
S
|x|�i · d �A (d)

∫
S
(y − x)�i · d �A

(b) Explain with reasons how you know which flux in-
tegral is greater:∫

S

x�i · d �A or

∫
B

x�i · d �A ?

54. Suppose that �E is a uniform electric field on 3-space,
so �E (x, y, z) = a�ı + b�j + c�k , for all points (x, y, z),
where a, b, c are constants. Show, with the aid of sym-
metry, that the flux of �E through each of the following
closed surfaces S is zero:

(a) S is the cube bounded by the planes x = ±1,
y = ±1, and z = ±1.

(b) S is the sphere x2 + y2 + z2 = 1.
(c) S is the cylinder bounded by x2 + y2 = 1, z = 0,

and z = 2.

55. Water is flowing down a cylindrical pipe of radius 2 cm;
its speed is (3− (3/4)r2) cm/sec at a distance r cm from
the center of the pipe. Find the flux through the circu-
lar cross-section of the pipe, oriented so that the flux is
positive.

56. (a) What do you think will be the electric flux through
the cylindrical surface that is placed as shown in the
constant electric field in Figure 19.16? Why?

(b) What if the cylinder is placed upright, as shown in
Figure 19.17? Explain.

Figure 19.16

Figure 19.17
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57. Let S be part of a cylinder centered on the y-axis. Ex-
plain why the three vectors fields �F , �G , and �H have the
same flux through S. Do not compute the flux.

�F = x�i + 2yz�k
�G = x�i + y sin x�j + 2yz�k
�H = x�i + cos(x2 + z)�j + 2yz�k

58. Find the flux of �F = �r /‖�r ‖3 out of the sphere of radius
R centered at the origin.

59. Find the flux of �F = �r /||r||2 out of the sphere of radius
R centered at the origin.

60. Consider the flux of the vector field �F = �r /||�r ||p for
p ≥ 0 out of the sphere of radius 2 centered at the origin.

(a) For what value of p is the flux a maximum?
(b) What is that maximum value?

61. Let S be the cube with side length 2, faces parallel to the
coordinate planes, and centered at the origin.

(a) Calculate the total flux of the constant vector field
�v = −�i + 2�j + �k out of S by computing the flux
through each face separately.

(b) Calculate the flux out of S for any constant vector
field �v = a�i + b�j + c�k .

(c) Explain why the answers to parts (a) and (b) make
sense.

62. Let S be the tetrahedron with vertices at the origin and at
(1, 0, 0), (0, 1, 0) and (0, 0, 1).

(a) Calculate the total flux of the constant vector field
�v = −�i + 2�j + �k out of S by computing the flux
through each face separately.

(b) Calculate the flux out of S in part (a) for any con-
stant vector field �v .

(c) Explain why the answers to parts (a) and (b) make
sense.

63. Let P (x, y, z) be the pressure at the point (x, y, z) in a
fluid. Let �F (x, y, z) = P (x, y, z)�k . Let S be the sur-
face of a body submerged in the fluid. If S is oriented
inward, show that

∫
S
�F · d �A is the buoyant force on the

body, that is, the force upward on the body due to the
pressure of the fluid surrounding it. [Hint: �F · d �A =
P (x, y, z)�k · d �A = (P (x, y, z) d �A ) · �k .]

64. A region of 3-space has a temperature which varies from
point to point. Let T (x, y, z) be the temperature at a point
(x, y, z). Newton’s law of cooling says that grad T is
proportional to the heat flow vector field, �F , where �F
points in the direction in which heat is flowing and has
magnitude equal to the rate of flow of heat.

(a) Suppose �F = k grad T for some constant k. What
is the sign of k?

(b) Explain why this form of Newton’s law of cooling
makes sense.

(c) Let W be a region of space bounded by the surface
S. Explain why

Rate of heat

loss from W
= k

∫
S

(grad T ) · d �A .

65. The z-axis carries a constant electric charge density of λ
units of charge per unit length, with λ > 0. The resulting
electric field is �E .

(a) Sketch the electric field, �E , in the xy-plane, given

�E (x, y, z) = 2λ
x�i + y�j

x2 + y2
.

(b) Compute the flux of �E outward through the cylinder
x2 + y2 = R2, for 0 ≤ z ≤ h.

66. An infinitely long straight wire lying along the z-axis
carries an electric current I flowing in the �k direction.
Ampère’s Law in magnetostatics says that the current
gives rise to a magnetic field �B given by

�B (x, y, z) =
I

2π

−y�i + x�j

x2 + y2
.

(a) Sketch the field �B in the xy-plane.
(b) Suppose S1 is a disk with center at (0, 0, h), radius

a, and parallel to the xy-plane, oriented in the �k di-
rection. What is the flux of �B through S1? Is your
answer reasonable?

(c) Suppose S2 is the rectangle given by x = 0, a ≤
y ≤ b, 0 ≤ z ≤ h, and oriented in the −�i direc-
tion. What is the flux of �B through S2? Does your
answer seem reasonable?

67. An ideal electric dipole in electrostatics is characterized
by its position in 3-space and its dipole moment vector
�p . The electric field �D , at the point with position vector
�r , of an ideal electric dipole located at the origin with
dipole moment �p is given by

�D (�r ) = 3
(�r · �p )�r
‖�r ‖5 − �p

‖�r ‖3 .

Assume �p = p�k , so the dipole points in the �k direction
and has magnitude p.

(a) What is the flux of �D through a sphere S with center
at the origin and radius a > 0?

(b) The field �D is a useful approximation to the elec-
tric field �E produced by two “equal and opposite”
charges, q at �r 2 and −q at �r 1, where the distance
‖�r 2−�r 1‖ is small. The dipole moment of this con-
figuration of charges is defined to be q(�r 2 − �r 1).
Gauss’s Law in electrostatics says that the flux of
�E through S is equal to 4π times the total charge
enclosed by S. What is the flux of �E through S if
the charges at �r 1 and �r 2 are enclosed by S? How
does this compare with your answer for the flux of
�D through S if �p = q(�r 2 − �r 1)?
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Strengthen Your Understanding

In Problems 68–69, explain what is wrong with the statement.

68. For a certain vector field �F and oriented surface S, we
have
∫
S
�F · d �A = 2�i − 3�j + �k .

69. If S is a region in the xy-plane oriented upwards then∫
S
�F · d �A > 0.

In Problems 70–71, give an example of:

70. A nonzero vector field �F such that
∫
S
�F · d �A = 0,

where S is the triangular surface with corners (1, 0, 0),
(0, 1, 0), (0, 0, 1), oriented away from the origin.

71. A nonconstant vector field �F (x, y, z) and an oriented
surface S such that

∫
S
�F · d �A = 1.

Are the statements in Problems 72–81 true or false? Give rea-
sons for your answer.

72. The value of a flux integral is a scalar.

73. The area vector �A of a flat, oriented surface is parallel to
the surface.

74. If S is the unit sphere centered at the origin, oriented
outward and the flux integral

∫
S
�F · d �A is zero, then

�F = �0 .

75. The flux of the vector field �F = �i through the plane
x = 0, with 0 ≤ y ≤ 1, 0 ≤ z ≤ 1, oriented in the�i
direction is positive.

76. If S is the unit sphere centered at the origin, oriented out-
ward and �F = x�i +y�j +z�k = �r , then the flux integral∫
S
�F · d �A is positive.

77. If S is the cube bounded by the six planes x = ±1, y =
±1, z = ±1, oriented outward, and �F = �k , then∫
S
�F · d �A = 0.

78. If S is an oriented surface in 3-space, and −S is the
same surface, but with the opposite orientation, then∫
S
�F · d �A = −

∫
−S

�F · d �A .

79. If S1 is a rectangle with area 1 and S2 is a rectangle with
area 2, then 2

∫
S1

�F · d �A =
∫
S2

�F · d �A .

80. If �F = 2 �G , then
∫
S
�F · d �A = 2

∫
S
�G · d �A .

81. If
∫
S
�F · d �A >

∫
S
�G · d �A then ||�F || > || �G || at all

points on the surface S.

82. For each of the surfaces in (a)–(e), pick the vector field
�F 1, �F 2, �F 3, �F 4, �F 5, with the largest flux through the
surface. The surfaces are all squares of the same size.
Note that the orientation is shown.

�F 1 = 2�i − 3�j − 4�k

�F 2 =�i − 2�j + 7�k

�F 3 = −7�i + 5�j + 6�k

�F 4 = −11�i + 4�j − 5�k

�F 5 = −5�i + 3�j + 5�k

x
y

z(a)

x y

z(b)

x

y

z(c)

x

y

z(d)

x

y

z(e)

19.2 FLUX INTEGRALS FOR GRAPHS, CYLINDERS, AND SPHERES

In Section 19.1 we computed flux integrals in certain simple cases. In this section we see how to
compute flux through surfaces that are graphs of functions, through cylinders, and through spheres.

Flux of a Vector Field Through the Graph of z = f(x, y)

Suppose S is the graph of the differentiable function z = f(x, y), oriented upward, and that �F is
a smooth vector field. In Section 19.1 we subdivided the surface into small pieces with area vector
Δ �A and defined the flux of �F through S as follows:∫

S

�F · d �A = lim
‖Δ �A ‖→0

∑
�F ·Δ �A .
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How do we divide S into small pieces? One way is to use the cross-sections of f with x or y
constant and take the patches in a wire frame representation of the surface. So we must calculate the
area vector of one of these patches, which is approximately a parallelogram.

The Area Vector of a Coordinate Patch

According to the geometric definition of the cross product on page 745, the vector �v × �w has
magnitude equal to the area of the parallelogram formed by �v and �w and direction perpendicular
to this parallelogram and determined by the right-hand rule. Thus, we have

Area vector of parallelogram = �A = �v × �w .

x

z

�r y

�

�r x

�

Coordinate patch

Δx


Δy

Figure 19.18: Surface showing coordinate patch and tangent
vectors �r x and �r y

Δx

Δy

�v y

�v x

Figure 19.19: Parallelogram-shaped patch in
the tangent plane to the surface

Consider the patch of surface above the rectangular region with sides Δx and Δy in the xy-
plane shown in Figure 19.18. We approximate the area vector, Δ �A , of this patch by the area vector
of the corresponding patch on the tangent plane to the surface. See Figure 19.19. This patch is the
parallelogram determined by the vectors �v x and �v y , so its area vector is given by

Δ �A ≈ �v x × �v y.

To find �v x and �v y , notice that a point on the surface has position vector �r = x�i + y�j + f(x, y)�k .
Thus, a cross-section of S with y constant has tangent vector

�r x =
∂�r

∂x
=�i + fx�k ,

and a cross-section with x constant has tangent vector

�r y =
∂�r

∂y
= �j + fy�k .

The vectors �r x and �v x are parallel because they are both tangent to the surface and parallel
to the xz-plane. Since the x-component of �r x is�i and the x-component of �v x is (Δx)�i , we have
�v x = (Δx)�r x. Similarly, we have �v y = (Δy)�r y . So the upward-pointing area vector of the
parallelogram is

Δ �A ≈ �v x × �v y = (�r x × �r y) ΔxΔy =

(
−fx�i − fy�j + �k

)
ΔxΔy.

This is our approximation for the area vector Δ �A on the surface. Replacing Δ �A , Δx, and Δy by
d �A , dx and dy, we write

d �A =

(
−fx�i − fy�j + �k

)
dx dy.
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The Flux of �
F Through a Surface Given by a Graph of z = f(x, y)

Suppose the surface S is the part of the graph of z = f(x, y) above a regionR in the xy-plane,
and suppose S is oriented upward. The flux of �F through S is∫

S

�F · d �A =

∫
R

�F (x, y, f(x, y)) ·
(
−fx�i − fy�j + �k

)
dx dy.

Example 1 Compute
∫
S
�F · d �A where �F (x, y, z) = z�k and S is the rectangular plate with corners (0, 0, 0),

(1, 0, 0), (0, 1, 3), (1, 1, 3), oriented upward. See Figure 19.20.

x

y

z

(1, 0, 0)

(1, 1, 3)

(0, 1, 3)

Figure 19.20: The vector field �F = z�k on the rectangular surface S

Solution We find the equation for the plane S in the form z = f(x, y). Since f is linear, with x-slope equal
to 0 and y-slope equal to 3, and f(0, 0) = 0, we have

z = f(x, y) = 0 + 0x+ 3y = 3y.

Thus, we have

d �A = (−fx�i − fy�j + �k ) dx dy = (0�i − 3�j + �k ) dx dy = (−3�j + �k ) dx dy.

The flux integral is therefore∫
S

�F · d �A =

∫ 1

0

∫ 1

0

3y�k · (−3�j + �k ) dx dy =

∫ 1

0

∫ 1

0

3y dx dy = 1.5.

Flux of a Vector Field Through a Cylindrical Surface
Consider the cylinder of radius R centered on the z-axis illustrated in Figure 19.21 and oriented
away from the z-axis. The coordinate patch in Figure 19.22 has surface area given by

ΔA ≈ RΔθΔz.

The outward unit normal �n points in the direction of x�i + y�j , so

�n =
x�i + y�j

‖x�i + y�j ‖
=

R cos θ�i +R sin θ�j

R
= cos θ�i + sin θ�j .

Therefore, the area vector of the coordinate patch is approximated by

Δ �A = �n ΔA ≈
(
cos θ�i + sin θ�j

)
RΔzΔθ.
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x y

z

�r z

�n

�r θ

S

� �R

Figure 19.21: Outward-oriented
cylinder

x

y

z

θ

Δθ
�

�R
�

�
ΔzRΔ

θ

�n

�

Coordinate patch

Figure 19.22: Coordinate patch with area Δ �A on
surface of a cylinder

Replacing Δ �A , Δz, and Δθ by d �A , dz, and dθ, we write

d �A =

(
cos θ�i + sin θ�j

)
Rdz dθ.

This gives the following result:

The Flux of a Vector Field Through a Cylinder

The flux of �F through the cylindrical surface S, of radius R and oriented away from the
z-axis, is given by∫

S

�F · d �A =

∫
T

�F (R, θ, z) ·
(
cos θ�i + sin θ�j

)
Rdz dθ,

where T is the θz-region corresponding to S.

Example 2 Compute
∫
S
�F · d �A where �F (x, y, z) = y�j and S is the part of the cylinder of radius 2 centered

on the z-axis with x ≥ 0, y ≥ 0, and 0 ≤ z ≤ 3. The surface is oriented toward the z-axis.

x

y

z

Figure 19.23: The vector field �F = y�j on the surface S

Solution In cylindrical coordinates, we have R = 2 and �F = y�j = 2 sin θ�j . Since the orientation of S is
toward the z-axis, the flux through S is given by∫

S

�F · d �A = −

∫
T

2 sin θ�j · (cos θ�i + sin θ�j )2 dz dθ = −4

∫ π/2

0

∫ 3

0

sin
2 θ dz dθ = −3π.



1020 Chapter Nineteen FLUX INTEGRALS AND DIVERGENCE

Flux of a Vector Field Through a Spherical Surface
Consider the piece of the sphere of radius R centered at the origin, oriented outward, as illustrated
in Figure 19.24. The coordinate patch in Figure 19.24 has surface area given by

ΔA ≈ R2
sinφΔφΔθ.

The outward unit normal �n points in the direction of �r = x�i + y�j + z�k , so

�n =
�r

‖�r ‖
= sinφ cos θ�i + sinφ sin θ�j + cosφ�k .

Therefore, the area vector of the coordinate patch is approximated by

Δ �A ≈ �n ΔA =
�r

‖�r ‖
ΔA =

(
sinφ cos θ�i + sinφ sin θ�j + cosφ�k

)
R2

sinφΔφΔθ.

Replacing Δ �A , Δφ, and Δθ by d �A , dφ, and dθ, we write

d �A =
�r

‖�r ‖
dA =

(
sinφ cos θ�i + sinφ sin θ�j + cosφ�k

)
R2

sinφdφdθ.

Thus, we obtain the following result:

The Flux of a Vector Field Through a Sphere

The flux of �F through the spherical surface S, with radius R and oriented away from the
origin, is given by∫

S

�F · d �A =

∫
S

�F ·
�r

‖�r ‖
dA

=

∫
T

�F (R, θ, φ) ·
(
sinφ cos θ�i + sinφ sin θ�j + cosφ�k

)
R2

sinφdφdθ,

where T is the θφ-region corresponding to S.

φ

θ

x

y

z

Δθ

Δφ

�n

�

�� � R sinφΔθ

RΔφ
�

(R, θ, φ)

�

�

R

� Coordinate patch

Figure 19.24: Coordinate patch with area Δ �A on surface of a sphere
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Example 3 Find the flux of �F = z�k throughS, the upper hemisphere of radius 2 centered at the origin, oriented
outward.

Solution The hemisphere S is parameterized by spherical coordinates θ and φ, with 0 ≤ θ ≤ 2π and 0 ≤

φ ≤ π/2. Since R = 2 and �F = z�k = 2 cosφ�k , the flux is∫
S

�F · d �A =

∫
S

2 cosφ�k · (sinφ cos θ�i + sinφ sin θ�j + cosφ�k )4 sinφdφdθ

=

∫ 2π

0

∫ π/2

0

8 sinφ cos
2 φdφdθ = 2π

(
8

(
− cos3 φ

3

) ∣∣∣∣π/2
φ=0

)
=

16π

3
.

Example 4 The magnetic field �B due to an ideal magnetic dipole, �μ , located at the origin is defined to be

�B (�r ) = −
�μ

‖�r ‖3
+

3(�μ · �r )�r

‖�r ‖5
.

Figure 19.25 shows a sketch of �B in the plane z = 0 for the dipole �μ =�i . Notice that �B is similar
to the magnetic field of a bar magnet with its north pole at the tip of the vector�i and its south pole
at the tail of the vector�i .

Compute the flux of �B outward through the sphere S with center at the origin and radius R.
y

x

Figure 19.25: The magnetic field of a dipole,�i , at the origin: �B =
−�i
‖�r ‖3 +

3(�i · �r )�r
‖�r ‖5

Solution Since�i · �r = x and ‖�r ‖ = R on the sphere of radius R, we have∫
S

�B · d �A =

∫
S

(
−

�i

‖�r ‖3
+

3(�i · �r )�r

‖�r ‖5

)
·

�r

‖�r ‖
dA =

∫
S

(
−
�i · �r

‖�r ‖4
+

3(�i · �r )‖�r ‖2

‖�r ‖6

)
dA

=

∫
S

2�i · �r

‖�r ‖4
dA =

∫
S

2x

‖�r ‖4
dA =

2

R4

∫
S

x dA.

But the sphere S is centered at the origin. Thus, the contribution to the integral from each positive
x-value is canceled by the contribution from the corresponding negative x-value; so

∫
S
x dA = 0.

Therefore, ∫
S

�B · d �A =
2

R4

∫
S

x dA = 0.

Exercises and Problems for Section 19.2
Exercises

In Exercises 1–4, find the area vector d �A for the surface
z = f(x, y), oriented upward.

1. f(x, y) = 3x− 5y 2. f(x, y) = 8x+ 7y

3. f(x, y) = 2x2 − 3y2 4. f(x, y) = xy + y2
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In Exercises 5–8, write an iterated integral for the flux of
�F through the surface S, which is the part of the graph of
z = f(x, y) corresponding to the region R, oriented upward.
Do not evaluate the integral.

5. �F (x, y, z) = 10�i + 20�j + 30�k

f(x, y) = 2x− 3y

R: −2 ≤ x ≤ 3, 0 ≤ y ≤ 5

6. �F (x, y, z) = z�i + x�j + y�k

f(x, y) = 50− 4x+ 10y

R: 0 ≤ x ≤ 4, 0 ≤ y ≤ 8

7. �F (x, y, z) = yz�i + xy�j + xy�k

f(x, y) = cosx+ sin 2y

R: Triangle with vertices (0, 0), (0, 5), (5, 0)

8. �F (x, y, z) = cos(x+ 2y)�j

f(x, y) = xe3y

R: Quarter disk of radius 5 centered at the origin, in
quadrant I

In Exercises 9–12, compute the flux of �F through the surface
S, which is the part of the graph of z = f(x, y) corresponding
to region R, oriented upward.

9. �F (x, y, z) = 3�i − 2�j + 6�k

f(x, y) = 4x− 2y

R: 0 ≤ x ≤ 5, 0 ≤ y ≤ 10

10. �F (x, y, z) =�i − 2�j + z�k

f(x, y) = xy

R: 0 ≤ x ≤ 10, 0 ≤ y ≤ 10

11. �F (x, y, z) = cos y�i + z�j + �k

f(x, y) = x2 + 2y

R: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

12. �F (x, y, z) = x�i + z�k

f(x, y) = x+ y + 2

R: Triangle with vertices (−1, 0), (1, 0), (0, 1)

In Exercises 13–16, write an iterated integral for the flux of �F
through the cylindrical surface S centered on the z-axis, ori-
ented away from the z-axis. Do not evaluate the integral.

13. �F (x, y, z) =�i + 2�j + 3�k

S: radius 10, x ≥ 0, y ≥ 0, 0 ≤ z ≤ 5

14. �F (x, y, z) = x�i + 2y�j + 3z�k

S: radius 10, 0 ≤ z ≤ 5

15. �F (x, y, z) = z2�i + ex�j + �k

S: radius 6, inside sphere of radius 10

16. �F (x, y, z) = x2yz�j + z3�k

S: radius 2, between the xy-plane and the
paraboloid z = x2 + y2

In Exercises 17–20, compute the flux of �F through the cylin-
drical surface S centered on the z-axis, oriented away from
the z-axis.

17. �F (x, y, z) = z�j + 6x�k

S: radius 5, y ≥ 0, 0 ≤ z ≤ 20

18. �F (x, y, z) = y�i + xz�k

S: radius 10, x ≥ 0, y ≥ 0, 0 ≤ z ≤ 3

19. �F (x, y, z) = xyz�j + xez�k

S: radius 2, 0 ≤ y ≤ x, 0 ≤ z ≤ 10

20. �F (x, y, z) = xy�i + 2z�j

S: radius 1, x ≥ 0, 0 ≤ y ≤ 1/2, 0 ≤ z ≤ 2

In Exercises 21–24, write an iterated integral for the flux of �F
through the spherical surface S centered at the origin, oriented
away from the origin. Do not evaluate the integral.

21. �F (x, y, z) =�i + 2�j + 3�k

S: radius 10, z ≥ 0

22. �F (x, y, z) = x�i + 2y�j + 3z�k

S: radius 5, entire sphere

23. �F (x, y, z) = z2�i

S: radius 2, x ≥ 0

24. �F (x, y, z) = ex�k

S: radius 3, y ≥ 0, z ≤ 0

In Exercises 25–27, compute the flux of �F through the spher-
ical surface S centered at the origin, oriented away from the
origin.

25. �F (x, y, z) = z�i

S: radius 20, x ≥ 0, y ≥ 0, z ≥ 0

26. �F (x, y, z) = y�i − x�j + z�k

S: radius 4, entire sphere

27. �F (x, y, z) = x�i + y�j

S: radius 1, above the cone φ = π/4.

In Exercises 28–29, compute the flux of �v = z�k through the
rectangular region with the orientation shown.

28.

x
y

z

(2, 2, 0)

(2, 0, 4)
(0, 0, 4)

(0, 2, 0)

29.

x

y

z

(2, 0, 0)

(2, 2, 0)

(0, 2, 3)
(0, 0, 3)
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Problems

In Problems 30–45 compute the flux of the vector field �F
through the surface S.

30. �F = z�k and S is the portion of the plane x+ y+ z = 1
that lies in the first octant, oriented upward.

31. �F = (x−y)�i +z�j +3x�k and S is the part of the plane
z = x + y above the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 3,
oriented upward.

32. �F = 2x�j + y�k and S is the part of the surface z =
−y + 1 above the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
oriented upward.

33. �F = −y�j + z�k and S is the part of the surface
z = y2 + 5 over the rectangle −2 ≤ x ≤ 1, 0 ≤ y ≤ 1,
oriented upward.

34. �F = ln(x2)�i + ex�j + cos(1 − z)�k and S is the part
of the surface z = −y + 1 above the square 0 ≤ x ≤ 1,
0 ≤ y ≤ 1, oriented upward.

35. �F = 5�i + 7�j + z�k and S is a closed cylinder of radius
3 centered on the z-axis, with −2 ≤ z ≤ 2, and oriented
outward.

36. �F = x�i + y�j + z�k and S is a closed cylinder of radius
2 centered on the y-axis, with −3 ≤ y ≤ 3, and oriented
outward.

37. �F = 3x�i + y�j + z�k and S is the part of the surface
z = −2x − 4y + 1, oriented upward, with (x, y) in the
triangle R with vertices (0, 0), (0, 2), (1, 0).

38. �F = x�i + y�j and S is the part of the surface
z = 25− (x2 + y2) above the disk of radius 5 centered
at the origin, oriented upward.

39. �F = cos(x2 + y2)�k and S is as in Exercise 38.

40. �F = �r and S is the part of the plane x + y + z = 1
above the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 3, oriented
downward.

41. �F = �r and S is the part of the surface z = x2 + y2

above the disk x2 + y2 ≤ 1, oriented downward.

42. �F = xz�i + y�k and S is the hemisphere
x2 + y2 + z2 = 9, z ≥ 0, oriented upward.

43. �F = −xz�i − yz�j + z2�k and S is the cone z =√
x2 + y2 for 0 ≤ z ≤ 6, oriented upward.

44. �F = y�i +�j − xz�k and S is the surface y = x2 + z2,
with x2 + z2 ≤ 1, oriented in the positive y-direction.

45. �F = x2�i + y2�j + z2�k and S is the oriented triangular
surface shown in Figure 19.26.

x

y

z

S

1

1

1

Figure 19.26

In Problems 46–47, compute the flux of �F through the cylin-
drical surface in Figure 19.27, oriented away from the z-axis.

x
y

z

11

6

S

Figure 19.27

46. �F = x�i + y�j

47. �F = xz�i + yz�j + z3�k

In Problems 48–51, compute the flux of �F through the spher-
ical surface, S.

48. �F = z�k and S is the upper hemisphere of radius 2 cen-
tered at the origin, oriented outward.

49. �F = y�i − x�j + z�k and S is the spherical cap given by
x2 + y2 + z2 = 1, z ≥ 0, oriented upward.

50. �F = z2�k and S is the upper hemisphere of the sphere
x2 + y2 + z2 = 25, oriented away from the origin.

51. �F = x�i + y�j + z�k and S is the surface of the sphere
x2 + y2 + z2 = a2, oriented outward.

52. Compute the flux of �F = x�i +y�j +z�k over the quarter
cylinder S given by x2+y2 = 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
0 ≤ z ≤ 1, oriented outward.

53. Compute the flux of �F = x�i +�j + �k through the sur-
face S given by x = sin y sin z, with 0 ≤ y ≤ π/2,
0 ≤ z ≤ π/2, oriented in the direction of increasing x.

54. Compute the flux of �F = (x + z)�i + �j + z�k through
the surface S given by y = x2 + z2, with 0 ≤ y ≤ 1,
x ≥ 0, z ≥ 0, oriented toward the xz-plane.
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55. Let �F = (xzeyz)�i + xz�j + (5 + x2 + y2)�k . Calcu-
late the flux of �F through the disk x2 + y2 ≤ 1 in the
xy-plane, oriented upward.

56. Let �H = (exy + 3z + 5)�i + (exy + 5z + 3)�j + (3z +

exy)�k . Calculate the flux of �H through the square of
side 2 with one vertex at the origin, one edge along the
positive y-axis, one edge in the xz-plane with x > 0,
z > 0, and the normal �n =�i − �k .

57. Electric charge is distributed in space with density (in
coulomb/m3) given in spherical coordinates by

δ(ρ, φ, θ) =

{
δ0 (a constant) ρ ≤ a

0 ρ > a.

(a) Describe the charge distribution in words.
(b) Find the electric field �E due to δ. Assume that �E

can be written in spherical coordinates as �E =
E(ρ)�e ρ, where �e ρ is the unit outward normal to the

sphere of radius ρ. In addition, �E satisfies Gauss’s
Law for any simple closed surface S enclosing a vol-
ume W :∫

S

�E · d �A = k

∫
W

δ dV, k a constant.

58. Electric charge is distributed in space with density (in
coulomb/m3) given in cylindrical coordinates by

δ(r, θ, z) =

{
δ0 (a constant) if r ≤ a

0 if r > a

(a) Describe the charge distribution in words.
(b) Find the electric field �E due to δ. Assume that �E

can be written in cylindrical coordinates as �E =
E(r)�e r, where �e r is the unit outward vector to the
cylinder of radius r, and that �E satisfies Gauss’s
Law (see Problem 57).

Strengthen Your Understanding

In Problems 59–60, explain what is wrong with the statement.

59. Flux outward through the cone, given in cylindrical co-
ordinates by z = r, can be computed using the formula
d �A =

(
cos θ�i + sin θ�j

)
Rdz dθ.

60. For the surface z = f(x, y) oriented upward, the formula

d �A = �n dA =
(
−fx�i − fy�j + �k

)
dx dy

gives �n = −fx�i − fy�j + �k and dA = dx dy.

In Problems 61–62, give an example of:

61. A function f(x, y) such that, for the surface z = f(x, y)

oriented upwards, we have d �A = (�i +�j + �k ) dx dy.

62. An oriented surface S on the cylinder of radius 10 cen-
tered on the z-axis such that

∫
S
�F · d �A = 600, where

�F = x�i + y�j .

Are the statements in Problems 63–65 true or false? Give rea-
sons for your answer.

63. If S is the part of the graph of f lying above a ≤
x ≤ b, c ≤ y ≤ d, then S has surface area∫ b

a

∫ d

c

√
f2
x + f2

y + 1 dx dy.

64. If �A (x, y) is the area vector for z = f(x, y) oriented
upward and �B (x, y) is the area vector for z = −f(x, y)
oriented upward, then �A (x, y) = − �B (x, y).

65. If S is the sphere x2 + y2 + z2 = 1 oriented outward
and
∫
S
�F · d �A = 0, then �F (x, y, z) is perpendicular to

x�i + y�j + z�k at every point of S.

66. The vector field, �F , in Figure 19.28 depends only on z;
that is, it is of the form g(z)�k , where g is an increasing
function. The integral

∫
S
�F · d �A represents the flux of

�F through this rectangle, S, oriented upward. In each of
the following cases, how does the flux change?

(a) The rectangle is twice as wide in the x-direction,
with new corners at the origin, (2, 0, 0), (2, 1, 3),
(0, 1, 3).

(b) The rectangle is moved so that its corners are at
(1, 0, 0), (2, 0, 0), (2, 1, 3), (1, 1, 3).

(c) The orientation is changed to downward.
(d) The rectangle is tripled in size, so that its new cor-

ners are at the origin, (3, 0, 0), (3, 3, 9), (0, 3, 9).

x

y

z

(1, 0, 0)

(1, 1, 3)

(0, 1, 3)

Figure 19.28
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19.3 THE DIVERGENCE OF A VECTOR FIELD

Imagine that the vector fields in Figures 19.29 and 19.30 are velocity vector fields describing the
flow of a fluid.2 Figure 19.29 suggests outflow from the origin; for example, it could represent the
expanding cloud of matter in the big-bang theory of the origin of the universe. We say that the origin
is a source. Figure 19.30 suggests flow into the origin; in this case we say that the origin is a sink.

In this section we use the flux out of a closed surface surrounding a point to measure the outflow
per unit volume there, also called the divergence, or flux density.

x

y

Figure 19.29: Vector field
showing a source

x

y

Figure 19.30: Vector field
showing a sink

Definition of Divergence
To measure the outflow per unit volume of a vector field at a point, we calculate the flux out of a
small sphere centered at the point, divide by the volume enclosed by the sphere, then take the limit
of this flux-to-volume ratio as the sphere contracts around the point.

Geometric Definition of Divergence

The divergence, or flux density, of a smooth vector field �F , written div�F , is a scalar-valued
function defined by

div �F (x, y, z) = lim
Volume→0

∫
S
�F · d �A

Volume of S
.

Here S is a sphere centered at (x, y, z), oriented outward, that contracts down to (x, y, z) in
the limit.

The limit can be computed using other shapes as well, such as the cubes in Example 2.

Cartesian Coordinate Definition of Divergence

If �F = F1
�i + F2

�j + F3
�k , then

div �F =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
.

The dot product formula gives an easy way to remember the Cartesian coordinate definition,

and suggests another common notation for div �F , namely ∇· �F . Using ∇ =
∂

∂x
�i +

∂

∂y
�j +

∂

∂z
�k ,

we can write

div �F = ∇· �F =

(
∂

∂x
�i +

∂

∂y
�j +

∂

∂z
�k

)
· (F1

�i + F2
�j + F3

�k ) =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
.

2Although not all vector fields represent physically realistic fluid flows, it is useful to think of them in this way.
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Example 1 Calculate the divergence of �F (�r ) = �r at the origin

(a) Using the geometric definition.
(b) Using the Cartesian coordinate definition.

Solution (a) Using the method of Example 5 on page 1010, you can calculate the flux of �F out of the sphere
of radius a, centered at the origin; it is 4πa3. So we have

div �F (0, 0, 0) = lim
a→0

Flux
Volume

= lim
a→0

4πa3

4
3πa

3
= lim

a→0
3 = 3.

(b) In Cartesian coordinates, �F (x, y, z) = x�i + y�j + z�k , so

div �F =
∂

∂x
(x) +

∂

∂y
(y) +

∂

∂z
(z) = 1 + 1 + 1 = 3.

The next example shows that the divergence can be negative if there is net inflow to a point.

Example 2 (a) Using the geometric definition, find the divergence of �v = −x�i at: (i) (0, 0, 0) (ii) (2, 2, 0).
(b) Confirm that the coordinate definition gives the same results.

Solution (a) (i) The vector field �v = −x�i is parallel to the x-axis and is shown in the xy-plane in Fig-
ure 19.31. To compute the flux density at (0, 0, 0), we use a cube S1, centered at the origin
with edges parallel to the axes, of length 2c. Then the flux through the faces perpendicular
to the y- and z-axes is zero (because the vector field is parallel to these faces). On the faces
perpendicular to the x-axis, the vector field and the outward normal are parallel but point
in opposite directions. On the face at x = c, where �v = −c�i and Δ �A = ‖ �A ‖�i , we have

�v ·Δ �A = −c ‖Δ �A ‖.

On the face at x = −c, where �v = c�i and Δ �A = −‖ �A ‖�i , the dot product is still negative:

�v ·Δ �A = −c ‖Δ �A ‖.

Therefore, the flux through the cube is given by∫
S1

�v · d �A =

∫
Face x=−c

�v · d �A +

∫
Face x=c

�v · d �A

= −c · Area of one face + (−c) · Area of other face = −2c(2c)2 = −8c3.

Thus,

div�v (0, 0, 0) = lim
Volume→0

∫
S

�v · d �A

Volume of cube
= lim

c→0

(
−8c3

(2c)3

)
= −1.

Since the vector field points inward toward the yz-plane, it makes sense that the divergence
is negative at the origin.

(ii) Take S2 to be a cube as before, but centered this time at the point (2, 2, 0). See Figure 19.31.
As before, the flux through the faces perpendicular to the y- and z-axes is zero. On the face
at x = 2 + c,

�v ·Δ �A = −(2 + c) ‖Δ �A ‖.

On the face at x = 2− c with outward normal, the dot product is positive, and

�v ·Δ �A = (2 − c) ‖Δ �A ‖.
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Therefore, the flux through the cube is given by∫
S2

�v · d �A =

∫
Face x=2−c

�v · d �A +

∫
Face x=2+c

�v · d �A

= (2 − c) · Area of one face − (2 + c) · Area of other face = −2c(2c)2 = −8c3.

Then, as before,

div�v (2, 2, 0) = lim
Volume→0

∫
S
�v · d �A

Volume of cube
= lim

c→0

(
−8c3

(2c)3

)
= −1.

Although the vector field is flowing away from the point (2, 2, 0) on the left, this outflow
is smaller in magnitude than the inflow on the right, so the net outflow is negative.

(b) Since �v = −x�i + 0�j + 0�k , the formula gives

div�v =
∂

∂x
(−x) +

∂

∂y
(0) +

∂

∂z
(0) = −1 + 0 + 0 = −1.

S2

S1
x

y

�

(2, 2, 0)

�

(0, 0, 0)

Figure 19.31: Vector field �v = −x�i in the xy-plane

Why Do the Two Definitions of Divergence Give the Same Result?

The geometric definition defines div �F as the flux density of �F . To see why the coordinate defi-
nition is also the flux density, imagine computing the flux out of a small box-shaped surface S at
(x0, y0, z0), with sides of length Δx, Δy, and Δz parallel to the axes. On S1 (the back face of the
box shown in Figure 19.32, where x = x0), the outward normal is in the negative x-direction, so
d �A = −dy dz�i . Assuming �F is approximately constant on S1, we have∫

S1

�F · d �A =

∫
S1

�F · (−�i ) dy dz ≈ −F1(x0, y0, z0)

∫
S1

dy dz

= −F1(x0, y0, z0) · Area of S1 = −F1(x0, y0, z0)ΔyΔz.

On S2, the face where x = x0 + Δx, the outward normal points in the positive x-direction, so
d �A = dy dz�i . Therefore,∫

S2

�F · d �A =

∫
S2

�F ·�i dy dz ≈ F1(x0 +Δx, y0, z0)

∫
S2

dy dz

= F1(x0 +Δx, y0, z0) · Area of S2 = F1(x0 +Δx, y0, z0)ΔyΔz.
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(x0, y0, z0)



S1 (Back)

ΔzS3

S6

S2

�

S5 (Bottom)

�

S4 (Back)

Δx

Δyz

x

y

Figure 19.32: Box used to find div �F at (x0, y0, z0)

Thus, ∫
S1

�F · d �A +

∫
S2

�F · d �A ≈ F1(x0 +Δx, y0, z0)ΔyΔz − F1(x0, y0, z0)ΔyΔz

=
F1(x0 +Δx, y0, z0)− F1(x0, y0, z0)

Δx
ΔxΔyΔz

≈
∂F1

∂x
ΔxΔyΔz.

By an analogous argument, the contribution to the flux from S3 and S4 (the surfaces perpendicular
to the y-axis) is approximately

∂F2

∂y
ΔxΔyΔz,

and the contribution to the flux from S5 and S6 is approximately

∂F3

∂z
ΔxΔyΔz.

Thus, adding these contributions, we have

Total flux through S ≈
∂F1

∂x
ΔxΔyΔz +

∂F2

∂y
ΔxΔyΔz +

∂F3

∂z
ΔxΔyΔz.

Since the volume of the box is ΔxΔyΔz, the flux density is

Total flux through S

Volume of box
≈

∂F1

∂x
ΔxΔyΔz +

∂F2

∂y
ΔxΔyΔz +

∂F3

∂z
ΔxΔyΔz

ΔxΔyΔz

=
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
.

Divergence-Free Vector Fields

A vector field �F is said to be divergence free or solenoidal if div�F = 0 everywhere that �F is
defined.

Example 3 Figure 19.33 shows, for three values of the constant p, the vector field

�E =
�r

‖�r ‖p
�r = x�i + y�j + z�k , �r �= �0 .

(a) Find a formula for div �E .
(b) Is there a value of p for which �E is divergence-free? If so, find it.
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p = 0

x

y

p = 1

x

y

p = 3

x

y

Figure 19.33: The vector field �E (�r ) = �r /‖�r ‖p for p = 0, 1, and 3 in the xy-plane

Solution (a) The components of �E are

�E =
x

(x2 + y2 + z2)p/2
�i +

y

(x2 + y2 + z2)p/2
�j +

z

(x2 + y2 + z2)p/2
�k .

We compute the partial derivatives

∂

∂x

(
x

(x2 + y2 + z2)p/2

)
=

1

(x2 + y2 + z2)p/2
−

px2

(x2 + y2 + z2)(p/2)+1

∂

∂y

(
y

(x2 + y2 + z2)p/2

)
=

1

(x2 + y2 + z2)p/2
−

py2

(x2 + y2 + z2)(p/2)+1

∂

∂z

(
z

(x2 + y2 + z2)p/2

)
=

1

(x2 + y2 + z2)p/2
−

pz2

(x2 + y2 + z2)(p/2)+1
.

So

div �E =
3

(x2 + y2 + z2)p/2
−

p(x2 + y2 + z2)

(x2 + y2 + z2)(p/2)+1

=
3− p

(x2 + y2 + z2)p/2
=

3− p

‖�r ‖p
.

(b) The divergence is zero when p = 3, so �F (�r ) = �r /‖�r ‖3 is a divergence-free vector field.
Notice that the divergence is zero even though the vectors point outward from the origin.

Magnetic Fields

An important class of divergence-free vector fields is the magnetic fields. One of Maxwell’s Laws
of Electromagnetism is that the magnetic field �B satisfies

div �B = 0.

Example 4 An infinitesimal current loop, similar to that shown in Figure 19.34, is called a magnetic dipole. Its
magnitude is described by a constant vector �μ , called the dipole moment. The magnetic field due to
a magnetic dipole with moment �μ is

�B = −
�μ

‖�r ‖3
+

3(�μ · �r )�r

‖�r ‖5
, �r �= �0 .
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Show that div �B = 0.

�μ

�
Area = a

Figure 19.34: A current loop

Solution To show that div �B = 0 we can use the following version of the product rule for the divergence: if
g is a scalar function and �F is a vector field, then

div(g �F ) = (grad g) · �F + g div �F .

(See Problem 36 on page 1032.) Thus, since div �μ = 0, we have

div

(
�μ

‖�r ‖3

)
= div

(
1

‖�r ‖3
�μ

)
= grad

(
1

‖�r ‖3

)
· �μ +

(
1

‖�r ‖3

)
0

and

div

(
(�μ · �r )�r

‖�r ‖5

)
= div

(
�μ · �r

�r

||�r ||5

)
= grad(�μ · �r ) ·

�r

‖�r ‖5
+ (�μ · �r ) div

(
�r

‖�r ‖5

)
.

From Problems 67 and 68 on page 796 and Example 3 on page 1028, we have

grad

(
1

‖�r ‖3

)
=

−3�r

‖�r ‖5
, grad(�μ · �r ) = �μ , div

(
�r

‖�r ‖5

)
=

−2

‖�r ‖5
.

Putting these results together gives

div �B = − grad

(
1

‖�r ‖3

)
· �μ + 3 grad(�μ · �r ) ·

�r

‖�r ‖5
+ 3(�μ · �r ) div

(
�r

‖�r ‖5

)

=
3�r · �μ

‖�r ‖5
+

3�μ · �r

‖�r ‖5
−

6�μ · �r

‖�r ‖5

= 0.

Exercises and Problems for Section 19.3
Exercises

Are the quantities in Exercises 1–2 vectors or scalars? Calcu-
late them.

1. div
(
(x2 + y)�i + (xyez)�j − ln(x2 + y2)�k

)
2. div

(
(2 sin(xy) + tan z)�i + (tan y)�j + (ex

2+y2

)�k
)

3. Which of the following two vector fields, sketched in the
xy-plane, appears to have the greater divergence at the
origin? The scales are the same on each.

x

y(I)

x

y(II)
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4. For each of the following vector fields, sketched in the
xy-plane, decide if the divergence is positive, zero, or
negative at the indicated point.

x

y(a)

x

y(b)

x

y(c)

In Exercises 5–13, find the divergence of the vector field.
(Note: �r = x�i + y�j + z�k .)

5. �F (x, y) = −y�i + x�j

6. �F (x, y) = −x�i + y�j

7. �F (x, y, z) = (−x+ y)�i + (y + z)�j + (−z + x)�k

8. �F (x, y) = (x2 − y2)�i + 2xy�j

9. �F (x, y, z) = 3x2�i − sin(xz)(�i + �k )

10. �F =
(
ln
(
x2 + 1

)
�i + (cos y)�j + (xyez)�k

)
11. �F (�r ) = �a × �r

12. �F (x, y) =
−y�i + x�j

x2 + y2

13. �F (�r ) =
�r − �r 0

‖�r − �r 0‖ , �r �= �r 0

Problems

14. Draw two vector fields that have positive divergence ev-
erywhere.

15. Draw two vector fields that have negative divergence ev-
erywhere.

16. Draw two vector fields that have zero divergence every-
where.

17. A small sphere of radius 0.1 surrounds the point
(2, 3,−1). The flux of a vector field �G into this sphere
is 0.00004π. Estimate div �G at the point (2, 3,−1).

18. A smooth vector field �F has div �F (1, 2, 3) = 5. Esti-
mate the flux of �F out of a small sphere of radius 0.01
centered at the point (1, 2, 3).

19. Let �F be a vector field with div �F = x2 + y2 − z.
Estimate

∫
S
�F · d �A where S is

(a) (i) A sphere of radius 0.1 centered at (2, 0, 0).

(ii) A box of side 0.2 with edges parallel to the axes
and centered at (0, 0, 10).

(b) The point (2, 0, 0) is called a source for the vector
field �F ; the point (0, 0, 10) is called a sink. Ex-
plain the reason for these names using your answer
to part (a).

20. The flux of �F out of a small sphere of radius 0.1 centered
at (4, 5, 2), is 0.0125. Estimate:

(a) div �F at (4, 5, 2)
(b) The flux of �F out of a sphere of radius 0.2 centered

at (4, 5, 2).

21. (a) Find the flux of �F = 2x�i − 3y�j + 5z�k
through a box with four of its corners at the points
(a, b, c), (a+w, b, c), (a, b+w, c), (a, b, c+w) and
edge length w. See Figure 19.35.

(b) Use the geometric definition and part (a) to find
div �F at the point (a, b, c).

(c) Find div �F using partial derivatives.

x

y

z

S3
S2

S6

(a+ w, b, c)

�(a, b, c)

�(a, b, c +w)
�

S1 (Back)

�

S4 (Back)

�
S5 (Bottom)

Figure 19.35

22. Suppose �F = (3x + 2)�i + 4x�j + (5x+ 1)�k . Use the
method of Exercise 21 to find div �F at the point (a, b, c)
by two different methods.

23. Use the geometric definition of divergence to find div�v
at the origin, where �v = −2�r . Check that you get the
same result using the definition in Cartesian coordinates.

24. (a) Let f(x, y) = axy + ax2y + y3. Find div grad f .
(b) If possible, choose a so that div grad f = 0 for all

x, y.

25. Let

�F = (9a2x+ 10ay2)�i + (10z3 − 6ay)�j −
(3z + 10x2 + 10y2)�k .

Find the value(s) of a making div �F

(a) 0 (b) A minimum
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26. The vector field �F (�r ) = �r /||�r ||3 is not defined at the
origin. Nevertheless, we can attempt to use the flux defi-
nition to compute div �F at the origin. What is the result?

27. The divergence of a magnetic vector field �B must be zero
everywhere. Which of the following vector fields cannot
be a magnetic vector field?

(a) �B (x, y, z) = −y�i + x�j + (x+ y)�k

(b) �B (x, y, z) = −z�i + y�j + x�k
(c) �B (x, y, z) = (x2 − y2 − x)�i + (y − 2xy)�j

28. Let �F (x, y, z) = z�k .

(a) Calculate div �F .
(b) Sketch �F . Does it appear to be diverging? Does this

agree with your answer to part (a)?

29. Let �F (�r ) = �r /‖�r ‖3 (in 3-space), �r �= �0 .

(a) Calculate div �F .
(b) Sketch �F . Does it appear to be diverging? Does this

agree with your answer to part (a)?

Problems 30–31 involve electric fields. Electric charge pro-
duces a vector field �E , called the electric field, which rep-
resents the force on a unit positive charge placed at the
point. Two positive or two negative charges repel one another,
whereas two charges of opposite sign attract one another. The
divergence of �E is proportional to the density of the electric
charge (that is, the charge per unit volume), with a positive
constant of proportionality.

30. A certain distribution of electric charge produces the
electric field shown in Figure 19.36. Where are the
charges that produced this electric field concentrated?
Which concentrations are positive and which are nega-
tive?

−4 −3 −2 −1 1 2
x

y

Figure 19.36

31. The electric field at the point �r as a result of a point
charge at the origin is �E (�r ) = k�r /‖�r ‖3.
(a) Calculate div �E for �r �= �0 .
(b) Calculate the limit suggested by the geometric defi-

nition of div �E at the point (0, 0, 0).
(c) Explain what your answers mean in terms of charge

density.

32. Due to roadwork ahead, the traffic on a highway slows
linearly from 55 miles/hour to 15 miles/hour over a
2000-foot stretch of road, then crawls along at 15
miles/hour for 5000 feet, then speeds back up linearly to
55 miles/hour in the next 1000 feet, after which it moves
steadily at 55 miles/hour.

(a) Sketch a velocity vector field for the traffic flow.
(b) Write a formula for the velocity vector field �v

(miles/hour) as a function of the distance x feet from
the initial point of slowdown. (Take the direction of
motion to be�i and consider the various sections of
the road separately.)

(c) Compute div �v at x = 1000, 5000, 7500, 10,000.
Be sure to include the proper units.

33. The velocity field �v in Problem 32 does not give a com-
plete description of the traffic flow, for it takes no account
of the spacing between vehicles. Let ρ be the density
(cars/mile) of highway, where we assume that ρ depends
only on x.

(a) Using your highway experience, arrange in ascend-
ing order: ρ(0), ρ(1000), ρ(5000).

(b) What are the units and interpretation of the vector
field ρ�v ?

(c) Would you expect ρ�v to be constant? Why? What
does this mean for div(ρ�v )?

(d) Determine ρ(x) if ρ(0) = 75 cars/mile and ρ�v is
constant.

(e) If the highway has two lanes, find the approximate
number of feet between cars at x = 0, 1000, and
5000.

34. Let �r = x�i + y�j + z�k and �c = c1�i + c2�j + c3�k , a
constant vector; let S be a sphere of radius R centered at
the origin. Find

(a) div(�r × �c ) (b)
∫
S
(�r × �c ) · d �A

35. Show that if �a is a constant vector and f(x, y, z) is a
function, then div(f�a ) = (grad f) · �a .

36. Show that if g(x, y, z) is a scalar-valued function and
�F (x, y, z) is a vector field, then

div(g �F ) = (grad g) · �F + g div �F .

37. If f(x, y, z) and g(x, y, z) are functions with continuous
second partial derivatives, show that

div(grad f × grad g) = 0.

In Problems 38–40, use Problems 36 and 37 to find the diver-
gence of the vector field. The vectors �a and�b are constant.

38. �F =
1

‖�r ‖p�a × �r 39. �B =
1

xa
�r

40. �G = (�b · �r )�a × �r
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41. Let �F (x, y) = u(x, y)�i + v(x, y)�j be a 2-dimensional
vector field. Let F (x, y) be the magnitude of �F and let
θ(x, y) be the angle of �F with the positive x-axis at the
point (x, y), so that u = F cos θ and v = F sin θ. Let
�T be the unit vector in the direction of �F , and let �N be
the unit vector in the direction of �k × �F , perpendicular
to �F . Show that

div �F = Fθ 
N + F
T .

This problem shows that the divergence of the vector
field �F is the sum of two terms. The first term, Fθ 
N ,
is due to changes in the direction of �F perpendicular to
the flow lines, so it reflects the extent to which flow lines
of �F fail to be parallel. The second term, F
T , is due to
changes in the magnitude of �F along flow lines of �F .

42. In Problem 64 on page 1015 it was shown that the rate
of heat loss from a volume V in a region of non-uniform
temperature equals k

∫
S
(grad T ) ·d �A , where k is a con-

stant, S is the surface bounding V , and T (x, y, z) is the
temperature at the point (x, y, z) in space. By taking the
limit as V contracts to a point, show that, at that point,

∂T

∂t
= B div grad T

where B is a constant with respect to x, y, z, but may
depend on time, t.

43. A vector field, �v , in the plane is a point source at the ori-
gin if its direction is away from the origin at every point,
its magnitude depends only on the distance from the ori-
gin, and its divergence is zero away from the origin.

(a) Explain why a point source at the origin must be of
the form �v =

[
f(x2 + y2)

]
(x�i + y�j ) for some

positive function f .
(b) Show that �v = K(x2 + y2)−1(x�i + y�j ) is a point

source at the origin if K > 0.
(c) What is the magnitude ‖�v ‖ of the source in part (b)

as a function of the distance from its center?
(d) Sketch the vector field �v = (x2+y2)−1(x�i +y�j ).
(e) Show that φ = K

2
log(x2 + y2) is a potential func-

tion for the source in part (b).

44. A vector field, �v , in the plane is a point sink at the ori-
gin if its direction is toward the origin at every point, its
magnitude depends only on the distance from the origin,
and its divergence is zero away from the origin.

(a) Explain why a point sink at the origin must be of
the form �v =

[
f(x2 + y2)

]
(x�i + y�j ) for some

negative function f .
(b) Show that �v = K(x2 + y2)−1(x�i + y�j ) is a point

sink at the origin if K < 0.
(c) Determine the magnitude ‖�v ‖ of the sink in part (b)

as a function of the distance from its center.
(d) Sketch �v = −(x2 + y2)−1(x�i + y�j ).
(e) Show that φ = K

2
log(x2 + y2) is a potential func-

tion for the sink in part (b).

Strengthen Your Understanding

In Problems 45–47, explain what is wrong with the statement.

45. div(2x�i ) = 2�i .

46. For �F (x, y, z) = (x2+y)�i +(2y+z)�j −z2�k we have
div �F = 2x�i + 2�j − 2z�k .

47. The divergence of f(x, y, z) = x2 + yz is given by
div f(x, y, z) = 2x+ z + y.

In Problems 48–50, give an example of:

48. A vector field �F (x, y, z) whose divergence is a nonzero
constant.

49. A nonzero vector field �F (x, y, z) whose divergence is
zero.

50. A vector field that is not divergence free.

Are the statements in Problems 51–63 true or false? Give rea-
sons for your answer.

51. div(�F + �G ) = div �F + div �G

52. grad(�F · �G ) = �F (div �G ) + (div �F ) �G

53. div �F is a scalar whose value can vary from point to
point.

54. If �F is a vector field in 3-space, then div�F is also a vec-
tor field.

55. A constant vector field �F = a�i + b�j + c�k has zero
divergence.

56. If a vector field �F in 3-space has zero divergence then
�F = a�i + b�j + c�k where a, b and c are constants.

57. If �F is a vector field in 3-space, and f is a scalar func-
tion, then div(f �F ) = fdiv �F .

58. If �F is a vector field in 3-space, and �F = grad f, then
div �F = 0.

59. If �F is a vector field in 3-space, then grad(div �F ) = �0 .

60. The field �F (�r ) = �r is divergence free.

61. If f(x, y, z) is any given continuous scalar function, then
there is at least one vector field �F such that div �F = f.

62. If �F and �G are vector fields satisfying div�F = div �G
then �F = �G .

63. There exist a scalar function f and a vector field �F sat-
isfying div(grad f) = grad(div �F ).
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64. For �r = x�i + y�j + z�k , an arbitrary function f(x, y, z)
and an arbitrary vector field, �F (x, y, z), which of the
following is a vector field, and which is a constant vector
field?

(a) grad f (b) (div �F )�i (c) (div �r )�i

(d) (div�i )�F (e) grad(div �F )

19.4 THE DIVERGENCE THEOREM

The Divergence Theorem is a multivariable analogue of the Fundamental Theorem of Calculus;
it says that the integral of the flux density over a solid region equals the flux integral through the
boundary of the region.

The Boundary of a Solid Region
A solid region is an open region in 3-space. The boundary of a solid region may be thought of as the
skin between the interior of the region and the space around it. For example, the boundary of a solid
ball is a spherical surface, the boundary of a solid cube is its six faces, and the boundary of a solid
cylinder is a tube sealed at both ends by disks. (See Figure 19.37). A surface which is the boundary
of a solid region is called a closed surface.

W = Ball
S = Sphere

W =Solid Cylinder
S = Tube and two disks

W = Solid cube
S = 6 square faces

Figure 19.37: Several solid regions and their boundaries

Calculating the Flux from the Flux Density
Consider a solid region W in 3-space whose boundary is the closed surface S. There are two ways
to find the total flux of a vector field �F out of W . One is to calculate the flux of �F through S:

Flux out of W =

∫
S

�F · d �A .

Another way is to use div �F , which gives the flux density at any point in W . We subdivide W
into small boxes, as shown in Figure 19.38. Then, for a small box of volume ΔV ,

Flux out of box ≈ Flux density · Volume = div �F ΔV.

What happens when we add the fluxes out of all the boxes? Consider two adjacent boxes, as
shown in Figure 19.39. The flux through the shared wall is counted twice, once out of the box on
each side. When we add the fluxes, these two contributions cancel, so we get the flux out of the solid
region formed by joining the two boxes. Continuing in this way, we find that

� ΔV

Figure 19.38: Subdivision of
region into small boxes

�

Fluxes through
inner wall cancel

Figure 19.39: Adding the flux out
of adjacent boxes
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Flux out of W =
∑

Flux out of small boxes ≈
∑

div �F ΔV.

We have approximated the flux by a Riemann sum. As the subdivision gets finer, the sum approaches
an integral, so

Flux out of W =

∫
W

div �F dV.

We have calculated the flux in two ways, as a flux integral and as a volume integral. Therefore,
these two integrals must be equal. This result holds even if W is not a rectangular solid. Thus, we
have the following result.3

Theorem 19.1: The Divergence Theorem

If W is a solid region whose boundary S is a piecewise smooth surface, and if �F is a smooth
vector field on an open region containing W and S, then∫

S

�F · d �A =

∫
W

div �F dV,

where S is given the outward orientation.

Example 1 Use the Divergence Theorem to calculate the flux of the vector field �F (�r ) = �r through the sphere
of radius a centered at the origin.

Solution In Example 5 on page 1010 we computed the flux using the definition of a flux integral, giving∫
S

�r · d �A = 4πa3.

Now we use div �F = div(x�i + y�j + z�k ) = 3 and the Divergence Theorem:∫
S

�r · d �A =

∫
W

div �F dV =

∫
W

3 dV = 3 ·
4

3
πa3 = 4πa3.

Example 2 Use the Divergence Theorem to calculate the flux of the vector field

�F (x, y, z) = (x2
+ y2)�i + (y2 + z2)�j + (x2

+ z2)�k

through the cube in Figure 19.40.

x y

z

1 1

1

Figure 19.40

Solution The divergence of �F is div �F = 2x + 2y + 2z. Since div �F is positive everywhere in the first
quadrant, the flux through S is positive. By the Divergence Theorem,

3A proof of the Divergence Theorem using the coordinate definition of the divergence can be found in the online supple-
ment at www.wiley.com/college/hughes-hallett.
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S

�F · d �A =

∫ 1

0

∫ 1

0

∫ 1

0

2(x+ y + z) dx dy dz =

∫ 1

0

∫ 1

0

(x2
+ 2x(y + z))

∣∣∣∣1
0

dy dz

=

∫ 1

0

∫ 1

0

1 + 2(y + z) dy dz =

∫ 1

0

(y + y2 + 2yz)

∣∣∣∣1
0

dz

=

∫ 1

0

(2 + 2z) dz = (2z + z2)

∣∣∣∣1
0

= 3.

The Divergence Theorem and Divergence-Free Vector Fields
An important application of the Divergence Theorem is the study of divergence-free vector fields.

Example 3 In Example 3 on page 1028 we saw that the following vector field is divergence free:

�F (�r ) =
�r

‖�r ‖3
, �r �= �0 .

Calculate
∫
S
�F · d �A , using the Divergence Theorem if possible, for the following surfaces:

(a) S1 is the sphere of radius a centered at the origin.
(b) S2 is the sphere of radius a centered at the point (2a, 0, 0).

Solution (a) We cannot use the Divergence Theorem directly because �F is not defined everywhere inside
the sphere (it is not defined at the origin). Since �F points outward everywhere on S1, the flux
out of S1 is positive. On S1,

�F · d �A = ‖�F ‖dA =
a

a3
dA,

so ∫
S1

�F · d �A =
1

a2

∫
S1

dA =
1

a2
(Area of S1) =

1

a2
4πa2 = 4π.

Notice that the flux is not zero, although div �F is zero everywhere it is defined.
(b) Suppose W is the solid region enclosed by S2. Since div �F = 0 everywhere in W , we can use

the Divergence Theorem in this case, giving∫
S2

�F · d �A =

∫
W

div �F dV =

∫
W

0 dV = 0.

The Divergence Theorem applies to any solid region W and its boundary S, even in cases
where the boundary consists of two or more surfaces. For example, if W is the solid region between
the sphere S1 of radius 1 and the sphere S2 of radius 2, both centered at the same point, then
the boundary of W consists of both S1 and S2. The Divergence Theorem requires the outward
orientation, which on S2 points away from the center and on S1 points toward the center. (See
Figure 19.41.)

S2

�

S1

�W

Figure 19.41: Cut-away view of the region W between two spheres,
showing orientation vectors
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Example 4 Let S1 be the sphere of radius 1 centered at the origin and let S2 be the ellipsoid x2+y2+4z2 = 16,
both oriented outward. For

�F (�r ) =
�r

‖�r ‖3
, �r �= �0 ,

show that ∫
S1

�F · d �A =

∫
S2

�F · d �A .

Solution The ellipsoid contains the sphere; let W be the solid region between them. Since W does not contain
the origin, div �F is defined and equal to zero everywhere in W . Thus, if S is the boundary of W ,
then ∫

S

�F · d �A =

∫
W

div �F dV = 0.

But S consists of S2 oriented outward and S1 oriented inward, so

0 =

∫
S

�F · d �A =

∫
S2

�F · d �A −

∫
S1

�F · d �A ,

and thus ∫
S2

�F · d �A =

∫
S1

�F · d �A .

In Example 3 we showed that
∫
S1

�F · d �A = 4π, so
∫
S2

�F · d �A = 4π also. Note that it would have
been more difficult to compute the integral over the ellipsoid directly.

Electric Fields

The electric field produced by a positive point charge q placed at the origin is

�E = q
�r

‖�r ‖3
.

Using Example 3, we see that the flux of the electric field through any sphere centered at the origin
is 4πq. In fact, using the idea of Example 4, we can show that the flux of �E through any closed
surface containing the origin is 4πq. See Problems 36 and 37 on page 1039. This is a special case of
Gauss’s Law, which states that the flux of an electric field through any closed surface is proportional
to the total charge enclosed by the surface. Carl Friedrich Gauss (1777–1855) also discovered the
Divergence Theorem, which is sometimes called Gauss’s Theorem.

Exercises and Problems for Section 19.4
Exercises

For Exercises 1–5, compute the flux integral
∫
S
�F ·d �A in two

ways, if possible, directly and using the Divergence Theorem.
In each case, S is closed and oriented outward.

1. �F (�r ) = �r and S is the cube enclosing the volume
0 ≤ x ≤ 2, 0 ≤ y ≤ 2, and 0 ≤ z ≤ 2.

2. �F = y�j and S is a closed vertical cylinder of height 2,
with its base a circle of radius 1 on the xy-plane, centered
at the origin.

3. �F = x2�i +2y2�j +3z2�k and S is the surface of the box
with faces x = 1, x = 2, y = 0, y = 1, z = 0, z = 1.

4. �F = (z2 + x)�i + (x2 + y)�j + (y2 + z)�k and S is the
closed cylinder x2 + z2 = 1, with 0 ≤ y ≤ 1, oriented
outward.

5. �F = −z�i + x�k and S is a square pyramid with height
3 and base on the xy-plane of side length 1.

Find the flux of the vector fields in Exercises 6–12 out of the
closed box 0 ≤ x ≤ 2, 0 ≤ y ≤ 3, 0 ≤ z ≤ 4.

6. �F = 4�i + 7�j − �k

7. �G = y�i + z�k
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8. �H = xy�i + z�j + y�k

9. �J = xy2�j + x�k

10. �N = ez�i + sin(xy)�k

11. �M = ((3x+ 4y)�i + (4y + 5z)�j + (5z + 3x)�k

12. �M where div �M = xy + 5

Problems

13. Find the flux of �F = z�i + y�j + x�k out of a sphere of
radius 3 centered at the origin.

14. Find the flux of �F = xy�i + yz�j + zx�k out of a sphere
of radius 1 centered at the origin.

15. Find the flux of �F = x3�i + y3�j + z3�k through the
closed surface bounding the solid region x2 + y2 ≤ 4,
0 ≤ z ≤ 5, oriented outward.

16. The region W lies between the spheres x2+y2+z2 = 4

and x2+y2+z2 = 9 and within the cone z =
√

x2 + y2

with z ≥ 0; its boundary is the closed surface, S, ori-
ented outward. Find the flux of �F = x3�i + y3�j + z3�k
out of S.

17. Find the flux of �F through the closed cylinder of ra-
dius 2, centered on the z-axis, with 3 ≤ z ≤ 7, if
�F = (x+ 3eyz)�i + (ln(x2z2 + 1) + y)�j + z�k .

18. Find the flux of �F = ey
2z2�i + (tan(0.001x2z2) +

y2)�j + (ln(1 + x2y2) + z2)�k out of the closed box
0 ≤ x ≤ 5, 0 ≤ y ≤ 4, 0 ≤ z ≤ 3.

19. Find the flux of �F = x2�i + z�j + y�k out of the closed
cone x =

√
y2 + z2, with 0 ≤ x ≤ 1.

20. Suppose �F is a vector field with div �F = 10. Find the
flux of �F out of a cylinder of height a and radius a, cen-
tered on the z-axis and with base in the xy-plane.

21. A cone has its tip at the point (0, 0, 5) and its base the
disk D, x2 + y2 ≤ 1, in the xy-plane. The surface of the
cone is the curved and slanted face, S, oriented upward,
and the flat base, D, oriented downward. The flux of the
constant vector field �F = a�i + b�j + c�k through S is
given by ∫

S

�F · d �A = 3.22.

Is it possible to calculate
∫
D

�F · d �A ? If so, give the
answer. If not, explain what additional information you
would need to be able to make this calculation.

22. If V is a volume surrounded by a closed surface S, show
that 1

3

∫
S
�r · d �A = V.

23. A vector field �F satisfies div �F = 0 everywhere. Show
that
∫
S
�F · d �A = 0 for every closed surface S.

24. Let �r = x�i + y�j + z�k and let �F be the vector field
given by

�F =
�r

||�r ||3 .

(a) Calculate the flux of �F out of the unit sphere x2 +
y2 + z2 = 1 oriented outward.

(b) Calculate div �F . Show your work and simplify your
answer completely.

(c) Use your answers to parts (a) and (b) to calculate the
flux out of a box of side 10 centered at the origin and
with sides parallel to the coordinate planes. (The box
is also oriented outward.)

25. (a) Find div(�r /||�r ||2) where �r = x�i +y�j for �r �= �0 .
(b) Can you use the Divergence Theorem to compute

the flux of �r /||�r ||2 out of a closed cylinder of ra-
dius 1, length 2, centered at the origin, and with its
axis along the z-axis?

(c) Compute the flux of �r /||�r ||2 out of the cylinder in
part (b).

(d) Find the flux of �r /||�r ||2 out of a closed cylinder of
radius 2, length 2, centered at the origin, and with its
axis along the z-axis.

26. Let S be the cube in the first quadrant with side 2, one
corner at the origin and edges parallel to the axes. Let

�F 1 = (xy2 + 3xz2)�i + (3x2y + 2yz2)�j + 3zy2�k

�F 2 = (xy2 + 5eyz)�i + (yz2 + 7 sin(xz))�j + (x2z + cos(xy))�k

�F 3 =

(
xz2 +

x3

3

)
�i +

(
yz2 +

y3

3

)
�j +

(
zy2 +

z3

3

)
�k .

Arrange the flux integrals of �F 1, �F 2, �F 3 out of S in
increasing order.

27. Let div �F = 2(6− x) and 0 ≤ a, b, c ≤ 10.

(a) Find the flux of �F out of the rectangular solid 0 ≤
x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c.

(b) For what values of a, b, c is the flux largest? What is
that largest flux?

28. Assume �r �= �0 . Let �F = �r /||�r ||3.

(a) Calculate the flux of �F out of the unit sphere x2 +
y2 + z2 = 1 oriented outward.

(b) Calculate div �F . Simplify your answer completely.
(c) Use your answer to parts (a) and (b) to calculate the

flux out of a box of side 10 centered at the origin and
with sides parallel to the coordinate planes. (The box
is also oriented outward.)

In Problems 29–30, find the flux of �F = �r /||�r ||3 through
the surface. [Hint: Use the method of Problem 28.]

29. S is the ellipsoid x2 + 2y2 + 3z2 = 6.

30. S is the closed cylinder y2 + z2 = 4, −2 ≤ x ≤ 2.
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31. (a) Let div �F = x2+y2+z2+3. Calculate
∫
S1

�F ·d �A
where S1 is the sphere of radius 1 centered at the ori-
gin.

(b) Let S2 be the sphere of radius 2 centered at the ori-
gin; let S3 be the sphere of radius 3 centered at the
origin; let S4 be the box of side 6 centered at the
origin with edges parallel to the axes. Without cal-
culating them, arrange the following integrals in in-
creasing order:∫

S2

�F · d �A ,

∫
S3

�F · d �A ,

∫
S4

�F · d �A .

32. Suppose div �F = xyz2.

(a) Find div �F at the point (1, 2, 1). [Note: You are
given div �F , not �F .]

(b) Using your answer to part (a), but no other informa-
tion about the vector field �F , estimate the flux out of
a small box of side 0.2 centered at the point (1, 2, 1)
and with edges parallel to the axes.

(c) Without computing the vector field �F , calculate the
exact flux out of the box.

33. Suppose div �F = x2+y2+3. Find a surface S such that∫
S
�F · d �A is negative, or explain why no such surface

exists.

34. As a result of radioactive decay, heat is generated uni-
formly throughout the interior of the earth at a rate of 30
watts per cubic kilometer. (A watt is a rate of heat pro-
duction.) The heat then flows to the earth’s surface where
it is lost to space. Let �F (x, y, z) denote the rate of flow
of heat measured in watts per square kilometer. By def-
inition, the flux of �F across a surface is the quantity of
heat flowing through the surface per unit of time.

(a) What is the value of div �F ? Include units.
(b) Assume the heat flows outward symmetrically. Ver-

ify that �F = α�r , where �r = x�i + y�j + z�k and α
is a suitable constant, satisfies the given conditions.
Find α.

(c) Let T (x, y, z) denote the temperature inside the
earth. Heat flows according to the equation �F =
−k grad T , where k is a constant. Explain why this
makes sense physically.

(d) If T is in ◦C, then k = 30,000 watts/km◦C. Assum-
ing the earth is a sphere with radius 6400 km and
surface temperature 20◦C, what is the temperature
at the center?

35. If a surface S is submerged in an incompressible fluid, a
force �F is exerted on one side of the surface by the pres-
sure in the fluid. If the z-axis is vertical, with the positive
direction upward and the fluid level at z = 0, then the
component of force in the direction of a unit vector �u is
given by the following:

�F · �u = −
∫
S

zδg�u · d �A ,

where δ is the density of the fluid (mass/volume), g is the
acceleration due to gravity, and the surface is oriented
away from the side on which the force is exerted. In this
problem we consider a totally submerged closed surface
enclosing a volume V . We are interested in the force of
the liquid on the external surface, so S is oriented inward.
Use the Divergence Theorem to show that:

(a) The force in the�i and �j directions is zero.
(b) The force in the �k direction is δgV , the weight of

the volume of fluid with the same volume as V . This
is Archimedes’ Principle.

36. According to Coulomb’s Law, the electrostatic field �E at
the point �r due to a charge q at the origin is given by

�E (�r ) = q
�r

‖�r ‖3 .

(a) Compute div �E .
(b) Let Sa be the sphere of radius a centered at the ori-

gin and oriented outward. Show that the flux of �E
through Sa is 4πq.

(c) Could you have used the Divergence Theorem in
part (b)? Explain why or why not.

(d) Let S be an arbitrary, closed, outward-oriented sur-
face surrounding the origin. Show that the flux of
�E through S is again 4πq. [Hint: Apply the Diver-
gence Theorem to the solid region lying between a
small sphere Sa and the surface S.]

37. According to Coulomb’s Law, the electric field �E at the
point �r due to a charge q at the point �r 0 is given by

�E (�r ) = q
(�r − �r 0)

‖�r − �r 0‖3 .

Suppose S is a closed, outward-oriented surface and that
�r 0 does not lie on S. Use Problem 36 to show that∫

S

�E · d �A =
{
4πq if q lies inside S,
0 if q lies outside S.

Strengthen Your Understanding

In Problems 38–39, explain what is wrong with the statement.

38. The flux integral
∫
S
�F · d �A can be evaluated using the

Divergence Theorem, where �F = 2x�i − 3�j and S
is the triangular surface with corners (1, 0, 0), (0, 1, 0),
(0, 0, 1) oriented away from the origin.

39. If S is the boundary of a solid region W , where S is ori-
ented outward, and �F is a vector field, then∫

S

div �F d �A =

∫
W

�F dV.
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In Problems 40–41, give an example of:

40. A surface S that is the boundary of a solid region such
that
∫
S
�F · d �A = 0 if �F (x, y, z) = y�i + xz�j + y2�k .

41. A vector field �F such that the flux of �F out of a sphere
of radius 1 centered at the origin is 3.

Are the statements in Problems 42–46 true or false? The
smooth vector field �F is defined everywhere in 3-space and
has constant divergence equal to 4.

42. The field �F has a net inflow per unit volume at the point
(−3, 4, 0).

43. The vector field �F could be the field �F = x�i+(3y)�j +

(y − 5x)�k .

44. The vector field �F could be a constant field.

45. The flux of �F through a circle of radius 5 lying anywhere
on the xy-plane and oriented upward is 4(π52).

46. The flux of �F through a closed cylinder of radius 1 cen-
tered along the y-axis, 0 ≤ y ≤ 3 and oriented outward
is 4(3π).

Are the statements in Problems 47–55 true or false? Give rea-
sons for your answer.

47.
∫
S
�F · d �A = div �F .

48. If �F is a vector field in 3-space, and W is a solid re-
gion with boundary surface S, then

∫
S
div �F · d �A =∫

W
�F dV .

49. If �F is a divergence-free vector field in 3-space, and S is
a closed surface oriented inward, then

∫
S
�F · d �A = 0.

50. If �F is a vector field in 3-space satisfying div �F = 1,
and S is a closed surface oriented outward, then

∫
S
�F ·

d �A is equal to the volume enclosed by S.

51. Let W be the solid region between the sphere S1 of ra-
dius 1 and S2 of radius 2, both centered at the origin.
If �F is a vector field in 3-space, then

∫
W

div �F dV =∫
S2

�F · d �A −
∫
S1

�F · d �A , where both S1 and S2 are
oriented outward.

52. Let S1 be the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = 0 ori-
ented downward and let S2 be the square 0 ≤ x ≤ 1, 0 ≤
y ≤ 1, z = 1 oriented upward. If �F is a vector field, then∫
W

div �F dV =
∫
S2

�F · d �A +
∫
S1

�F · d �A , where W

is the solid cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

53. Let S1 be the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = 0 ori-
ented downward and let S2 be the square 0 ≤ x ≤ 1, 0 ≤
y ≤ 1, z = 1 oriented upward. If �F = cos(xyz)�k , then∫
W

div �F dV =
∫
S2

�F · d �A +
∫
S1

�F · d �A , where W

is the solid cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

54. If S is a sphere of radius 1, centered at the origin, oriented
outward, and �F is a vector field satisfying

∫
S
�F ·d �A =

0, then div �F = 0 at all points inside S.

55. Let Sh be the surface consisting of a cylinder of height
h, closed at the top. The curved sides are x2 + y2 = 1,
for 0 ≤ z ≤ h, and the top x2 + y2 ≤ 1, for z = h, ori-
ented outward. If �F is divergence free, then

∫
S
h

�F ·d �A
is independent of the height h.

56. Let �F = (5x + 7y)�i + (7y + 9z)�j + (9z + 11x)�k ,
and let Qi be the flux of �F through the surfaces Si for
i =1–4. Arrange Qi in ascending order, where

(a) S1 is the sphere of radius 2 centered at the origin
(b) S2 is the cube of side 2 centered at the origin and

with sides parallel to the axes
(c) S3 is the sphere of radius 1 centered at the origin
(d) S4 is a pyramid with all four corners lying on S3

CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• Flux Integrals
Oriented surfaces, definition of flux through a surface,
definition of flux integral as a limit of a Riemann sum

• Calculating flux integrals over surfaces
Graphs: d �A = (−fx�i − fy�j + �k ) dx dy
Cylinders: d �A = (cos θ�i + sin θ�j )Rdz dθ
Spheres:
d �A = (sinφ cos θ�i + sinφ sin θ�j + cosφ�k )R2 dφdθ

• Divergence
Geometric and coordinate definition of divergence, cal-
culating divergence, interpretation in terms of outflow
per unit volume.

• The Divergence Theorem
Statement of the theorem, divergence-free fields, har-
monic functions.

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER NINETEEN

Exercises

1. Let S be the disk of radius 5 perpendicular to the y-axis,
centered at (0, 7, 0) and oriented toward the origin. Is∫
S

(3�i + 4�j ) · d �A a vector or a scalar? Calculate it.

2. Is div

(
y�i − x�j

x2 + y2

)
a vector or a scalar? Calculate it.

3. Let �F (x, y, z) = �i + 2�j + �k . Each of the surfaces
in (a)–(e) are squares of side length 4, with orientation
given by the normal vector shown. Compute the flux of
�F through these surfaces.
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x
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y
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z(d)

x

y
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In Exercises 4–7, are the flux integrals positive, negative, or
zero? Let S be a disk of radius 3 in the plane x = 7, centered
on the x-axis and oriented toward the origin.

4.

∫
S

(x�j + y�k ) · d �A 5.

∫
S

(x�i + y�k ) · d �A

6.

∫
S

(y�i + x�k ) · d �A

7.

∫
S

((x− 10)�i + (x+ 10)�j ) · d �A

In Exercises 8–23, find the flux of the vector field through the
surface S.

8. �F = 2�i + 3�j through a disk of radius 5 in the plane
y = 2 oriented in the direction of increasing y.

9. �F =�i + 2�j through a sphere of radius 3 at the origin.

10. �F = y�j through the square of side 4 in the plane y = 5.
The square is centered on the y-axis, has sides parallel to
the axes, and is oriented in the positive y-direction.

11. �F = x�i through a square of side 3 in the plane x = −5.
The square is centered on the x-axis, has sides parallel to
the axes, and is oriented in the positive x-direction.

12. �F = (y+3)�j through a square of side 2 in the xz-plane,
oriented in the negative y-direction.

13. �F = x�k through the square 0 ≤ x ≤ 3, 0 ≤ y ≤ 3 in
the xy-plane, with sides parallel to the axes, and oriented
upward.

14. �F = �i − �j − �k through a cube of side 2 with sides
parallel to the axes.

15. �F = 6�i + x2�j − �k , through a square of side 2 in the
plane z = 3, oriented upward.

16. �F = (x2 + y2)�i + xy�j and S is the square in the
xy-plane with corners at (1, 1, 0), (−1, 1, 0), (1,−1, 0),
(−1,−1, 0), and oriented upward.

17. �F = z�i + y�j + 2x�k and S is the rectangle z = 4,
0 ≤ x ≤ 2, 0 ≤ y ≤ 3, oriented in the positive z-
direction.

18. �F = (x + cos z)�i + y�j + 2x�k and S is the rectangle
x = 2, 0 ≤ y ≤ 3, 0 ≤ z ≤ 4, oriented in the positive
x-direction.

19. �F = x2�i + (x + ey)�j − �k , and S is the rectangle
y = −1, 0 ≤ x ≤ 2, 0 ≤ z ≤ 4, oriented in the negative
y-direction.

20. �F = (5 + xy)�i + z�j + yz�k and S is the 2× 2 square
plate in the yz-plane centered at the origin, oriented in
the positive x-direction.

21. �F = x�i + y�j and S is the surface of a closed cylinder
of radius 2 and height 3 centered on the z-axis with its
base in the xy-plane.

22. �F = −y�i + x�j + z�k and S is the surface of a closed
cylinder of radius 1 centered on the z-axis with base in
the plane z = −1 and top in the plane z = 1.

23. �F = x2�i +y2�j +z�k and S is the cone z =
√

x2 + y2,
oriented upward with x2 + y2 ≤ 1, x ≥ 0, y ≥ 0.

In Problems 24–27, give conditions on one or more of the con-
stants a, b, c to ensure that the flux integral

∫
S
�F ·d �A has the

given sign.

24. Positive for �F = a�i + b�j + c�k and S is a disk perpen-
dicular to the y-axis, through (0, 5, 0) and oriented away
from the origin.

25. Negative for �F = a�i + b�j + c�k and S is the upper
half of the unit sphere centered at the origin and oriented
downward.

26. Positive for �F = ax�i + ay�j + az�k and S is a sphere
centered at the origin.

27. Positive for �F = a�i + b�j + c�k and S is the triangle
cut off by x + y + z = 1 in the first quadrant, oriented
upward.

28. Calculate the flux of �F = xy�i + yz�j + zx�k out of the
closed box 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1
(a) Directly (b) Using the Divergence Theorem.

29. Compute the flux integral
∫
S
(x3�i + 2y�j + 3�k ) · d �A ,

where S is the 2× 2× 2 rectangular surface centered at
the origin, oriented outward. Do this in two ways:
(a) Directly (b) Using the Divergence Theorem

In Exercises 30–35, use the Divergence Theorem to calculate
the flux of the vector field out of the surface.

30. �F = −x�i +2y�j +(3+2z)�k out of the sphere of radius
2 centered at (1, 2, 3).

31. �F = (2x+ y)�i + (3y+ z)�j + (4z + x)�k and S is the
sphere of radius 5 centered at the origin.
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32. �F = x2�i + y2�j + exy�k and S is the cube of side 3
in the first octant with one corner at the origin, and sides
parallel to the axes.

33. �F = (ez + x)�i + (2y + sin x)�j +
(
ex

2 − z
)
�k and

S is the sphere of radius 1 centered at (2, 1, 0).

34. �F = x3�i + y3�j +
(
x2 + y2

)
�k and S is the closed

cylinder x2 + y2 = 4 with 0 ≤ z ≤ 5.

35. �F = x�i + y�j + z�k and S is the open cylinder (ends
not included) x2 + y2 ≤ 1, with 0 ≤ z ≤ 1, oriented
outward.

Problems

36. Arrange the following flux integrals,
∫
S
i

�F · d �A , with

i = 1, 2, 3, 4, in ascending order if �F = −�i − �j + �k
and if the Si are the following surfaces:

• S1 is a horizontal square of side 1 with one corner
at (0, 0, 2), above the first quadrant of the xy-plane,
oriented upward.

• S2 is a horizontal square of side 1 with one corner at
(0, 0, 3), above the third quadrant of the xy-plane,
oriented upward.

• S3 is a square of side
√
2 in the xz-plane with one

corner at the origin, one edge along the positive x-
axis, one along the negative z-axis, oriented in the
negative y- direction.

• S4 is a square of side
√
2 with one corner at the ori-

gin, one edge along the positive y-axis, one corner
at (1, 0, 1), oriented upward.

37. Let f(x, y, z) = xy + exyz. Find

(a) grad f
(b)
∫
C
grad f · d�r , where C is the line from the point

(1, 1, 1) to (2, 3, 4).
(c)
∫
S
grad f · d �A , where S is the quarter disk in the

xy-plane x2 + y2 ≤ 4, x ≥ 0, y ≥ 0, oriented up-
ward.

38. The flux of the constant vector field a�i +b�j +c�k through
the square of side 2 in the plane x = 5, oriented in the
positive x-direction, is 24. Which of the constants a, b, c
can be determined from the information given? Give the
value(s).

39. (a) Let �F = (x2 + 4)�i + y�j . Which of the following
flux integrals is the largest? Explain.∫

S1

�F ·d �A , where S1 is the disk of radius 1 in
the plane x = 2 centered on the x-axis and oriented
away from the origin.∫

S2

�F ·d �A , where S2 is the disk of radius 1 in
the plane y = 4 centered on the y-axis and oriented
away from the origin.∫

S3

�F · d �A , where S3 is the disk of radius 1
in the plane x = −3 centered on the x-axis and ori-
ented toward the origin.

(b) Calculate the integral you chose in part (a).

40. Figure 19.42 shows a cross-section of the earth’s mag-
netic field. Assume that the earth’s magnetic and geo-
graphic poles coincide. Is the magnetic flux through a
horizontal plate, oriented skyward, positive, negative, or
zero if the plate is

(a) At the north pole? (b) At the south pole?
(c) On the equator?

South pole

North pole

Figure 19.42

41. (a) Let div(�F ) = x2 + y2 − z2. Estimate the flux out
of a small sphere of radius 0.1 centered at each of
the following points

(i) (2, 1, 1) (ii) (0, 0, 1)

(b) What do the signs of your answers to part (a) tell you
about the vector field near each of these two points?

For Problems 42–44,

(a) Find the flux of the given vector field out of a cube in the
first octant with edge length c, one corner at the origin
and edges along the axes.

(b) Use your answer to part (a) to find div �F at the origin
using the geometric definition.

(c) Compute div �F at the origin using partial derivatives.

42. �F = x�i

43. �F = 2�i + y�j + 3�k

44. �F = x�i + y�j

In Problems 45–49, calculate the flux of �F through the cylin-
der x2 + y2 = 2,−3 ≤ z ≤ 3 and its base, oriented outward.
The cylinder is open at the top.

45. �F = z2�i + x2�j + 5�k

46. �F = y2�i + z2�j + (x2 + y2)�k

47. �F = z�i + x�j + y�k

48. �F = y2�i + x2�j + 7z�k

49. �F = x3�i + y3�j + �k
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50. Find the constant vector field �F parallel to �i + �k and
giving a flux of −7 through S, the cone z = r, with
0 ≤ z ≤ 4, oriented upward.

51. (a) Find div(�r /||�r ||2) where �r = x�i +y�j for �r �= �0 .
(b) Where in 3-space is div(�r /||�r ||2) undefined?
(c) Find the flux of �r /||�r ||2 through the closed cylin-

der of radius 2, length 3, centered at (5, 0, 0), with
its axis parallel to the z-axis.

(d) Find the flux of �r /||�r ||2 through the curved sides of
the open cylinder in part (c).

52. (a) Let �F be a smooth vector field defined throughout
3-space. What must be true of �F if the flux of �F
through any closed surface is zero?

(b) What value of a ensures that the flux of �F =
a(ex+y2−x)�i +12y(1−ex)�j through any closed
surface is zero?

53. Let �a = a1
�i + a2

�j + a3
�k be a constant vector and let

�r = x�i + y�j + z�k .

(a) Calculate div(�r × �a ).
(b) Calculate the flux of �r × �a out of a cube of side 5

centered at the origin with edges parallel to the axes.

54. Find the flux of �F out of the closed surface S given by
x2 + y2 + z2 = 100. You are given that �F is contin-
uous, with div �F = 3 inside the cube −2 ≤ x ≤ 2,
−2 ≤ y ≤ 2, −2 ≤ z ≤ 2 and div �F = 5 outside the
cube.

55. The closed surface S consists of S1, the cone x =√
y2 + z2 for 0 ≤ x ≤ 2, and a disk S2. Let �F =

3x�i + 4y�j + 5z�k .

(a) In what plane does the disk S2 lie? How is it ori-
ented?

(b) Find the flux of �F through

(i) S2 (ii) S1

56. Find the flux integral, using �r = x�i + y�j + z�k .

(a)

∫
S1

�r ·d �A , where S1 is the disk x = 5, y2+z2 ≤ 7,

oriented away from the origin.

(b)

∫
S2

�r · d �A , where S2 is the closed cylinder y2 +

z2 = 7, 0 ≤ x ≤ 5.

(c)

∫
S3

�r · d �A , where S3 is the curved side of the open

cylinder y2 + z2 = 7, 0 ≤ x ≤ 5, oriented away
from the x-axis.

57. Let �F (x, y, z) = f1(x, y, z)�i + f2(x, y, z)�j + �k be
a vector field with the property that div �F = 5 every-
where. Let S be the hemisphere z = −

√
9− x2 − y2,

with its boundary in the xy-plane and oriented down-

ward. Find

∫
S

�F · d �A .

58. Let �F = �r /||�r ||3.

(a) Calculate div �F . Where is div �F undefined?

(b) Find
∫
S
�F · d �A where S is a sphere of radius 10

centered at the origin.
(c) Find

∫
B1

�F · d �A where B1 is a box of side 1 cen-

tered at the point (3, 0, 0) with sides parallel to the
axes.

(d) Find
∫
B2

�F · d �A where B2 is a box of side 1 cen-
tered at the origin with sides parallel to the axes.

(e) Using your results to parts (c) and (d), explain how,
with no further calculation, you can find the flux of
this vector field through any closed surface, provided
the origin does not lie on the surface.

59. The gravitational field, �F , of a planet of mass m at the
origin is given by

�F = −Gm
�r

‖�r ‖3 .

Use the Divergence Theorem to show that the flux of the
gravitational field through the sphere of radius a is inde-
pendent of a. [Hint: Consider the region bounded by two
concentric spheres.]

60. A basic property of the electric field �E is that its diver-
gence is zero at points where there is no charge. Suppose
that the only charge is along the z-axis, and that the elec-
tric field �E points radially out from the z-axis and its
magnitude depends only on the distance r from the z-
axis. Use the Divergence Theorem to show that the mag-
nitude of the field is proportional to 1/r. [Hint: Consider
a solid region consisting of a cylinder of finite length
whose axis is the z-axis, and with a smaller concentric
cylinder removed.]

61. A fluid is flowing along a cylindrical pipe of radius a in
the �i direction. The velocity of the fluid at a radial dis-
tance r from the center of the pipe is �v = u(1−r2/a2)�i .

(a) What is the significance of the constant u?
(b) What is the velocity of the fluid at the wall of the

pipe?
(c) Find the flux through a circular cross-section of the

pipe.

62. A closed surface S encloses a volume W . The function
ρ(x, y, z) gives the electrical charge density at points in
space. The vector field �J (x, y, z) gives the electric cur-
rent density at any point in space and is defined so that
the current through a small area d �A is given by

Current through small area ≈ �J · d �A .

(a) What do the following integrals represent, in terms
of electricity?

(i)

∫
W

ρ dV (ii)

∫
S

�J · d �A
(b) Using the fact that an electric current through a

surface is the rate at which electric charge passes
through the surface per unit time, explain why∫

S

�J · d �A = − ∂

∂t

(∫
W

ρ dV

)
.
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63. (a) A river flows across the xy-plane in the positive
x-direction and around a circular rock of radius 1
centered at the origin. The velocity of the river can
be modeled using the potential function φ = x +
(x/(x2 + y2)). Compute the velocity vector field,
�v = gradφ.

(b) Show that div �v = 0.
(c) Show that the flow of �v is tangent to the circle

x2 + y2 = 1. This means that no water crosses the
circle. The water on the outside must therefore all
flow around the circle.

(d) Use a computer to sketch the vector field �v in the
region outside the unit circle.

64. A vector field is a point source at the origin in 3-space

if its direction is away from the origin at every point, its
magnitude depends only on the distance from the origin,
and its divergence is zero except at the origin. (Such a
vector field might be used to model the photon flow out
of a star or the neutrino flow out of a supernova.)

(a) Show that �v = K(x2+y2+z2)−3/2(x�i+y�j +z�k )
is a point source at the origin if K > 0.

(b) Determine the magnitude ‖�v ‖ of the source in part
(a) as a function of the distance from its center.

(c) Compute the flux of �v through a sphere of radius r
centered at the origin.

(d) Compute the flux of �v through a closed surface that
does not contain the origin.

CAS Challenge Problems

65. Let S be the part of the ellipsoid x2 + y2 + 2z2 = 1 ly-
ing above the rectangle −1/2 ≤ x ≤ 1/2, −1/2 ≤ y ≤
1/2, oriented upward. For each vector field (a)–(c), say
whether you expect

∫
S
�F · d �A to be positive, negative,

or zero. Then evaluate the integral exactly using a com-
puter algebra system and find numerical approximations
for your answers. Describe and explain what you notice.

(a) �F = x�i
(b) �F = (x+ 1)�i
(c) �F = y�j

66. Let �F = (z+4)�k , and let S be the surface with normal
pointing in the direction of the negative y-axis parame-
terized, for 0 ≤ s ≤ 2, 0 ≤ t ≤ 2π, by

�r (s, t) = s2 cos t�i + s�j + s2 sin t�k .

(a) Sketch S and, without evaluating the integral, say
whether

∫
S
�F · d �A is positive, negative, or zero.

Give a geometric explanation for your answer.
(b) Evaluate the flux integral. Does it agree with your

answer to part (a)?

PROJECTS FOR CHAPTER NINETEEN

1. Solid Angle
Let

�F (x, y) =
x�i + y�j + z�k

(x2 + y2 + z2)3/2

and let oriented surfaces S1 and S2 be as in Figure 19.43. The surface S2 is on the unit sphere
centered at the origin. Lines from the origin to the boundary of S1 intersect the unit sphere at
the boundary of S2. Both surfaces are oriented away from the origin. Show that

(a) The divergence of �F is zero.
(b)
∫
S1

�F · d �A =
∫
S2

�F · d �A

(c)
∫
S1

�F · d�r = Ω, the area of S2. The value Ω is called the solid angle subtended by S1 at
the origin.

Figure 19.43
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2. Divergence of Spherically Symmetric Vector Fields
A vector field is spherically symmetric about the origin if, on every sphere centered at the

origin, it has constant magnitude and points either away from or toward the origin. A vector
field that is spherically symmetric about the origin can be written in terms of the spherical
coordinate ρ = ‖�r ‖ as �F = f(ρ)�e ρ where f is a function of the distance ρ from the origin,
f(0) = 0, and �e ρ is a unit vector pointing away from the origin.

(a) Show that

div �F =
1

ρ2
d

dρ

(
ρ2f(ρ)

)
, ρ �= 0.

(b) Use part (a) to show that if �F is a spherically symmetric vector field such that div �F = 0

away from the origin then, for some constant k,

�F = k
1

ρ2
�e ρ, ρ �= 0.

(c) Use part (a) to confirm the Divergence Theorem for the flux of a spherically symmetric
vector field through a sphere centered at the origin.

(d) A form of Gauss’s Law for an electric field �E states that div �E (�r ) = δ(�r ), where δ is a
scalar-valued function giving the density of electric charge at every point. Use Gauss’s Law
and part (a) to find the electric field when the charge density is

δ(�r ) =

{
δ0 ‖�r ‖ ≤ a

0 ‖�r ‖ > a,

for some nonnegative a. Assume that �E is spherically symmetric and continuous every-
where.

3. Gauss’s Law Applied to a Charged Wire and a Charged Sheet
Gauss’s Law states that the flux of an electric field through a closed surface, S, is proportional

to the quantity of charge, q, enclosed within S. That is,∫
S

�E · d �A = kq.

In this project we use Gauss’s Law to calculate the electric field of a uniformly charged wire in
part (a) and a flat sheet of charge in part (b).

(a) Consider the electric field due to an infinitely long, straight, uniformly charged wire. (There
is no current running through the wire—all charges are fixed.) Assuming that the wire is
infinitely long means that we can assume that the electric field is perpendicular to any
cylinder that has the wire as an axis and that the magnitude of the field is constant on any
such cylinder. Denote by Er the magnitude of the electric field due to the wire on a cylinder
of radius r. (See Figure 19.44.)

Imagine a closed surface S made up of two cylinders, one of radius a and one of
larger radius b, both coaxial with the wire, and the two washers that cap the ends. (See
Figure 19.45.) The outward orientation of S means that a normal on the outer cylinder
points away from the wire and a normal on the inner cylinder points toward the wire.
(i) Explain why the flux of �E , the electric field, through the washers is 0.

(ii) Explain why Gauss’s Law implies that the flux through the inner cylinder is the same
as the flux through the outer cylinder. [Hint: The charge on the wire is not inside the
surface S].

(iii) Use part (ii) to show that Eb/Ea = a/b.
(iv) Explain why part (iii) shows that the strength of the field due to an infinitely long

uniformly charged wire is proportional to 1/r.
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Wire

Er

Er

�
�
r

Figure 19.44

�� Washers

�
�
b

��a
Wire

Figure 19.45

a

b

Figure 19.46

(b) Now consider an infinite flat sheet uniformly covered with charge. As in part (a), symmetry
shows that the electric field �E is perpendicular to the sheet and has the same magnitude at
all points that are the same distance from the sheet. Use Gauss’s Law to explain why, on any
one side of the sheet, the electric field is the same at all points in space off the sheet. [Hint:
Consider the flux through the box with sides parallel to the sheet shown in Figure 19.46.]

4. Flux Across a Cylinder: Obtaining Gauss’s Law from Coulomb’s Law
An electric charge q is placed at the origin in 3-space. The induced electric field �E (�r ) at the
point with position vector �r is given by Coulomb’s Law, which says

�E (�r ) = q
�r

‖�r ‖3
, �r �= �0 .

In this project, Gauss’s Law is obtained for a cylinder enclosing a point charge by direct calcu-
lation from Coulomb’s Law.

(a) Let S be the open cylinder of height 2H and radius R given by x2 + y2 = R2, −H ≤ z ≤

H , oriented outward.

(i) Show that the flux of �E , the electric field, through S is given by∫
S

�E · d �A = 4πq
H

√
H2 +R2

.

(ii) What are the limits of the flux
∫
S
�E · d �A if

• H → 0 or H → ∞ when R is fixed?

• R → 0 or R → ∞ when H is fixed?

(b) Let T be the outward-oriented, closed cylinder of height 2H and radius R whose curved
side is given by x2+y2 = R2, −H ≤ z ≤ H , whose top is given by z = H , x2+y2 ≤ R2,
and bottom by z = −H , x2 + y2 ≤ R2. Use part (a) to show that the flux of the electric
field, �E , through T is given by ∫

T

�E · d �A = 4πq.

Notice that this is Gauss’s Law. In particular, the flux is independent of both the height, H ,
and radius, R, of the cylinder.
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20.1 THE CURL OF A VECTOR FIELD

The divergence is a scalar derivative which measures the outflow of a vector field per unit volume.
Now we introduce a vector derivative, the curl, which measures the circulation of a vector field.

Imagine holding the paddle-wheel in Figure 20.1 in the flow shown by Figure 20.2. The speed at
which the paddle-wheel spins measures the strength of circulation. Notice that the angular velocity
depends on the direction in which the stick is pointing. If the stick is pointing horizontally the
paddle-wheel does not spin; if the stick is vertical, the paddle wheel spins.

Figure 20.1: A device for
measuring circulation

x y

z

Figure 20.2: A vector field with circulation about
the z-axis

Circulation Density
We measure the strength of the circulation using a closed curve. Suppose C is a circle with center
P = (x, y, z) in the plane perpendicular to �n , traversed in the direction determined from �n by the
right-hand rule. (See Figures 20.3 and 20.4.)

P
C

�n

Figure 20.3: Direction of C relates to
direction of �n by the right-hand rule

Figure 20.4: When the thumb points in the direction of �n ,
the fingers curl in the forward direction around C

We make the following definition:

The circulation density of a smooth vector field �F at (x, y, z) around the direction of the
unit vector �n is defined, provided the limit exists, to be

circ�n
�F (x, y, z) = lim

Area→0

Circulation around C

Area inside C
= lim

Area→0

∫
C

�F · d�r

Area inside C
,

The circle C is in the plane perpendicular to �n and oriented by the right-hand rule.

We can use other closed curves for C, such as rectangles, that lie in a plane perpendicular to �n
and include (x, y, z).

The circulation density determines the angular velocity of the paddle-wheel in Figure 20.1
provided you could make one sufficiently small and light and insert it without disturbing the flow.
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Example 1 Consider the vector field �F in Figure 20.2. Suppose that �F is parallel to the xy-plane and that at a
distance r from the z-axis it has magnitude 2r. Calculate circ�n

�F at the origin for
(a) �n = �k (b) �n = −�k (c) �n =�i .

Solution (a) Take a circle C of radius a in the xy-plane, centered at the origin, traversed in a direction
determined from �k by the right hand rule. Then, since �F is tangent to C everywhere and points
in the forward direction around C, we have

Circulation around C =

∫
C

�F · d�r = ‖�F ‖ · Circumference of C = 2a(2πa) = 4πa2.

Thus, the circulation density is

circ�k
�F = lim

a→0

Circulation around C

Area inside C
= lim

a→0

4πa2

πa2
= 4.

(b) If �n = −�k the circle is traversed in the opposite direction, so the line integral changes sign.
Thus,

circ
−�k

�F = −4.

(c) The circulation around �i is calculated using circles in the yz-plane. Since �F is everywhere
perpendicular to such a circle C, ∫

C

�F · d�r = 0.

Thus, we have

circ�i
�F = lim

a→0

∫
C
�F · d�r

πa2
= lim

a→0

0

πa2
= 0.

Definition of the Curl
Example 1 shows that the circulation density of a vector field can be positive, negative, or zero,
depending on the direction. We assume that there is one direction in which the circulation density is
greatest and define a single vector quantity that incorporates all these different circulation densities.
We give two definitions, one geometric and one algebraic, which turn out to lead to the same result.

Geometric Definition of Curl

The curl of a smooth vector field �F , written curl �F , is the vector field with the following
properties
• The direction of curl �F (x, y, z) is the direction �n for which circ�n

�F (x, y, z) is the
greatest.

• The magnitude of curl �F (x, y, z) is the circulation density of �F around that direction.
If the circulation density is zero around every direction, then we define the curl to be�0 .

Cartesian Coordinate Definition of Curl

If �F = F1
�i + F2

�j + F3
�k , then

curl �F =

(
∂F3

∂y
−

∂F2

∂z

)
�i +

(
∂F1

∂z
−

∂F3

∂x

)
�j +

(
∂F2

∂x
−

∂F1

∂y

)
�k .
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The cross-product formula gives an easy way to remember the Cartesian coordinate definition,

and suggests another common notation for curl �F , namely ∇× �F . Using ∇ =
∂

∂x
�i +

∂

∂y
�j +

∂

∂z
�k ,

we can write

curl �F = ∇× �F =

∣∣∣∣∣∣∣
�i �j �k
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣∣∣∣∣∣∣ .

Example 2 For each field in Figure 20.5, use the sketch and the geometric definition to decide whether the curl
at the origin appears to point up, down, or to be the zero vector. Then check your answer using the
coordinate definition of curl. Note that the vector fields have no z-components and are independent
of z.

x

y(a) y

x

(b)

x

y(c)

Figure 20.5: Sketches in the xy-plane of (a) �F = x�i + y�j (b) �F = y�i − x�j (c) �F = −(y + 1)�i

Solution (a) This vector field shows no rotation, and the circulation around any circle in the xy-plane cen-
tered at the origin appears to be zero, so we suspect that the circulation density around �k is
zero. The coordinate definition of curl gives

curl �F =

(
∂(0)

∂y
−

∂y

∂z

)
�i +

(
∂x

∂z
−

∂(0)

∂x

)
�j +

(
∂y

∂x
−

∂x

∂y

)
�k = �0 .

(b) This vector field appears to be rotating around the z-axis. By the right-hand rule, the circula-
tion density around �k is negative, so we expect the z-component of the curl points down. The
coordinate definition gives

curl �F =

(
∂(0)

∂y
−

∂(−x)

∂z

)
�i +

(
∂y

∂z
−

∂(0)

∂x

)
�j +

(
∂(−x)

∂x
−

∂y

∂y

)
�k = −2�k .

(c) At first glance, you might expect this vector field to have zero curl, as all the vectors are parallel
to the x-axis. However, if you find the circulation around the curve C in Figure 20.6, the sides
contribute nothing (they are perpendicular to the vector field), the bottom contributes a negative
quantity (the curve is in the opposite direction to the vector field), and the top contributes a
larger positive quantity (the curve is in the same direction as the vector field and the magnitude
of the vector field is larger at the top than at the bottom). Thus, the circulation around C is
positive and hence we expect the curl to be nonzero and point up. The coordinate definition
gives

curl �F =

(
∂(0)

∂y
−

∂(0)

∂z

)
�i+

(
∂(−(y + 1))

∂z
−

∂(0)

∂x

)
�j +

(
∂(0)

∂x
−

∂(−(y + 1))

∂y

)
�k = �k .

Another way to see that the curl is nonzero in this case is to imagine the vector field representing
the velocity of moving water. A boat sitting in the water tends to rotate, as the water moves faster
on one side than the other.
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C

x

y

Figure 20.6: Rectangular curve in xy-plane

�ω

�r

�v
P

Figure 20.7: Rotating flywheel

Example 3 A flywheel is rotating with angular velocity �ω and the velocity of a point P with position vector �r
is given by �v = �ω × �r . (See Figure 20.7.) Calculate curl�v .

Solution If �ω = ω1
�i + ω2

�j + ω3
�k , using the determinant notation introduced in Section 13.4, we have

�v = �ω × �r =

∣∣∣∣∣∣∣
�i �j �k

ω1 ω2 ω3

x y z

∣∣∣∣∣∣∣ = (ω2z − ω3y)�i + (ω3x− ω1z)�j + (ω1y − ω2x)�k .

The curl formula can also be written using a determinant:

curl�v =

∣∣∣∣∣∣∣
�i �j �k
∂
∂x

∂
∂y

∂
∂z

ω2z − ω3y ω3x− ω1z ω1y − ω2x

∣∣∣∣∣∣∣
=

(
∂

∂y
(ω1y − ω2x) −

∂

∂z
(ω3x− ω1z)

)
�i +

(
∂

∂z
(ω2z − ω3y)−

∂

∂x
(ω1y − ω2x)

)
�j

+

(
∂

∂x
(ω3x− ω1z)−

∂

∂y
(ω2z − ω3y)

)
�k

= 2ω1
�i + 2ω2

�j + 2ω3
�k = 2�ω .

Thus, as we would expect, curl�v is parallel to the axis of rotation of the flywheel (namely, the
direction of �ω ) and the magnitude of curl�v is larger the faster the flywheel is rotating (that is, the
larger the magnitude of �ω ).

Why Do the Two Definitions of Curl Give the Same Result?

Using Green’s Theorem in Cartesian coordinates, we can show that for curl �F defined in Cartesian
coordinates

curl �F · �n = circ�n
�F .

This shows that curl �F defined in Cartesian coordinates satisfies the geometric definition, since the
left-hand side takes its maximum value when �n points in the same direction as curl �F , and in that
case its value is ‖ curl �F ‖.

The following example justifies this formula in a specific case.

Example 4 Use the definition of curl in Cartesian coordinates and Green’s Theorem to show that(
curl �F

)
· �k = circ�k

�F .
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Solution Using the definition of curl in Cartesian coordinates, the left-hand side of the formula is(
curl �F

)
· �k =

∂F2

∂x
−

∂F1

∂y
.

Now let’s look at the right hand side. The circulation density around �k is calculated using circles
perpendicular to �k ; hence, the �k -component of �F does not contribute to it; that is, the circulation
density of �F around �k is the same as the circulation density of F1

�i + F2
�j around �k . But in any

plane perpendicular to �k , z is constant, so in that plane F1 and F2 are functions of x and y alone.
Thus, F1

�i +F2
�j can be thought of as a two-dimensional vector field on the horizontal plane through

the point (x, y, z) where the circulation density is being calculated. Let C be a circle in this plane,
with radius a and centered at (x, y, z), and let R be the region enclosed by C. Green’s Theorem
says that ∫

C

(F1
�i + F2

�j ) · d�r =

∫
R

(
∂F2

∂x
−

∂F1

∂y

)
dA.

When the circle is small, ∂F2/∂x− ∂F1/∂y is approximately constant on R, so∫
R

(
∂F2

∂x
−

∂F1

∂y

)
dA ≈

(
∂F2

∂x
−

∂F1

∂y

)
· Area of R =

(
∂F2

∂x
−

∂F1

∂y

)
πa2.

Thus, taking a limit as the radius of the circle goes to zero, we have

circ�k
�F (x, y, z) = lim

a→0

∫
C

(F1
�i + F2

�j ) · d�r

πa2
= lim

a→0

∫
R

(
∂F2

∂x
−

∂F1

∂y

)
dA

πa2
=

∂F2

∂x
−

∂F1

∂y
.

Curl-Free Vector Fields
A vector field is said to be curl free or irrotational if curl �F = �0 everywhere that �F is defined.

Example 5 Figure 20.8 shows the vector field �B for three values of the constant p, where �B is defined on
3-space by

�B =
−y�i + x�j

(x2 + y2)p/2
.

(a) Find a formula for curl �B .
(b) Is there a value of p for which �B is curl free? If so, find it.

p = 0

x

y

p = 2

x

y

p = 4

x

y

Figure 20.8: The vector field �B (�r ) = (−y�i + x�j )/(x2 + y2)p/2 for p = 0, 2, and 4

Solution (a) We can use the following version of the product rule for curl. If φ is a scalar function and �F is
a vector field, then

curl(φ�F ) = φ curl �F + (gradφ)× �F .
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(See Problem 29 on page 1054.) We write �B = φ�F =
1

(x2 + y2)p/2
(−y�i + x�j ). Then

curl �F = curl(−y�i + x�j ) = 2�k

gradφ = grad

(
1

(x2 + y2)p/2

)
=

−p

(x2 + y2)(p/2)+1
(x�i + y�j ).

Thus, we have

curl �B =
1

(x2 + y2)p/2
curl(−y�i + x�j ) + grad

(
1

(x2 + y2)p/2

)
× (−y�i + x�j )

=
1

(x2 + y2)p/2
2�k +

−p

(x2 + y2)(p/2)+1
(x�i + y�j )× (−y�i + x�j )

=
1

(x2 + y2)p/2
2�k +

−p

(x2 + y2)(p/2)+1
(x2

+ y2)�k

=
2− p

(x2 + y2)p/2
�k .

(b) The curl is zero when p = 2. Thus, when p = 2 the vector field is curl free:

�B =
−y�i + x�j

x2 + y2
.

Exercises and Problems for Section 20.1
Exercises

1. Is curl(z�i − x�j + y�k ) a vector or a scalar? Calculate it.

2. Is curl(−2z�i − z�j +xy�k ) a vector or scalar? Calculate
it.

In Exercises 3–10, compute the curl of the vector field.

3. �F = 3x�i − 5z�j + y�k

4. �F = (x2 − y2)�i + 2xy�j

5. �F = (−x+ y)�i + (y + z)�j + (−z + x)�k

6. �F = 2yz�i + 3xz�j + 7xy�k

7. �F = x2�i + y3�j + z4�k

8. �F = ex�i + cos y�j + ez
2�k

9. �F = (x+ yz)�i + (y2 + xzy)�j + (zx3y2 + x7y6)�k

10. �F (�r ) = �r /‖�r ‖

In Exercises 11–14, decide whether the vector field appears to
have nonzero curl at the origin. The vector field is shown in
the xy-plane; it has no z-component and is independent of z.

11.

x

y 12.

x

y

13.

x

y 14.

x

y

Problems

15. Let �F be the vector field in Figure 20.2 on page 1048.
It is rotating counterclockwise around the z-axis when
viewed from above. At a distance r from the z-axis, �F
has magnitude 2r.

(a) Find a formula for �F .

(b) Find curl �F using the coordinate definition and re-
late your answer to circulation density.

16. Use the geometric definition to find the curl of the vector
field �F (�r ) = �r . Check your answer using the coordi-
nate definition.
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17. A smooth vector field �G has curl �G (0, 0, 0) = 2�i −
3�j + 5�k . Estimate the circulation around a circle of ra-
dius 0.01 centered at the origin in each of the following
planes:

(a) xy-plane, oriented counterclockwise when viewed
from the positive z-axis.

(b) yz-plane, oriented counterclockwise when viewed
from the positive x-axis.

(c) xz-plane, oriented counterclockwise when viewed
from the positive y-axis.

18. Three small circles, C1, C2, and C3, each with radius
0.1 and centered at the origin are in the xy-, yz-, and
xz-planes, respectively. The circles are oriented coun-
terclockwise when viewed from the positive z-, x-, and
y-axes, respectively. A vector field, �F , has circulation
around C1 of 0.02π, around C2 of 0.5π, and around C3

of 3π. Estimate curl �F at the origin.

19. Using your answers to Exercises 7–8, make a conjecture
about a particular form of the vector field �F �= �0 that
has curl �F = �0 . What form? Show why your conjec-
ture is true.

20. (a) Find curl �G if �G = (ay3+bez)�i +(cz+dx2)�j +

(e sin x+ fy)�k and a, b, c, d, e, f are constants.
(b) If curl �G is everywhere parallel to the yz-plane,

what can you say about the constants a–f?
(c) If curl �G is everywhere parallel to the z-axis, what

can you say about the constants a–f?

21. Figure 20.9 gives a sketch of the velocity vector field
�F = y�i + x�j in the xy-plane.

(a) What is the direction of rotation of a thin twig placed
at the origin along the x-axis?

(b) What is the direction of rotation of a thin twig placed
at the origin along the y-axis?

(c) Compute curl �F .

x

y

Figure 20.9

22. A tornado is formed when a tube of air circling a hor-
izontal axis is tilted up vertically by the updraft from a
thunderstorm. If t is time, this process can be modeled
by the wind velocity field

�F (t, x, y, z) = (cos t�j +sin t�k )×�r and 0 ≤ t ≤ π

2
.

Determine the direction of curl �F :

(a) At t = 0 (b) At t = π/2

(c) For 0 < t < π/2

23. A large fire becomes a fire-storm when the nearby air ac-
quires a circulatory motion. The associated updraft has
the effect of bringing more air to the fire, causing it to
burn faster. Records show that a fire-storm developed
during the Chicago Fire of 1871 and during the Second
World War bombing of Hamburg, Germany, but there
was no fire-storm during the Great Fire of London in
1666. Explain how a fire-storm could be identified using
the curl of a vector field.

24. A vortex that rotates at constant angular velocity ω about
the z-axis has velocity vector field �v = ω(−y�i + x�j ).

(a) Sketch the vector field with ω = 1 and the vector
field with ω = −1.

(b) Determine the speed ‖�v ‖ of the vortex as a function
of the distance from its center.

(c) Compute div �v and curl�v .
(d) Compute the circulation of �v counterclockwise

about the circle of radius R in the xy-plane, centered
at the origin.

25. A central vector field is one of the form �F = f(r)�r
where f is any function of r = ‖�r ‖. Show that any cen-
tral vector field is irrotational.

26. Show that curl (�F + �C ) = curl �F for a constant vector
field �C .

27. If �F is any vector field whose components have contin-
uous second partial derivatives, show div curl �F = 0.

28. We have seen that the Fundamental Theorem of Calculus
for Line Integrals implies

∫
C
grad f · d�r = 0 for any

smooth closed path C and any smooth function f .

(a) Use the geometric definition of curl to deduce that
curl grad f = �0 .

(b) Show that curl grad f = �0 using the coordinate
definition.

29. Show that curl (φ�F ) = φ curl �F + (gradφ)× �F for a
scalar function φ and a vector field �F .

30. Show that if �F = f grad g for some scalar functions f
and g, then curl �F is everywhere perpendicular to �F .

31. Let �F be a smooth vector field and let �u and �v be con-
stant vectors. Using the definition of curl �F in Cartesian
coordinates, show that

grad(�F ·�v ) ·�u −grad(�F ·�u ) ·�v = (curl �F ) ·�u ×�v .

32. Let �T = a�i + b�j be a fixed unit vector, and let
�F = F (x, y)�T be a vector field everywhere parallel to
�T , but of varying magnitude F . Show that curl �F equals
�k times the directional derivative of F in the direction of
�F × �k . Do this in two ways:

(a) Graphically, using line integrals
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(b) Algebraically

(Note: The direction of �F × �k is obtained by rotating
�F through 90◦ clockwise as viewed from above the xy-
plane.)

33. Let r = (x2+y2)1/2. Figure 20.10 shows the vector field
rA(−y�i + x�j ) for r �= 0 and A = −1,−2, and − 3.
The vector fields are shown in the xy-plane; they have no
z-component and are independent of z.

(a) Show that curl(rA(−y�i +x�j )) = (2+A)rA�k for
any constant A.

(b) Using your answer to part (a), find the direction
of the curl of the three vector fields for A =
−1,−2,−3.

(c) For each value of A, what (if anything) does your an-
swer to part (b) tell you about the sign of the circula-
tion around a small circle oriented counterclockwise
when viewed from above, and centered at (1, 1, 1)?
Centered at (0, 0, 0)?

A = −1

x

y

A = −2

x

y

A = −3

x

y

Figure 20.10: The vector field rA(−y�i + x�j ) for three
values of A

Strengthen Your Understanding

In Problems 34–35, explain what is wrong with the statement.

34. A vector field �F has curl given by curl �F = 2x− 3y.

35. If all the vectors of a vector field �F are parallel, then
curl �F = �0 .

In Problems 36–37, give an example of:

36. A vector field �F (x, y, z) such that curl �F = �0 .

37. A vector field �F (x, y, z) such that curl �F = �j .

In Problems 38–46, is the statement true or false? Assume �F
and �G are smooth vector fields and f is a smooth function on
3-space. Explain.

38. The circulation density, circ
n �F (x, y, z), is a scalar.

39. curl grad f = 0

40. If �F is a vector field with div�F = 0 and curl�F = �0 ,
then �F = �0 .

41. If �F and �G are vector fields, then curl(�F + �G ) =
curl�F + curl �G .

42. If �F and �G are vector fields, then curl(�F · �G ) =
curl�F · curl�G .

43. If �F and �G are vector fields, then curl(�F × �G ) =
(curl�F )× (curl�G ).

44. curl(f �G ) = (grad f)× �G + f(curl �G )

45. For any vector field �F , the curl of �F is perpendicular at
every point to �F .

46. If �F is as shown in Figure 20.11, then curl �F ·�j > 0.

x

y

z

Figure 20.11

47. Of the following vector fields, which ones have a curl
which is parallel to one of the axes? Which axis?

(a) y�i−x�j +z�k (b) y�i+z�j +x�k (c) −z�i+y�j +x�k

(d) x�i+z�j −y�k (e) z�i+x�j +y�k
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20.2 STOKES’ THEOREM

The Divergence Theorem says that the integral of the flux density over a solid region is equal to the
flux through the surface bounding the region. Similarly, Stokes’ Theorem says that the integral of
the circulation density over a surface is equal to the circulation around the boundary of the surface.

The Boundary of a Surface
The boundary of a surface S is the curve or curves running around the edge of S (like the hem
around the edge of a piece of cloth). An orientation of S determines an orientation for its boundary,
C, as follows. Pick a positive normal vector�n on S, near C, and use the right-hand rule to determine
a direction of travel around �n . This in turn determines a direction of travel around the boundary C.
See Figure 20.12. Another way of describing the orientation on C is that someone walking along C
in the forward direction, body upright in the direction of the positive normal on S, would have the
surface on their left. Notice that the boundary can consist of two or more curves, as the surface on
the right in Figure 20.12 shows.

�n

S
C C

C

S

�n

�n

Figure 20.12: Two oriented surfaces and their boundaries

Calculating the Circulation from the Circulation Density

Consider a closed, oriented curve C in 3-space. We can find the circulation of a vector field �F
around C by calculating the line integral:

Circulation

around C
=

∫
C

�F · d�r .

If C is the boundary of an oriented surface S, there is another way to calculate the circulation using
curl �F . We subdivide S into pieces as shown on the surface on the left in Figure 20.12. If �n is a
positive unit normal vector to a piece of surface with area ΔA, then Δ �A = �nΔA. In addition,
circ�n

�F is the circulation density of �F around �n , so

Circulation of �F around

boundary of the piece
≈
(

circ�n �F
)
ΔA = ((curl �F ) · �n )ΔA = (curl�F ) ·Δ �A .

Next we add up the circulations around all the small pieces. The line integral along the common
edge of a pair of adjacent pieces appears with opposite sign in each piece, so it cancels out. (See
Figure 20.13.) When we add up all the pieces the internal edges cancel and we are left with the
circulation around C, the boundary of the entire surface. Thus,

Circulation

around C
=
∑ Circulation around

boundary of pieces
≈
∑

curl �F ·Δ �A .

Taking the limit as ΔA → 0, we get

Circulation

around C
=

∫
S

curl �F · d �A .
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Figure 20.13: Two adjacent pieces of the surface

We have expressed the circulation as a line integral around C and as a flux integral over S; thus,
the two integrals must be equal. Hence we have1

Theorem 20.1: Stokes’ Theorem

If S is a smooth oriented surface with piecewise smooth, oriented boundary C, and if �F is a
smooth vector field on an open region containing S and C, then∫

C

�F · d�r =

∫
S

curl �F · d �A .

The orientation of C is determined from the orientation of S according to the right-hand rule.

Example 1 Let �F (x, y, z) = −2y�i + 2x�j . Use Stokes’ Theorem to find
∫
C
�F · d�r , where C is a circle

(a) Parallel to the yz-plane, of radius a, centered at a point on the x-axis, with either orientation.
(b) Parallel to the xy-plane, of radius a, centered at a point on the z-axis, oriented counterclockwise

as viewed from a point on the z-axis above the circle.

Solution We have curl �F = 4�k . Figure 20.14 shows sketches of �F and curl �F .

(a) Let S be the disk enclosed by C. Since S lies in a vertical plane and curl �F points vertically
everywhere, the flux of curl �F through S is zero. Hence, by Stokes’ Theorem,∫

C

�F · d�r =

∫
S

curl �F · d �A = 0.

It makes sense that the line integral is zero. If C is parallel to the yz-plane (even if it is not lying
in the plane), the symmetry of the vector field means that the line integral of �F over the top half
of the circle cancels the line integral over the bottom half.

(b) Let S be the horizontal disk enclosed by C. Since curl �F is a constant vector field pointing in
the direction of �k , we have, by Stokes’ Theorem,∫

C

�F · d�r =

∫
S

curl �F · d �A = ‖ curl �F ‖ · Area of S = 4πa2.

x y

z

�F

x y

z
curl �F

Figure 20.14: The vector fields �F and curl �F

1A proof of Stokes’ Theorem using the coordinate definition of curl can be found in the online supplement at
www.wiley.com/college/hughes-hallett.
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Since �F is circling around the z-axis in the same direction as C, we expect the line integral to
be positive. In fact, in Example 1 on page 1049, we computed this line integral directly.

Curl Free Vector Fields
Stokes’ Theorem applies to any oriented surface S and its boundary C, even in cases where the
boundary consists of two or more curves. This is useful in studying curl-free vector fields.

Example 2 A current I flows along the z-axis in the �k direction. The induced magnetic field �B (x, y, z) is

�B (x, y, z) =
2I

c

(
−y�i + x�j

x2 + y2

)
,

where c is the speed of light. In Example 5 on page 1052 we showed that curl �B = �0 .

(a) Compute the circulation of �B around the circle C1 in the xy-plane of radius a, centered at the
origin, and oriented counterclockwise when viewed from above.

(b) Use part (a) and Stokes’ Theorem to compute
∫
C2

�B · d�r , where C2 is the ellipse x2 +9y2 = 9

in the plane z = 2, oriented counterclockwise when viewed from above.

Solution (a) On the circle C1, we have ‖ �B ‖ = 2I/(ca). Since �B is tangent to C1 everywhere and points in
the forward direction around C1,∫

C1

�B · d�r = ‖ �B ‖ · Length of C1 =
2I

ca
· 2πa =

4πI

c
.

(b) Let S be the conical surface extending from C1 to C2 in Figure 20.15. The boundary of this
surface has two pieces, −C2 and C1. The orientation of C1 leads to the outward normal on S,
which forces us to choose the clockwise orientation on C2. By Stokes’ Theorem,∫

S

curl �B · d �A =

∫
−C2

�B · d�r +

∫
C1

�B · d�r = −

∫
C2

�B · d�r +

∫
C1

�B · d�r .

Since curl �B = �0 , we have
∫
S

curl �B · d �A = 0, so the two line integrals must be equal:∫
C2

�B · d�r =

∫
C1

�B · d�r =
4πI

c
.

y

x

z

C1

−C2

�n
S

Figure 20.15: Surface joining C1 to C2,
oriented to satisfy the conditions of

Stokes’ Theorem

S1

�n1

C

S2

�n2

Figure 20.16: The flux of a curl is the same
through the two surfaces S1 and S2 if they

determine the same orientation on the boundary,
C
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Curl Fields
A vector field �F is called a curl field if �F = curl �G for some vector field �G . Recall that if
�F = gradf , then f is called a potential function. By analogy, if a vector field �F = curl �G , then �G
is called a vector potential for �F . The following example shows that the flux of a curl field through
a surface depends only on the boundary of the surface. This is analogous to the fact that the line
integral of a gradient field depends only on the endpoints of the path.

Example 3 Suppose �F = curl �G . Suppose that S1 and S2 are two oriented surfaces with the same boundary
C. Show that, if S1 and S2 determine the same orientation on C (as in Figure 20.16), then∫

S1

�F · d �A =

∫
S2

�F · d �A .

If S1 and S2 determine opposite orientations on C, then∫
S1

�F · d �A = −

∫
S2

�F · d �A .

Solution Since �F = curl �G , by Stokes’ Theorem we have∫
S1

�F · d �A =

∫
S1

curl �G · d �A =

∫
C

�G · d�r

and ∫
S2

�F · d �A =

∫
S2

curl �G · d �A =

∫
C

�G · d�r .

In each case the line integral on the right must be computed using the orientation determined by the
surface. Thus, the two flux integrals of �F are the same if the orientations are the same and they are
opposite if the orientations are opposite.

Exercises and Problems for Section 20.2
Exercises

In Exercises 1–5, calculate the circulation,
∫
C

�F · d�r , in two
ways, directly and using Stokes’ Theorem.

1. �F = (x + z)�i + x�j + y�k and C is the upper half of
the circle x2 + z2 = 9 in the plane y = 0, together with
the x-axis from (3, 0, 0) to (−3, 0, 0), traversed counter-
clockwise when viewed from the positive y-axis.

2. �F = y�i − x�j and C is the boundary of S, the part of
the surface z = 4−x2−y2 above the xy-plane, oriented
upward.

3. �F = (x− y+ z)(�i +�j ) and C is the triangle with ver-
tices (0, 0, 0), (5, 0, 0), (5, 5, 0), traversed in that order.

4. �F = xy�i +yz�j +xz�k and C is the boundary of S, the
surface z = 1 − x2 for 0 ≤ x ≤ 1 and −2 ≤ y ≤ 2,
oriented upward. Sketch S and C.

5. �F = y�i + z�j + x�k and C is the boundary of S, the
paraboloid z = 1 − (x2 + y2), z ≥ 0 oriented upward.
[Hint: Use polar coordinates.]

In Exercises 6–9, use Stokes’ Theorem to calculate the inte-
gral.

6.
∫
C

�F · d�r where �F = x2�i + y2�j + z2�k and C is
the unit circle in the xz-plane, oriented counterclockwise
when viewed from the positive y-axis.

7.
∫
C

�F ·d�r where �F = (y−x)�i +(z−y)�j +(x−z)�k

and C is the circle x2+ y2 = 5 in the xy-plane, oriented
counterclockwise when viewed from above.

8.
∫
S

curl �F ·d �A where �F = −y�i +x�j +(xy+cos z)�k

and S is the disk x2 + y2 ≤ 9, oriented upward in the
xy-plane.

9.
∫
S

curl �F ·d �A where �F = (x+7)�j +ex+y+z�k and S
is the rectangle 0 ≤ x ≤ 3, 0 ≤ y ≤ 2 , z = 0, oriented
counterclockwise when viewed from above.

10. Let �F = y�i − x�j and let C be the unit circle in the xy-
plane centered at the origin and oriented counterclock-
wise when viewed from above.

(a) Calculate
∫
C

�F · d�r by parameterizing the circle.
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(b) Calculate curl �F .

(c) Calculate
∫
C

�F ·d�r using your result from part (b).
(d) What theorem did you use in part (c)?

11. (a) If �F = (cosx)�i +ey�j +(x−y−z)�k , find curl �F .
(b) Find

∫
C

�F · d�r where C is the circle of radius 3 in

the plane x+y+z = 1, centered at (1, 0, 0) oriented
counterclockwise when viewed from above.

12. Can you use Stokes’ Theorem to compute the line inte-
gral
∫
C
(2x�i +2y�j +2z�k ) · d�r where C is the straight

line from the point (1, 2, 3) to the point (4, 5, 6)? Why
or why not?

Problems

13. At all points in 3-space curl �F points in the direction of
�i − �j − �k . Let C be a circle in the yz-plane, oriented
clockwise when viewed from the positive x-axis. Is the
circulation of �F around C positive, zero, or negative?

14. If curl �F = (x2 + z2)�j + 5�k , find
∫
C

�F · d�r , where
C is a circle of radius 3, centered at the origin, with

(a) C in the xy-plane, oriented counterclockwise when
viewed from above.

(b) C in the xz-plane, oriented counterclockwise, when
viewed from the positive y-axis.

15. (a) Find curl(y�i + z�j + x�k ).
(b) Find

∫
C
(y�i +z�j +x�k ) ·d�r where C is the bound-

ary of the triangle with vertices (2, 0, 0), (0, 3, 0),
(−2, 0, 0), traversed in that order.

16. (a) Let �F = y�i + z�j + x�k . Find curl �F .
(b) Calculate

∫
C

�F · d�r where C is

(i) A circle of radius 2 centered at (1, 1, 3) in the
plane z = 3, oriented counterclockwise when
viewed from above.

(ii) The triangle obtained by tracing out the path
(2, 0, 0) to (2, 0, 5) to (2, 3, 5) to (2, 0, 0).

17. (a) Find curl(z�i + x�j + y�k ).
(b) Find

∫
C
(z�i + x�j + y�k ) · d�r where C is a square

of side 2 lying in the plane x+ y + z = 5, oriented
counterclockwise when viewed from the origin.

In Problems 18–23, find
∫
C

�F · d�r where C is a circle of ra-
dius 2 in the plane x + y + z = 3, centered at (1, 1, 1) and
oriented clockwise when viewed from the origin.

18. �F =�i +�j + 3�k

19. �F = −y�i + x�j + z�k

20. �F = y�i − x�j + (y − x)�k

21. �F = (2y+ex)�i +((sin y)−x)�j +(2y−x+cos z2)�k

22. �F = −z�j + y�k

23. �F = (z − y)�i + (x− z)�j + (y − x)�k

24. For positive constants a, b, and c, let

f(x, y, z) = ln(1 + ax2 + by2 + cz2).

(a) What is the domain of f?
(b) Find gradf .
(c) Find curl(gradf).

(d) Find
∫
C

�F · d�r where C is the helix
x = cos t, y = sin t, z = t for 0 ≤ t ≤ 13π/2
and

�F =
2x�i + 4y�j + 6z�k

1 + x2 + 2y2 + 3z2
.

25. Figure 20.17 shows an open cylindrical can, S, standing
on the xy-plane. (S has a bottom and sides, but no top.)

(a) Give equation(s) for the rim, C.
(b) If S is oriented outward and downward, find∫

S
curl(−y�i + x�j + z�k ) · d �A .

x

y

z

2C

�x2 + y2 = 9

Figure 20.17
26. Evaluate

∫
C
(−z�i + y�j + x�k ) · d�r , where C is a circle

of radius 2, parallel to the xz-plane and around the y-axis
with the orientation shown in Figure 20.18.

x y

z
C

�

�

2

Figure 20.18
27. Evaluate the circulation of �G = xy�i +z�j +3y�k around

a square of side 6, centered at the origin, lying in the yz-
plane, and oriented counterclockwise viewed from the
positive x-axis.

28. Find the flux of �F = curl((x3 + cos(z2))�i + (x +

sin(y2))�j + (y2 sin(x2))�k ) through the upper half of
the sphere of radius 2, with center at the origin and ori-
ented upward.

29. Suppose that C is a closed curve in the xy-plane, ori-
ented counterclockwise when viewed from above. Show
that 1

2

∫
C
(−y�i + x�j ) · d�r equals the area of the region

R in the xy-plane enclosed by C.
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30. In the region between the circles C1 : x2 + y2 = 4 and
C2 : x2 + y2 = 25 in the xy-plane, the vector field �F
has curl �F = 3�k . If C1 and C2 are both oriented coun-
terclockwise when viewed from above, find the value of∫

C2

�F · d�r −
∫
C1

�F · d�r .

31. Let curl �F = 3x�i + 3y�j − 6z�k and let C1 and C2

be the closed curves in the planes z = 0 and z = 5 in
Figure 20.19. Find∫

C1

�F · d�r +

∫
C2

�F · d�r .

x

y

z

�

�

5x2 + y2 = 4

C1

C2

Figure 20.19

32. (a) Find curl(x3�i + sin(y3)�j + ez
3�k ).

(b) What does your answer to part (a) tell you about∫
C
(x3�i + sin(y3)�j + ez

3�k ) · d�r where C is the
circle (x − 10)2 + (y − 20)2 = 1 in the xy-plane,
oriented clockwise?

(c) If C is any closed curve, what can you say about∫
C
(x3�i + sin(y3)�j + ez

3�k ) · d�r ?

33. Let �F (x, y, z) = F1(x, y)�i +F2(x, y)�j , where F1 and
F2 are continuously differentiable for all x, y.

(a) Describe in words how �F varies through space.

(b) Find an expression for curl �F in terms of F1

and F2.
(c) Let C be a closed curve in the xy-plane, oriented

counterclockwise when viewed from above, and let
S be the region enclosed by C. Use your answer to
part (b) to simplify the statement of Stokes’ Theo-
rem for this �F and C.

(d) The result in part (c) is usually known by another
name. What is it?

34. Water in a bathtub has velocity vector field near the drain
given, for x, y, z in cm, by

�F = − y + xz

(z2 + 1)2
�i − yz − x

(z2 + 1)2
�j − 1

z2 + 1
�k cm/sec.

(a) Rewriting �F as follows, describe in words how the
water is moving:

�F =
−y�i + x�j

(z2 + 1)2
+

−z(x�i + y�j )

(z2 + 1)2
−

�k

z2 + 1
.

(b) The drain in the bathtub is a disk in the xy-plane
with center at the origin and radius 1 cm. Find the
rate at which the water is leaving the bathtub. (That
is, find the rate at which water is flowing through the
disk.) Give units for your answer.

(c) Find the divergence of �F .
(d) Find the flux of the water through the hemisphere

of radius 1, centered at the origin, lying below the
xy-plane and oriented downward.

(e) Find
∫
C

�G · d�r where C is the edge of the drain,
oriented clockwise when viewed from above, and
where

�G =
1

2

(
y

z2 + 1
�i − x

z2 + 1
�j − x2 + y2

(z2 + 1)2
�k

)
.

(f) Calculate curl �G .
(g) Explain why your answers to parts (d) and (e) are

equal.

Strengthen Your Understanding

In Problems 35–36, explain what is wrong with the statement.

35. The line integral
∫
C

�F · d�r can be evaluated using

Stokes’ Theorem, where �F = 2x�i − 3�j + �k and C
is an oriented curve from (0, 0, 0) to (3, 4, 5).

36. If S is the unit circular disc x2 + y2 ≤ 1, z = 0, in
the xy-plane, oriented downward, and C is the unit cir-
cle in the xy-plane oriented counterclockwise, and �F is
a vector field, then∫

C

�F · d�r =

∫
S

curl �F · d �A .

In Problems 37–38, give an example of:

37. An oriented closed curve C such that
∫
C

�F · d�r = 0,

where �F (x, y, z) = x�i + y2�j + z3�k .

38. A surface S, oriented appropriately to use Stokes’ Theo-
rem, which has as its boundary the circle C of radius 1
centered at the origin, lying in the xy-plane, and oriented
counterclockwise, when viewed from above.
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In Problems 39–47, is the statement true or false? Give a rea-
son for your answer.

39. If curl �F everywhere perpendicular to the z-axis, and if
C is a circle in the xy-plane, then the circulation of �F
around C is zero.

40. If S is the upper unit hemisphere x2+y2+z2 = 1, z ≥ 0,
oriented upward, then the boundary of S used in Stokes’
Theorem is the circle x2 + y2 = 1, z = 0, with orien-
tation counterclockwise when viewed from the positive
z-axis.

41. Let S be the cylinder x2 + z2 = 1, 0 ≤ y ≤ 2, ori-
ented with inward pointing normal. Then the boundary
of S consists of two circles C1 (x2+ z2 = 1, y = 0) and
C2 (x2 + z2 = 1, y = 2), both oriented clockwise when
viewed from the positive y-axis.

42. If C is the boundary of an oriented surface S, oriented by
the right-hand rule, then

∫
C
curl �F · d�r =

∫
S
�F · d �A .

43. Let S1 be the disk x2 + y2 ≤ 1, z = 0 and let S2

be the upper unit hemisphere x2 + y2 + z2 = 1, z ≥
0, both oriented upward. If �F is a vector field then∫
S1

curl�F · d �A =
∫
S2

curl �F · d �A .

44. Let S be the closed unit sphere x2+y2+z2 = 1, oriented
outward. If �F is a vector field, then

∫
S

curl�F ·d �A = 0.

45. If �F and �G are vector fields satisfying curl�F = curl �G ,
then
∫
C

�F · d�r =
∫
C

�G · d�r , where C is any oriented
circle in 3-space.

46. If �F is a vector field satisfying curl �F = �0 , then∫
C

�F · d�r = 0, where C is any oriented path around
a rectangle in 3-space.

47. Let S be an oriented surface, with oriented boundary C,
and suppose that �F is a vector field such that

∫
C

�F ·
d�r = 0. Then curl �F = �0 everywhere on S.

48. The circle C has radius 3 and lies in a plane through the
origin. Let �F = (2z+3y)�i +(x− z)�j +(6y− 7x)�k .
What is the equation of the plane and what is the orienta-
tion of the circle that make the circulation,

∫
C

�F · d�r , a
maximum? [Note: You should specify the orientation of
the circle by saying that it is clockwise or counterclock-
wise when viewed from the positive or negative x- or y-
or z-axis.]

20.3 THE THREE FUNDAMENTAL THEOREMS

We have now seen three multivariable versions of the Fundamental Theorem of Calculus. In this
section we will examine some consequences of these theorems.

Fundamental Theorem of Calculus for Line Integrals∫
C

gradf · d�r = f(Q)− f(P ).

Stokes’ Theorem ∫
S

curl �F · d �A =

∫
C

�F · d�r .

Divergence Theorem ∫
W

div �F dV =

∫
S

�F · d �A .

Notice that, in each case, the region of integration on the right is the boundary of the region on
the left (except that for the first theorem we simply evaluate f at the boundary points); the integrand
on the left is a sort of derivative of the integrand on the right; see Figure 20.20.

C

P

Q

The boundary of the curve C
consists of the points P and Q

S

C

Boundary of surface
S is curve C

Boundary of region
W is surface S

W

S

Figure 20.20: Regions and their boundaries for the three fundamental theorems
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The Gradient and the Curl
Suppose that �F is a smooth gradient field, so �F = gradf for some function f . Using the Funda-
mental Theorem for Line Integrals, we saw in Chapter 18 that∫

C

�F · d�r = 0

for any closed curve C. Thus, for any unit vector �n

circ�n
�F = lim

Area→0

∫
C

�F · d�r

Area of C
= lim

Area→0

0

Area
= 0,

where the limit is taken over circles C in a plane perpendicular to �n , and oriented by the right-hand
rule. Thus, the circulation density of �F is zero in every direction, so curl �F = �0 , that is,

curl gradf = �0 .

(This formula can also be verified using the coordinate definition of curl. See Problem 28 on
page 1054.)

Is the converse true? Is any vector field whose curl is zero a gradient field? Suppose that
curl �F = �0 and let us consider the line integral

∫
C
�F · d�r for a closed curve C contained in

the domain of �F . If C is the boundary curve of an oriented surface S that lies wholly in the domain
of curl �F , then Stokes’ Theorem asserts that∫

C

�F · d�r =

∫
S

curl �F · d �A =

∫
S

�0 · d �A = 0.

If we knew that
∫
C
�F · d�r = 0 for every closed curve C, then �F would be path-independent, and

hence a gradient field. Thus, we need to know whether every closed curve in the domain of �F is
the boundary of an oriented surface contained in the domain. It can be quite difficult to determine
if a given curve is the boundary of a surface (suppose, for example, that the curve is knotted in a
complicated way). However, if the curve can be contracted smoothly to a point, remaining all the
time in the domain of �F , then it is the boundary of a surface, namely, the surface it sweeps through
as it contracts. Thus, we have proved the test for a gradient field that we stated in Chapter 18.

The Curl Test for Vector Fields in 3-Space

Suppose �F is a smooth vector field on 3-space such that
• The domain of �F has the property that every closed curve in it can be contracted to a

point in a smooth way, staying at all times within the domain.

• curl �F = �0 .
Then �F is path-independent, and thus is a gradient field.

Example 7 on page 992 shows how the curl test is applied.

The Curl and the Divergence
In this section we will use the second two fundamental theorems to get a test for a vector field to be
a curl field, that is, a field of the form �F = curl �G for some �G .

Example 1 Suppose that �F is a smooth curl field. Use Stokes’ Theorem to show that for any closed surface, S,
contained in the domain of �F ∫

S

�F · d �A = 0.
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Solution Suppose �F = curl �G . Draw a closed curve C on the surface S, thus dividing S into two surfaces S1

and S2 as shown in Figure 20.21. Pick the orientation for C corresponding to S1; then the orientation
of C corresponding to S2 is the opposite. Thus, using Stokes’ Theorem,∫

S1

�F · d �A =

∫
S1

curl �G · d �A =

∫
C

�G · d�r = −

∫
S2

curl �G · d �A = −

∫
S2

�F · d �A .

Thus, for any closed surface S, we have∫
S

�F · d �A =

∫
S1

�F · d �A +

∫
S2

�F · d �A = 0.

�n 1

�n 2

C

�

Orientation of C corresponding to S1

�

Orientation of C corresponding to S2

S

S1 S2

Figure 20.21: The closed surface S divided into two surfaces S1 and S2

Thus, if �F = curl �G , we use the result of Example 1 to see that

div �F = lim
Volume→0

∫
S

�F · d �A

Volume enclosed by S
= lim

Volume→0

0

Volume
= 0,

where the limit is taken over spheres S contracting down to a point. So we conclude that:

div curl �G = 0.

(This formula can also be verified using coordinates. See Problem 27 on page 1054.)
Is every vector field whose divergence is zero a curl field? It turns out that we have the following

analogue of the curl test, though we will not prove it.

The Divergence Test for Vector Fields in 3-Space

Suppose �F is a smooth vector field on 3-space such that
• The domain of �F has the property that every closed surface in it is the boundary of a

solid region completely contained in the domain.

• div �F = 0.
Then �F is a curl field.

Example 2 Consider the vector fields �E = q
�r

‖�r ‖3
and �B =

2I

c

(
−y�i + x�j

x2 + y2

)
.

(a) Calculate div �E and div �B .
(b) Do �E and �B satisfy the divergence test?
(c) Is either �E or �B a curl field?
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Solution (a) Example 3 on page 1028 shows that div �E = 0. The following calculation shows div �B = 0

also:

div �B =
2I

c

(
∂

∂x

(
−y

x2 + y2

)
+

∂

∂y

(
x

x2 + y2

)
+

∂

∂z
(0)

)

=
2I

c

(
2xy

(x2 + y2)2
+

−2yx

(x2 + y2)2

)
= 0.

(b) The domain of �E is 3-space minus the origin, so a region is contained in the domain if it misses
the origin. Thus, the surface of a sphere centered at the origin is contained in the domain of E,
but the solid ball inside is not. Hence, �E does not satisfy the divergence test.

The domain of �B is 3-space minus the z-axis, so a region is contained in the domain if it
avoids the z-axis. If S is a surface bounding a solid region W , then the z-axis cannot pierce
W without piercing S as well. Hence, if S avoids the z-axis, so does W . Thus, �B satisfies the
divergence test.

(c) In Example 3 on page 1036 we computed the flux of �r /‖�r ‖3 through a sphere centered at the
origin, and found it was 4π, so the flux of �E through this sphere is 4πq. Thus, �E cannot be a
curl field, because by Example 1, the flux of a curl field through a closed surface is zero.

On the other hand, �B satisfies the divergence test, so it must be a curl field. In fact, Prob-
lem 24 shows that

�B = curl

(
−I

c
ln(x2

+ y2)�k

)
.

Exercises and Problems for Section 20.3
Exercises

In Exercises 1–6, is the vector field a gradient field?

1. �F = 2x�i + z�j + y�k

2. �F = y�i + z�j + x�k

3. �F = (y + 2z)�i + (x+ z)�j + (2x+ y)�k

4. �F = (y − 2z)�i + (x− z)�j + (2x− y)�k

5. �G = −y�i + x�j

6. �F = yz�i + (xz + z2)�j + (xy + 2yz)�k

In Exercises 7–12, is the vector field a curl field?

7. �F = z�i + x�j + y�k

8. �F = z�i + y�j + x�k

9. �F = 2x�i − y�j − z�k

10. �F = (x+ y)�i + (y + z)�j + (x+ z)�k

11. �F = (−xy)�i + (2yz)�j + (yz − z2))�k

12. �F = (xy)�i + (xy)�j + (xy)�k

In Exercises 13–16, can the curl test and the divergence test
be applied to a vector field whose domain is the given region?

13. All points (x, y, z) such that z > 0.

14. All points (x, y, z) not on the y-axis.

15. All points (x, y, z) not on the positive z-axis.

16. All points (x, y, z) except the x-axis with 0 ≤ x ≤ 1.

Problems

17. Let �B = b�k , for some constant b. Show that the follow-
ing are all possible vector potentials for �B :

(a) �A = −by�i (b) �A = bx�j

(c) �A = 1
2
�B × �r .

18. Find a vector field �F such that curl �F = 2�i −3�j +4�k .
[Hint: Try �F = �v × �r for some vector �v .]

19. Find a vector potential for the constant vector field �B
whose value at every point is�b .

20. Express (3x+ 2y)�i + (4x+ 9y)�j as the sum of a curl-
free vector field and a divergence-free vector field.

In Problems 21–22, does a vector potential exist for the vector
field given? If so, find one.

21. �G = x2�i + y2�j + z2�k

22. �F = 2x�i + (3y − z2)�j + (x− 5z)�k
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23. An electric charge q at the origin produces an electric
field �E = q�r /‖�r ‖3.
(a) Does curl �E = �0 ?
(b) Does �E satisfy the curl test?
(c) Is �E a gradient field?

24. Show that �A =
−I

c
ln(x2 + y2)�k is a vector potential

for

�B =
2I

c

(
−y�i + x�j

x2 + y2

)
.

25. Suppose c is the speed of light. A thin wire along the
z-axis carrying a current I produces a magnetic field

�B =
2I

c

(
−y�i + x�j

x2 + y2

)
.

(a) Does curl �B = �0 ?
(b) Does �B satisfy the curl test?
(c) Is �B a gradient field?

26. For constant p, consider the vector field �E =
�r

‖�r ‖p .

(a) Find curl �E .
(b) Find the domain of �E .
(c) For which values of p does �E satisfy the curl test?

For those values of p, find a potential function for
�E .

27. Use Stokes’ Theorem to show that if u(x, y) and v(x, y)
are two functions of x and y and C is a closed curve in
the xy-plane oriented counterclockwise, then∫

C

(u�i + v�j ) · d�r =

∫
R

(
∂v

∂x
− ∂u

∂y

)
dxdy

where R is the region in the xy-plane enclosed by C.
This is Green’s Theorem.

28. The magnetic field, �B , due to a magnetic dipole with
moment �μ satisfies div �B = 0 and is given by

�B = − �μ

‖�r ‖3 +
3(�μ · �r )�r

‖�r ‖5 , �r �= �0 .

(a) Does �B satisfy the divergence test?

(b) Show that �A =
�μ × �r

‖�r ‖3 is a vector potential for

�B . [Hint: Use Problem 29 on page 1054. The iden-
tities in Example 3 on page 1051, Problem 68 on
page 796, and Problem 47 on page 750 may also be
useful.]

(c) Does your answer to part (a) contradict your answer
to part (b)? Explain.

29. Suppose that �A is a vector potential for �B .

(a) Show that �A + gradψ is also a vector potential
for �B , for any function ψ with continuous second-
order partial derivatives. (The vector potentials �A
and �A +gradψ are called gauge equivalent and the
transformation, for any ψ, from �A to �A +gradψ is
called a gauge transformation.)

(b) What is the divergence of �A +gradψ? How should
ψ be chosen such that �A + gradψ has zero diver-
gence? (If div �A = 0, the magnetic vector potential
�A is said to be in Coulomb gauge.)

Strengthen Your Understanding

In Problems 30–31, explain what is wrong with the statement.

30. The curl of a vector field �F is given by curl �F = x�i .

31. For a certain vector field �F , we have curl div �F = y�i .

In Problems 32–33, give an example of:

32. A vector field �F that is not the curl of another vector
field.

33. A function f such that div grad f �= 0.

In Problems 34–37, is the statement true or false? Give a rea-
son for your answer.

34. There exists a vector field �F with curl �F =�i .

35. There exists a vector field �F (whose components
have continuous second partial derivatives) satisfying
curl�F = x�i .

36. Let S be an oriented surface, with oriented boundary C,
and suppose that �F is a vector field such that

∫
S

curl �F ·
d �A = 0. Then �F is a gradient field.

37. If �F is a gradient field, then
∫
S
curl �F · d �A = 0, for

any smooth oriented surface, S, in 3-space.

38. Let f(x, y, z) be a scalar function with continuous sec-
ond partial derivatives. Let �F (x, y, z) be a vector field
with continuous second partial derivatives. Which of the
following quantities are identically zero?

(a) curl grad f (b) �F × curl �F

(c) grad div �F (d) div curl �F

(e) div grad f
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CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• Curl
Geometric and coordinate definition of curl, calculating
curl, interpretation in terms of circulation per unit area.

• Stokes’ Theorem
Statement of the theorem, curl-free and curl fields.

• Three Fundamental Theorems
Combining the fundamental theorem of line integrals,
Stokes’ theorem and the Divergence theorem to show
curl grad f = �0 and div curl �G = 0.
Curl test for gradient field in 3-space.
Divergence test for curl field in 3-space.

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER TWENTY

Exercises

1. Find curl((x+ y)�i − (y + z)�j + (x+ z)�k )

2. Find (curl�n ) ·�j
where �n = (2x+ 3y)�i + (4y + 5z)�j + (6z + 7x)�k

Exercises 3–5 concern the vector fields in Figure 20.22. In
each case, assume that the cross-section is the same in all other
planes parallel to the given cross-section.

C1

(a)

C2

(b)

C3

(c)

C4

(d)

C5

(e)

C6

(f)

Figure 20.22

3. Three of the vector fields have zero curl at each point
shown. Which are they? How do you know?

4. Three of the vector fields have zero divergence at each
point shown. Which are they? How do you know?

5. Four of the line integrals
∫
C

i

�F · d�r are zero. Which are
they? How do you know?

In Exercises 6–9, are the quantities defined? For those that are,
is the quantity a vector or scalar? Let f(x, y, z) be a smooth
function and let �F (�r ) and �G (�r ) be smooth vector fields.

6.

∫
C

(grad �F ) · d�r 7.

∫
S

(�F (�r )× �G (�r ))·d �A

8. div((grad f)× �r ) 9. (curl �F )× �F

In Exercises 10–11 decide whether the vector fields appear
to have nonzero curl at the point marked. The vector field is
shown in the xy-plane; it has no z-component and is indepen-
dent of z.

10.

x

y 11.

x

y

In Exercises 12–15, calculate div�F and curl�F . Is �F
solenoidal or irrotational?

12. �F = x2�i + y3�j + z4�k

13. �F = xy�i + yz�j + zx�k

14. �F = (cosx)�i + ey�j + (x+ y + z)�k

15. �F = ey+z�i + sin(x+ z)�j +
(
x2 + y2

)
�k

16. Let S be the curved side of the cylinder y2 + z2 = 5, for
0 ≤ x ≤ 3, oriented outward. Let �F = xz�j − xy�k .
Find
∫
S
curl �F · d �A

(a) Directly (b) Using Stokes’ Theorem

17. Compute
∫
C
((yz2− y)�i +(xz2 + x)�j +2xyz�k ) · d�r ,

where the line integral is around C, the circle of radius 3
in the xy-plane, centered at the origin, oriented counter-
clockwise as viewed from the positive z-axis. Do this in
two ways:

(a) Directly (b) Using Stokes’ Theorem
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18. Find the flux of curl(ex
2
�i +(x+ y)�k ) through the disk

y2 + z2 ≤ 1, x = 0, oriented toward the positive x-axis
using:

(a) Stokes’ Theorem (b) Direct calculation

In Exercises 19–22, use Stokes’ Theorem to find the circula-
tion of the vector field around the given paths.

19. �F = (z − 2y)�i + (3x − 4y)�j + (z + 3y)�k and C is
the circle x2+y2 = 4, z = 1, oriented counterclockwise
when viewed from above.

20. �F = (2x− y)�i + (x+4y)�j and C is a circle of radius

10, centered at the origin.

(a) In the xy-plane, oriented clockwise as viewed from
the positive z-axis.

(b) In the yz-plane, oriented clockwise as viewed from
the positive x-axis.

21. �F = �r /‖�r ‖3 and C is the path consisting of line seg-
ments from (1, 0, 1) to (1, 0, 0) to (0, 0, 1) to (1, 0, 1).

22. �F = xz�i + (x + yz)�j + x2�k and C is the circle
x2 + y2 = 1, z = 2, oriented counterclockwise when
viewed from above.

Problems

23. Let �r = x�i + y�j + z�k and �a be a constant vector.
For each of the quantities in (a)–(f), choose one of the
statements in (I)–(V).

(a) div(�r + �a ) (b) div(�r × �a ) (c) div(�r · �a )

(d) curl(�r +�a ) (e) curl(�r ×�a ) (f) curl(�r · �a )

(I) Scalar, independent of �a .
(II) Scalar, depends on �a .

(III) Vector, independent of �a .
(IV) Vector, depends on �a .
(V) Not defined.

24. Calculate the following quantities or say why it is impos-
sible. Let �r = x�i + y�j + z�k and let �a = a1

�i + a2
�j +

a3
�k be a constant vector.

(a) grad(�r · �a ) (b) div(�r · �a )

(c) curl(�r · �a ) (d) grad(�r × �a )

(e) div(�r × �a ) (f) curl(�r × �a )

25. Calculate each of the following integrals or say why it
cannot be done with the methods and theorems in this
book. Let �F = x3�i + y3�j + z3�k .

(a)
∫
S
�F · d �A where S is the disk of radius 3 in the

plane y = 5, oriented toward the origin.
(b)
∫
W

�F dV where W is the solid sphere of radius 2
centered at the origin.

(c)
∫
S
curl �F · d �A where S is the disk of radius 3 in

the plane y = 5, oriented toward the origin.
(d)
∫
C
grad �F · d�r where C is the line from the origin

to (2, 3, 4).
(e)
∫
W

div �F dV where W is the solid sphere of radius
2 centered at the origin.

(f)
∫
C

�F · d�r where C is the line from the origin to
(2, 3, 4).

(g)
∫
W

curl �F dV where W is the box 0 ≤ x ≤ 1, 0 ≤
y ≤ 2, 0 ≤ z ≤ 3.

(h)
∫
W

�F · (�i + �j + �k )dV where W is the box 0 ≤
x ≤ 1, 0 ≤ y ≤ 2, 0 ≤ z ≤ 3.

26. Let �F be a vector field with continuous partial deriva-
tives at all points in 3-space. Let S1 be the upper half of

the sphere of radius 1 centered at the origin, oriented up-
ward. Let S2 be the disk of radius 1 in the xy-plane cen-
tered at the origin and oriented upward. Let C be the unit
circle in the xy-plane, oriented counterclockwise when
viewed from above. For each of the following integrals,
say whether or not it is defined. If it is defined, list which
of the other integrals it must equal (if any) and name the
theorem.

(a)

∫
C

�F · d�r (b)

∫
C

�F · d �A

(c)

∫
S1

�F · d�r (d)

∫
S2

�F · d �A

(e)

∫
S1

curl �F · d �A (f)

∫
S2

curl�F · d �A

(g)

∫
C

curl�F · d�r

27. Let curl �F = 2x�i +5�j −2z�k , let P = (3, 2, 4), and let
C be the circle of radius 0.01 centered at P in the plane
x+y+z = 9, oriented clockwise when viewed from the
origin.

(a) Find curl �F · (�i +�j + �k ) at P .
(b) What does your answer to part (a) tell you about∫

C
�F · d�r ?

28. Three small squares, S1, S2, and S3, each with side 0.1
and centered at the point (4, 5, 7), lie parallel to the xy-,
yz- and xz-planes, respectively. The squares are oriented
counterclockwise when viewed from the positive z-, x-,
and y-axes, respectively. A vector field �G has circulation
around S1 of −0.02, around S2 of 6, and around S3 of
−5. Estimate curl �G at the point (4, 5, 7) .

29. Figures 20.23 and 20.24 show the vector fields �F and �G .
Each vector field has no z-component and is independent
of z. All the axes have the same scales.

(a) What can you say about div �F and div �G at the ori-
gin?

(b) What can you say about curl �F and curl �G at the
origin?

(c) Is there a closed surface around the origin such that
�F has a nonzero flux through it?
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(d) Repeat part (c) for �G .
(e) Is there a closed curve around the origin such that �F

has a nonzero circulation around it?
(f) Repeat part (e) for �G .

x

y

Figure 20.23: Cross-section of �F

x

y

Figure 20.24: Cross-section of �G

30. Let �F = y�i + πx�j + z�k . Find the following integrals:

(a)

∫
S

�F · d �A , where S is the disk x2 + y2 ≤ 10,

z =
√
5, oriented downward.

(b)

∫
C

�F · d�r , where C is the line from (0,
√
3, 0) to

(2,
√
3, 0).

(c)

∫
S

curl �F · d �A , where S is the rectangle with cor-

ners at (0, 0, 0), (0,
√
3, 0), (2,

√
3, 0), (2, 0, 0), ori-

ented upward.

In Problems 31–42, calculate the integral.

31.
∫
C

(
x2�i + y2�j + (x+ y + z)�k

)
· d�r where C is the

circle (x− 1)2 + (y− 2)2 = 4 in the xy-plane, oriented
counterclockwise when viewed from the positive z-axis.

32.
∫
C
(−y3�i + x3�j + ez�k ) · d�r where C is x2 + y2 = 3,

z = 4, oriented counterclockwise when viewed from
above.

33.
∫
C

(
sin
(
x2
)
�i + cos

(
y2
)
�j + (x+ y)�k

)
· d�r where

C is the circle (y − 1)2 + (z − 2)2 = 4 in the yz-plane,
oriented counterclockwise when viewed from the posi-
tive x-axis.

34.
∫
S

curl�F ·d �A where �F = (z+y)�i − (z+x)�j +(y+

x)�k . and S is the disk y2 + z2 ≤ 3, x = 0, oriented in
the positive x-direction.

35.
∫
S
�F · d �A , where �F = 3x�i + 4y�j + xy�k and S is

the closed rectangular box whose top face has corners
(0, 0, 0), (3, 0, 0), (3, 5, 0), (0, 5, 0), and whose bottom
face contains the corner (0, 0,−2).

36.
∫
S
�F ·d �A where �F =

(
y2 + 3x

)
�i+
(
x2 − y

)
�j +2z�k

and S is the unit sphere centered at the origin.

37.
∫
S
�F · d �A where �F = x3�i + y3�j + z3�k and S is the

sphere of radius 1 centered at the origin.

38.
∫
C

�F ·d�r where �F = (x+y)�i +(y+2z)�j +(z+3x)�k
and C is a square of side 7 in the xz-plane, oriented coun-
terclockwise when viewed from the positive y-axis.

39.
∫
C

�F ·d�r where �F = (x−y3+z)�i +(x3+y+z)�j +

(x+y+z3)�k and C is the circle x2+y2 = 10, oriented
counterclockwise when viewed from above.

40.
∫
S
�F · d �A where �F = (y3z3)�i + y3�j + z3�k and S is

the cylinder y2 + z2 = 16, −1 ≤ x ≤ 1.

41.
∫
S
curl �F ·d �A where �F = −xey�i + yex�j + x2y2z�k

and S is the top and sides of the cube 0 ≤ x ≤ 1, 0 ≤
y ≤ 1, 0 ≤ z ≤ 1, oriented outward.

42.
∫
C

�F · d�r if curl �F = 4�k and C is a unit circle in the
xy-plane, oriented counterclockwise when viewed from
above.

43. A box of side 1 in the first octant has faces in the planes
x = 0, x = 3, y = 0, y = 3, z = 0, z = 3. Remove
the face in the yz-plane to have an open surface, S, with
a square boundary C. Let �F = (x+ y)�i − z�j + y�k .

(a) Calculate
∫
C

�F · d�r , where C is oriented counter-
clockwise when viewed from the positive x-axis.

(b) Calculate
∫
S
�F · d �A , when S is oriented in the di-

rection of the positive x-axis.

44. Suppose div �F (x, y, z) = 4 everywhere. Which of the
following quantities can be computed from this informa-
tion? Give the value of those that can be computed.

(a)
∫
S
�F ·d �A , where S is a sphere of radius 2 centered

at the origin and oriented outward.
(b)
∫
C

�F ·d�r , where C is the unit circle in the xy-plane,
oriented counterclockwise viewed from above.

(c)
∫
S

curl �F · d �A , where S is a sphere of radius 2
centered at the origin and oriented outward.

45. Are the following vector fields conservative?

(a) �F (x, y, z) = y2z�i + 2xyz�j + xy�k
(b) The vector field in Figure 20.25.
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x

y

Figure 20.25

46. Let �F =
−y�i + x�j

x2 + y2
.

(a) Calculate curl �F . What is the domain of curl �F ?
(b) Find the circulation of �F around the unit circle

C1 in the xy-plane, oriented counterclockwise when
viewed from above.

(c) Find the circulation of �F around the circle C2 in the
plane z = 4 and with equation (x − 3)2 + y2 = 1,
oriented counterclockwise when viewed from above.

(d) Find the circulation of �F around the square
S with corners (2, 2, 0), (−2, 2, 0), (−2,−2, 0),
(2,−2, 0), oriented counterclockwise when viewed
from above.

(e) Using your results to parts (b)–(d) explain how, with
no additional calculation, you can find the circula-
tion of �F around any simple closed curve in the xy-
plane, provided it does not intersect the z-axis. (A
simple closed curve does not cross itself.)

47. Let C1 be the circle of radius 3 in the xy-plane oriented
counterclockwise and centered at the origin. Let

�F =
−y�i + x�j

x2 + y2
.

(a) Find
∫
C1

�F · d�r by direct computation.

(b) Calculate curl �F .
(c) If possible, use Stokes’ Theorem to calculate∫

C1

�F · d�r ? If it cannot be used, explain why not.
(d) Let C2 be the circle of radius 3 in the xy-plane cen-

tered at (5, 0). If possible, use Stokes’ Theorem to
calculate

∫
C2

�F · d�r ? If it cannot be used, explain
why not.

(e) Is �F a gradient field?

48. Consider the circulation of the vector fields in parts (a)–
(c) around the sets of closed curves in (I)–(V). For which
of the sets, (I)–(V), is the circulation zero on every curve?

(I) All closed curves in the xy-plane.
(II) All closed curves in the yz-plane.

(III) All closed curves in the xz-plane.
(IV) All closed curves in the plane x+ y + z = 0.
(V) All closed curves in all planes of the form mx +

ny = d, where m, n, d are constants.

(a) �F = −y�i + x�j (b) �G = y�i + x�j

(c) �H = z�j

49. Let �F = y�i − x�j + z�k . Evaluate:

(a)

∫
C

�F · d�r where C is the z-axis from the origin to

(0, 0, 10).

(b)

∫
S

�F ·d �A where S is the disk x2+y2 ≤ 3, z = 10.

(c)

∫
S

�F · d �A where S is the closed box with edges

of length 2 in the first octant, with one corner at the
origin and edges along the axes.

(d)

∫
C

�F · d�r where C is the circle of radius 3, cen-

tered on the z-axis in the plane z = 4, and oriented
counterclockwise when viewed from above.

CAS Challenge Problems

50. (a) Let �F = x3y�i + 2xz3�j + (z3 + 4x2)�k . Compute
curl �F (1, 2, 1).

(b) Consider the family of curves Ca given, for 0 ≤ t ≤
2π, by

�r (t) =�i + (2 + a cos t)�j + (1 + a sin t)�k .

Evaluate the line integral
∫
Ca

�F · d�r and compute
the limit

lim
a→0

∫
Ca

�F · d�r
πa2

.

(c) Repeat part (b) for the family Da given, for 0 ≤ t ≤
2π, by

�r (t) = (1 + a sin t)�i + 2�j + (1 + a cos t)�k .

(d) Repeat part (b) for the family Ea given, for 0 ≤ t ≤
2π, by

�r (t) = (1 + a cos t)�i + (2 + a sin t)�j + �k .

(e) Compare your answers to parts (b)-(d) with part (a)
and explain using the geometric definition of curl.

51. Let S be the sphere of radius R centered at the origin
with outward orientation and let

�F = (ax2 + bxz)�i + (cy2 + py)�j + (qz + rx3)�k .

(a) Use the Divergence Theorem to express the flux in-
tegral

∫
S
�F · d �A as a triple integral. Then use sym-

metry and the volume formula for a sphere to evalu-
ate the triple integral.

(b) Check your answer in part (a) by computing the flux
integral directly.
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52. Let �F (x, y, z) = x2y�i + 2xz�j + (z3 + 4x2)�k and
let Sa be the sphere of radius a centered at (1, 1, 1),
oriented outward, parameterized by �r (φ, θ) = (1 +

a sinφ cos θ)�i +(1+ a sinφ sin θ)�j +(1+ a cosφ)�k ,
0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π.

(a) Compute div �F (1, 1, 1) .
(b) Use the geometric definition of divergence to esti-

mate
∫
Sa

�F · d �A for a = 0.1.

(c) Evaluate the flux integral
∫
Sa

�F · d �A . Compare its

value for a = 0.1 with your answer to part (b). Then
compute the limit

lim
a→0

∫
Sa

�F · d �A
Volume inside Sa

and compare your result with part (a). Explain your
answer in terms of the geometric definition of the
divergence.

PROJECTS FOR CHAPTER TWENTY

1. Magnetic Field Generated by a Current in a Wire
Under steady-state conditions, a magnetic field �B has curl �B = �0 in a region where

there is no current. We study the steady-state magnetic field �B due to a constant current in
an infinitely long straight thin wire. The magnitude of the magnetic field at a point depends
only on the distance from the wire and its direction is tangent to the circle around the wire
and determined by the right-hand rule. Suppose the current is flowing upward along the z-axis.
Then �B is parallel to the xy-plane and, by the right-hand rule, points counterclockwise around
a circle centered on the z-axis. (See Figure 20.26.)

(a) Find the flux of curl �B through the surface S between two concentric circles in the xy-
plane of radius R1 and R2 centered on the wire.

(b) Calculate the circulation of �B around each of the two boundary pieces of S, where their
orientations are determined by the upward orientation of S.

(c) Use Stokes’ Theorem to deduce that the magnitude of the magnetic field �B is proportional
to the reciprocal of the distance from the wire.

(d) Compare the magnitude ‖ �B ‖ at two points P and Q if Q is twice as far from the wire as
P .

(e) To decrease the magnitude of �B by 20%, by what factor does the distance from the wire
have to increase?

x

y

P2

P1

S

C1

C2

R1 R2

*

*

� �B

Figure 20.26: Current along positive z-axis
(out of page)

2. Curl in Natural Coordinates
Let �F (x, y) = u(x, y)�i + v(x, y)�j be a 2-dimensional vector field. Let F (x, y) be the

magnitude of �F and let θ(x, y) be the angle of �F with the positive x-axis at the point (x, y),
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so that u = F cos θ and v = F sin θ. Let �T be the unit vector in the direction of �F , and let �N
be the unit vector in the direction of �k × �F , perpendicular to �F . Show that

curl �F = c�k where c = Fθ�T − F �N .

The scalar c is called the scalar curl or the vorticity of the vector field �F . This problem shows
that the vorticity is the difference of two terms, the curvature vorticity, Fθ�T , due to turning of

the flow lines of �F , and the shear vorticity, F �N , due to changes in the magnitude of �F in a

direction normal to �F .
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21.1 COORDINATES AND PARAMETERIZED SURFACES

In Chapter 17 we parameterized curves in 2- and 3-space, and in Chapter 16 we used polar, cylin-
drical, and spherical coordinates to simplify iterated integrals. We now take a second look at pa-
rameterizations and coordinate systems, and see that they are the same thing in different disguises:
functions from one space to another.

We have already seen this with parameterized curves, which we view as a function from an
interval a ≤ t ≤ b to a curve in xyz-space. See Figure 21.1.

x

y

z

a b

�r (b)

�r (a)
�r (t)

C

Figure 21.1: The parameterization is a function from the interval, a ≤ t ≤ b, to 3-space, whose
image is the curve, C

Polar, Cylindrical, and Spherical Coordinates Revisited
The equations for polar coordinates,

x = r cos θ

y = r sin θ,

can also be viewed as defining a function from the rθ-plane into the xy-plane. This function trans-
forms the rectangle on the left of Figure 21.2 into the quarter disk on the right. We need two param-
eters to describe this disk because it is a two-dimensional object.

Polar Coordinates as Families of Parameterized Curves

Polar coordinates give two families of parameterized curves, which form the polar coordinate grid.
The lines r = Constant in the rθ-plane correspond to circles in the xy-plane, each circle param-
eterized by θ; the lines θ = Constant correspond to rays in the xy-plane, each ray parameterized
by r.

Cylindrical and Spherical Coordinates

Similarly, cylindrical and spherical coordinates may be viewed as functions from 3-space to 3-space.
Cylindrical coordinates take rectangular boxes in rθz-space and map them to cylindrical regions in
xyz-space; spherical coordinates take rectangular boxes in ρθφ-space and map them to spherical
regions in xyz-space.

1 2 3 4

π/8

π/4

3π/8

π/2

θ = π/8

θ = π/4

θ = 3π/8

r = 1 r = 2 r = 3

�

r

θ

1 2 3 4

1

2

3

x

y

θ = 3π/8

θ = π/4

θ = π/8

Figure 21.2: A grid in the rθ-plane and the corresponding curved grid in the xy-plane
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General Parameterizations

In general, a parameterization or coordinate system provides a way of representing a curved object
by means of a simple region in the parameter space (an interval, rectangle, or rectangular box),
along with a function mapping that region into the curved object. In the next section, we use this
idea to parameterize curved surfaces in 3-space.

How Do We Parameterize a Surface?
In Section 17.1 we parameterized a circle in 2-space using the equations

x = cos t, y = sin t.

In 3-space, the same circle in the xy-plane has parametric equations

x = cos t, y = sin t, z = 0.

We add the equation z = 0 to specify that the circle is in the xy-plane. If we wanted a circle in the
plane z = 3, we would use the equations

x = cos t, y = sin t, z = 3.

Suppose now we let z vary freely, as well as t. We get circles in every horizontal plane, forming
a cylinder as in the left of Figure 21.3. Thus, we need two parameters, t and z, to parameterize the
cylinder.

x y

z

z = 0
z = 1

z = 2

z = 3

z = −3



θ = 0



θ = π/6



θ = π/3

�

θ = π/2

�

θ = 2π/3

x y

z

Figure 21.3: The cylinder x = cos t, y = sin t, z = z

We can contrast curves and surfaces. A curve, though it may live in two or three dimensions,
is itself one-dimensional; if we move along it we can only move backward and forward in one
direction. Thus, it only requires one parameter to trace out a curve.

A surface is 2-dimensional; at any given point there are two independent directions we can
move. For example, on the cylinder we can move vertically, or we can circle around the z-axis
horizontally. So we need two parameters to describe it. We can think of the parameters as map
coordinates, like longitude and latitude on the surface of the earth. Just as polar coordinates give
a polar grid on a circular region, so the parameters for a surface give a grid on the surface. See
Figure 21.3 on the right.

In the case of the cylinder our parameters are t and z, so

x = cos t, y = sin t, z = z, 0 ≤ t < 2π, −∞ < z < ∞.

The last equation, z = z, looks strange, but it reminds us that we are in three dimensions, not two,
and that the z-coordinate on our surface is allowed to vary freely.

In general, we express the coordinates, (x, y, z), of a point on a surface S in terms of two
parameters, s and t:

x = f1(s, t), y = f2(s, t), z = f3(s, t).
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As the values of s and t vary, the corresponding point (x, y, z) sweeps out the surface, S. (See
Figure 21.4.) The function which sends the point (s, t) to the point (x, y, z) is called the parameter-
ization of the surface.

R
�

(s, t) y
x

z

S

�

(x, y, z) =
(f1(s, t), f2(s, t), f3(s, t))

Figure 21.4: The parameterization sends each point (s, t) in the parameter region, R, to a point
(x, y, z) = (f1(s, t), f2(s, t), f3(s, t)) in the surface, S

Using Position Vectors

We can use the position vector �r = x�i + y�j + z�k to combine the three parametric equations
for a surface into a single vector equation. For example, the parameterization of the cylinder x =

cos t, y = sin t, z = z can be written as

�r (t, z) = cos t�i + sin t�j + z�k 0 ≤ t < 2π, −∞ < z < ∞.

For a general parameterized surface S, we write

�r (s, t) = f1(s, t)�i + f2(s, t)�j + f3(s, t)�k .

Parameterizing a Surface of the Form z = f(x, y)

The graph of a function z = f(x, y) can be given parametrically simply by letting the parameters s
and t be x and y:

x = s, y = t, z = f(s, t).

Example 1 Give a parametric description of the lower hemisphere of the sphere x2 + y2 + z2 = 1.

Solution The surface is the graph of the function z = −
√

1− x2 − y2 over the region x2 + y2 ≤ 1 in the
plane. Then parametric equations are x = s, y = t, z = −

√
1− s2 − t2, where the parameters s

and t vary inside the unit circle.

In practice we often think of x and y as parameters rather than introduce new parameters s and
t. Thus, we may write x = x, y = y, z = f(x, y).

Parameterizing Planes

Consider a plane containing two nonparallel vectors �v 1 and �v 2 and a point P0 with position vector
�r 0. We can get to any point on the plane by starting at P0 and moving parallel to �v 1 or �v 2, adding
multiples of them to �r 0. (See Figure 21.5.)

�v1

�v2

P0

Figure 21.5: The plane �r (s, t) = �r 0 + s�v 1 + t�v 2 and
some points corresponding to various choices of s and t

Since s�v 1 is parallel to �v 1 and t�v 2 is parallel to �v 2, we have the following result:
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Parameterizing a Plane

The plane through the point with position vector �r 0 and containing the two nonparallel vec-
tors �v 1 and �v 2 has parameterization

�r (s, t) = �r 0 + s�v 1 + t�v 2.

If �r 0 = x0
�i + y0�j + z0�k , and �v 1 = a1�i + a2�j + a3�k , and �v 2 = b1�i + b2�j + b3�k , then the

parameterization of the plane can be expressed with the parametric equations

x = x0 + sa1 + tb1, y = y0 + sa2 + tb2, z = z0 + sa3 + tb3.

Notice that the parameterization of the plane expresses the coordinates x, y, and z as linear
functions of the parameters s and t.

Example 2 Write a parameterization for the plane through the point (2,−1, 3) and containing the vectors �v 1 =

2�i + 3�j − �k and �v 2 =�i − 4�j + 5�k .

Solution A possible parameterization is

�r (s, t) = �r 0 + s�v 1 + t�v 2 = 2�i −�j + 3�k + s(2�i + 3�j − �k ) + t(�i − 4�j + 5�k )

= (2 + 2s+ t)�i + (−1 + 3s− 4t)�j + (3− s+ 5t)�k ,

or equivalently,
x = 2 + 2s+ t, y = −1 + 3s− 4t, z = 3− s+ 5t.

Parameterizations Using Spherical Coordinates
Recall the spherical coordinates ρ, φ, and θ introduced on page 899 of Chapter 16. On a sphere of
radius ρ = a we can use φ and θ as coordinates, similar to latitude and longitude on the surface
of the earth. (See Figure 21.6.) The latitude, however, is measured from the equator, whereas φ is
measured from the north pole. If the positive x-axis passes through the Greenwich meridian, the
longitude and θ are equal for 0 ≤ θ ≤ π.

x

y

z

θ

φ

Figure 21.6: Parameterizing the sphere by φ and θ

Example 3 You are at a point on a sphere with φ = 3π/4. Are you in the northern or southern hemisphere? If
φ decreases, do you move closer to or farther from the equator?

Solution The equator has φ = π/2. Since 3π/4 > π/2, you are in the southern hemisphere. If φ decreases,
you move closer to the equator.

Example 4 On a sphere, you are standing at a point with coordinates θ0 and φ0. Your antipodal point is the point
on the other side of the sphere on a line through you and the center. What are the θ, φ coordinates
of your antipodal point?
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Solution Figure 21.7 shows that the coordinates are θ = θ0 + π if θ0 < π or θ = θ0 − π if π ≤ θ0 ≤ 2π, and
φ = π − φ0. Notice that if you are on the equator, then so is your antipodal point.

View from above

y

x

Point
(above xy-plane)

Antipodal Point
(below xy-plane)

θ0π + θ0

z

xy-plane
seen edge-on

Side view

Point

Antipodal
Point

φ0

π − φ0

Figure 21.7: Two views of the xyz-coordinate system showing coordinates of antipodal points

Parameterizing a Sphere Using Spherical Coordinates

The sphere with radius 1 centered at the origin is parameterized by

x = sinφ cos θ, y = sinφ sin θ, z = cosφ,

where 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π. (See Figure 21.8.)

x

y

z

φ

θ

�

�

cosφ

sinφ

Rad
ius

=
1

sinφ sin θ

si
n
φ
co
s θ

�

�

�

�

Figure 21.8: The relationship between x, y, z and φ, θ on a sphere of radius 1

We can also write these equations in vector form:

�r (θ, φ) = sinφ cos θ�i + sinφ sin θ�j + cosφ�k .

Since x2 + y2+ z2 = sin
2 φ(cos2 θ+sin

2 θ)+ cos2 φ = sin
2 φ+cos2 φ = 1, this verifies that

the point with position vector �r (θ, φ) does lie on the sphere of radius 1. Notice that the z-coordinate
depends only on the parameter φ. Geometrically, this means that all points on the same latitude have
the same z-coordinate.

Example 5 Find parametric equations for the following spheres:

(a) Center at the origin and radius 2.
(b) Center at the point (2,−1, 3) and radius 2.

Solution (a) We must scale the distance from the origin by 2. Thus, we have

x = 2 sinφ cos θ, y = 2 sinφ sin θ, z = 2 cosφ,

where 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π. In vector form, this is written

�r (θ, φ) = 2 sinφ cos θ�i + 2 sinφ sin θ�j + 2 cosφ�k .
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x
y

z

�

2 sinφ cos θ�i+
2 sinφ sin θ�j +
2 cosφ�k

� 2�i −�j + 3�k

Figure 21.9: Sphere with center at the point (2,−1, 3) and radius 2

(b) To shift the center of the sphere from the origin to the point (2,−1, 3), we add the vector
parameterization we found in part (a) to the position vector of (2,−1, 3). (See Figure 21.9.)
This gives

�r (θ, φ) = 2�i −�j + 3�k + (2 sinφ cos θ�i + 2 sinφ sin θ�j + 2 cosφ�k )

= (2 + 2 sinφ cos θ)�i + (−1 + 2 sinφ sin θ)�j + (3 + 2 cosφ)�k ,

where 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π. Alternatively,

x = 2+ 2 sinφ cos θ, y = −1 + 2 sinφ sin θ, z = 3 + 2 cosφ.

Note that the same point can have more than one value for θ or φ. For example, points with
θ = 0 also have θ = 2π, unless we restrict θ to the range 0 ≤ θ < 2π. Also, the north pole, at
φ = 0, and the south pole, at φ = π, can have any value of θ.

Parameterizing Surfaces of Revolution
Many surfaces have an axis of rotational symmetry and circular cross-sections perpendicular to that
axis. These surfaces are referred to as surfaces of revolution.

Example 6 Find a parameterization of the cone whose base is the circle x2 + y2 = a2 in the xy-plane and
whose vertex is at height h above the xy-plane. (See Figure 21.10.)

x y

z

θ
�r0

a

�

�

h

z�k

�r 1

a

r�

�

z

�

�

h

Figure 21.10: The cone whose base is the circle x2 + y2 = a2 in the xy-plane and whose vertex is at the point
(0, 0, h) and the vertical cross-section through the cone
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Solution We use cylindrical coordinates, r, θ, z. (See Figure 21.10.) In the xy-plane, the radius vector, �r 0,
from the z-axis to a point on the cone in the xy-plane is

�r 0 = a cos θ�i + a sin θ�j .

Above the xy-plane, the radius of the circular cross-section, r, decreases linearly from r = a when
z = 0 to r = 0 when z = h. From the similar triangles in Figure 21.10,

a

h
=

r

h− z
.

Solving for r, we have

r =

(
1−

z

h

)
a.

The horizontal radius vector, �r 1, at height z has components similar to �r 0, but with a replaced by
r:

�r 1 = r cos θ�i + r sin θ�j =

(
1−

z

h

)
a cos θ�i +

(
1−

z

h

)
a sin θ�j .

As θ goes from 0 to 2π, the vector �r1 traces out the horizontal circle in Figure 21.10. We get the
position vector, �r , of a point on the cone by adding the vector z�k , so

�r = �r 1 + z�k = a
(
1−

z

h

)
cos θ�i + a

(
1−

z

h

)
sin θ�j + z�k , for 0 ≤ z ≤ h and 0 ≤ θ ≤ 2π.

These equations can be written as

x =

(
1−

z

h

)
a cos θ, y =

(
1−

z

h

)
a sin θ, z = z.

The parameters are θ and z.

Example 7 Consider the bell of a trumpet. A model for the radius z = f(x) of the horn (in cm) at a distance x
cm from the large open end is given by the function

f(x) =
6

(x+ 1)0.7
.

The bell is obtained by rotating the graph of f about the x-axis. Find a parameterization for the first
24 cm of the bell. (See Figure 21.11.)

x y

z

Figure 21.11: The bell of a trumpet obtained by rotating the
graph of z = f(x) about the x-axis

Solution At distance x from the large open end of the horn, the cross-section parallel to the yz-plane is a circle
of radius f(x), with center on the x-axis. Such a circle can be parameterized by y = f(x) cos θ,
z = f(x) sin θ. Thus, we have the parameterization

x = x, y =

(
6

(x+ 1)0.7

)
cos θ, z =

(
6

(x+ 1)0.7

)
sin θ, 0 ≤ x ≤ 24, 0 ≤ θ ≤ 2π.

The parameters are x and θ.
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Parameter Curves
On a parameterized surface, the curve obtained by setting one of the parameters equal to a constant
and letting the other vary is called a parameter curve. If the surface is parameterized by

�r (s, t) = f1(s, t)�i + f2(s, t)�j + f3(s, t)�k ,

there are two families of parameter curves on the surface, one family with t constant and the other
with s constant.

Example 8 Consider the vertical cylinder

x = cos t, y = sin t, z = z.

(a) Describe the two parameter curves through the point (0, 1, 1).
(b) Describe the family of parameter curves with t constant and the family with z constant.

Solution (a) Since the point (0, 1, 1) corresponds to the parameter values t = π/2 and z = 1, there are
two parameter curves, one with t = π/2 and the other with z = 1. The parameter curve with
t = π/2 has the parametric equations

x = cos

(π
2

)
= 0, y = sin

(π
2

)
= 1, z = z,

with parameter z. This is a line through the point (0, 1, 1) parallel to the z-axis.
The parameter curve with z = 1 has the parametric equations

x = cos t, y = sin t, z = 1,

with parameter t. This is a unit circle parallel to and one unit above the xy-plane centered on
the z-axis.

(b) First, fix t = t0 for t and let z vary. The curves parameterized by z have equations

x = cos t0, y = sin t0, z = z.

These are vertical lines on the cylinder parallel to the z-axis. (See Figure 21.12.)
The other family is obtained by fixing z = z0 and varying t. Curves in this family are

parameterized by t and have equations

x = cos t, y = sin t, z = z0.

They are circles of radius 1 parallel to the xy-plane centered on the z-axis. (See Figure 21.13.)

x
y

z

Figure 21.12: The family of parameter
curves with t = t0 for the cylinder

x = cos t, y = sin t, z = z

x

y

z

Figure 21.13: The family of parameter
curves with z = z0 for the cylinder

x = cos t, y = sin t, z = z

Example 9 Describe the families of parameter curves with θ = θ0 and φ = φ0 for the sphere

x = sinφ cos θ, y = sinφ sin θ, z = cosφ,

where 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π.
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Solution Since φ measures latitude, the family with φ constant consists of the circles of constant latitude. (See
Figure 21.14.) Similarly, the family with θ constant consists of the meridians (semicircles) running
between the north and south poles. (See Figure 21.15.)

x

y

z

Figure 21.14: The family of
parameter curves with φ = φ0 for
the sphere parameterized by (θ, φ)

x

y

z

Figure 21.15: The family of
parameter curves with θ = θ0 for

the sphere parameterized by (θ, φ)

We have seen parameter curves before on pages 675-676 of Section 12.2: The cross-sections
with x = a or y = b on a surface z = f(x, y) are examples of parameter curves. So are the grid
lines on a computer sketch of a surface. The small regions shaped like parallelograms surrounded
by nearby pairs of parameter curves are called parameter rectangles. See Figure 21.16.

�Parameter curve:
with y = b

� Parameter curve:
with x = a

Figure 21.16: Parameter curves x = a or y = b on a surface z = f(x, y); the
darker region is a parameter rectangle

Exercises and Problems for Section 21.1
Exercises

In Exercises 1–4 decide if the parameterization describes a
curve or a surface.

1. �r (s) = s�i + (3− s)�j + s2�k

2. �r (s, t) = (s+ t)�i + (3− s)�j

3. �r (s, t) = cos s�i + sin s�j + t2�k

4. �r (s) = cos s�i + sin s�j + s2�k

Describe in words the objects parameterized by the equations
in Exercises 5–8. (Note: r and θ are cylindrical coordinates.)

5. x = r cos θ y = r sin θ z = 7
0 ≤ r ≤ 5 0 ≤ θ ≤ 2π

6. x = 5 cos θ y = 5 sin θ z = z
0 ≤ θ ≤ 2π 0 ≤ z ≤ 7

7. x = 5 cos θ y = 5 sin θ z = 5θ
0 ≤ θ ≤ 2π

8. x = r cos θ y = r sin θ z = r
0 ≤ r ≤ 5 0 ≤ θ ≤ 2π

In Exercises 9–12, for a sphere parameterized using the spher-
ical coordinates θ and φ, describe in words the part of the
sphere given by the restrictions.

9. 0 ≤ θ < 2π, 0 ≤ φ ≤ π/2

10. π ≤ θ < 2π, 0 ≤ φ ≤ π

11. π/4 ≤ θ < π/3, 0 ≤ φ ≤ π

12. 0 ≤ θ ≤ π, π/4 ≤ φ < π/3
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Problems

In Problems 13–14, parameterize the plane that contains the
three points.

13. (0, 0, 0), (1, 2, 3), (2, 1, 0)

14. (1, 2, 3), (2, 5, 8), (5, 2, 0)

In Problems 15–16, parameterize the plane through the point
with the given normal vector.

15. (3, 5, 7),�i +�j + �k

16. (5, 1, 4),�i + 2�j + 3�k

17. Does the plane �r (s, t) = (2+ s)�i +(3+ s+ t)�j +4t�k
contain the following points?
(a) (4, 8, 12) (b) (1, 2, 3)

18. Are the following two planes parallel?

x = 2 + s+ t, y = 4 + s− t, z = 1 + 2s, and

x = 2 + s+ 2t, y = t, z = s− t.

In Problems 19–22, describe the families of parameter curves
with s = s0 and t = t0 for the parameterized surface.

19. x = s, y = t, z = 1 for −∞ < s < ∞,
−∞ < t < ∞

20. x = s, y = cos t, z = sin t for −∞ < s < ∞,
0 ≤ t ≤ 2π

21. x = s y = t, z = s2 + t2 for −∞ < s < ∞,
−∞ < t < ∞

22. x = cos s sin t y = sin s sin t, z = cos t for 0 ≤
s ≤ 2π, 0 ≤ t ≤ π

23. A city is described parametrically by the equation

�r = (x0
�i + y0�j + z0�k ) + s �v1 + t �v2

where �v 1 = 2�i − 3�j + 2�k and �v 2 =�i + 4�j + 5�k . A
city block is a rectangle determined by �v 1 and �v 2. East
is in the direction of �v 1 and north is in the direction of
�v 2. Starting at the point (x0, y0, z0), you walk 5 blocks
east, 4 blocks north, 1 block west and 2 blocks south.
What are the parameters of the point where you end up?
What are your x, y and z coordinates at that point?

24. You are at a point on the earth with longitude 80◦ West of
Greenwich, England, and latitude 40◦ North of the equa-
tor.

(a) If your latitude decreases, have you moved nearer to
or farther from the equator?

(b) If your latitude decreases, have you moved nearer to
or farther from the north pole?

(c) If your longitude increases (say, to 90◦ West), have
you moved nearer to or farther from Greenwich?

25. Describe in words the curve φ = π/4 on the surface of
the globe.

26. Describe in words the curve θ = π/4 on the surface of
the globe.

27. A decorative oak post is 48′′ long and is turned on a lathe
so that its profile is sinusoidal, as shown in Figure 21.17.

(a) Describe the surface of the post parametrically using
cylindrical coordinates.

(b) Find the volume of the post.

�

�

6′′

��4′′

��2′′

Figure 21.17

28. Find parametric equations for the sphere
(x− a)2 + (y − b)2 + (z − c)2 = d 2.

29. Suppose you are standing at a point on the equator of
a sphere, parameterized by spherical coordinates θ0 and
φ0. If you go halfway around the equator and halfway up
toward the north pole along a longitude, what are your
new θ and φ coordinates?

30. Find parametric equations for the cone x2+y2 = z2.

31. Parameterize the cone in Example 6 on page 1079 in
terms of r and θ.

32. Give a parameterization of the circle of radius a centered
at the point (x0, y0, z0) and in the plane parallel to two
given unit vectors �u and �v such that �u · �v = 0.

For Problems 33–35,

(a) Write an equation in x, y, z and identify the parametric
surface.

(b) Draw a picture of the surface.

33. x = 2s y = s+ t z = 1 + s− t
0 ≤ s ≤ 1 0 ≤ t ≤ 1

34. x = s y = t z =
√
1− s2 − t2

s2 + t2 ≤ 1 s, t ≥ 0

35. x = s+ t y = s− t z = s2 + t2

0 ≤ s ≤ 1 0 ≤ t ≤ 1
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Strengthen Your Understanding

In Problems 36–37, explain what is wrong with the statement.

36. The parameter curves of a parameterized surface inter-
sect at right angles.

37. The parameter curves for constant φ on the sphere
�r (θ, φ) = R sinφ cos θ�i + R sinφ sin θ�j + R cosφ�k
are circles of radius R.

In Problems 38–40, give an example of:

38. A parameterization �r (s, t) of the plane tangent to the
unit sphere at the point where θ = π/4 and φ = π/4.

39. An equation of the form f(x, y, z) = 0 for the plane

�r (s, t) = (s+ 1)�i + (t+ 2)�j + (s+ t)�k .

40. A parameterized curve on the sphere �r (θ, φ) =

sinφ cos θ�i + sinφ sin θ�j + cosφ�k that is not a pa-
rameter curve.

Are the statements in Problems 41–47 true or false? Give rea-
sons for your answer.

41. The equations x = s+1, y = t− 2, z = 3 parameterize
a plane.

42. The equations x = 2s − 1, y = −s + 3, z = 4 + s
parameterize a plane.

43. If �r = �r (s, t) parameterizes the upper hemisphere
x2 + y2 + z2 = 1, z ≥ 0, then �r = −�r (s, t) pa-
rameterizes the lower hemisphere x2 + y2 + z2 = 1,
z ≤ 0.

44. If �r = �r (s, t) parameterizes the upper hemisphere
x2 + y2 + z2 = 1, z ≥ 0, then �r = �r (−s,−t) pa-
rameterizes the lower hemisphere x2 + y2 + z2 = 1,
z ≤ 0.

45. If �r1 (s, t) parameterizes a plane then �r2 (s, t) =

�r 1(s, t) + 2�i − 3�j + �k parameterizes a parallel plane.

46. Every point on a parameterized surface has a parameter
curve passing through it.

47. If s0 �= s1, then the parameter curves �r (s0, t) and
�r (s1, t) do not intersect.

48. Match the parameterizations (I)–(IV) with the surfaces
(a)–(d). In all cases 0 ≤ s ≤ π/2, 0 ≤ t ≤ π/2.
Note that only part of the surface may be described by
the given parameterization.

(a) Cylinder
(b) Plane
(c) Sphere
(d) Cone

I. x = cos s, y = sin t, z = cos s+ sin t
II. x = cos s, y = sin s, z = cos t
III. x = sin s cos t, y = sin s sin t, z = cos s

IV. x = cos s, y = sin t, z =
√

cos2 s+ sin2 t

21.2 CHANGE OF COORDINATES IN A MULTIPLE INTEGRAL

In Chapter 16 we used polar, cylindrical, and spherical coordinates to simplify iterated integrals.
In this section, we discuss more general changes of coordinate. In the process, we see where the
factors r and ρ2 sinφ come from when we convert to polar, cylindrical, or spherical coordinates
(see pages 892, 897, and 900).

Polar Change of Coordinates Revisited
Consider the integral

∫
R(x+ y) dA where R is the region in the first quadrant bounded by the circle

x2+y2 = 16 and the x and y-axes. Writing the integral in Cartesian and polar coordinates, we have

∫
R

(x+ y) dA =

∫ 4

0

∫ √
16−x2

0

(x+ y) dy dx =

∫ π/2

0

∫ 4

0

(r cos θ + r sin θ)r drdθ.

The integral on the right is over the rectangle in the rθ-plane given by 0 ≤ r ≤ 4, 0 ≤ θ ≤

π/2. The conversion from polar to Cartesian coordinates changes this rectangle into a quarter-disk.
Figure 21.18 shows how a typical rectangle (shaded) in the rθ-plane with sides of length Δr and
Δθ corresponds to a curved rectangle in the xy-plane with sides of length Δr and rΔθ. The extra r
is needed because the correspondence between r, θ and x, y not only curves the lines r = 1, 2, 3 . . .
into circles, it also stretches those lines around larger and larger circles.
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1 2 3 4

π/8

π/4

3π/8

π/2

θ = π/8

θ = π/4

r = 2 r = 3

r

θ

1 2 3 4

1

2

3

x

y

θ = π/4

θ = π/8

Figure 21.18: A grid in the rθ-plane and the corresponding curved grid in the xy-plane

General Change of Coordinates
We now consider a general change of coordinates, where x, y coordinates are related to s, t coordi-
nates by the differentiable functions

x = x(s, t) y = y(s, t).

Just as a rectangular region in the rθ-plane corresponds to a region in the xy-plane, a rectangular
region, T , in the st-plane corresponds to a region, R, in the xy-plane. We assume that the change
of coordinates is one-to-one, that is, that each point in R corresponds to only one point in T .

(s, t) (s+Δs, t)

s

t

Tij

(s, t+Δt)

(x(s, t), y(s, t))

(x(s, t+Δt), y(s, t+Δt))

x

y

�b

Rij

(x(s+Δs, t), y(s+Δs, t))

�a

Figure 21.19: A small rectangle Tij in the st-plane and the corresponding region Rij of the xy-plane

We divide T into small rectangles Tij with sides of length Δs and Δt. (See Figure 21.19.)
The corresponding piece Rij of the xy-plane is a quadrilateral with curved sides. If we choose
Δs and Δt small, then by local linearity of x(s, t) and y(s, t), we know Rij is approximately a
parallelogram.

Recall from Chapter 13 that the area of the parallelogram with sides �a and�b is ‖�a ×�b ‖. Thus,
we need to find the sides of Rij as vectors. The side of Rij corresponding to the bottom side of Tij

has endpoints (x(s, t), y(s, t)) and (x(s+Δs, t), y(s+Δs, t)), so in vector form that side is

�a = (x(s +Δs, t)− x(s, t))�i + (y(s+Δs, t)− y(s, t))�j ≈

(
∂x

∂s
Δs

)
�i +

(
∂y

∂s
Δs

)
�j .

Similarly, the side of Rij corresponding to the left edge of Tij is given by

�b ≈

(
∂x

∂t
Δt

)
�i +

(
∂y

∂t
Δt

)
�j .

Computing the cross product, we get

Area Rij ≈ ‖�a ×�b ‖ ≈

∣∣∣∣
(
∂x

∂s
Δs

)(
∂y

∂t
Δt

)
−

(
∂x

∂t
Δt

)(
∂y

∂s
Δs

)∣∣∣∣
=

∣∣∣∣∂x∂s ·
∂y

∂t
−

∂x

∂t
·
∂y

∂s

∣∣∣∣ΔsΔt.
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Using determinant notation,1 we define the Jacobian,
∂(x, y)

∂(s, t)
, as follows:

∂(x, y)

∂(s, t)
=

∂x

∂s
·
∂y

∂t
−

∂x

∂t
·
∂y

∂s
=

∣∣∣∣∣∣∣∣∣∣
∂x
∂s

∂x
∂t

∂y
∂s

∂y
∂t

∣∣∣∣∣∣∣∣∣∣
.

Thus, we can write

Area Rij ≈

∣∣∣∣∂(x, y)∂(s, t)

∣∣∣∣ΔsΔt.

To compute
∫
R
f(x, y) dA, where f is a continuous function, we look at the Riemann sum obtained

by dividing the region R into the small curved regions Rij , giving∫
R

f(x, y) dA ≈
∑
i,j

f(uij , vij) · Area of Rij ≈
∑
i,j

f(uij , vij)

∣∣∣∣∂(x, y)∂(s, t)

∣∣∣∣ΔsΔt.

Each point (uij , vij) in Rij corresponds to a point (sij , tij) in Tij , so the sum can be written in
terms of s and t: ∑

i,j

f(x(sij , tij), y(sij , tij))

∣∣∣∣∂(x, y)∂(s, t)

∣∣∣∣ΔsΔt.

This is a Riemann sum in terms of s and t, so as Δs and Δt approach 0, we get∫
R

f(x, y) dA =

∫
T

f(x(s, t), y(s, t))

∣∣∣∣∂(x, y)∂(s, t)

∣∣∣∣ ds dt.
To convert an integral from x, y to s, t coordinates we make three changes:
1. Substitute for x and y in the integrand in terms of s and t.

2. Change the xy region R into an st region T .

3. Use the absolute value of the Jacobian to change the area element by making the substi-

tution dx dy =

∣∣∣∣∂(x, y)∂(s, t)

∣∣∣∣ ds dt.

Example 1 Check that the Jacobian
∂(x, y)

∂(r, θ)
= r for polar coordinates x = r cos θ, y = r sin θ.

Solution We have
∂(x, y)

∂(r, θ)
=

∣∣∣∣∣∣∣∣∣∣
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣ cos θ −r sin θ

sin θ r cos θ

∣∣∣∣∣ = r cos2 θ + r sin2 θ = r.

Example 2 Find the area of the ellipse
x2

a2
+

y2

b2
= 1.

Solution Let x = as, y = bt. Then the ellipse x2/a2 + y2/b2 = 1 in the xy-plane corresponds to the circle

s2 + t2 = 1 in the st-plane. The Jacobian is

∣∣∣∣∣a 0

0 b

∣∣∣∣∣ = ab. Thus, if R is the ellipse in the xy-plane

and T is the unit circle in the st-plane, we get

Area of xy-ellipse =

∫
R

1 dA =

∫
T

1 ab ds dt = ab

∫
T

ds dt = ab · Area of st-circle = πab.

1See Appendix E.
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Change of Coordinates in Triple Integrals
For triple integrals, there is a similar formula. Suppose the differentiable functions

x = x(s, t, u), y = y(s, t, u), z = z(s, t, u)

define a one-to-one change of coordinates from a region S in stu-space to a region W in xyz-space.
Then, the Jacobian of this change of coordinates is given by the determinant2

∂(x, y, z)

∂(s, t, u)
=

∣∣∣∣∣∣∣
∂x
∂s

∂x
∂t

∂x
∂u

∂y
∂s

∂y
∂t

∂y
∂u

∂z
∂s

∂z
∂t

∂z
∂u

∣∣∣∣∣∣∣ .
Just as the Jacobian in two dimensions gives us the change in the area element, the Jacobian in three
dimensions represents the change in the volume element. Thus, we have∫

W

f(x, y, z) dx dy dz =

∫
S

f(x(s, t, u), y(s, t, u), z(s, t, u))

∣∣∣∣∂(x, y, z)∂(s, t, u)

∣∣∣∣ ds dt du.
Problem 11 at the end of this section asks you to check that the Jacobian for the change of coor-

dinates to spherical coordinates is ρ2 sinφ. The next example generalizes Example 2 to ellipsoids.

Example 3 Find the volume of the ellipsoid
x2

a2
+

y2

b2
+

z2

c2
= 1.

Solution Let x = as, y = bt, z = cu. The Jacobian is computed to be abc. The xyz-ellipsoid corresponds
to the stu-sphere s2 + t2 + u2 = 1. Thus, as in Example 2,

Volume of xyz-ellipsoid = abc · Volume of stu-sphere = abc
4

3
π =

4

3
πabc.

Exercises and Problems for Section 21.2
Exercises

In Exercises 1–4, find the absolute value of the Jacobian,∣∣∣ ∂(x,y)∂(s,t)

∣∣∣, for the given change of coordinates.

1. x = 5s + 2t, y = 3s+ t

2. x = s2 − t2, y = 2st

3. x = es cos t, y = es sin t

4. x = s3 − 3st2, y = 3s2t− t3

In Exercises 5–7, find positive numbers a and b so that the
change of coordinates s = ax, t = by transforms the integral∫ ∫

R
dx dy into ∫ ∫

T

∣∣∣∣∂(x, y)∂(s, t)

∣∣∣∣ ds dt
for the given regions R and T .

5. R is the rectangle 0 ≤ x ≤ 10, 0 ≤ y ≤ 1 and T is the
square 0 ≤ s, t ≤ 1.

6. R is the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 1/4 and T is the
square 0 ≤ s, t ≤ 1.

7. R is the rectangle 0 ≤ x ≤ 50, 0 ≤ y ≤ 10 and T is the
square 0 ≤ s, t ≤ 1.

In Exercises 8–9, find a number a so that the change of coor-
dinates s = x+ay, t = y transforms the integral

∫ ∫
R

dx dy
over the parallelogram R in the xy-plane into an integral∫ ∫

T

∣∣∣∣∂(x, y)∂(s, t)

∣∣∣∣ ds dt
over a rectangle T in the st-plane.

8. R has vertices (0, 0), (10, 0), (12, 3), (22, 3)

9. R has vertices (0, 0), (10, 0), (−15, 5), (−5, 5)

2See Appendix E.
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Problems

10. Find the region R in the xy-plane corresponding to the
region T = {(s, t) | 0 ≤ s ≤ 3, 0 ≤ t ≤ 2} under the
change of coordinates x = 2s − 3t, y = s − 2t. Check
that ∫

R

dx dy =

∫
T

∣∣∣∣∂(x, y)∂(s, t)

∣∣∣∣ ds dt.
11. Compute the Jacobian for the change of coordinates into

spherical coordinates:

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ.

12. For the change of coordinates x = 3s−4t, y = 5s+2t,
show that

∂(x, y)

∂(s, t)
· ∂(s, t)

∂(x, y)
= 1

13. Use the change of coordinates x = 2s + t, y = s − t to
compute the integral

∫
R
(x+y)dA, where R is the paral-

lelogram formed by (0, 0), (3,−3), (5,−2), and (2, 1).

14. Use the change of coordinates s = x + y, t = y to find
the area of the ellipse x2 + 2xy + 2y2 ≤ 1.

15. Use the change of coordinates s = y, t = y−x2 to eval-
uate
∫ ∫

R
x dx dy over the region R in the first quadrant

bounded by y = 0, y = 16, y = x2, and y = x2 − 9.

16. If R is the triangle bounded by x + y = 1, x = 0, and
y = 0, evaluate the integral

∫
R
cos
(
x−y
x+y

)
dx dy.

17. Two independent random numbers x and y from a
normal distribution with mean 0 and standard de-
viation σ have joint density function p(x, y) =

(1/(2πσ2)e−(x2+y2)/(2σ2). The average z = (x+ y)/2
has a one-variable probability density function of its own.

(a) Give a double integral expression for F (t), the prob-
ability that z ≤ t.

(b) Give a single integral expression for F (t). To do
this, make the change of coordinates: u = (x+y)/2,
v = (x − y)/2 and then do the integral on dv. Use

the fact that
∫

∞

−∞
e−x2/a2

dx = a
√
π.

(c) Find the probability density function F ′(t) of z.
(d) What is the name of the distribution of z?

18. A river follows the path y = f(x) where x, y are in kilo-
meters. Near the sea, it widens into a lagoon, then nar-
rows again at its mouth. See Figure 21.20. At the point
(x, y), the depth, d(x, y), of the lagoon is given by

d(x, y) = 40− 160(y − f(x))2 − 40x2 meters.

The lagoon itself is described by d(x, y) ≥ 0. What is
the volume of the lagoon in cubic meters? [Hint: Use new
coordinates u = x/2, v = y − f(x) and Jacobians.]

(1, f(1))

Sea

y

(−1, f(−1)) River, y = f(x)

�

Lagoon

Figure 21.20

Strengthen Your Understanding

In Problems 19–20, explain what is wrong with the statement.

19. If R is the region 0 ≤ x ≤ 1, 0 ≤ y ≤ 4 and T is the
region 0 ≤ s ≤ 1, −2 ≤ t ≤ 2, using the formulas
x = s, y = t2, we have∫

R

f(x, y) dx dy =

∫
T

f(s, t2)

∣∣∣∣∂(x, y)∂(s, t)

∣∣∣∣ ds dt.
20. If R and T are corresponding regions of the xy- and st-

planes, the change of coordinates x = t3, y = s leads to
the formula∫

R

(x+ 2y) dx dy =

∫
T

(
t3 + 2s

) (
−3t2
)
ds dt.

In Problems 21–22, give an example of:

21. A change of coordinates x = x(s, t), y = y(s, t) where
the rectangle 0 ≤ s ≤ 1, 0 ≤ t ≤ 1 in the st-plane
corresponds to a different rectangle in the xy-plane.

22. A change of coordinates x = x(s, t), y = y(s, t) where
every region in the st-plane corresponds to a region in
the xy-plane with twice the area.

In Problems 23–24, consider a change of variable in the inte-
gral
∫
R
f(x, y) dA from x, y to s, t. Are the following state-

ments true or false?

23. If the Jacobian

∣∣∣∣∂(x, y)∂(s, t)

∣∣∣∣ > 1, the value of the s, t-

integral is greater than the original x, y-integral.

24. The Jacobian cannot be negative.
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21.3 FLUX INTEGRALS OVER PARAMETERIZED SURFACES

Most of the flux integrals we are likely to encounter can be computed using the methods of Sec-
tions 19.1 and 19.2. In this section, we briefly consider the general case: how to compute the flux of
a smooth vector field �F through a smooth oriented surface, S, parameterized by

�r = �r (s, t),

for (s, t) in some region R of the parameter space. The method is similar to the one used for graphs
in Section 19.2. We consider a parameter rectangle on the surface S corresponding to a rectangular
region with sides Δs and Δt in the parameter space. (See Figure 21.21.)

�
�Δt

��
Δs

t

s

�R �

∂
r
∂t

Δt

�

∂
r
∂s

Δs



Parameter
rectangle

S

Figure 21.21: Parameter rectangle on the surface S corresponding to a small rectangular region in the
parameter space, R

If Δs and Δt are small, the area vector, Δ �A , of the patch is approximately the area vector of
the parallelogram defined by the vectors

�r (s+Δs, t)− �r (s, t) ≈
∂�r

∂s
Δs, and �r (s, t+Δt)− �r (s, t) ≈

∂�r

∂t
Δt.

Thus,

Δ �A ≈
∂�r

∂s
×

∂�r

∂t
ΔsΔt.

We assume that the vector ∂�r /∂s × ∂�r /∂t is never zero and points in the direction of the unit
normal orientation vector �n . If the vector ∂�r /∂s× ∂�r /∂t points in the opposite direction to �n , we
reverse the order of the cross product. Replacing Δ �A , Δs, and Δt by d �A , ds, and dt, we write

d �A =

(
∂�r

∂s
×

∂�r

∂t

)
ds dt.

The Flux of a Vector Field Through a Parameterized Surface

The flux of a smooth vector field �F through a smooth oriented surface S parameterized by
�r = �r (s, t), where (s, t) varies in a parameter region R, is given by∫

S

�F · d �A =

∫
R

�F (�r (s, t)) ·

(
∂�r

∂s
×

∂�r

∂t

)
ds dt.

We choose the parameterization so that ∂�r /∂s × ∂�r /∂t is never zero and points in the
direction of �n everywhere.
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Example 1 Find the flux of the vector field �F = x�i + y�j through the surface S, oriented downward and given
by

x = 2s, y = s+ t, z = 1 + s− t, where 0 ≤ s ≤ 1, 0 ≤ t ≤ 1.

Solution Since S is parameterized by

�r (s, t) = 2s�i + (s+ t)�j + (1 + s− t)�k ,

we have
∂�r

∂s
= 2�i +�j + �k and

∂r

∂t
= �j − �k ,

so

∂�r

∂s
×

∂�r

∂t
=

∣∣∣∣∣∣∣
�i �j �k

2 1 1

0 1 −1

∣∣∣∣∣∣∣ = −2�i + 2�j + 2�k .

Since the vector −2�i + 2�j + 2�k points upward, we use 2�i − 2�j − 2�k for downward orientation.
Thus, the flux integral is given by∫

S

�F · d �A =

∫ 1

0

∫ 1

0

(2s�i + (s+ t)�j ) · (2�i − 2�j − 2�k ) ds dt

=

∫ 1

0

∫ 1

0

(4s− 2s− 2t) dsdt =

∫ 1

0

∫ 1

0

(2s− 2t) ds dt

=

∫ 1

0

(
s2 − 2st

∣∣∣∣s=1

s=0

)
dt =

∫ 1

0

(1− 2t) dt = t− t2
∣∣∣∣1
0

= 0.

Area of a Parameterized Surface
The area ΔA of a small parameter rectangle is the magnitude of its area vector Δ �A . Therefore,

Area of S =
∑

ΔA =
∑

‖Δ �A ‖ ≈
∑∥∥∥∥∂�r∂s ×

∂�r

∂t

∥∥∥∥ΔsΔt.

Taking the limit as the area of the parameter rectangles tends to zero, we are led to the following
expression for the area of S.

The Area of a Parameterized Surface

The area of a surface S which is parameterized by �r = �r (s, t), where (s, t) varies in a
parameter region R, is given by∫

S

dA =

∫
R

∥∥∥∥∂�r∂s ×
∂�r

∂t

∥∥∥∥ ds dt.
Example 2 Compute the surface area of a sphere of radius a.

Solution We take the sphere S of radius a centered at the origin and parameterize it with the spherical coor-
dinates φ and θ. The parameterization is

x = a sinφ cos θ, y = a sinφ sin θ, z = a cosφ, for 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π.

We compute

∂�r

∂φ
×

∂�r

∂θ
= (a cosφ cos θ�i + a cosφ sin θ�j − a sinφ�k )× (−a sinφ sin θ�i + a sinφ cos θ�j )

= a2(sin2 φ cos θ�i + sin
2 φ sin θ�j + sinφ cosφ�k )
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and so ∥∥∥∥∂�r∂φ ×
∂�r

∂θ

∥∥∥∥ = a2 sinφ.

Thus, we see that the surface area of the sphere S is given by

Surface area =

∫
S

dA =

∫
R

∥∥∥∥∂�r∂φ ×
∂�r

∂θ

∥∥∥∥dφdθ =

∫ π

φ=0

∫ 2π

θ=0

a2 sinφdθ dφ = 4πa2.

Exercises and Problems for Section 21.3
Exercises

In Exercises 1–4 compute d �A for the given parameterization
for one of the two orientations.

1. x = s+ t, y = s− t, z = st

2. x = sin t, y = cos t, z = s+ t

3. x = es, y = cos t, z = sin t

4. x = 0, y = u+ v, z = u− v

In Exercises 5–9 compute the flux of the vector field �F
through the parameterized surface S.

5. �F = z�k and S is oriented upward and given, for
0 ≤ s ≤ 1, 0 ≤ t ≤ 1, by

x = s+ t, y = s− t, z = s2 + t2.

6. �F = x�i + y�j and S is oriented downward and given,
for 0 ≤ s ≤ 1, 0 ≤ t ≤ 1, by

x = 2s, y = s+ t, z = 1 + s− t.

7. �F = x�i through the surface S oriented downward and
parameterized for 0 ≤ s ≤ 4, 0 ≤ t ≤ π/6 by

x = es, y = cos(3t), z = 6s.

8. �F = y�i + x�j and S is oriented away from the z-axis
and given, for 0 ≤ s ≤ π, 0 ≤ t ≤ 1, by

x = 3 sin s, y = 3 cos s, z = t+ 1.

9. �F = x2y2z�k and S is the cone
√

x2 + y2 = z, with
0 ≤ z ≤ R, oriented downward. Parameterize the cone
using cylindrical coordinates. (See Figure 21.22.)

x

y

z

�n

�r θ

�r r

(0, 0, R)

Figure 21.22

In Exercises 10–11, find the surface area.

10. A cylinder of radius a and length L.

11. The region S in the plane z = 3x + 2y such that
0 ≤ x ≤ 10 and 0 ≤ y ≤ 20.

Problems

12. Compute the flux of the vector field �F = (x + z)�i +
�j + z�k through the surface S given by y = x2 + z2,
1/4 ≤ x2 + z2 ≤ 1 oriented away from the y-axis.

13. Find the area of the ellipse S on the plane 2x+y+z = 2
cut out by the circular cylinder x2 + y2 = 2x. (See Fig-
ure 21.23.)

x

y

z

S

Figure 21.23
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14. Consider the surface S formed by rotating the graph of
y = f(x) around the x-axis between x = a and x = b.
Assume that f(x) ≥ 0 for a ≤ x ≤ b. Show that the

surface area of S is 2π
∫ b

a
f(x)
√

1 + f ′(x)2 dx.

15. A rectangular channel of width w and depth h meters lies
in the�j direction. At a point d1 meters from one side and
d2 meters from the other side, the velocity vector of fluid
in the channel is �v = kd1d2�j meters/sec. Find the flux
through a rectangle stretching the full width and depth of
the channel, and perpendicular to the flow.

16. The base of a cone is the unit circle centered at the origin
in the xy-plane and vertex P = (a, b, c), where c > 0.

(a) Parameterize the cone.
(b) Express the surface area of the cone as an integral.
(c) Use a numerical method to find the surface area of

the cone with vertex P = (2, 0, 1).

As we remarked in Section 19.1, the limit defining a flux inte-
gral might not exist if we subdivide the surface in the wrong
way. One way to get around this is to take the formula for a
flux integral over a parameterized surface that we have devel-
oped in this section and to use it as the definition of the flux
integral. In Problems 17–20 we explore how this works.

17. Use a parameterization to verify the formula for a flux
integral over a surface graph on page 1018.

18. Use a parameterization to verify the formula for a flux
integral over a cylindrical surface on page 1019.

19. Use a parameterization to verify the formula for a flux
integral over a spherical surface on page 1020.

20. One problem with defining the flux integral using a
parameterization is that the integral appears to depend
on the choice of parameterization. However, the flux
through a surface ought not to depend on how the surface
is parameterized. Suppose that the surface S has two pa-
rameterizations, �r = �r (s, t) for (s, t) in the region R of
st-space, and also �r = r(u, v) for (u, v) in the region T
in uv-space, and suppose that the two parameterizations
are related by the change of coordinates

u = u(s, t) v = v(s, t).

Suppose that the Jacobian determinant ∂(u, v)/∂(s, t) is
positive at every point (s, t) in R. Use the change of co-
ordinates formula for double integrals on page 1086 to
show that computing the flux integral using either param-
eterization gives the same result.

Strengthen Your Understanding

In Problems 21–22, explain what is wrong with the statement.

21. The area of the surface parameterized by x = s, y =
t, z = f(s, t) above the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 is
given by the integral

Area =

∫ 1

0

∫ 1

0

f(s, t) ds dt.

22. The surface S parameterized by x = f(s, t), y = g(s, t),
z = h(s, t), where 0 ≤ s ≤ 2, 0 ≤ t ≤ 3, has area 6.

In Problems 23–24, give an example of:

23. A parameterization �r = �r (s, t) of the xy-plane such
that dA = 2 ds dt.

24. A vector field �F such that
∫
S
�F · d �A > 0, where S is

the surface �r = (s− t)�i + t2�j + (s+ t)�k , 0 ≤ s ≤ 1,

0 ≤ t ≤ 1, oriented in the direction of
∂�r

∂s
× ∂�r

∂t
.

Are the statements in Problems 25–27 true or false? Give rea-
sons for your answer.

25. If �r (s, t), 0 ≤ s ≤ 1, 0 ≤ t ≤ 1 is an oriented pa-
rameterized surface S, and �F is a vector field that is ev-
erywhere tangent to S, then the flux of �F through S is
zero.

26. For any parameterization of the surface x2−y2+z2 = 6,
d �A at (1, 2, 3) is a multiple of (2�i − 4�j + 6�k )dx dy.

27. If you parameterize the plane 3x + 4y + 5z = 7, then
there is a constant c such that, at any point (x, y, z),
d �A = c(3�i + 4�j + 5�k )dx dy.

28. Let S be the hemisphere x2 + y2 + z2 = 1 with x ≤ 0,
oriented away from the origin. Which of the following
integrals represents the flux of �F (x, y, z) through S?

(a)

∫
R

�F (x, y, z(x, y)) · ∂�r
∂x

× ∂�r

∂y
dx dy

(b)

∫
R

�F (x, y, z(x, y)) · ∂�r
∂y

× ∂�r

∂x
dy dx

(c)

∫
R

�F (x, y(x, z), z) · ∂�r
∂x

× ∂�r

∂z
dx dz

(d)

∫
R

�F (x, y(x, z), z) · ∂�r
∂z

× ∂�r

∂x
dz dx

(e)

∫
R

�F (x(y, z), y, z) · ∂�r
∂y

× ∂�r

∂z
dy dz

(f)

∫
R

�F (x(y, z), y, z) · ∂�r
∂z

× ∂�r

∂y
dz dy
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CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• Parameterized Curves and Surfaces
Parametric equations for curves in 2- and 3-space, planes,
graphs of functions, spheres, and cylinders; parameter
curves.

• Change of Variable
Polar coordinates, spherical and cylindrical coordinates,
general change of variables and Jacobians.

• Calculating flux integrals over parameterized sur-
faces
Surfaces parameterized by �r (s, t):
d �A = (∂�r /∂s)× (∂�r /∂t) ds dt

• Area of parameterized surface
dA = ‖(∂�r /∂s)× (∂�r /∂t)‖ ds dt

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER TWENTY-ONE

Exercises

Describe in words the objects parameterized by the equations
in Exercises 1–2.

1. x = 2z cos θ y = 2z sin θ z = z
0 ≤ z ≤ 7 0 ≤ θ ≤ 2π

2. x = x y = x2 z = z
−5 ≤ x ≤ 5 0 ≤ z ≤ 7

In Exercises 3–4, find positive numbers a and b so that the
change of coordinates s = ax, t = by transforms the integral∫ ∫

R
dx dy into ∫ ∫

T

∣∣∣∣∂(x, y)∂(s, t)

∣∣∣∣ ds dt
for the given regions R and T .

3. R is the circular disc of radius 15 centered at the origin
and T is the circular disc s2 + t2 ≤ 1.

4. R is the elliptical region x2/4 + y2/9 ≤ 1 and T is the
circular disc s2 + t2 ≤ 1.

5. Find a number a so that the change of coordinates s =
x + ay, t = y transforms the integral

∫ ∫
R

dx dy over
the parallelogram R with vertices (10, 15), (30, 15),

(20, 35), (40, 35) in the xy-plane into an integral∫ ∫
T

∣∣∣∣∂(x, y)∂(s, t)

∣∣∣∣ ds dt
over a rectangle T in the st-plane.

In Exercises 6–7 compute the flux of the vector field �F
through the parameterized surface S.

6. �F = z�i + x�j and S is oriented upward and given, for
0 ≤ s ≤ 1, 1 ≤ t ≤ 3, by

x = s2, y = 2s + t2, z = 5t.

7. �F = − 2

x
�i +

2

y
�j and S is oriented upward and param-

eterized by a and θ, where, for 1 ≤ a ≤ 3, 0 ≤ θ ≤ π,

x = a cos θ, y = a sin θ, z = sin a2.

8. Parameterize the plane containing the three points
(5, 5, 5), (10,−10, 10), (0, 20, 40).

9. Find parametric equations for the sphere centered at the
point (2,−1, 3) and with radius 5.

Problems

10. Parameterize a cone of height h and maximum radius a
with vertex at the origin and opening upward. Do this in
two ways, giving the range of values for each parameter
in each case: (a) Use r and θ. (b) Use z and θ.

11. (a) Describe the surface given parametrically by the
equations

x = cos(s− t), y = sin(s− t), z = s+ t.

(b) Describe the two families of parameter curves on the
surface.

12. Find a parameterization for the plane through (1, 3, 4)

and orthogonal to �n = 2�i +�j − �k .

13. Adapt the parameterization for the sphere to find a pa-
rameterization for the ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1.

14. Parameterize a vase formed by rotating the curve z =
10

√
x− 1, 1 ≤ x ≤ 2, around the z-axis. Sketch the

vase.

15. For the surface given parametrically by

x = 3 sin s y = 3 cos s z = t+ 1,

where 0 ≤ s ≤ π and 0 ≤ t ≤ 1
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(a) Write an equation in x, y, z and identify the para-
metric surface.

(b) Draw a picture of the surface.

16. Find the region R in the xy-plane corresponding to the
region T = {(s, t) | 0 ≤ s ≤ 2, s ≤ t ≤ 2} under the
change of coordinates x = s2, y = t. Check that∫

R

dx dy =

∫
T

∣∣∣∣∂(x, y)∂(s, t)

∣∣∣∣ ds dt.
17. Use the change of coordinates s = x − y, t = x + y to

evaluate
∫ ∫

R
sin(x+y)dx dy over the disc x2+y2 ≤ 1.

18. Use the change of coordinates s = xy, t = xy2 to
compute

∫
R
xy2 dA, where R is the region bounded by

xy = 1, xy = 4, xy2 = 1, xy2 = 4.

19. Evaluate
∫
S
�F · d �A , where �F = (bx/a)�i + (ay/b)�j

and S is the elliptic cylinder oriented away from the z-
axis, and given by x2/a2 + y2/b2 = 1, |z| ≤ c, where
a, b, c are positive constants.

20. Find
∫
S
(x2�i + y2�j + z2�k ) · d �A where S is the surface

of the sphere (x − a)2 + (y − b)2 + (z − c)2 = d2,
oriented outward.

PROJECTS FOR CHAPTER TWENTY-ONE

1. Stereographic Projection
We parameterize the sphere x2 + y2 + z2 = 1 by a famous method called stereographic

projection. Draw a line from a point (x, y) in the xy-plane to the north pole (0, 0, 1). This line
intersects the sphere in a point (x, y, z). This gives a parameterization of the sphere by points
in the plane.

(a) Which point corresponds to the south pole?
(b) Which points correspond to the equator?
(c) Do we get all the points of the sphere by this parameterization?
(d) Which points correspond to the upper hemisphere?
(e) Which points correspond to the lower hemisphere?

2. Parameterizing a Torus
A torus (doughnut) is constructed by rotating a small circle of radius a in a large circle of

radius b about the origin. The small circle is in a (rotating) vertical plane through the z-axis and
the large circle is in the xy-plane. See Figure 21.24. Parameterize the torus as follows.

x

y

z

a

b θ
�r �

φ

Figure 21.24

(a) Parameterize the large circle.
(b) For a typical point on the large circle, find two unit vectors which are perpendicular to one

another and in the plane of the small circle at that point. Use these vectors to parameterize
the small circle relative to its center.

(c) Combine your answers to parts (b) and (c) to parameterize the torus.



©
 P

at
ric

k 
Z

ep
hy

r/
P

at
ric

k 
Z

ep
hy

r 
N

at
ur

e 
P

ho
to

g
ra

p
hy

APPENDICES

A. Roots, Accuracy, and Bounds
B. Complex Numbers
C. Newton’s Method
D. Vectors in the Plane
E. Determinants



1096 Appendix A

A ROOTS, ACCURACY, AND BOUNDS

It is often necessary to find the zeros of a polynomial or the points of intersection of two curves. So
far, you have probably used algebraic methods, such as the quadratic formula, to solve such prob-
lems. Unfortunately, however, mathematicians’ search for similar solutions to more complicated
equations has not been all that successful. The formulas for the solutions to third- and fourth-degree
equations are so complicated that you’d never want to use them. Early in the nineteenth century, it
was proved that there is no algebraic formula for the solutions to equations of degree 5 and higher.
Most non-polynomial equations cannot be solved using a formula either.

However, we can still find roots of equations, provided we use approximation methods, not for-
mulas. In this section we will discuss three ways to find roots: algebraic, graphical, and numerical.
Of these, only the algebraic method gives exact solutions.

First, let’s get some terminology straight. Given the equation x2 = 4, we call x = −2 and
x = 2 the roots, or solutions of the equation. If we are given the function f(x) = x2 − 4, then −2

and 2 are called the zeros of the function; that is, the zeros of the function f are the roots of the
equation f(x) = 0.

The Algebraic Viewpoint: Roots by Factoring
If the product of two numbers is zero, then one or the other or both must be zero, that is, if AB = 0,
then A = 0 or B = 0. This observation lies behind finding roots by factoring. You may have spent
a lot of time factoring polynomials. Here you will also factor expressions involving trigonometric
and exponential functions.

Example 1 Find the roots of x2 − 7x = 8.

Solution Rewrite the equation as x2 − 7x − 8 = 0. Then factor the left side: (x + 1)(x − 8) = 0. By our
observation about products, either x+ 1 = 0 or x− 8 = 0, so the roots are x = −1 and x = 8.

Example 2 Find the roots of
1

x
−

x

(x+ 2)
= 0.

Solution Rewrite the left side with a common denominator:

x+ 2− x2

x(x + 2)
= 0.

Whenever a fraction is zero, the numerator must be zero. Therefore we must have

x+ 2− x2
= (−1)(x2 − x− 2) = (−1)(x− 2)(x+ 1) = 0.

We conclude that x − 2 = 0 or x + 1 = 0, so 2 and −1 are the roots. They can be checked by
substitution.

Example 3 Find the roots of e−x sinx− e−x cosx = 0.

Solution Factor the left side: e−x(sinx− cosx) = 0. The factor e−x is never zero; it is impossible to raise e
to a power and get zero. Therefore, the only possibility is that sinx − cosx = 0. This equation is
equivalent to sinx = cosx. If we divide both sides by cosx, we get

sinx

cosx
=

cosx

cosx
so tanx = 1.

The roots of this equation are

. . . ,
−7π

4
,
−3π

4
,
π

4
,
5π

4
,
9π

4
,
13π

4
, . . . .
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Warning: Using factoring to solve an equation only works when one side of the equation is 0.
It is not true that if, say, AB = 7 then A = 7 or B = 7. For example, you cannot solve x2− 4x = 2

by factoring x(x− 4) = 2 and then assuming that either x or x− 4 equals 2.
The problem with factoring is that factors are not easy to find. For example, the left side of the

quadratic equation x2 − 4x − 2 = 0 does not factor, at least not into “nice” factors with integer
coefficients. For the general quadratic equation

ax2
+ bx+ c = 0,

there is the quadratic formula for the roots:

x =
−b±

√
b2 − 4ac

2a
.

Thus the roots of x2 − 4x− 2 = 0 are (4±
√
24)/2, or 2 +

√
6 and 2−

√
6.

Notice that in each of these examples, we have found the roots exactly.

The Graphical Viewpoint: Roots by Zooming
To find the roots of an equation f(x) = 0, it helps to draw the graph of f . The roots of the equation,
that is the zeros of f , are the values of x where the graph of f crosses the x-axis. Even a very rough
sketch of the graph can be useful in determining how many zeros there are and their approximate
values. If you have a computer or graphing calculator, then finding solutions by graphing is the
easiest method, especially if you use the zoom feature. However, a graph can never tell you the
exact value of a root, only an approximate one.

Example 4 Find the roots of x3 − 4x− 2 = 0.

Solution Attempting to factor the left side with integer coefficients will convince you it cannot be done, so
we cannot easily find the roots by algebra. We know the graph of f(x) = x3 − 4x− 2 will have the
usual cubic shape; see Figure A.1.

There are clearly three roots: one between x = −2 and x = −1, another between x = −1

and x = 0, and a third between x = 2 and x = 3. Zooming in on the largest root with a graphing
calculator or computer shows that it lies in the following interval:

2.213 < x < 2.215.

Thus, the root is x = 2.21, accurate to two decimal places. Zooming in on the other two roots shows
them to be x = −1.68 and x = −0.54, accurate to two decimal places.

Useful trick: Suppose you want to solve the equation sinx− cosx = 0 graphically. Instead of
graphing f(x) = sinx− cosx and looking for zeros, you may find it easier to rewrite the equation
as sinx = cosx and graph g(x) = sinx and h(x) = cosx. (After all, you already know what these
two graphs look like. See Figure A.2.) The roots of the original equation are then precisely the x
coordinates of the points of intersection of the graphs of g(x) and h(x).

−2 2

−6

−4

−2

2

4

f(x)6

x

Figure A.1: The cubic
f(x) = x3 − 4x− 2

− 3π
4

π
4

5π
4

x

sin xcos x

Figure A.2: Finding roots of
sin x− cosx = 0
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Example 5 Find the roots of 2 sinx− x = 0.

Solution Rewrite the equation as 2 sinx = x, and graph both sides. Since g(x) = 2 sinx is always between
−2 and 2, there are no roots of 2 sinx = x for x > 2 or for x < −2. We need only consider the
graphs between −2 and 2 (or between −π and π, which makes graphing the sine function easier).
Figure A.3 shows the graphs. There are three points of intersection: one appears to be at x = 0, one
between x = π/2 and x = π, and one between x = −π/2 and x = −π. You can tell that x = 0 is
the exact value of one root because it satisfies the original equation exactly. Zooming in shows that
there is a second root x ≈ 1.9, and the third root is x ≈ −1.9 by symmetry.

−2

−π

−π
2

π
2

π 3π
2

2π

2

x

h(x) = x

g(x) = 2 sin x

Figure A.3: Finding roots of 2 sin x− x = 0

The Numerical Viewpoint: Roots by Bisection
We now look at a numerical method of approximating the solutions to an equation. This method
depends on the idea that if the value of a function f(x) changes sign in an interval, and if we believe
there is no break in the graph of the function there, then there is a root of the equation f(x) = 0 in
that interval.

Let’s go back to the problem of finding the root of f(x) = x3−4x−2 = 0 between 2 and 3. To
locate the root, we close in on it by evaluating the function at the midpoint of the interval, x = 2.5.
Since f(2) = −2, f(2.5) = 3.625, and f(3) = 13, the function changes sign between x = 2 and
x = 2.5, so the root is between these points. Now we look at x = 2.25.

Since f(2.25) = 0.39, the function is negative at x = 2 and positive at x = 2.25, so there
is a root between 2 and 2.25. Now we look at 2.125. We find f(2.125) = −0.90, so there is a
root between 2.125 and 2.25, . . . and so on. (You may want to round the decimals as you work.)
See Figure A.4. The intervals containing the root are listed in Table A.1 and show that the root is
x = 2.21 to two decimal places.

2

2.1875 2.21875

2.125

2.25

f(x) = x3 − 4x− 2

2.5 3

��
x

Figure A.4: Locating a root of x3 − 4x− 2 = 0

Table A.1 Intervals containing root of
x3 − 4x− 2 = 0 (Note: [2, 3] means 2 ≤ x ≤ 3)

[2, 3]

[2, 2.5]

[2, 2.25]

[2.125, 2.25]

[2.1875, 2.25]
So x = 2.2 rounded
to one decimal place

[2.1875, 2.21875]

[2.203125, 2.21875]

[2.2109375, 2.21875]

[2.2109375, 2.2148438]
So x = 2.21 rounded
to two decimal places
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This method of estimating roots is called the Bisection Method:
• To solve an equation f(x) = 0 using the bisection method, we need two starting values

for x, say, x = a and x = b, such that f(a) and f(b) have opposite signs and f is
continuous on [a, b].

• Evaluate f at the midpoint of the interval [a, b], and decide in which half-interval the root
lies.

• Repeat, using the new half-interval instead of [a, b].

There are some problems with the bisection method:
• The function may not change signs near the root. For example, f(x) = x2 − 2x + 1 = 0 has

a root at x = 1, but f(x) is never negative because f(x) = (x − 1)2, and a square cannot be
negative. (See Figure A.5.)

• The function f must be continuous between the starting values x = a and x = b.

• If there is more than one root between the starting values x = a and x = b, the method will
find only one of the roots. For example, if we had tried to solve x3 − 4x − 2 = 0 starting at
x = −12 and x = 10, the bisection method would zero in on the root between x = −2 and
x = −1, not the root between x = 2 and x = 3 that we found earlier. (Try it! Then see what
happens if you use x = −10 instead of x = −12.)

• The bisection method is slow and not very efficient. Applying bisection three times in a row
only traps the root in an interval (12 )

3 = 1
8 as large as the starting interval. Thus, if we initially

know that a root is between, say, 2 and 3, then we would need to apply the bisection method at
least four times to know the first digit after the decimal point.

There are much more powerful methods available for finding roots, such as Newton’s method, which
are more complicated but which avoid some of these difficulties.

1
x

f(x) = (x− 1)2

Figure A.5: f does not change sign at
the root

1 2 3 4 5

−4

−2

2

4

6

8

x

y

y = ex

y = 5
x

Figure A.6: Intersection of y = ex

and y = 5/x

Table A.2 Bisection method for
f(x) = xex − 5 = 0 (Note that
[1, 2] means the interval 1 ≤ x ≤ 2)

Interval Containing Root

[1, 2]

[1, 1.5]

[1.25, 1.5]

[1.25, 1.375]

[1.3125, 1.375]

[1.3125, 1.34375]

Example 6 Find all the roots of xex = 5 to at least one decimal place.

Solution If we rewrite the equation as ex = 5/x and graph both sides, as in Figure A.6, it is clear that there
is exactly one root, and it is somewhere between 1 and 2. Table A.2 shows the intervals obtained by
the bisection method. After five iterations, we have the root trapped between 1.3125 and 1.34375,
so we can say the root is x = 1.3 to one decimal place.
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Iteration

Both zooming in and bisection as discussed here are examples of iterative methods, in which a
sequence of steps is repeated over and over again, using the results of one step as the input for the
next. We can use such methods to locate a root to any degree of accuracy. In bisection, each iteration
traps the root in an interval that is half the length of the previous one. Each time you zoom in on a
calculator, you trap the root in a smaller interval; how much smaller depends on the settings on the
calculator.

Accuracy and Error
In the previous discussion, we used the phrase “accurate to 2 decimal places.” For an iterative pro-
cess where we get closer and closer estimates of some quantity, we take a common-sense approach
to accuracy: we watch the numbers carefully, and when a digit stays the same for several iterations,
we assume it has stabilized and is correct, especially if the digits to the right of that digit also stay
the same. For example, suppose 2.21429 and 2.21431 are two successive estimates for a zero of
f(x) = x3 − 4x − 2. Since these two estimates agree to the third digit after the decimal point, we
probably have at least 3 decimal places correct.

There is a problem with this, however. Suppose we are estimating a root whose true value is
1, and the estimates are converging to the value from below—say, 0.985, 0.991, 0.997 and so on.
In this case, not even the first decimal place is “correct,” even though the difference between the
estimates and the actual answer is very small—much less than 0.1. To avoid this difficulty, we say
that an estimate a for some quantity r is accurate to p decimal places if the error, which is the
absolute value of the difference between a and r, or |r − a|, is as follows:

Accuracy to p decimal places means Error less than

p = 1 0.05

2 0.005

3 0.0005
...

...

n 0. 000 . . . 0︸ ︷︷ ︸
n

5

This is the same as saying that r must lie in an interval of length twice the maximum error,
centered on a. For example, if a is accurate to 1 decimal place, r must lie in the following interval:

a− 0.05 a a+ 0.05

Since both the graphing calculator and the bisection method give us an interval in which the
root is trapped, this definition of decimal accuracy is a natural one for these processes.

Example 7 Suppose the numbers
√
10, 22/7, and 3.14 are given as approximations to π = 3.1415 . . . . To how

many decimal places is each approximation accurate?

Solution Using
√
10 = 3.1622 . . . ,

|
√
10− π| = |3.1622 . . .− 3.1415 . . . | = 0.0206 . . . < 0.05,

so
√
10 is accurate to one decimal place. Similarly, using 22/7 = 3.1428 . . . ,∣∣∣∣227 − π

∣∣∣∣ = |3.1428 . . .− 3.1415 . . . | = 0.0013 . . . < 0.005,
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so 22/7 is accurate to two decimal places. Finally,

|3.14− 3.1415 . . . | = 0.0015 . . . < 0.005,

so 3.14 is accurate to two decimal places.

Warning:

• Saying that an approximation is accurate to, say, 2 decimal places does not guarantee that its
first two decimal places are “correct,” that is, that the two digits of the approximation are the
same as the corresponding two digits in the true value. For example, an approximate value of
5.997 is accurate to 2 decimal places if the true value is 6.001, but neither of the 9s in the
approximation agrees with the 0s in the true value (nor does the digit 5 agree with the digit 6).

• When finding a root r of an equation, the number of decimal places of accuracy refers to the
number of digits that have stabilized in the root. It does not refer to the number of digits of
f(r) that are zero. For example, Table A.1 on page 1098 shows that x = 2.2 is a root of
f(x) = x3 − 4x − 2 = 0, accurate to one decimal place. Yet, f(2.2) = −0.152, so f(2.2)
does not have one zero after the decimal point. Similarly, x = 2.21 is the root accurate to two
decimal places, but f(2.21) = −0.046 does not have two zeros after the decimal point.

Example 8 Is x = 2.2143 a zero of f(x) = x3 − 4x− 2 accurate to four decimal places?

Solution We want to know whether r, the exact value of the zero, lies in the interval

2.2143− 0.00005 < r < 2.2143 + 0.00005

which is the same as
2.21425 < r < 2.21435.

Since f(2.21425) < 0 and f(2.21435) > 0, the zero does lie in this interval, and so r = 2.2143 is
accurate to four decimal places.

How to Write a Decimal Answer

The graphing calculator and bisection method naturally give an interval for a root or a zero. How-
ever, other numerical techniques do not give a pair of numbers bounding the true value, but rather a
single number near the true value. What should you do if you want a single number, rather than an
interval, for an answer? In general, averaging the endpoint of the interval is the best solution.

When giving a single number as an answer and interpreting it, be careful about giving rounded
answers. For example, suppose you know a root lies in the interval between 0.81 and 0.87. Averag-
ing gives 0.84 as a single number estimating the root. But it would be wrong to round 0.84 to 0.8 and
say that the answer is 0.8 accurate to one decimal place; the true value could be 0.86, which is not
within 0.05 of 0.8. The right thing to say is that the answer is 0.84 accurate to one decimal place.
Similarly, to give an answer accurate to, say, 2 decimal places, you may have to show 3 decimal
places in your answer.

Bounds of a Function
Knowing how big or how small a function gets can sometimes be useful, especially when you can’t
easily find exact values of the function. You can say, for example, that sinx always stays between
−1 and 1 and that 2 sinx + 10 always stays between 8 and 12. But 2x is not confined between any
two numbers, because 2x will exceed any number you can name if x is large enough. We say that
sinx and 2 sinx+ 10 are bounded functions, and that 2x is an unbounded function.
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A function f is bounded on an interval if there are numbers L and U such that

L ≤ f(x) ≤ U

for all x in the interval. Otherwise, f is unbounded on the interval.

We say that L is a lower bound for f on the interval, and that U is an upper bound for f on
the interval.

Example 9 Use Figures A.7 and A.8 to decide which of the following functions are bounded.

(a) x3 on −∞ < x < ∞; on 0 ≤ x ≤ 100.
(b) 2/x on 0 < x < ∞; on 1 ≤ x < ∞.

100

106

x3

x

Figure A.7: Is x3 bounded?

1

2

2/x

x

Figure A.8: Is 2/x bounded?

Solution (a) The graph of x3 in Figure A.7 shows that x3 will exceed any number, no matter how large, if x is
big enough, so x3 does not have an upper bound on −∞ < x < ∞. Therefore, x3 is unbounded
on −∞ < x < ∞. But on the interval 0 ≤ x ≤ 100, x3 stays between 0 (a lower bound) and
1003 = 1,000,000 (an upper bound). Therefore, x3 is bounded on the interval 0 ≤ x ≤ 100.
Notice that upper and lower bounds, when they exist, are not unique. For example, −100 is
another lower bound and 2,000,000 another upper bound for x3 on 0 ≤ x ≤ 100.

(b) 2/x is unbounded on 0 < x < ∞, since it has no upper bound on that interval. But 0 ≤ 2/x ≤ 2

for 1 ≤ x < ∞, so 2/x is bounded, with lower bound 0 and upper bound 2, on 1 ≤ x < ∞.
(See Figure A.8.)

Best Possible Bounds

Consider a group of people whose height in feet, h, ranges from 5 feet to 6 feet. Then 5 feet is a
lower bound for the people in the group and 6 feet is an upper bound:

5 ≤ h ≤ 6.

But the people in this group are also all between 4 feet and 7 feet, so it is also true that

4 ≤ h ≤ 7.

So, there are many lower bounds and many upper bounds. However, the 5 and the 6 are considered
the best bounds because they are the closest together of all the possible pairs of bounds.

The best possible bounds for a function, f , over an interval are numbers A and B such that,
for all x in the interval,

A ≤ f(x) ≤ B

and where A and B are as close together as possible. A is called the greatest lower bound
and B is the least upper bound.
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What Do Bounds Mean Graphically?

Upper and lower bounds can be represented on a graph by horizontal lines. See Figure A.9.

Lower bound

Greatest lower bound

Least upper bound

Upper bound

L = −2

L = −0.9

U = 0.92

U = 1.5

x

f(x)

Figure A.9: Upper and lower bounds for the function f

Exercises for Appendix A

1. Use a calculator or computer graph of f(x) = 13−20x−
x2 − 3x4 to determine:

(a) The range of this function;
(b) The number of zeros of this function.

For Problems 2–12, determine the roots or points of intersec-
tion to an accuracy of one decimal place.

2. (a) The root of x3 − 3x+ 1 = 0 between 0 and 1
(b) The root of x3 − 3x+ 1 = 0 between 1 and 2
(c) The smallest root of x3 − 3x+ 1 = 0

3. The root of x4 − 5x3 +2x− 5 = 0 between −2 and −1

4. The root of x5 + x2 − 9x− 3 = 0 between −2 and −1

5. The largest real root of 2x3 − 4x2 − 3x+ 1 = 0

6. All real roots of x4 − x− 2 = 0

7. All real roots of x5 − 2x2 + 4 = 0

8. The smallest positive root of x sin x− cos x = 0

9. The left-most point of intersection between y = 2x and
y = cosx

10. The left-most point of intersection between y = 1/2x

and y = sin x

11. The point of intersection between y = e−x and y = ln x

12. All roots of cos t = t2

13. Estimate all real zeros of the following polynomials, ac-
curate to 2 decimal places:

(a) f(x) = x3 − 2x2 − x+ 3
(b) f(x) = x3 − x2 − 2x+ 2

14. Find the largest zero of

f(x) = 10xe−x − 1

to two decimal places, using the bisection method. Make
sure to demonstrate that your approximation is as good
as you claim.

15. (a) Find the smallest positive value of x where the
graphs of f(x) = sin x and g(x) = 2−x intersect.

(b) Repeat with f(x) = sin 2x and g(x) = 2−x.

16. Use a graphing calculator to sketch y = 2 cos x and
y = x3 + x2 + 1 on the same set of axes. Find the pos-
itive zero of f(x) = 2 cos x − x3 − x2 − 1. A friend
claims there is one more real zero. Is your friend correct?
Explain.

17. Use the table below to investigate the zeros of the func-
tion

f(θ) = (sin 3θ)(cos 4θ) + 0.8

in the interval 0 ≤ θ ≤ 1.8.

θ 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

f(θ) 0.80 1.19 0.77 0.08 0.13 0.71 0.76 0.12 −0.19 0.33

(a) Decide how many zeros the function has in the in-
terval 0 ≤ θ ≤ 1.8.

(b) Locate each zero, or a small interval containing each
zero.

(c) Are you sure you have found all the zeros in the in-
terval 0 ≤ θ ≤ 1.8? Graph the function on a calcu-
lator or computer to decide.
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18. (a) Use Table A.3 to locate approximate solution(s) to

(sin 3x)(cos 4x) =
x3

π3

in the interval 1.07 ≤ x ≤ 1.15. Give an interval of
length 0.01 in which each solution lies.

Table A.3

x x3/π3 (sin 3x)(cos 4x)

1.07 0.0395 0.0286

1.08 0.0406 0.0376

1.09 0.0418 0.0442

1.10 0.0429 0.0485

1.11 0.0441 0.0504

1.12 0.0453 0.0499

1.13 0.0465 0.0470

1.14 0.0478 0.0417

1.15 0.0491 0.0340

(b) Make an estimate for each solution accurate to two
decimal places.

19. (a) With your calculator in radian mode, take the arc-
tangent of 1 and multiply that number by 4. Now,
take the arctangent of the result and multiply it by
4. Continue this process 10 times or so and record
each result as in the accompanying table. At each
step, you get 4 times the arctangent of the result of
the previous step.

1

3.14159. . .

5.05050 . . .

5.50129 . . .
...

(b) Your table allows you to find a solution of the equa-
tion

4 arctan x = x.

Why? What is that solution?

(c) What does your table in part (a) have to do with Fig-
ure A.10?
[Hint: The coordinates of P0 are (1, 1). Find the co-
ordinates of P1, P2, P3,. . . ]

P0

P1

P2

P3

P4

P5

y = x

y = 4arctan x

y

x

Figure A.10

(d) In part (a), what happens if you start with an initial
guess of 10? Of −10? What types of behavior do
you observe? (That is, for which initial guesses is
the sequence increasing, and for which is it decreas-
ing; does the sequence approach a limit?) Explain
your answers graphically, as in part (c).

20. Using radians, apply the iteration method of Problem 19
to the equation

cos x = x.

Represent your results graphically, as in Figure A.10.

For Problems 21–23, draw a graph to decide if the function
is bounded on the interval given. Give the best possible upper
and lower bounds for any function which is bounded.

21. f(x) = 4x− x2 on [−1, 4]

22. h(θ) = 5 + 3 sin θ on [−2π, 2π]

23. f(t) =
sin t

t2
on [−10, 10]

B COMPLEX NUMBERS

The quadratic equation
x2 − 2x+ 2 = 0

is not satisfied by any real number x. If you try applying the quadratic formula, you get

x =
2±

√
4− 8

2
= 1±

√
−4

2
.

Apparently, you need to take a square root of −4. But −4 does not have a square root, at least, not
one which is a real number. Let’s give it a square root.

We define the imaginary number i to be a number such that

i2 = −1.

Using this i, we see that (2i)2 = −4, so
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x = 1±

√
−4

2
= 1±

2i

2
= 1± i.

This solves our quadratic equation. The numbers 1+ i and 1− i are examples of complex numbers.

A complex number is defined as any number that can be written in the form

z = a+ bi,

where a and b are real numbers and i2 = −1, so we say i =
√
−1.

The real part of z is the number a; the imaginary part is the number b.

Calling the number i imaginary makes it sound as if i does not exist in the same way that real
numbers exist. In some cases, it is useful to make such a distinction between real and imaginary
numbers. For example, if we measure mass or position, we want our answers to be real numbers.
But the imaginary numbers are just as legitimate mathematically as the real numbers are.

As an analogy, consider the distinction between positive and negative numbers. Originally,
people thought of numbers only as tools to count with; their concept of “five” or “ten” was not far
removed from “five arrows” or “ten stones.” They were unaware that negative numbers existed at all.
When negative numbers were introduced, they were viewed only as a device for solving equations
like x + 2 = 1. They were considered “false numbers,” or, in Latin, “negative numbers.” Thus,
even though people started to use negative numbers, they did not view them as existing in the same
way that positive numbers did. An early mathematician might have reasoned: “The number 5 exists
because I can have 5 dollars in my hand. But how can I have −5 dollars in my hand?” Today we
have an answer: “I have−5 dollars” means I owe somebody 5 dollars. We have realized that negative
numbers are just as useful as positive ones, and it turns out that complex numbers are useful too.
For example, they are used in studying wave motion in electric circuits.

Algebra of Complex Numbers
Numbers such as 0, 1, 1

2 , π, and
√
2 are called purely real because they contain no imaginary

components. Numbers such as i, 2i, and
√
2i are called purely imaginary because they contain only

the number i multiplied by a nonzero real coefficient.
Two complex numbers are called conjugates if their real parts are equal and if their imaginary

parts are opposites. The complex conjugate of the complex number z = a+ bi is denoted z, so we
have

z = a− bi.

(Note that z is real if and only if z = z.) Complex conjugates have the following remarkable
property: if f(x) is any polynomial with real coefficients (x3+1, say) and f(z) = 0, then f(z) = 0.
This means that if z is the solution to a polynomial equation with real coefficients, then so is z.
• Two complex numbers are equal if and only if their real parts are equal and their imaginary

parts are equal. Consequently, if a+ bi = c+ di, then a = c and b = d.

• Adding two complex numbers is done by adding real and imaginary parts separately:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i.

• Subtracting is similar:

(a+ bi)− (c+ di) = (a− c) + (b− d)i.

• Multiplication works just as for polynomials, using i2 = −1:

(a+ bi)(c+ di) = a(c+ di) + bi(c+ di)

= ac+ adi + bci+ bdi2

= ac+ adi + bci− bd = (ac− bd) + (ad+ bc)i.
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• Powers of i: We know that i2 = −1; then i3 = i · i2 = −i, and i4 = (i2)2 = (−1)2 = 1. Then
i5 = i · i4 = i, and so on. Thus we have

in =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i forn = 1, 5, 9, 13, . . .

−1 forn = 2, 6, 10, 14, . . .

−i forn = 3, 7, 11, 15, . . .

1 forn = 0, 4, 8, 12, 16, . . .

• The product of a number and its conjugate is always real and nonnegative:

z · z = (a+ bi)(a− bi) = a2 − abi+ abi− b2i2 = a2 + b2.

• Dividing by a nonzero complex number is done by multiplying the denominator by its conju-
gate, thereby making the denominator real:

a+ bi

c+ di
=

a+ bi

c+ di
·
c− di

c− di
=

ac− adi + bci− bdi2

c2 + d2
=

ac+ bd

c2 + d2
+

bc− ad

c2 + d2
i.

Example 1 Compute (2 + 7i)(4− 6i)− i.

Solution (2 + 7i)(4− 6i)− i = 8 + 28i− 12i− 42i2 − i = 8 + 15i+ 42 = 50 + 15i.

Example 2 Compute
2 + 7i

4− 6i
.

Solution
2 + 7i

4− 6i
=

2 + 7i

4− 6i
·
4 + 6i

4 + 6i
=

8 + 12i+ 28i+ 42i2

42 + 62
=

−34 + 40i

52
=

−17

26
+

10

13
i.

You can check by multiplying out that (−17/26 + 10i/13)(4− 6i) = 2 + 7i.

The Complex Plane and Polar Coordinates
It is often useful to picture a complex number z = x + iy in the plane, with x along the horizontal
axis and y along the vertical. The xy-plane is then called the complex plane. Figure B.11 shows the
complex numbers −2i, 1 + i, and −2 + 3i.

−3 2

−2i

3i

x

y−2 + 3i

1 + i

0

Figure B.11: Points in the complex
plane

x

yr

z = x+ iy

θ

Figure B.12: The point z = x+ iy in the
complex plane, showing polar coordinates

The triangle in Figure B.12 shows that a complex number can be written using polar coordinates
as follows:

z = x+ iy = r cos θ + ir sin θ.



Appendix B 1107

Example 3 Express z = −2i and z = −2 + 3i using polar coordinates. (See Figure B.11.)

Solution For z = −2i, the distance of z from the origin is 2, so r = 2. Also, one value for θ is θ = 3π/2.
Using polar coordinates, −2i = 2 cos(3π/2) + i 2(sin 3π/2).

For z = −2 + 3i, we have x = −2, y = 3. So r =
√

(−2)2 + 32 ≈ 3.61, and one solution of
tan θ = 3/(−2) with θ in quadrant II is θ ≈ 2.16. So −2+ 3i ≈ 3.61 cos(2.16)+ i 3.61 sin(2.16).

Example 4 Consider the point with polar coordinates r = 5 and θ = 3π/4. What complex number does this
point represent?

Solution Since x = r cos θ and y = r sin θ we see that x = 5 cos 3π/4 = −5/
√
2, and y = 5 sin 3π/4 =

5/
√
2, so z = −5/

√
2 + i 5/

√
2.

Derivatives and Integrals of Complex-Valued Functions
Suppose z(t) = x(t) + iy(t), where t is real, then we define z′(t) and

∫
z (t) dt by treating i like

any other constant:
z′(t) = x′

(t) + iy′(t)∫
z (t) dt =

∫
x (t) dt+ i

∫
y (t) dt.

With these definitions, all the usual properties of differentiation and integration hold, such as∫
z′ (t) dt = z (t) + C, for C is a complex constant.

Euler’s Formula
Consider the complex number z lying on the unit circle in Figure B.13. Writing z in polar coordi-
nates, and using the fact that r = 1, we have

z = f(θ) = cos θ + i sin θ.

It turns out that there is a particularly beautiful and compact way of rewriting f(θ) using com-
plex exponentials. We take the derivative of f using the fact that i2 = −1:

f ′
(θ) = − sin θ + i cos θ = i cos θ + i2 sin θ.

Factoring out an i gives
f ′
(θ) = i(cos θ + i sin θ) = i · f(θ).

As you know from Chapter 11, page 610, the only real-valued function whose derivative is propor-
tional to the function itself is the exponential function. In other words, we know that if

g′(x) = k · g(x), then g(x) = Cekx

z = cos θ + i sin θ

y

x

1

θ

Figure B.13: Complex number represented by a point on the unit circle
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for some constant C. If we assume that a similar result holds for complex-valued functions, then we
have

f ′
(θ) = i · f(θ), so f(θ) = Ceiθ

for some constant C. To find C we substitute θ = 0. Now f(0) = Cei·0 = C, and since f(0) =
cos 0 + i sin 0 = 1, we must have C = 1. Therefore f(θ) = eiθ . Thus we have

Euler’s formula

eiθ = cos θ + i sin θ.

This elegant and surprising relationship was discovered by the Swiss mathematician Leonhard
Euler in the eighteenth century, and it is particularly useful in solving second-order differential
equations. Another way of obtaining Euler’s formula (using Taylor series) is given in Problem 46 on
page 551. It allows us to write the complex number represented by the point with polar coordinates
(r, θ) in the following form:

z = r(cos θ + i sin θ) = reiθ .

Similarly, since cos(−θ) = cos θ and sin(−θ) = − sin θ, we have

re−iθ
= r (cos(−θ) + i sin(−θ)) = r(cos θ − i sin θ).

Example 5 Evaluate eiπ .

Solution Using Euler’s formula, eiπ = cosπ + i sinπ = −1.

Example 6 Express the complex number represented by the point r = 8, θ = 3π/4 in Cartesian form and polar
form, z = reiθ .

Solution Using Cartesian coordinates, the complex number is

z = 8

(
cos

(
3π

4

)
+ i sin

(
3π

4

))
=

−8
√
2
+ i

8
√
2
.

Using polar coordinates, we have
z = 8ei 3π/4.

The polar form of complex numbers makes finding powers and roots of complex numbers much
easier. Writing z = reiθ , we find any power of z as follows:

zp = (reiθ)p = rpeipθ.

To find roots, we let p be a fraction, as in the following example.

Example 7 Find a cube root of the complex number represented by the point with polar coordinates (8, 3π/4).

Solution In Example 6, we saw that this complex number could be written as z = 8ei3π/4. So,

3
√
z =

(
8ei 3π/4

)1/3
= 8

1/3ei(3π/4)·(1/3) = 2eπi/4 = 2 (cos(π/4) + i sin(π/4))

= 2

(
1/

√
2 + i/

√
2

)
=

√
2(1 + i).

You can check by multiplying out that (
√
2(1 + i))3 = −(8/

√
2) + i(8/

√
2) = z.
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Using Complex Exponentials

Euler’s formula, together with the fact that exponential functions are simple to manipulate, allows
us to obtain many results about trigonometric functions easily.

The following example uses the fact that for complex z, the function ez has all the usual alge-
braic properties of exponents.

Example 8 Use Euler’s formula to obtain the double-angle identities

cos 2θ = cos
2 θ − sin

2 θ and sin 2θ = 2 cos θ sin θ.

Solution We use the fact that e2iθ = eiθ · eiθ . This can be rewritten as

cos 2θ + i sin 2θ = (cos θ + i sin θ)2.

Multiplying out (cos θ + i sin θ)2, using the fact that i2 = −1 gives

cos 2θ + i sin 2θ = cos
2 θ − sin

2 θ + i(2 cos θ sin θ).

Since two complex numbers are equal only if the real and imaginary parts are equal, we must have

cos 2θ = cos
2 θ − sin

2 θ and sin 2θ = 2 cos θ sin θ.

If we solve eiθ = cos θ + i sin θ and e−iθ = cos θ − i sin θ for sin θ and cos θ, we obtain

sin θ =
eiθ − e−iθ

2i
and cos θ =

eiθ + e−iθ

2
.

By differentiating the formula eikθ = cos(kθ) + i sin(kθ), for θ real and k a real constant, it can be
shown that

d

dθ

(
eikθ
)
= ikeikθ and

∫
eikθ dθ =

1

ik
eikθ + C.

Thus complex exponentials are differentiated and integrated just like real exponentials.

Example 9 Use cos θ =
(
eiθ + e−iθ

)
/2 to obtain the derivative formula for cos θ.

Solution Differentiating gives

d

dθ
(cos θ) =

d

dθ

(
eiθ + e−iθ

2

)
=

ieiθ − ie−iθ

2
=

i(eiθ − e−iθ)

2

= −
eiθ − e−iθ

2i
= − sin θ.

The facts that ez has all the usual properties when z is complex leads to

d

dθ
(e(a+ib)θ

) = (a+ ib)e(a+ib)θ and
∫

e(a+ib)θ dθ =
1

a+ ib
e(a+ib)θ

+ C.
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Example 10 Use the formula for
∫
e(a+ib)θ dθ to obtain formulas for

∫
eax cos bx dx and

∫
eax sin bx dx.

Solution The formula for
∫
e(a+ib)θ dθ allows us to write∫

eaxeibx dx =

∫
e(a+ib)x dx =

1

a+ ib
e(a+ib)x

+ C =
a− ib

a2 + b2
eaxeibx + C.

The left-hand side of this equation can be rewritten as∫
eaxeibx dx =

∫
eax cos bx dx+ i

∫
eax sin bx dx.

The right-hand side can be rewritten as

a− ib

a2 + b2
eaxeibx =

eax

a2 + b2
(a− ib)(cos bx+ i sin bx),

=
eax

a2 + b2
(a cos bx+ b sin bx+ i (a sin bx− b cos bx)) .

Equating real parts gives∫
eax cos bx dx =

eax

a2 + b2
(a cos bx+ b sin bx) + C,

and equating imaginary parts gives∫
eax sin bx dx =

eax

a2 + b2
(a sin bx− b cos bx) + C.

These two formulas are usually obtained by integrating by parts twice.

Example 11 Using complex exponentials, find a formula for
∫
sin 2x sin 3x dx.

Solution Replacing sin 2x and sin 3x by their exponential form, we have∫
sin 2x sin 3x dx =

∫ (
e2ix − e−2ix

)
2i

(
e3ix − e−3ix

)
2i

dx

=
1

(2i)2

∫ (
e5ix − e−ix − eix + e−5ix

)
dx

= −
1

4

(
1

5i
e5ix +

1

i
e−ix −

1

i
eix −

1

5i
e−5ix

)
+ C

= −
1

4

(
e5ix − e−5ix

5i
−

eix − e−ix

i

)
+ C

= −
1

4

(
2

5
sin 5x− 2 sinx

)
+ C

= −
1

10
sin 5x+

1

2
sinx+ C.

This result is usually obtained by using a trigonometric identity.

Exercises for Appendix B

For Problems 1–8, express the given complex number in polar
form, z = reiθ.

1. 2i 2. −5 3. 1 + i 4. −3− 4i

5. 0 6. −i 7. −1+ 3i 8. 5− 12i

For Problems 9–18, perform the indicated calculations. Give
your answer in Cartesian form, z = x+ iy.

9. (2 + 3i) + (−5− 7i) 10. (2 + 3i)(5 + 7i)

11. (2 + 3i)2 12. (1 + i)2 + (1 + i)
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13. (0.5− i)(1− i/4) 14. (2i)3 − (2i)2 + 2i− 1

15. (eiπ/3)2 16.
√
eiπ/3

17. (5ei7π/6)3 18. 4
√
10eiπ/2

By writing the complex numbers in polar form, z = reiθ,
find a value for the quantities in Problems 19–28. Give your
answer in Cartesian form, z = x+ iy.

19.
√
i 20.

√−i 21. 3
√
i

22.
√
7i 23. (1 + i)100 24. (1 + i)2/3

25. (−4 + 4i)2/3 26. (
√
3 + i)1/2 27. (

√
3+i)−1/2

28. (
√
5 + 2i)

√

2

29. Calculate in for n = −1, −2, −3, −4. What pattern do
you observe? What is the value of i−36? Of i−41?

Solve the simultaneous equations in Problems 30–31 for A1

and A2.

30. A1 + A2 = 2
(1− i)A1 + (1 + i)A2 = 3

31. A1 + A2 = 2
(i− 1)A1 + (1 + i)A2 = 0

32. (a) Calculate a and b if
3− 4i

1 + 2i
= a+ bi.

(b) Check your answer by calculating (1 + 2i)(a+ bi).

33. Check that z =
ac+ bd

c2 + d2
+

bc− ad

c2 + d2
i is the quotient

a+ bi

c+ di
by showing that the product z · (c+ di) is a+ bi.

34. Let z1 = −3− i
√
3 and z2 = −1 + i

√
3.

(a) Find z1z2 and z1/z2. Give your answer in Cartesian
form, z = x+ iy.

(b) Put z1 and z2 into polar form, z = reiθ. Find z1z2
and z1/z2 using the polar form, and verify that you
get the same answer as in part (a).

35. Let z1 = a1 + b1i and z2 = a2 + b2i. Show that
z1z2 = z̄1z̄2.

36. If the roots of the equation x2 + 2bx + c = 0 are the
complex numbers p± iq, find expressions for p and q in
terms of b and c.

Are the statements in Problems 37–42 true or false? Explain
your answer.

37. Every nonnegative real number has a real square root.

38. For any complex number z, the product z · z̄ is a real
number.

39. The square of any complex number is a real number.

40. If f is a polynomial, and f(z) = i, then f(z̄) = i.

41. Every nonzero complex number z can be written in the
form z = ew, where w is another complex number.

42. If z = x+iy, where x and y are positive, then z2 = a+ib
has a and b positive.

For Problems 43–47, use Euler’s formula to derive the fol-
lowing relationships. (Note that if a, b, c, d are real numbers,
a+ bi = c+ di means that a = c and b = d.)

43. sin2 θ + cos2 θ = 1 44. sin 2θ = 2 sin θ cos θ

45. cos 2θ = cos2 θ−sin2 θ 46.
d

dθ
sin θ = cos θ

47.
d2

dθ2
cos θ = − cos θ

48. Use complex exponentials to show that

sin (−x) = − sin x.

49. Use complex exponentials to show that

sin (x+ y) = sin x cos y + cosx sin y.

50. For real t, show that if z1(t) = x1(t) + iy1(t) and
z2(t) = x2(t) + iy2(t) then

(z1 + z2)
′ = z′1 + z′2 and (z1z2)

′ = z′1z2 + z1z
′

2.

C NEWTON’S METHOD

Many problems in mathematics involve finding the root of an equation. For example, we might have
to locate the zeros of a polynomial, or determine the point of intersection of two curves. Here we
will see a numerical method for approximating solutions which cannot be calculated exactly.

One such method, bisection, is described in Appendix A. Although it is very simple, the bisec-
tion method has two major drawbacks. First, it cannot locate a root where the curve is tangent to,
but does not cross, the x-axis. Second, it is relatively slow in the sense that it requires a considerable
number of iterations to achieve a desired level of accuracy. Although speed may not be important
in solving a single equation, a practical problem may involve solving thousands of equations as a
parameter changes. In such a case, any reduction in the number of steps can be important.
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Using Newton’s Method
We now consider a powerful root-finding method developed by Newton. Suppose we have a function
y = f(x). The equation f(x) = 0 has a root at x = r, as shown in Figure C.14. We begin with an
initial estimate, x0, for this root. (This can be a guess.) We will now obtain a better estimate x1. To
do this, construct the tangent line to the graph of f at the point x = x0, and extend it until it crosses
the x-axis, as shown in Figure C.14. The point where it crosses the axis is usually much closer to r,
and we use that point as the next estimate, x1. Having found x1, we now repeat the process starting
with x1 instead of x0. We construct a tangent line to the curve at x = x1, extend it until it crosses
the x-axis, use that x-intercept as the next approximation, x2, and so on. The resulting sequence of
x-intercepts usually converges rapidly to the root r.

Let’s see how this looks algebraically. We know that the slope of the tangent line at the initial
estimate x0 is f ′(x0), and so the equation of the tangent line is

y − f(x0) = f ′
(x0)(x− x0).

At the point where this tangent line crosses the x-axis, we have y = 0 and x = x1, so that

0− f(x0) = f ′
(x0)(x1 − x0).

Solving for x1, we obtain

x1 = x0 −
f(x0)

f ′(x0)

provided that f ′(x0) is not zero. We now repeat this argument and find that the next approximation
is

x2 = x1 −
f(x1)

f ′(x1)
.

Summarizing, for any n = 0, 1, 2, . . . , we obtain the following result.

Newton’s Method to Solve the Equation f(x) = 0

Choose x0 near a solution and compute the sequence x1, x2, x3 . . . using the rule

xn+1 = xn −
f(xn)

f ′(xn)

provided that f ′(xn) is not zero. For large n, the solution is well approximated by xn.

x1 r

x2 x0

x

f

Figure C.14: Newton’s method: successive approximations x0, x1, x2, . . . to the root, r

Example 1 Use Newton’s method to find the fifth root of 23. (By calculator, this is 1.872171231, correct to nine
decimal places.)

Solution To use Newton’s method, we need an equation of the form f(x) = 0 having 231/5 as a root. Since
231/5 is a root of x5 = 23 or x5 − 23 = 0, we take f(x) = x5 − 23. The root of this equation is
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between 1 and 2 (since 15 = 1 and 25 = 32), so we will choose x0 = 2 as our initial estimate. Now
f ′(x) = 5x4, so we can set up Newton’s method as

xn+1 = xn −
x5
n − 23

5x4
n

.

In this case, we can simplify using a common denominator, to obtain

xn+1 =
4x5

n + 23

5x4
n

.

Therefore, starting with x0 = 2, we find that x1 = 1.8875. This leads to x2 = 1.872418193
and x3 = 1.872171296. These values are in Table C.4. Since we have f(1.872171231) > 0 and
f(1.872171230) < 0, the root lies between 1.872171230 and 1.872171231. Therefore, in just four
iterations of Newton’s method, we have achieved eight-decimal accuracy.

Table C.4 Newton’s method: x0 = 2

n xn f(xn)

0 2 9

1 1.8875 0.957130661

2 1.872418193 0.015173919

3 1.872171296 0.000004020

4 1.872171231 0.000000027

Table C.5 Newton’s method: x0 = 10

n xn n xn

0 10 6 2.679422313

1 8.000460000 7 2.232784753

2 6.401419079 8 1.971312452

3 5.123931891 9 1.881654220

4 4.105818871 10 1.872266333

5 3.300841811 11 1.872171240

As a general guideline for Newton’s method, once the first correct decimal place is found, each
successive iteration approximately doubles the number of correct digits.

What happens if we select a very poor initial estimate? In the preceding example, suppose x0

were 10 instead of 2. The results are in Table C.5. Notice that even with x0 = 10, the sequence of
values moves reasonably quickly toward the solution: We achieve six-decimal place accuracy by the
eleventh iteration.

Example 2 Find the first point of intersection of the curves given by f(x) = sinx and g(x) = e−x.

Solution The graphs in Figure C.15 make it clear that there are an infinite number of points of intersection,
all with x > 0. In order to find the first one numerically, we consider the function

F (x) = f(x)− g(x) = sinx− e−x

whose derivative is F ′(x) = cosx + e−x. From the graph, we see that the point we want is fairly
close to x = 0, so we start with x0 = 0. The values in Table C.6 are approximations to the root.
Since F (0.588532744) > 0 and F (0.588532743) < 0, the root lies between 0.588532743 and
0.588532744. (Remember, your calculator must be set in radians.)

x

g(x) = e−x

f(x) = sin x

Figure C.15: Root of sin x = e−x

Table C.6 Successive approximations to root
of sinx = e−x

n xn

0 0

1 0.5

2 0.585643817

3 0.588529413

4 0.588532744

5 0.588532744
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When Does Newton’s Method Fail?
In most practical situations, Newton’s method works well. Occasionally, however, the sequence x0,
x1, x2, . . . fails to converge or fails to converge to the root you want. Sometimes, for example, the
sequence can jump from one root to another. This is particularly likely to happen if the magnitude
of the derivative f ′(xn) is small for some xn. In this case, the tangent line is nearly horizontal and
so xn+1 will be far from xn. (See Figure C.16.)

If the equation f(x) = 0 has no root, then the sequence will not converge. In fact, the sequence
obtained by applying Newton’s method to f(x) = 1 + x2 is one of the best known examples of
chaotic behavior and has attracted considerable research interest recently. (See Figure C.17.)

x0

r x1

x2

x

f(x)

Figure C.16: Problems with Newton’s
method: Converges to wrong root

x0x1
x2x3

x

f(x) = 1 + x2

Figure C.17: Problems with Newton’s
method: Chaotic behavior

Exercises for Appendix C

1. Suppose you want to find a solution of the equation

x3 + 3x2 + 3x− 6 = 0.

Consider f(x) = x3 + 3x2 + 3x− 6.

(a) Find f ′(x), and use it to show that f(x) increases
everywhere.

(b) How many roots does the original equation have?
(c) For each root, find an interval which contains it.
(d) Find each root to two decimal places, using New-

ton’s method.

For Problems 2–4, use Newton’s method to find the given
quantities to two decimal places:

2. 3
√
50 3. 4

√
100 4. 10−1/3

For Problems 5–8, solve each equation and give each answer
to two decimal places:

5. sin x = 1− x 6. cosx = x

7. e−x = ln x

8. ex cos x = 1, for 0 < x < π

9. Find, to two decimal places, all solutions of ln x = 1/x.

10. How many zeros do the following functions have? For
each zero, find an upper and a lower bound which differ
by no more than 0.1.
(a) f(x) = x3+x−1 (b) f(x) = sin x− 2

3
x

(c) f(x) = 10xe−x − 1

11. Find the largest zero of

f(x) = x3 + x− 1

to six decimal places, using Newton’s method. How do
you know your approximation is as good as you claim?

12. For any positive number, a, the problem of calculating
the square root,

√
a, is often done by applying Newton’s

method to the function f(x) = x2−a. Apply the method
to obtain an expression for xn+1 in terms of xn. Use this
to approximate

√
a for a = 2, 10, 1000, and π, correct to

four decimal places, starting at x0 = a/2 in each case.

D VECTORS IN THE PLANE

Position Vectors
Consider a point (a, b) lying on a curve C in the plane (see Figure D.18). The arrow from the
origin to the point (a, b) is called the position vector of the point, written �r . As the point moves
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�r

(a, b)

C

x

y

Figure D.18: A position vector �r

C

x

y

Figure D.19: Position vectors of points on curve C

along the curve, the position vector sweeps across the plane, the arrowhead touching the curve (see
Figure D.19).

A position vector is defined by its magnitude (or length) and its direction. Figure D.20 shows
two position vectors with the same magnitude but different directions. Figure D.21 shows two posi-
tion vectors with the same direction but different magnitudes. An object that possesses both magni-
tude and direction is called a vector, and a position vector is one example. Other physical quantities
(such as force, electric and magnetic fields, velocity and acceleration) that have both magnitude and
direction can be represented by vectors. To distinguish them from vectors, real numbers (which have
magnitude but no direction) are sometimes called scalars.

Vectors can be written in several ways. One is to write 〈a, b〉 for the position vector with tip at
(a, b)— the use of the angle brackets signifies that we’re talking about a vector, not a point. Another
notation uses the special vectors�i and �j along the axes. The position vector�i points to (1, 0) and
�j points to (0, 1); both have magnitude 1. The position vector �r pointing to (a, b) can be written

�r = a�i + b�j .

The terms a�i and b�j are called the components of the vector.
Other special vectors include the zero vector, �0 = 0�i + 0�j . Any vector with magnitude 1 is

called a unit vector.

�i

�j

(1, 0)

(0, 1)

x

y

Figure D.20: Position vectors with
same magnitude, different

direction

(1, 1)

(2, 2)

x

y

Figure D.21: Position vectors
with same direction, different

magnitude



1116 Appendix D

Example 1 What are the components of the position vector in Figure D.22?

Solution Since the vector points to (3,−
√
3), we have

�r = 3�i −
√
3�j .

Thus, the components of the vector are 3�i and −
√
3�j .

3

−√
3 �r

x

y

Figure D.22: Find the components
of this position vector

Magnitude and Direction
If �r is the position vector a�i +b�j , then the Pythagorean Theorem gives the magnitude of �r , written
||�r ||. From Figure D.23, we see

||�r || = ||a�i + b�j || =
√

a2 + b2.

The direction of a position vector �r = a�i + b�j is given by the angle θ between the vector and the
positive x-axis, measured counterclockwise. This angle satisfies

tan θ =

(
b

a

)
.

a

b

‖�r ‖ =
√
a2 + b2

y

xθ

�r

Figure D.23: Magnitude ||�r || and
direction of the position vector �r

3

−√
3

11π/6

−π/6
||�r || = 2

√
3

x

y

Figure D.24: Magnitude and direction of
the vector 3�i −√

3�j

Example 2 Find the magnitude and direction of the position vector �r = 3�i −
√
3�j in Figure D.22.

Solution The magnitude is ||�r || =
√
32 + (−

√
3)2 =

√
12 = 2

√
3. For the direction, we find arctan(−

√
3/3) =

−π/6. Thus, the angle with the positive x-axis is θ = 2π − π/6 = 11π/6. See Figure D.24.
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Describing Motion with Position Vectors
The motion given by the parametric equations

x = f(t), y = g(t)

can be represented by a changing position vector

�r (t) = f(t)�i + g(t)�j .

For example, �r (t) = cos t�i + sin t�j represents the motion x = cos t, y = sin t around the unit
circle.

Displacement Vectors
Position vectors are vectors that begin at the origin. More general vectors can start at any point in
the plane. We view such an arrow as an instruction to move from one point to another and call it
a displacement vector. Figure D.25 shows the same displacement vector starting at two different
points; we say they are the same vector since they have the same direction and magnitude. Thus, a
position vector �r is a displacement vector beginning at the origin. The zero vector �0 = 0�i + 0�j
represents no displacement at all.

�u = 3�i + 4�j �u = 3�i + 4�j

(−4, 2)

(−1, 6)

(5, 7)

(2, 3)

x

y

Figure D.25: Two equal displacement vectors:
Same magnitude and direction

Vector Operations
The sum �u 1 + �u 2 of two displacement vectors is the result of displacing an object first by �u 1 and
then by �u 2; see Figure D.26. In terms of components:

If �u 1 = a1�i + b1�j and �u 2 = a2�i + b2�j , then the sum is

�u 1 + �u 2 = (a1 + a2)�i + (b1 + b2)�j .

In other words, to add vectors, add their components separately.

�u 1 + �u 2

�u 1

�u 2

Figure D.26: Vector addition
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Example 3 Find the sum of the following pairs of vectors:

(a) 3�i + 2�j and −�i +�j (b) �i and 3�i +�j (c) �i and �j .

Solution (a) (3�i + 2�j ) + (−�i +�j ) = 2�i + 3�j
(b) (�i + 0�j ) + (3�i +�j ) = 4�i +�j
(c) (�i + 0�j ) + (0�i +�j ) =�i +�j .

Vectors can be multiplied by a number. This operation is called scalar multiplication because
it represents changing (“scaling”) the magnitude of a vector while keeping its direction the same or
reversing it. See Figure D.27.

If c is a real number and �u = a�i + b�j , then the scalar multiple of �u by c, c�u , is

c�u = ca�i + cb�j .

In other words, to multiply a vector by a scalar c, multiply each component by c.

�F

0.5�F

2�F

−2�F

Figure D.27: Scalar
multiplication

Example 4 If �u 1 = 2�i and �u 2 =�i + 3�j , evaluate 6�u 2, (−2)�u 1, and 2�u 1 + 5�u 2.

Solution We have

6�u 2 = 6�i + 18�j ,

(−2)�u 1 = −4�i ,

2�u 1 + 5�u 2 = (4�i ) + (5�i + 15�j ) = 9�i + 15�j .

Velocity Vectors
For a particle moving along a line with position s(t), the instantaneous velocity is ds/dt. For a
particle moving in the plane, the velocity is a vector. If the position vector is �r (t) = x(t)�i + y(t)�j ,
the particle’s displacement during a time interval Δt is

Δ�r (t) = Δx�i +Δy�j .
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Dividing by Δt and letting Δt → 0, we get the following result:

For motion in the plane with position vector �r (t) = x(t)�i + y(t)�j , the velocity vector is

�v (t) =
dx

dt
�i +

dy

dt
�j .

The direction of �v (t) is tangent to the curve. The magnitude ||�v (t)|| is the speed.

Notice the vector viewpoint agrees with the formulas for speed, vx and vy , given in Section 4.8, so
we write

�v (t) = vx�i + vy�j .

Recall that for motion on a line, the acceleration is a = dv/dt = d2s/dt2. For motion in the plane,
we have the following:

If the position vector is �r (t) = x(t)�i + y(t)�j , the acceleration vector is

�a (t) =
d2x

dt2
�i +

d2y

dt2
�j .

The acceleration measures both change in speed and change in direction of the velocity
vector.

Example 5 Let �r (t) = cos(2t)�i + sin(2t)�j . Find the

(a) Velocity (b) Speed (c) Acceleration

Solution (a) Differentiating �r (t) gives the velocity vector

Velocity = �v (t) = −2 sin(2t)�i + 2 cos(2t)�j .

(b) Finding the magnitude of �v (t), we have

Speed = ||�v (t)|| =
√

(−2 sin(2t))2 + (2 cos(2t))2 = 2.

Notice that the speed is constant.
(c) Differentiating �v (t) gives the acceleration vector

Acceleration = �a (t) = −4 cos(2t)�i − 4 sin(2t)�j .

Notice that even though the speed is constant, the acceleration vector is not�0 , since the velocity
vector is changing direction.
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Exercises for Appendix D
Exercises

In Exercises 1–3, find the magnitude of the vector and the an-
gle between the vector and the positive x-axis.

1. 3�i 2. 2�i +�j

3. −√
2�i +

√
2�j

In Exercises 4–6, perform the indicated operations on the fol-
lowing vectors

�u = 2�j �v =�i + 2�j �w = −2�i + 3�j .

4. �v + �w 5. 2�v + �w 6. �w + (−2)�u

Exercises 7–9 concern the following vectors:

3�i +4�j , �i +�j , −5�i , 5�j ,
√
2�j , 2�i +2�j , −6�j

.

7. Which vectors have the same magnitude?

8. Which vectors have the same direction?

9. Which vectors have opposite direction?

10. If k is any real number and �r = a�i + b�j is any vector,
show that ‖k�r ‖ = |k|‖�r ‖.

11. Find a unit vector (that is, with magnitude 1) that is

(a) In the same direction as the vector −3�i + 4�j .
(b) In the direction opposite to the vector −3�i + 4�j .

In Exercises 12–15, express the vector in components.

12. The vector of magnitude 5 making an angle of 90◦ with
the positive x-axis.

13. The vector in the same direction as 4�i − 3�j but with
twice the magnitude.

14. The vector with the same magnitude as 4�i − 3�j and in
the opposite direction.

15. The vector from (3, 2) to (4, 4).

In Exercises 16–19, determine whether the vectors are equal.

16. 6�i − 6�j and the vector from (6, 6) to (−6,−6).

17. The vector from (7, 9) to (9, 11) and the vector from
(8, 10) to (10, 12).

18. −�i +�j and the vector of length
√
2 making an angle of

π/4 with the positive x-axis.

19. 5�i − 2�j and the vector from (1, 12) to (6, 10).

In Exercises 20–22, find the velocity vector and the speed, and
acceleration.

20. �r (t) = t�i + t2�j , t = 1

21. �r (t) = et�i + ln(1 + t)�j , t = 0

22. �r (t) = 5 cos t�i + 5 sin t�j , t = π/2

23. A particle is moving along the curve �r (t) = cos t�i +
sin t�j . Find the particle’s position and velocity vectors
and its speed when t = π/4.

E DETERMINANTS

We introduce the determinant of an array of numbers. Each 2 by 2 array of numbers has another
number associated with it, called its determinant, which is given by∣∣∣∣∣a1 a2

b1 b2

∣∣∣∣∣ = a1b2 − a2b1.

For example ∣∣∣∣∣ 2 5

−4 −6

∣∣∣∣∣ = 2(−6)− 5(−4) = 8.

Each 3 by 3 array of numbers also has a number associated with it, also called a determinant,
which is defined in terms of 2 by 2 determinants as follows:∣∣∣∣∣∣∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣ = a1

∣∣∣∣∣ b2 b3

c2 c3

∣∣∣∣∣− a2

∣∣∣∣∣ b1 b3

c1 c3

∣∣∣∣∣+ a3

∣∣∣∣∣ b1 b2

c1 c2

∣∣∣∣∣ .
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Notice that the determinant of the 2 by 2 array multiplied by ai is the determinant of the array found
by removing the row and column containing ai. Also, note the minus sign in the second term. An
example is given by∣∣∣∣∣∣∣
2 1 −3

0 3 −1

4 0 5

∣∣∣∣∣∣∣ = 2

∣∣∣∣∣3 −1

0 5

∣∣∣∣∣− 1

∣∣∣∣∣0 −1

4 5

∣∣∣∣∣+ (−3)

∣∣∣∣∣0 3

4 0

∣∣∣∣∣ = 2(15 + 0)− 1(0− (−4)) + (−3)(0− 12) = 62.

Suppose the vectors�a and�b have components�a = a1�i +a2�j +a3�k and�b = b1�i +b2�j +b3�k .
Recall that the cross product �a ×�b is given by the expression

�a ×�b = (a2b3 − a3b2)�i + (a3b1 − a1b3)�j + (a1b2 − a2b1)�k .

Notice that if we expand the following determinant, we get the cross product:∣∣∣∣∣∣∣
�i �j �k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣ =�i (a2b3 − a3b2)−�j (a1b3 − a3b1) + �k (a1b2 − a2b1) = �a ×�b .

Determinants give a useful way of computing cross products.
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READY REFERENCE

This section contains a concise summary of the 
main defi nitions, theorems, and ideas 
presented throughout the book.
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A Library of Functions
Linear functions (p. 4) have the form y = f(x) = b+mx,
where m is the slope, or rate of change of y with respect to x
(p. 5) and b is the vertical intercept, or value of y when x is
zero (p. 5). The slope is

m =
Rise
Run

=
Δy

Δx
=

f(x2)− f(x1)

x2 − x1
(p. 5).

y = x
y = 2x

y = 0.5x

x

y

y = −x
y = −2x

y = −0.5x

Figure R.1: The family y = mx
(with b = 0) (p. 6)

x

y = −1 + x

y = x

y = 1 + x

y = 2 + x

y

Figure R.2: The family y = b+ x
(with m = 1) (p. 6)

Exponential functions have the form P = P0a
t (p. 13) or

P = P0e
kt (p. 16), where P0 is the initial quantity (p. 13),

a is the growth (decay) factor per unit time (p. 13), |k| is the
continuous growth (decay) rate (pp. 16, 610), and r = |a−1|
is the growth (decay) rate per unit time (p. 14).

Suppose P0 > 0. If a > 1 or k > 0, we have exponen-
tial growth; if 0 < a < 1 or k < 0, we have exponential
decay (p. 15). The doubling time (for growth) is the time re-
quired for P to double (p. 14). The half-life (for decay) is
the time required for P to be reduced by a factor of one half
(p. 14). The continuous growth rate k = ln(1 + r) is slightly
less than, but very close to, r, provided r is small (p. 611).

1 2 3 4 5 6 7

10

20

30

40

t

P

10t 5t 3t 2t

(1.5)t

Figure R.3: Exponential growth:
P = at, for a > 1 (p. 15)
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0.6

0.8
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t

P

(0.1)t
(0.5)t (0.8)t

(0.9)t

(0.95)t

Figure R.4: Exponential decay:
P = at, for 0 < a < 1 (p. 15)

Common Logarithm and Natural Logarithm
log10 x = log x = power of 10 that gives x (p. 29)
log10 x = c means 10c = x (p. 29)
ln x = power of e that gives x (p. 29)
ln x = c means ec = x (p. 29)
log x and ln x are not defined if x is negative or 0 (p. 30).

Properties of Logarithms (p. 30)

1. log(AB) = logA+ logB 4. log (10x) = x

2. log
(
A
B

)
= logA− logB 5. 10log x = x

3. log (Ap) = p logA 6. log 1 = 0
The natural logarithm satisfies properties 1, 2, and 3, and
ln ex = x, elnx = x, ln 1 = 0 (p. 30).

Trigonometric Functions The sine and cosine are defined in
Figure R.5 (see also p. 37). The tangent is tan t = sin t

cos t
=

slope of the line through the origin (0, 0) and P if cos t �= 0
(p. 40). The period of sin and cos is 2π (p. 37), the period of
tan is π (p. 40).

�

�

y

��x (1, 0)

(0, 1)
P x = cos t

y = sin t

t

Figure R.5: The definitions of sin t
and cos t (p. 37)

A sinusoidal function (p. 38) has the form
y = C +A sin(B(t+ h)) or y = C +A cos(B(t+ h)).
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The amplitude is |A|, (p. 38), and the period is 2π/|B|
(p. 38).

−3π −2π −π π 2π 3π

−1

1
sin t �

�
Amplitude = 1

��Period = 2π

cos t

t

Figure R.6: Graphs of cos t and sin t (p. 37)

Trigonometric Identities

sin2 x+ cos2 x = 1

sin(2x) = 2 sin x cos x

cos(2x) = cos2 x− sin2 x = 2 cos2 x− 1 = 1− 2 sin2 x

cos(a+ b) = cos a cos b− sin a sin b

sin(a+ b) = sin a cos b+ cos a sin b

Inverse Trigonometric Functions: arcsin y = x means
sin x = y with −(π/2) ≤ x ≤ (π/2) (p. 41), arccos y = x
means cos x = y with 0 ≤ x ≤ π (Problem 55, p. 44),
arctan y = x means tan x = y with −(π/2) < x < (π/2)
(p. 41). The domain of arcsin and arccos is [−1, 1] (p. 41),
the domain of arctan is all numbers (p. 41). Power Func-

tions have the form f(x) = kxp (p. 45). Graphs for positive
powers:

−2 −1

1 2

−10

−5

5

10

x

y
x5 x3

x

Figure R.7: Odd integer
powers of x: “Seat” shaped

for k > 1 (p. 46)

−3 −2 −1 1 2 3

−5

5

10

x

y
x4

x2

Figure R.8: Even integer
powers of x:

⋃
-shaped

(p. 46)

1 2
0

1

2

x

y

x1/3

x1/2

x3/2 xx2x3

Figure R.9: Comparison of some
fractional powers of x

Graphs for zero and negative powers:

y =
1

x2
= x−2

y

x

y =
1

x
= x−1

y

x

y = x0

y

x

Figure R.10: Comparison of zero and negative powers of x

Polynomials have the form

f(x) = anx
n+an−1x

n−1+· · ·+a1x+a0, an �= 0 (p. 46).

The degree is n (p. 47) and the leading coefficient is an

(p. 47).

Quadratic
(n = 2)

Cubic
(n = 3)

Quartic
(n = 4)

Quintic
(n = 5)

Figure R.11: Graphs of typical polynomials of degree n
(p. 47)

Rational Functions have the form f(x) =
p(x)

q(x)
, where

p and q are polynomials (p. 49). There is usually a vertical
asymptote at x = a if q(a) = 0 and a horizontal asymptote at
y = L if limx→∞ f(x) = L or limx→−∞ f(x) = L (p. 49).

Hyperbolic Functions:

cosh x =
ex + e−x

2
sinh x =

ex − e−x

2
(p. 165).
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Relative Growth Rates of Functions

Power Functions As x → ∞, higher powers of x dominate,
as x → 0, smaller powers dominate.

1 2 3 4

5

10

15

x

x

x1.5

x2
x3x4x5

Figure R.12: For large x:
Large powers of x dominate

1

1

x

x

x1.5

x2

x3

x4

x5

�
�
�
�
�
�

Figure R.13: For 0 ≤ x ≤ 1:
Small powers of x dominate

Power Functions Versus Exponential Functions Every ex-
ponential growth function eventually dominates every power
function (p. 46).

250 500 750

1029

x

x10

1.1x

Figure R.14: Exponential function eventually dominates
power function

Power Functions Versus Logarithm Functions The power
function xp dominates A log x for large x for all values of
p > 0 and A > 0.

100−1

1
x

x1/3

log x

Figure R.15: Comparison of
x1/3 and log x

109

1000

x

x1/3

100 log x

Figure R.16: Comparison of
x1/3 and 100 log x

Numerical comparisons of growth rates:

Table R.1 Comparison of
x0.001 and 1000 log x

x x0.001 1000 log x

105000 105 5 · 106

106000 106 6 · 106

107000 107 7 · 106

Table R.2 Comparison of
x100 and 1.01x

x x100 1.01x

104 10400 1.6 · 1043

105 10500 1.4 · 10432

106 10600 2.4 · 104321

Operations on Functions

Shifts, Stretches, and Composition Multiplying by a con-
stant, c, stretches (if c > 1) or shrinks (if 0 < c < 1) the
graph vertically. A negative sign (if c < 0) reflects the graph
about the x-axis, in addition to shrinking or stretching (p. 21).
Replacing y by (y − k) moves a graph up by k (down if k is
negative) (p. 21). Replacing x by (x−h) moves a graph to the
right by h (to the left if h is negative) (p. 21). The composite
of f and g is the function f(g(x)); f is the outside function,
g the inside function (p. 21).

Symmetry We say f is an even function if f(−x) = f(x)
(p. 22) and f is an odd function if f(−x) = −f(x) (p. 22).

Inverse Functions A function f has an inverse if (and only
if) its graph intersects any horizontal line at most once (p. 24).
If f has an inverse, it is written f−1, and f−1(x) = y means
f(y) = x (p. 24). Provided the x and y scales are equal, the
graph of f−1 is the reflection of the graph of f about the line
y = x (p. 25).

Proportionality We say y is proportional to x if y = kx for
k a nonzero constant. We say y is inversely proportional to x
if y = k(1/x) (p. 6).

Limits and Continuity

Idea of Limit (p. 58) If there is a number L such that f(x) is
as close to L as we please whenever x is sufficiently close to
c (but x �= c), then limx→c f(x) = L.

Definition of Limit (p. 59) If there is a number L such
that for any ε > 0, there exists a δ > 0 such that if |x−c| < δ
and x �= c, then |f(x)− L| < ε, then limx→c f(x) = L.

One-sided Limits (p. 61) If f(x) approaches L
as x approaches c through values greater than c, then
limx→c+ f(x) = L. If f(x) approaches L as x approaches
c through values less than c, then limx→c− f(x) = L.

Limits at Infinity (p. 63) If f(x) gets as close to L as we
please when x gets sufficiently large, then limx→∞ f(x) =
L. Similarly, if f(x) approaches L as x gets more and more
negative, then limx→−∞ f(x) = L.

Theorem: Properties of Limits (p. 60) Assuming all
the limits on the right-hand side exist:

1. If b is a constant, then lim
x→c

(bf(x)) = b
(
lim
x→c

f(x)
)

.

2. lim
x→c

(f(x) + g(x)) = lim
x→c

f(x) + lim
x→c

g(x).

3. lim
x→c

(f(x)g(x)) =
(
lim
x→c

f(x)
)(

lim
x→c

g(x)
)

.

4. lim
x→c

f(x)

g(x)
=

limx→c f(x)

limx→c g(x)
, provided limx→c g(x) �= 0.

5. For any constant k, lim
x→c

k = k.

6. lim
x→c

x = c.

Idea of Continuity (p. 53) A function is continuous on
an interval if its graph has no breaks, jumps, or holes in that
interval.

Definition of Continuity (p. 63) The function f is con-
tinuous at x = c if f is defined at x = c and

lim
x→c

f(x) = f(c).
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The function is continuous on an interval if it is continuous
at every point in the interval.

Theorem: Continuity of Sums, Products, Quotients
(p. 64) Suppose that f and g are continuous on an interval and
that b is a constant. Then, on that same interval, the following
functions are also continuous: bf(x), f(x)+g(x), f(x)g(x).
Further, f(x)/g(x) is continuous provided g(x) �= 0 on the
interval.

Theorem: Continuity of Composite Functions (p. 64)
Suppose f and g are continuous and f(g(x)) is defined on an
interval. Then on that interval f(g(x)) is continuous.

Intermediate Value Theorem (p. 55) Suppose f is con-
tinuous on a closed interval [a, b]. If k is any number between
f(a) and f(b), then there is at least one number c in [a, b]
such that f(c) = k.

The Extreme Value Theorem (p. 196) If f is continu-
ous on the interval [a, b], then f has a global maximum and a
global minimum on that interval.

The Derivative
The slope of the secant line of f(x) over an interval [a, b]
gives:

Average rate of change

of f over [a, b]
=

f(b)− f(a)

b− a
(p. 83).

a a+ h
x

A

B

f(x)
Slope = Average rate

of change
=

f(a+h)−f(a)
h

� �
�
f(a+ h)− f(a)

�� h

Figure R.17: Visualizing the average rate
of change of f (p. 84)

The derivative of f at a is the slope of the line tangent
to the graph of f at the point (a, f(a)):

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
,

and gives the instantaneous rate of change of f at a (p. 83).
The function f is differentiable at a if this limit exists (p. 83).
The second derivative of f , denoted f ′′, is the derivative of
f ′ (p. 104).

a
x

A

f(x)

Slope = Derivative = f ′(a)
�

Figure R.18: Visualizing the
instantaneous rate of change

of f (p. 84)

The units of f ′(x) are:
Units of f(x)

Units of x (p. 99). If f ′ > 0
on an interval, then f is increasing over that interval (p. 92).
If f ′ < 0 on an interval, then f is decreasing over that inter-
val (p. 92). If f ′′ > 0 on an interval, then f is concave up
over that interval (p. 104). If f ′′ < 0 on an interval, then f is
concave down over that interval (p. 104).

The tangent line at (a, f(a)) is the graph of y = f(a)+
f ′(a)(x−a) (p. 169). The tangent line approximation says
that for values of x near a, f(x) ≈ f(a)+ f ′(a)(x− a). The
expression f(a) + f ′(a)(x− a) is called the local lineariza-
tion of f near x = a (p. 169).

Derivatives of elementary functions

d

dx
(xn) = nxn−1 (p. 126)

d

dx
(ex) = ex (p. 133)

d

dx
(ax) = (ln a)ax (p. 134)

d

dx
(ln x) =

1

x
(p. 156)

d

dx
(sin x) = cos x

d

dx
(cos x) = − sin x (p. 151)

d

dx
(arctan x) =

1

1 + x2
(p. 157)

d

dx
(arcsin x) =

1√
1− x2

(p. 158)

Derivatives of sums, differences, and constant
multiples

d

dx
[f(x)± g(x)] = f ′(x)± g′(x) (p. 125)

d

dx
[cf(x)] = cf ′(x) (p. 124)

Product and quotient rules

(fg)′ = f ′g + fg′ (p. 137)(
f

g

)
′

=
f ′g − fg′

g2
(p. 138)

Chain rule

d

dx
f(g(x)) = f ′(g(x)) · g′(x) (p. 143)

Derivative of an inverse function (p. 158). If f has a differ-
entiable inverse, f−1, then

d

dx
(f−1(x)) =

1

f ′(f−1(x))
.

Implicit differentiation (p. 162) If y is implicitly defined as a

function of x by an equation, then, to find dy/dx, differentiate
the equation (remembering to apply the chain rule).
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Applications of the Derivative

A function f has a local maximum at p if f(p) is greater than
or equal to the values of f at points near p, and a local min-
imum at p if f(p) is less than or equal to the values of f at
points near p (p. 187). It has a global maximum at p if f(p)
is greater than or equal to the value of f at any point in the
interval, and a global minimum at p if f(p) is less than or
equal to the value of f at any point in the interval (p. 196).

A critical point of a function f(x) is a point p in the
domain of f where f ′(p) = 0 or f ′(p) is undefined (p. 187).

Theorem: Local maxima and minima which do not oc-
cur at endpoints of the domain occur at critical points (pp. 188,
192).

The First-Derivative Test for Local Maxima and Min-
ima (p. 188):

• If f ′ changes from negative to positive at p, then f has a
local minimum at p.

• If f ′ changes from positive to negative at p, then f has a
local maximum at p.

The Second-Derivative Test for Local Maxima and
Minima (p. 189):

• If f ′(p) = 0 and f ′′(p) > 0 then f has a local mini-
mum at p.

• If f ′(p) = 0 and f ′′(p) < 0 then f has a local maxi-
mum at p.

• If f ′(p) = 0 and f ′′(p) = 0 then the test tells us
nothing.

To find the global maximum and minimum of a func-
tion on an interval we compare values of f at all critical
points in the interval and at the endpoints of the interval (or
lim

x→±∞

f(x) if the interval is unbounded) (p. 197).

An inflection point of f is a point at which the graph of
f changes concavity (p. 190); f ′′ is zero or undefined at an
inflection point (p. 190).

L’Hopital’s rule (p. 243) If f and g are continuous,
f(a) = g(a) = 0, and g′(a) �= 0, then

lim
x→a

f(x)

g(x)
=

f ′(a)

g′(a)
.

Parametric equations (p. 249) If a curve is given by the
parametric equations x = f(t), y = g(t), the slope of the
curve as a function of t is dy/dx = (dy/dt)/(dx/dt).

Theorems About Derivatives

Theorem: Local Extrema and Critical Points (pp. 188,
192) Suppose f is defined on an interval and has a local maxi-
mum or minimum at the point x = a, which is not an endpoint
of the interval. If f is differentiable at x = a, then f ′(a) = 0.

The Mean Value Theorem (p. 175) If f is continuous
on [a, b] and differentiable on (a, b), then there exists a num-
ber c, with a < c < b, such that

f ′(c) =
f(b)− f(a)

b− a
.

The Increasing Function Theorem (p. 176) Suppose
that f is continuous on [a, b] and differentiable on (a, b).

• If f ′(x) > 0 on (a, b), then f is increasing on [a, b].

• If f ′(x) ≥ 0 on (a, b), then f is nondecreasing on [a, b].

The Constant Function Theorem (p. 177) Suppose
that f is continuous on [a, b] and differentiable on (a, b). If
f ′(x) = 0 on (a, b), then f is constant on [a, b].

The Racetrack Principle (p. 177) Suppose that g and h
are continuous on [a, b] and differentiable on (a, b), and that
g′(x) ≤ h′(x) for a < x < b.

• If g(a) = h(a), then g(x) ≤ h(x) for a ≤ x ≤ b.

• If g(b) = h(b), then g(x) ≥ h(x) for a ≤ x ≤ b.

Theorem: Differentiability and Local Linearity
(p. 170) Suppose f is differentiable at x = a and E(x) is
the error in the tangent line approximation, that is: E(x) =

f(x)− f(a)− f ′(a)(x− a). Then lim
x→a

E(x)

x− a
= 0.

Theorem: A Differentiable Function Is Continuous
(p. 113) If f(x) is differentiable at a point x = a, then f(x)
is continuous at x = a.

The Definite Integral

The definite integral of f from a to b (p. 282), denoted∫ b

a
f(x) dx, is the limit of the left and the right sums as the

width of the rectangles is shrunk to 0, where

Left-hand sum =

n−1∑
i=0

f(xi)Δx (p. 276)

= f(x0)Δx+ f(x1)Δx+ · · ·+ f(xn−1)Δx

Right-hand sum =

n∑
i=1

f(xi)Δx (p. 281)

= f(x1)Δx+ f(x2)Δx+ · · ·+ f(xn)Δx

Area = f(x0)Δx

f(x)

x
a = x0 x1 x2 · · · xn = b

��

�

f(x0)

Figure R.19: Left-hand sum (p. 276)

Area = f(x1)Δx

f(x)

x
a = x0 x1 x2 · · · xn = b

��

�

f(x1)

Figure R.20: Right-hand sum (p. 276)
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If f is nonnegative,
∫ b

a
f(x) dx represents the area under

the curve between x = a and x = b (p. 283). If f has any sign,∫ b

a
f(x) dx is the sum of the areas above the x-axis, counted

positively, and the areas below the x-axis, counted negatively
(p. 284). If F ′(t) is the rate of change of some quantity F (t),

then
∫ b

a
F ′(t) dt is the total change in F (t) between t = a

and t = b (p. 291). The average value of f on the interval

[a, b] is given by
1

b− a

∫ b

a

f(x) dx (p. 304).

a b
x

f(x)Area =
∫ b

a
f(x) dx



Figure R.21: The definite integral
∫ b

a
f(x) dx

(p. 283)

a b
x

f(x)

Area under curve =
Area of rectangle

�� b− a

�

�

Average
value
of f

Figure R.22: Area and average value
(p. 305)

The units of
∫ b

a
f(x) dx are Units of f(x) × Units of x

(p. 289).

The Fundamental Theorem of Calculus If f is continuous
on [a, b] and f(x) = F ′(x), then∫ b

a

f(x) dx = F (b)− F (a) (p. 290).

Properties of Definite Integrals (pp. 298, 300)
If a, b, and c are any numbers and f , g are continuous func-
tions, then∫ a

b

f(x) dx = −
∫ b

a

f(x) dx∫ b

a

(f(x)± g(x))dx =

∫ b

a

f(x) dx±
∫ b

a

g(x)dx∫ c

a

f(x) dx+

∫ b

c

f(x) dx =

∫ b

a

f(x) dx∫ b

a

cf(x) dx = c

∫ b

a

f(x) dx

Antiderivatives

An antiderivative of a function f(x) is a function F (x) such
that F ′(x) = f(x) (p. 320). There are infinitely many an-
tiderivatives of f since F (x) + C is an antiderivative of
f for any constant C, provided F ′(x) = f(x) (p. 320).
The indefinite integral of f is the family of antiderivatives∫
f(x) dx = F (x) +C (p. 326).

Construction Theorem (Second Fundamental Theorem of
Calculus) If f is a continuous function on an interval and a
is any number in that interval, then F (x) =

∫ x

a
f(t) dt is an

antiderivative of f (p. 340).

Properties of Indefinite Integrals (p. 329)∫
(f(x)± g(x))dx =

∫
f(x) dx±

∫
g(x)dx

∫
cf(x) dx = c

∫
f(x) dx

Some antiderivatives:∫
k dx = kx+ C (p. 327)

∫
xn dx =

xn+1

n+ 1
+ C, n �= −1 (p. 327)

∫
1

x
dx = ln |x|+C (p. 328)

∫
ex dx = ex + C (p. 328)

∫
cosx dx = sin x+ C (p. 328)

∫
sin xdx = − cos x+ C (p. 328)

∫
dx

1 + x2
= arctan x+ C (p. 382)

∫
dx√
1− x2

= arcsin x+ C (p. 380)

Substitution (p. 354) For integrals of the form∫
f(g(x))g′(x) dx, let w = g(x). Choose w, find dw/dx

and substitute for x and dx. Convert limits of integration for
definite integrals.

Integration by Parts (p. 364) Used mainly for products; also
for integrating ln x, arctan x, arcsin x.∫

uv′ dx = uv −
∫

u′v dx

Partial Fractions (p. 376) To integrate a rational function,
P (x)/Q(x), express as a sum of a polynomial and terms of
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the form A/(x− c)n and (Ax+B)/q(x), where q(x) is an
unfactorable quadratic.

Trigonometric Substitutions (p. 380) To simplify√
x2 − a2, try x = a sin θ (p. 380). To simplify a2 + x2

or
√
a2 + x2, try x = a tan θ (p. 382).

Numerical Approximations for Definite Integrals (p. 387)
Riemann sums (left, right, midpoint) (p. 387), trapezoid rule
(p. 388), Simpson’s rule (p. 391)

Approximation Errors (p. 389)
f concave up: midpoint underestimates, trapezoid overesti-
mates (p. 389)
f concave down: trapezoid underestimates, midpoint overes-
timates (p. 389)

Evaluating Improper Integrals (p. 395)

• Infinite limit of integration:
∫

∞

a
f(x) dx =

limb→∞

∫ b

a
f(x) dx (p. 395)

• For a < b, if integrand is unbounded at x = b, then:∫ b

a
f(x) dx = limc→b−

∫ c

a
f(x) dx (p. 398)

Testing Improper Integrals for Convergence by Compari-
son (p. 404):

• If 0 ≤ f(x) ≤ g(x) and
∫

∞

a
g(x)dx converges, then∫

∞

a
f(x) dx converges

• If 0 ≤ g(x) ≤ f(x) and
∫

∞

a
g(x)dx diverges, then∫

∞

a
f(x) dx diverges

Applications of Integration

Total quantities can be approximated by slicing them into
small pieces and summing the pieces. The limit of this sum
is a definite integral which gives the exact total quantity.

Applications to Geometry
To calculate the volume of a solid, slice the volume into pieces
whose volumes you can estimate (pp. 414, 422). Use this
method to calculate volumes of revolution (p. 422) and vol-
umes of solids with known cross sectional area (p. 425). Curve
f(x) from x = a to x = b has

Arc length =

∫ b

a

√
1 + (f ′(x))2 dx (p. 426).

Mass and Center of Mass from Density, δ

Total mass =

∫ b

a

δ(x)dx (p. 440)

Center of mass =

∫ b

a
xδ(x)dx∫ b

a
δ(x) dx

(p. 444)

To find the center of mass of two- and three-dimensional ob-
jects, use the formula separately on each coordinate (p. 445).

Applications to Physics

Work done = Force × Distance (p. 449)

Pressure = Density × g × Depth (p. 454)

Force = Pressure × Area (p. 454)

Applications to Economics Present and future value of in-
come stream, P (t) (p. 459); consumer and producer surplus
(p. 462).

Present value =

∫ M

0

P (t)e−rtdt (p. 459)

Future value =

∫ M

0

P (t)er(M−t)dt (p. 459)

Applications to Probability Given a density function p(x),
the fraction of the population for which x is between a and b
is the area under the graph of p between a and b (p. 469). The
cumulative distribution function P (t) is the fraction having
values of x below t (p. 469). The median is the value T such
that half the population has values of x less than or equal to T
(p. 475). The mean (p. 477) is defined by

Mean value =

∫
∞

−∞

xp(x)dx.

Polar Coordinates

�

�

y

�� x

(x, y)
P

y

x

r

θ

Figure R.23: Cartesian and polar coordinates
for the point P

The polar coordinates (p. 432) of a point are related to
its Cartesian coordinates by

• x = r cos θ and y = r sin θ

• r =
√

x2 + y2 and tan θ =
y

x
, x �= 0

For a constant a, the equation r = a gives a circle of
radius a, and the equation θ = a gives a ray from the origin
making an angle of θ with the positive x-axis. The equation
r = θ gives an Archimedean spiral (p. 433).

Area in Polar Coordinates (p. 436)
For a curve r = f(θ), with α ≤ θ ≤ β, which does not cross
itself,

Area of region enclosed =
1

2

∫ β

α

f(θ)2 dθ.
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Slope and Arclength in Polar Coordinates (p. 437)
For a curve r = f(θ), we can express x and y in terms of θ as
a parameter, giving

x = r cos θ = f(θ) cos θ and y = r sin θ = f(θ) sin θ.

Then

Slope =
dy

dx
=

dy/dθ

dx/dθ

and

Arc length =

∫ β

α

√(
dx

dθ

)2
+
(
dy

dθ

)2
dθ.

Alternatively (p. 439),

Arc length =

∫ β

α

√
(f ′(θ))2 + (f(θ))2 dθ.

Sequences and Series

A sequence s1, s2, s3, . . . , sn, . . . has a limit L, written
lim

n→∞

sn = L, if we can make sn as close to L as we please

by choosing a sufficiently large n. The sequence converges if
a limit exists, diverges if no limit exists (see p. 494). Limits
of sequences satisfy the same properties as limits of functions
stated in Theorem 1.2 (p. 60) and

lim
n→∞

xn = 0 if |x| < 1 lim
n→∞

1/n = 0 (p. 494)

A sequence sn is bounded if there are constants K and
M such that K ≤ sn ≤ M for all n (p. 494). A convergent
sequence is bounded. A sequence is monotone if it is either
increasing, that is sn < sn+1 for all n, or decreasing, that is
sn > sn+1 for all n (p. 495).

Theorem: Convergence of a Monotone, Bounded Se-
quence (p. 495): If a sequence sn is bounded and monotone,
it converges.

A series is an infinite sum
∑

an = a1 + a2 + · · ·. The
nth partial sum is Sn = a1 + a2 + · · · + an (p. 505). If
S = lim

n→∞

Sn exists, then the series
∑

an converges, and its

sum is S (p. 505). If a series does not converge, we say that
it diverges (p. 505). The sum of a finite geometric series is
(p. 500):

a+ ax+ ax2 + · · ·+ axn−1 =
a(1− xn)

1− x
, x �= 1.

The sum of an infinite geometric series is (p. 501):

a+ ax+ ax2 + · · ·+ axn + · · · = a

1− x
, |x| < 1.

The p-series
∑

1/np converges if p > 1 and diverges
if p ≤ 1 (p. 509). The harmonic series

∑
1/n diverges

(p. 507), the alternating harmonic series
∑

(−1)n−1(1/n)
converges (p. 517). An alternating series can be absolutely
or conditionally convergent (p. 518).

Convergence Tests

Theorem: Convergence Properties of Series (p. 507)

1. If
∑

an and
∑

bn converge and if k is a constant, then

• ∑(an + bn) converges to
∑

an +
∑

bn.

• ∑ kan converges to k
∑

an.

2. Changing a finite number of terms in a series does not
change whether or not it converges, although it may
change the value of its sum if it does converge.

3. If lim
n→∞

an �= 0 or lim
n→∞

an does not exist, then
∑

an

diverges.

4. If
∑

an diverges, then
∑

kan diverges if k �= 0.

Theorem: Integral Test (p. 509) Suppose c ≥ 0 and
f(x) is a decreasing positive function, defined for all x ≥ c,
with an = f(n) for all n.

• If

∫
∞

c

f(x) dx converges, then
∑

an converges.

• If

∫
∞

c

f(x) dx diverges, then
∑

an diverges.

Theorem: Comparison Test (p. 512) Suppose 0 ≤
an ≤ bn for all n.

• If
∑

bn converges, then
∑

an converges.

• If
∑

an diverges, then
∑

bn diverges.

Theorem: Limit Comparison Test (p. 514) Suppose
an > 0 and bn > 0 for all n. If

lim
n→∞

an

bn
= c where c > 0,

then the two series
∑

an and
∑

bn either both converge or
both diverge.

Theorem: Convergence of Absolute Values Implies
Convergence (p. 515): If

∑ |an| converges, then so does∑
an.

We say
∑

an is absolutely convergent if
∑

an and
∑ |an|

both converge and conditionally convergent if
∑

an con-
verges but

∑ |an| diverges (p. 518).
Theorem: The Ratio Test (p. 515) For a series

∑
an,

suppose the sequence of ratios |an+1|/|an| has a limit:

lim
n→∞

|an+1|
|an| = L.

• If L < 1, then
∑

an converges.

• If L > 1, or if L is infinite, then
∑

an diverges.

• If L = 1, the test does not tell us anything about the
convergence of

∑
an.

Theorem: Alternating Series Test (p. 517) A series of
the form

∞∑
n=1

(−1)n−1an = a1−a2+a3−a4+· · ·+(−1)n−1an+· · ·

converges if 0 < an+1 < an for all n and limn→∞ an = 0.
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Theorem: Error Bounds for Alternating Series

(p. 518) Let Sn =

n∑
i=1

(−1)i−1ai be the nth partial sum

of an alternating series and let S = lim
n→∞

Sn. Suppose that

0 < an+1 < an for all n and limn→∞ an = 0. Then
|S − Sn| < an+1.

Power Series

P (x) = C0 + C1(x− a) + C2(x− a)2 + · · ·
+Cn(x− a)n + · · ·

=

∞∑
n=0

Cn(x− a)n (p. 521).

The radius of convergence is 0 if the series converges
only for x = a, ∞ if it converges for all x, and the positive
number R if it converges for |x− a| < R and diverges for
|x− a| > R (p. 523). The interval of convergence is the in-
terval between a−R and a+R, including any endpoint where
the series converges (p. 523).

Theorem: Method for Computing Radius of Conver-
gence (p. 524) To calculate the radius of convergence, R,

for the power series
∞∑

n=0

Cn(x − a)n, use the ratio test with

an = Cn(x− a)n.

• If lim
n→∞

|an+1|/|an| is infinite, then R = 0.

• If lim
n→∞

|an+1|/|an| = 0, then R = ∞.

• If lim
n→∞

|an+1|/|an| = K|x − a|, where K is finite and

nonzero, then R = 1/K.

Approximations

The Taylor polynomial of degree n approximating f(x) for
x near a is:

Pn(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · · · · ·

+
f (n)(a)

n!
(x− a)n (p. 541)

The Taylor series approximating f(x) for x near a is:

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·

+
f (n)(a)

n!
(x− a)n + · · · (p. 547)

Theorem: The Lagrange Error Bound for Pn(x)
(p. 560) Suppose f and all its derivatives are continuous. If
Pn(x) is the nth Taylor polynomial for to f(x) about a, then

|En(x)| = |f(x)− Pn(x)| ≤ M

(n+ 1)!
|x− a|n+1,

where max
∣∣f (n+1)

∣∣ ≤ M on the interval between a and x.

Taylor Series for sin x, cos x, ex (p. 547):

sin x = x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− · · ·

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− · · ·

ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

Taylor Series for ln x about x = 1 converges for
0 < x ≤ 2 (p. 548):

(x− 1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
+ · · ·

The Binomial Series for (1 + x)p converges for −1 <
x < 1 (p. 549):

1 + px+
p(p− 1)

2!
x2 +

p(p− 1)(p− 2)

3!
x3 + · · ·

The Fourier Series of f(x) is (p. 568)

f(x) = a0 + a1 cos x+ a2 cos 2x+ a3 cos 3x+ · · ·
+b1 sin x+ b2 sin 2x+ b3 sin 3x+ · · · ,

where

a0 =
1

2π

∫ π

−π

f(x) dx,

ak =
1

π

∫ π

−π

f(x) cos(kx) dx for k a positive integer,

bk =
1

π

∫ π

−π

f(x) sin(kx) dx for k a positive integer.

Differential Equations

A differential equation for the function y(x) is an equation
involving x, y and the derivatives of y (p. 586). The order of
a differential equation is the order of the highest-order deriva-
tive appearing in the equation (p. 588). A solution to a dif-
ferential equation is any function y that satisfies the equation
(p. 587). The general solution to a differential equation is the
family of functions that satisfies the equation (p. 587). An
initial value problem is a differential equation together with
an initial condition; a solution to an initial value problem is
called a particular solution (p. 587). An equilibrium solu-
tion to a differential equation is a particular solution where y
is constant and dy/dx = 0 (p. 615).

First-order equations: methods of solution. A slope field
corresponding to a differential equation is a plot in the xy-
plane of small line segments with slope given by the differ-
ential equation (p. 591). Euler’s method approximates the
solution of an initial value problem with a string of small
line segments (p. 599). Differential equations of the form
dy/dx = g(x)f(y) can be solved analytically by separation
of variables (p. 604).
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First-order equations: applications. The differential equa-
tion for exponential growth and decay is of the form

dP

dt
= kP.

The solution is of the form P = P0e
kt, where P0 is the initial

value of P , and positive k represents growth while negative k
represents decay (p. 610). Applications of growth and decay
include continuously compounded interest (p. 610), popu-
lation growth (p. 629), and Newton’s law of heating and
cooling (p. 613). The logistic equation for population growth
is of the form

dP

dt
= kP

(
1− P

L

)
,

where L is the carrying capacity of the population (p. 629).
The solution to the logistic equation is of the form

P =
L

1 + Ae−kt
, where A =

L− P0

P0
(p. 630).

Systems of differential equations. Two interacting popula-
tions, w and r, can be modeled by two equations

dw

dt
= aw− cwr and

dr

dt
= −br+ kwr (p. 643).

Solutions can be visualized as trajectories in the wr-phase
plane (p. 644). An equilibrium point is one at which
dw/dt = 0 and dr/dt = 0 (p. 644). A nullcline is a curve
along which dw/dt = 0 or dr/dt = 0 (p. 650).

Multivariable Functions

Points in 3-space are represented by a system of Cartesian
coordinates (p. 668). The distance between (x, y, z) and
(a, b, c) is

√
(x− a)2 + (y − b)2 + (z − c)2 (p. 671).

Functions of two variables can be represented by graphs
(p. 674), contour diagrams (p. 681), cross-sections (p. 676),
and tables (p. 667).

Functions of three variables can be represented by the
family of level surfaces f(x, y, z) = c for various values of
the constant c (p. 700).

A linear function f(x, y) has equation

f(x, y) = z0 +m(x− x0) + n(y − y0) (p. 694)

= c+mx+ ny, where c = z0 −mx0 − ny0.

Its graph is a plane with slope m in the x-direction, slope n
in the y-direction, through (x0, y0, z0) (p. 694). Its table of
values has linear rows (of same slope) and linear columns (of
same slope) (p. 695). Its contour diagram is equally spaced
parallel straight lines (p. 696).

The limit of f at the point (a, b), written
lim(x,y)→(a,b) f(x, y), is the number L, if one exists, such
that f(x, y) is as close to L as we please whenever the dis-
tance from the point (x, y) to the point (a, b) is sufficiently
small, but not zero. (p. 707).

A function f is continuous at the point (a, b) if
lim(x,y)→(a,b) f(x, y) = f(a, b). A function is continuous
on a region R if it is continuous at each point of R (p. 707).

Vectors

A vector �v has magnitude (denoted ‖�v ‖) and direction. Ex-
amples are displacement vectors (p. 718), velocity and ac-
celeration vectors (pp. 727, 728). and force (p. 728). We can
add vectors, and multiply a vector by a scalar (p. 719). Two
non-zero vectors, �v and �w , are parallel if one is a scalar mul-
tiple of the other (p. 720).

A unit vector has magnitude 1. The vectors �i , �j , and
�k are unit vectors in the directions of the coordinate axes.
A unit vector in the direction of any nonzero vector �v is
�u = �v /‖�v ‖ (p. 724). We resolve �v into components by
writing �v = v1�i + v2�j + v3�k (p. 721).

If �v = v1�i + v2�j + v3�k and �w = w1
�i +w2

�j +w3
�k

then

‖�v ‖ =
√

v21 + v22 + v23 (p. 722)

�v + �w = (v1 + w1)�i + (v2 + w2)�j + (v3 + w3)�k (p. 723),

λ�v = λv1�i + λv2�j + λv3�k (p. 723).

The displacement vector from P1 = (x1, y1, z1) to P2 =
(x2, y2, z2) is

−−−→
P1P2 = (x2 − x1)�i + (y2 − y1)�j + (z2 − z1)�k (p. 722).

The position vector of P = (x, y, z) is
−−→
OP (p. 722).

A vector in n dimensions is a string of numbers �v =
(v1, v2, . . . , vn) (p. 730).

Dot Product (Scalar Product) (p. 734).
Geometric definition: �v · �w = ‖�v ‖‖�w ‖ cos θ
where θ is the angle between �v and �w and 0 ≤ θ ≤
π.
Algebraic definition:�v · �w = v1w1+v2w2+v3w3.

Two nonzero vectors �v and �w are perpendicular if and only
if �v · �w = 0 (p. 736). Magnitude and dot product are re-
lated by �v · �v = ‖�v ‖2 (p. 736). If �u = (u1, . . . , un)
and �v = (v1, . . . , vn) then the dot product of �u and �v is
�u · �v = u1v1 + . . .+ unvn (p. 738).

The equation of the plane with normal vector �n =
a�i + b�j + c�k and containing the point P0 = (x0, y0, z0) is
�n · (�r − �r 0) = a(x− x0) + b(y − y0) + c(z − z0) = 0 or
ax+ by + cz = d, where d = ax0 + by0 + cz0 (p. 737).

If �v parallel and �v perp are components of �v which are
parallel and perpendicular, respectively, to a unit vector �u ,
then �v parallel = (�v ·�u )�u and �v perp = �v −�v parallel (p. 738).

The work, W , done by a force �F acting on an object
through a displacement �d is W = �F · �d (p. 740).
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Cross Product (Vector Product) (p. 744, 745)
Geometric definition

�v × �w =

(
Area of parallelogram
with edges �v and �w

)
�n

= (‖�v ‖‖�w ‖ sin θ)�n ,

where 0 ≤ θ ≤ π is the angle between �v and �w and
�n is the unit vector perpendicular to �v and �w point-
ing in the direction given by the right-hand rule.
Algebraic definition

�v × �w = (v2w3 − v3w2)�i + (v3w1 − v1w3)�j

+(v1w2 − v2w1)�k

�v = v1�i + v2�j + v3�k , �w = w1
�i +w2

�j + w3
�k .

To find the equation of a plane through three points
that do not lie on a line, determine two vectors in the plane and
then find a normal vector using the cross product (p. 747). The
area of a parallelogram with edges �v and �w is ‖�v × �w ‖.
The volume of a parallelepiped with edges �a , �b , �c is∣∣(�b × �c ) · �a

∣∣ (p. 748).

Differentiation of Multivariable Functions

Partial derivatives of f (p. 759).

fx(a, b) =
Rate of change of f with respect to x

at the point (a, b)

= lim
h→0

f(a+ h, b)− f(a, b)

h
,

fy(a, b) = Rate of change of f with respect to y
at the point (a, b)

= lim
h→0

f(a, b+ h) − f(a, b)

h
.

On the graph of f , the partial derivatives fx(a, b) and
fy(a, b) give the slope in the x and y directions, respectively
(p. 760). The tangent plane to z = f (x, y) at (a, b) is

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b) (p. 772).

Partial derivatives can be estimated from a contour diagram or
table of values using difference quotients (p. 760), and can be
computed algebraically using the same rules of differentiation
as for one-variable calculus (p. 766). Partial derivatives for
functions of three or more variables are defined and computed
in the same way (p 767).

The gradient vector grad f of f is grad f(a, b) =
fx(a, b)�i + fy(a, b)�j (2 variables) (p. 782) or
grad f(a, b, c) = fx(a, b, c)�i + fy(a, b, c)�j + fz(a, b, c)�k
(3 variables) (p. 789). The gradient vector at P : Points in the
direction of increasing f ; is perpendicular to the level curve
or level surface of f through P ; and has magnitude ‖ grad f‖

equal to the maximum rate of change of f at P (pp. 783, 790).
The magnitude is large when the level curves or surfaces are
close together and small when they are far apart.

The directional derivative of f at P in the direction of
a unit vector �u is (pp. 780, 782)

f
u (P ) =

Rate of change

of f in direction

of �u at P

= grad f(P ) · �u

The tangent plane approximation to f (x, y) for (x, y)
near the point (a, b) is

f(x, y) ≈ f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

The right-hand side is the local linearization (p. 773). The
differential of z = f (x, y) at (a, b) is the linear function of
dx and dy

df = fx(a, b) dx+ fy(a, b) dy (p. 775).

Local linearity with three or more variables follows the same
pattern as for functions of two variables (p. 775).

The tangent plane to a level surface of a function of
three-variables f at (a, b, c) is (p. 792)

fx(a, b, c)(x−a)+fy(a, b, c)(y−b)+fz(a, b, c)(z−c) = 0.

The Chain Rule for the partial derivative of one variable with
respect to another in a chain of composed functions (p. 799):

• Draw a diagram expressing the relationship between the
variables, and label each link in the diagram with the
derivative relating the variables at its ends.

• For each path between the two variables, multiply to-
gether the derivatives from each step along the path.

• Add the contributions from each path.

If z = f(x, y), and x = g(t), and y = h(t), then

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt
(p. 797).

If z = f(x, y), with x = g(u, v) and y = h(u, v), then

∂z

∂u
=

∂z

∂x

∂x

∂u
+

∂z

∂y

∂y

∂u
,

∂z

∂v
=

∂z

∂x

∂x

∂v
+

∂z

∂y

∂y

∂v
(p. 799).

Second-order partial derivatives (p. 806)

∂2z

∂x2
= fxx = (fx)x,

∂2z

∂x∂y
= fyx = (fy)x,

∂2z

∂y∂x
= fxy = (fx)y ,

∂2z

∂y2
= fyy = (fy)y.

Theorem: Equality of Mixed Partial Derivatives. If
fxy and fyx are continuous at (a, b), an interior point of their
domain, then fxy(a, b) = fyx(a, b) (p. 807).
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Taylor Polynomial of Degree 1 Approximating
f(x, y) for (x, y) near (a, b) (p. 811)

f(x, y) ≈ L(x, y) = f(a, b)+fx(a, b)(x−a)+fy(a, b)(y−b).

Taylor Polynomial of Degree 2 (p. 811)

f(x, y) ≈ Q(x, y)

= f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

+
fxx(a, b)

2
(x− a)2 + fxy(a, b)(x− a)(y − b)

+
fyy(a, b)

2
(y − b)2.

Definition of Differentiability (p. 815). A function f(x, y)

is differentiable at the point (a, b) if there is a linear func-
tion L(x, y) = f(a, b) + m(x − a) + n(y − b) such that if
the error E(x, y) is defined by

f(x, y) = L(x, y) + E(x, y),

and if h = x − a, k = y − b, then the relative error
E(a+ h, b+ k)/

√
h2 + k2 satisfies

lim
h→0

k→0

E(a+ h, b+ k)√
h2 + k2

= 0.

Theorem: Continuity of Partial Derivatives Implies
Differentiability (p. 819). If the partial derivatives, fx and
fy , of a function f exist and are continuous on a small disk
centered at the point (a, b), then f is differentiable at (a, b).

Optimization

A function f has a local maximum at the point P0 if f(P0) ≥
f(P ) for all points P near P0, and a local minimum at
the point P0 if f(P0) ≤ f(P ) for all points P near P0

(p. 830). A critical point of a function f is a point where
grad f is either �0 or undefined. If f has a local maximum or
minimum at a point P0, not on the boundary of its domain,
then P0 is a critical point (p. 830). A quadratic function
f(x, y) = ax2 + bxy + cz2 generally has one critical point,
which can be a local maximum, a local minimum, or a saddle
point (p. 833).

Second derivative test for functions of two vari-
ables (p. 835). Suppose grad f(x0, y0) = �0 . Let D =
fxx(x0, y0)fyy(x0, y0)− (fxy(x0, y0))

2.

• If D > 0 and fxx(x0, y0) > 0, then f has a local mini-
mum at (x0, y0).

• If D > 0 and fxx(x0, y0) < 0, then f has a local maxi-
mum at (x0, y0).

• If D < 0, then f has a saddle point at (x0, y0).

• If D = 0, anything can happen.

Unconstrained optimization
A function f defined on a region R has a global maximum on
R at the point P0 if f(P0) ≥ f(P ) for all points P in R, and
a global minimum on R at the point P0 if f(P0) ≤ f(P ) for

all points P in R (p. 839). For an unconstrained optimiza-
tion problem, find the critical points and investigate whether
the critical points give global maxima or minima (p. 839).

A closed region is one which contains its boundary; a
bounded region is one which does not stretch to infinity in
any direction (p. 844).

Extreme Value Theorem for Multivariable Functions.
If f is a continuous function on a closed and bounded region
R, then f has a global maximum at some point (x0, y0) in R
and a global minimum at some point (x1, y1) in R (p. 845).

Constrained optimization
Suppose P0 is a point satisfying the constraint g(x, y) = c.
A function f has a local maximum at P0 subject to the con-
straint if f(P0) ≥ f(P ) for all points P near P0 satisfying
the constraint (p. 850). It has a global maximum at P0 sub-
ject to the constraint if f(P0) ≥ f(P ) for all points P sat-
isfying the constraint (p. 850). Local and global minima are
defined similarly (p. 850). A local maximum or minimum of
f(x, y) subject to a constraint g(x, y) = c occurs at a point
where the constraint is tangent to a level curve of f , and thus
where grad g is parallel to grad f (p. 850).

To optimize f subject to the constraint g = c (p. 850),
find the points satisfying the equations

grad f = λ grad g and g = c.

Then compare values of f at these points, at points on the
constraint where grad g = �0 , and at the endpoints of the con-
straint. The number λ is called the Lagrange multiplier.

To optimize f subject to the constraint g ≤ c (p. 852),
find all points in the interior g(x, y) < c where grad f is zero
or undefined; then use Lagrange multipliers to find the local
extrema of f on the boundary g(x, y) = c. Evaluate f at the
points found and compare the values.

The value of λ is the rate of change of the optimum value
of f as c increases (where g(x, y) = c) (p. 853). The La-
grangian function L(x, y, λ) = f(x, y) − λ(g(x, y) − c)
can be used to convert a constrained optimization problem for
f subject the constraint g = c into an unconstrained problem
for L (p. 854).

Multivariable Integration

The definite integral of f , a continuous function of two vari-
ables, over R, the rectangle a ≤ x ≤ b, c ≤ y ≤ d, is called
a double integral, and is a limit of Riemann sums∫

R

f dA = lim
Δx,Δy→0

∑
i,j

f(uij , vij)ΔxΔy (p. 869).

The Riemann sum is constructed by subdividing R into sub-
rectangles of width Δx and height Δy, and choosing a point
(uij , vij) in the ij-th rectangle.

A triple integral of f , a continuous function of three
variables, over W , the box a ≤ x ≤ b, c ≤ y ≤ d, p ≤ z ≤ q
in 3-space, is defined in a similar way using three-variable
Riemann sums (p. 885).

Interpretations
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If f(x, y) is positive,
∫
R
f dA is the volume under graph of

f above the region R (p. 870). If f(x, y) = 1 for all x and y,
then the area of R is

∫
R
1 dA =

∫
R
dA (p. 871). If f(x, y)

is a density, then
∫
R
f dA is the total quantity in the region

R (p. 868). The average value of f(x, y) on the region R
is 1

Area of R
∫
R
f dA (p. 872). In probability, if p(x, y) is a

joint density function then
∫ b

a

∫ d

c
p(x, y) dy dx is the frac-

tion of population with a ≤ x ≤ b and c ≤ y ≤ d (p. 907).

Iterated integrals
Double and triple integrals can be written as iterated inte-
grals∫

R

f dA =

∫ d

c

∫ b

a

f(x, y) dxdy (p. 876)∫
W

f dV =

∫ q

p

∫ d

c

∫ b

a

f(x, y, z) dx dy dz (p. 885)

Other orders of integration are possible. For iterated integrals
over non-rectangular regions (p. 878), limits on outer inte-
gral are constants and limits on inner integrals involve only
the variables in the integrals further out (pp. 879, 887).

Integrals in other coordinate systems
When computing double integrals in polar coordinates, put
dA = r dr dθ or dA = r dθ dr (p. 891). Cylindrical coor-
dinates are given by x = r cos θ, y = r sin θ, z = z, for
0 ≤ r < ∞, 0 ≤ θ ≤ 2π, −∞ < z < ∞ (p. 896). Spherical
coordinates are given by x = ρ sinφ cos θ, y = ρ sinφ sin θ,
z = ρ cosφ, for 0 ≤ ρ < ∞, 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π
(p. 899). When computing triple integrals in cylindrical or
spherical coordinates, put dV = r dr dθ dz for cylindrical
coordinates (p. 897), dV = ρ2 sinφdρ dφ dθ for spherical
coordinates (p. 900). Other orders of integration are also pos-
sible.

For a change of variables x = x(s, t), y = y(s, t), the
Jacobian is

∂(x, y)

∂(s, t)
=

∂x

∂s
· ∂y
∂t

− ∂x

∂t
· ∂y
∂s

=

∣∣∣∣∣∣∣∣∣
∂x
∂s

∂x
∂t

∂y
∂s

∂y
∂t

∣∣∣∣∣∣∣∣∣
(p. 1086).

To convert an integral from x, y to s, t coordinates (p. 1086):
Substitute for x and y in terms of s and t, change the xy re-
gion R into an st region T , and change the area element by

making the substitution dxdy =

∣∣∣ ∂(x,y)∂(s,t)

∣∣∣ dsdt. For triple in-

tegrals, there is a similar formula (p. 1087).

Parameterizations and Vector Fields

Parameterized curves
The motion of a particle is described by parametric equa-
tions x = f(t), y = g(t) (2-space) or x = f(t), y =
g(t), z = h(t) (3-space). The path of the particle is a param-
eterized curve (p. 918). Parameterizations are also written in
vector form �r (t) = f(t)�i + g(t)�j + h(t)�k (p. 919). For a

curve segment we restrict the parameter to to a closed inter-
val a ≤ t ≤ b (p. 921). Parametric equations for the graph
of y = f(x) are x = t, y = f(t).

Parametric equations for a line through (x0, y0) in the
direction of �v = a�i + b�j are x = x0 + at, y = y0 + bt.
In 3-space, the line through (x0, y0, z0) in the direction of
�v = a�i + b�j + c�k is x = x0 + at, y = y0 + bt,
z = z0 + ct (p. 919). In vector form, the equation for a line is
�r (t) = �r 0 + t�v , where �r 0 = x0

�i + y0�j + z0�k (p. 921).
Parametric equations for a circle of radius R in the

plane, centered at the origin are x = R cos t , y = R sin t
(counterclockwise), x = R cos t, y = −R sin t (clockwise).

To find the intersection points of a curve �r (t) =

f(t)�i + g(t)�j + h(t)�k with a surface F (x, y, z) = c, solve
F (f(t), g(t), h(t)) = c for t (p. 921). To find the intersection
points of two curves �r 1(t) and �r 2(t), solve �r 1(t1) = �r 2(t2)
for t1 and t2 (p. 921).

The length of a curve segment C given parametrically
for a ≤ t ≤ b with velocity vector �v is

∫ b

a
‖�v ‖dt if �v �= �0

for a < t < b (p. 932).

The velocity and acceleration of a moving object with posi-
tion vector �r (t) at time t are

�v (t) = lim
Δt→0

Δ�r

Δt
(p. 928)

�a (t) = lim
Δt→0

Δ�v

Δt
(p. 930)

We write �v =
d�r

dt
= �r ′(t) and �a =

d�v

dt
=

d2�r

dt2
= �r ′′(t).

The components of the velocity and acceleration vec-
tors are

�v (t) =
dx

dt
�i +

dy

dt
�j +

dz

dt
�k (p. 928)

�a (t) =
d2x

dt2
�i +

d2y

dt2
�j +

d2z

dt2
�k (p. 930)

The speed is ‖�v ‖ =
√

(dx/dt)2 + (dy/dt)2 + (dz/dt)2

(p. 932). Analogous formulas for velocity, speed, and accel-
eration hold in 2-space.

Uniform Circular Motion (p. 931) For a particle
�r (t) = R cos(ωt)�i + R sin(ωt)�j : motion is in a circle of
radius R with period 2π/ω; velocity, �v , is tangent to the cir-
cle and speed is constant ‖�v ‖ = ωR; acceleration, �a , points
toward the center of the circle with ‖�a ‖ = ‖�v ‖2/R.

Motion in a Straight Line (p. 932) For a particle �r (t) =
�r 0+f(t)�v 0: Motion is along a straight line through the point
with position vector �r 0 parallel to �v 0; velocity, �v , and accel-
eration, �a , are parallel to the line.

Vector fields
A vector field in 2-space is a function �F (x, y) whose value at
a point (x, y) is a 2-dimensional vector (p. 937). Similarly, a
vector field in 3-space is a function �F (x, y, z) whose values
are 3-dimensional vectors (p. 937). Examples are the gradi-
ent of a differentiable function f , the velocity field of a fluid
flow, and force fields (p. 937). A flow line of a vector field
�v = �F (�r ) is a path �r (t) whose velocity vector equals �v ,
thus �r ′(t) = �v = �F (�r (t)) (p. 944). The flow of a vector
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field is the family of all of its flow line (p. 944). Flow lines can
be approximated numerically using Euler’s method (p. 946).

Parameterized surfaces
We parameterize a surface with two parameters, x =
f1(s, t), y = f2(s, t), z = f3(s, t) (p. 1076). We also use
the vector form �r (s, t) = f1(s, t)�i + f2(s, t)�j + f3(s, t)�k
(p. 1076). Parametric equations for the graph of z =
f(x, y) are x = s, y = t, and z = f(s, t) (p. 1076). Para-
metric equation for a plane through the point with posi-
tion vector �r 0 and containing the two nonparallel vectors �v 1

and �v 2 is �r (s, t) = �r 0 + s�v 1 + t�v 2 (p. 1077). Paramet-
ric equation for a sphere of radius R centered at the ori-
gin is �r (θ, φ) = R sinφ cos θ�i +R sinφ sin θ�j + cosφ�k ,
0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π (p. 1077). Parametric equa-
tion for a cylinder of radius R along the z-axis is �r (θ, z) =
R cos θ�i + R sin θ�j + z�k , 0 ≤ θ ≤ 2π,−∞ < z < ∞
(p. 1075). A parameter curve is the curve obtained by hold-
ing one of the parameters constant and letting the other vary
(p. 1081).

Line Integrals

The line integral of a vector field �F along an oriented curve
C (p. 958) is∫

C

�F · d�r = lim
‖Δ
r

i
‖→0

n−1∑
i=0

�F (�r i) ·Δ�r i,

where the direction of Δ�r i is the direction of the orientation
(p. 959).

The line integral measures the extent to which C is go-
ing with �F or against it (p. 959). For oriented curves C,
C1, and C2,

∫
−C

�F · d�r = −
∫
C

�F · d�r , where −C
is the curve C parameterized in the opposite direction, and∫
C1+C2

�F ·d�r =
∫
C1

�F ·d�r +
∫
C2

�F ·d�r , where C1+C2

is the curve obtained by joining the endpoint of C1 to the start-
ing point of C2 (p. 963).

The work done by a force �F along a curve C is∫
C

�F · d�r (p. 960). The circulation of �F around an oriented

closed curve is
∫
C

�F · d�r (p. 962).
Given a parameterization of C, �r (t), for a ≤ t ≤ b,

the line integral can be calculated as∫
C

�F · d�r =

∫ b

a

�F (�r (t)) · �r ′(t) dt (p. 968).

Fundamental Theorem for Line Integrals (p. 975):
Suppose C is a piecewise smooth oriented path with starting

point P and endpoint Q. If f is a function whose gradient is
continuous on the path C, then∫

C

grad f · d�r = f(Q)− f(P ).

Path-independent fields and gradient fields
A vector field �F is said to be path-independent, or con-
servative, if for any two points P and Q, the line integral

∫
C

�F · d�r has the same value along any piecewise smooth

path C from P to Q lying in the domain of �F (p. 976). A gra-
dient field is a vector field of the form �F = grad f for some
scalar function f , and f is called a potential function for the
vector field �F (p. 978). A vector field �F is path-independent
if and only if �F is a gradient vector field (p. 978). A vector
field �F is path-independent if and only if

∫
C

�F · d�r = 0 for

every closed curve C (p. 986). If �F is a gradient field, then
∂F2

∂x
− ∂F1

∂y
= 0 (p. 987). The quantity ∂F2

∂x
− ∂F1

∂y
is called

the 2-dimensional or scalar curl of �F .

Green’s Theorem (p. 988):
Suppose C is a piecewise smooth simple closed curve that is
the boundary of an open region R in the plane and oriented
so that the region is on the left as we move around the curve.
Suppose �F = F1

�i + F2
�j is a smooth vector field defined at

every point of the region R and boundary C. Then∫
C

�F · d�r =

∫
R

(
∂F2

∂x
− ∂F1

∂y

)
dx dy.

Curl test for vector fields in 2-space: If ∂F2

∂x
− ∂F1

∂y
=

0 and the domain of �F has no holes, then �F is path-
independent, and hence a gradient field (p. 990). The con-
dition that the domain have no holes is important. It is not
always true that if the scalar curl of �F is zero then �F is a
gradient field (p. 990).

Surface Integrals

A surface is oriented if a unit normal vector �n has been cho-
sen at every point on it in a continuous way (p. 1006). For
a closed surface, we usually choose the outward orientation
(p. 1006). The area vector of a flat, oriented surface is a vec-
tor �A whose magnitude is the area of the surface, and whose
direction is the direction of the orientation vector �n (p. 1007).
If �v is the velocity vector of a constant fluid flow and �A is
the area vector of a flat surface, then the total flow through the
surface in units of volume per unit time is called the flux of �v
through the surface and is given by �v · �A (p. 1007).

The surface integral or flux integral of the vector field �F
through the oriented surface S is∫

S

�F · d �A = lim
‖Δ 
A ‖→0

∑
�F ·Δ �A ,

where the direction of Δ �A is the direction of the orientation
(p. 1008). If �v is a variable vector field and then

∫
S
�v · d �A is

the flux through the surface S (p. 1009).
Simple flux integrals can be calculated by putting d �A =

�n dA and using geometry or converting to a double integral
(p. 1010).

The flux through a graph of z = f(x, y) above a region
R in the xy-plane, oriented upward, is∫
R

�F (x, y, f(x, y)) ·
(
−fx�i − fy�j + �k

)
dx dy (p. 1018).
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The flux through a cylindrical surface S of radius R
and oriented away from the z-axis is∫

T

�F (R, θ, z) ·
(
cos θ�i + sin θ�j

)
Rdz dθ (p. 1019),

where T is the θz-region corresponding to S.
The flux through a spherical surface S of radius R and

oriented away from the origin is∫
T
�F (R, θ, φ) ·

(
sinφ cos θ�i + sinφ sin θ�j + cosφ�k

)
R2 sinφdφ dθ, (p. 1020)

where T is the θφ-region corresponding to S.
The flux through a parameterized surface S, param-

eterized by �r = �r (s, t), where (s, t) varies in a parameter
region R, is∫

R

�F (�r (s, t)) ·
(
∂�r

∂s
× ∂�r

∂t

)
ds dt (p. 1089).

We choose the parameterization so that ∂�r /∂s × ∂�r /∂t is
never zero and points in the direction of �n everywhere.

The area of a parameterized surface S, parameterized
by �r = �r (s, t), where (s, t) varies in a parameter region R,
is ∫

S

dA =

∫
R

∥∥∥∥∂�r∂s × ∂�r

∂t

∥∥∥∥ ds dt (p. 1090).

Divergence and Curl

Divergence

Definition of Divergence (p. 1025).
Geometric definition: The divergence of �F is

div �F (x, y, z) = lim
Volume→0

∫
S
�F · d �A

Volume of S
.

Here S is a sphere centered at (x, y, z), oriented out-
wards, that contracts down to (x, y, z) in the limit.

Cartesian coordinate definition: If �F = F1
�i +

F2
�j + F3

�k , then

div �F =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
.

The divergence can be thought of as the outflow per unit vol-
ume of the vector field. A vector field �F is said to be diver-
gence free or solenoidal if div �F = 0 everywhere that �F is
defined. Magnetic fields are divergence free (p. 1028).

The Divergence Theorem (p. 1035). If W is a solid region
whose boundary S is a piecewise smooth surface, and if �F is

a smooth vector field which is defined everywhere in W and
on S, then ∫

S

�F · d �A =

∫
W

div �F dV,

where S is given the outward orientation. In words, the Diver-
gence Theorem says that the total flux out of a closed surface
is the integral of the flux density over the volume it encloses.

Curl
The circulation density of a smooth vector field �F at
(x, y, z) around the direction of the unit vector �n is defined
to be

circ
n �F (x, y, z) = lim
Area→0

Circulation around C

Area inside C

= lim
Area→0

∫
C

�F · d�r
Area inside C

(p. 1048).

Circulation density is calculated using the right-hand rule

(p. 1048).

Definition of curl (p. 1049).
Geometric definition The curl of �F , written curl �F ,
is the vector field with the following properties

• The direction of curl �F (x, y, z) is the direction
�n for which circ
n (x, y, z) is greatest.

• The magnitude of curl �F (x, y, z) is the circula-
tion density of �F around that direction.

Cartesian coordinate definition If �F = F1
�i +

F2
�j + F3

�k , then

curl �F =

(
∂F3

∂y
− ∂F2

∂z

)
�i +
(
∂F1

∂z
− ∂F3

∂x

)
�j

+

(
∂F2

∂x
− ∂F1

∂y

)
�k .

Curl and circulation density are related by circ
n �F =
curl �F · �n (p. 1051). A vector field is said to be curl free
or irrotational if curl �F = �0 everywhere that �F is defined
(p. 1052).

Given an oriented surface S with a boundary curve C
we use the right-hand rule to determine the orientation of C
(p. 1056).

Stokes’ Theorem (p. 1057). If S is a smooth oriented surface
with piecewise smooth, oriented boundary C, and if �F is a
smooth vector field which is defined on S and C, then∫

C

�F · d�r =

∫
S

curl �F · d �A .

Stokes’ Theorem says that the total circulation around C is
the integral over S of the circulation density. A curl field is a
vector field �F that can be written as �F = curl �G for some
vector field �G , called a vector potential for �F (p. 1059).
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Relation between divergence, gradient, and curl
The curl and gradient are related by curl grad f = 0
(p. 1063). Divergence and curl are related by div curl �F = 0
(p. 1064).

The curl test for vector fields in 3-space (p. 1063) Sup-
pose that curl �F = �0 , and that the domain of �F has the
property that every closed curve in it can be contracted to a
point in a smooth way, staying at all times within the domain.

Then �F is path-independent, so �F is a gradient field and has
a potential function.

The divergence test for vector fields in 3-space
(p. 1064) Suppose that div �F = 0, and that the domain of �F
has the property that every closed surface in it is the boundary
of a solid region completely contained in the domain. Then �F
is a curl field.
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ANSWERS TO ODD NUMBERED PROBLEMS

Section 1.1
1 Pop 12 million in 2005

5 y = (1/2)x + 2

7 y = 2x + 2

9 Slope:−12/7
Vertical intercept: 2/7

11 Slope: 2
Vertical intercept: −2/3

13 (a) (V)
(b) (VI)
(c) (I)
(d) (IV)
(e) (III)
(f) (II)

15 y − c = m(x − a)

17 y = − 1
5
x + 7

5

19 Parallel: y = m(x− a) + b
Perpendicular:
y = (−1/m)(x − a) + b

21 Domain: 1 ≤ x ≤ 5
Range: 1 ≤ y ≤ 6

23 Domain: 0 ≤ x ≤ 5
Range: 0 ≤ y ≤ 4

25 Domain: all x
Range: 0 < y ≤ 1/2

27 V = kr3

29 S = kh2

31 N = k/l2

33 f(0) meters

35 f(0) = f(1) + 0.001

37

(5, 6)

a (years

V (thousand dollars)

41 (a) C = 4.16 + 0.12w
(b) 0.12 $/gal
(c) $4.16

43 (a) C1 = 40 + 0.15m
C2 = 50 + 0.10m

(b)

200 400 600 800
0

50
100
150

C2(m) = 50 + 0.10m

C1(m) = 40 + 0.15m

m (miles)

C (cost in dollars)

(c) For distances less than 200 miles, C1 is
cheaper.
For distances more than 200 miles, C2 is
cheaper.

45

time

driving speed

47

time

distance from exit

49 (a) (i) f(1985) = 13

(ii) f(1990) = 99
(b) (f(1990)−f(1985))/(1990−1985) =

17.2 billionaires/yr
(c) f(t) = 17.2t − 34,129

51 (a) 2005–2007
(b) 2004–2007

53 (a) 7.094 meters
(b) 1958, 1883

55 (a) Δw/Δh constant
(b) w = 5h − 174; 5 lbs/in
(c) h = 0.2w + 34.8; 0.2 in/lb

57 (a) C = 10 + 0.2x
(c) Vertical intercept

Slope of line

59 (a) (−2, 4)
(b) (−b, b2)

61 y = 0.5 − 3x is decreasing

63 y = 2x + 3

65 False

67 False; y = x + 1 at points
(1, 2) and (2, 3)

69 (b), (c)

Section 1.2
1 Concave up

3 Neither

5 5; 7%

7 3.2; 3% (continuous)

9 P = 15(1.2840)t; growth

11 P = P0(1.2214)
t; growth

13 (a) 1.5
(b) 50%

15 (a) P = 1000 + 50t
(b) P = 1000(1.05)t

17 (a) D to E, H to I
(b) A to B, E to F
(c) C to D, G to H
(d) B to C , F to G

19 (a) h(x) = 31 − 3x
(b) g(x) = 36(1.5)x

21 Table D

23 (a) P = 106(e0.02t)
(b)

1,000,000

P

t

25 (a) 125%
(b) 9 times

27 (a)

advertising

revenue

(b)

time

temperature

29 (a) g(x)
(b) h(x)
(c) f(x)

31 y = 3(2x)

33 y = 2(3x)

35 f(1) = 15, f(3) = 25, f(4) = 30

g(1) = 10
√
2, g(3) = 20

√
2, g(4) = 40

37 (a) 2.3 years

39 (a) H, 2H, 3H
(b) t/H; A = 325(1/2)t/H

41 30.268%

43 (a) 261 million gallons, 358 million gallons
(b)

2006 2008

200

400

year

consumption of
biodiesel (mn gal)

45 (a) 16 trillion BTUs, 32 trillion BTUs
(b)

2005 2007 2009

5

15

25

35

year

consumption of hydro.
power (trillion BTU)

(c) 2007, 13 trillion BTUs

47 (a) Increased: 2006, 2008; decreased: none
(b) Yes

49 y = 2x not concave up

51 f(x) = 2(1.1)x

53 False

55 False

57 True; f(x) = (0.5)x

59 True

Section 1.3
1

−2 2

−4

4

x

y(a)
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−2 2

−4

4

x

y(b)

−2 2

−4

4

x

y(c)

−2 2

−4

4

x

y(d)

−2 2

−4

4

x

y(e)

−2 2

−4

4

x

y(f)

3

−2 2

−4

4

x

y(a)

−2 2

−4

4

x

y(b)

−2 2

−4

4

x

y(c)

−2 2

−4

4

x

y(d)

−2 2

−4

4

x

y(e)

−2 2

−4

4

x

y(f)

5

−4 4 6

−4

4

p(t)
t

y

7

−4 6

−4

4

w(t)

t

9 (a)
√
5

(b) 5
(c)

√
x2 + 4

(d) x + 4
(e) t2

√
t + 4

11 (a)
1

7
(b) 7

(c)
1

3x + 4

(d)
3

x
+ 4

(e) 3 +
4

t

13 (a) t2 + 2t + 2
(b) t4 + 2t2 + 2
(c) 5
(d) 2t2 + 2
(e) t4 + 2t2 + 2

15 2zh + h2

17 4hz

21 (a) y = 2x2 + 1

2

4

6

8 y = 2x2 + 1

y = x2

(b) y = 2(x2 + 1)
(c) No

23 Not invertible

25 not invertible

27 Invertible

29 Neither

31 Neither

33 Even

35 Neither

37 f(x) = x + 1
g(x) = x3

39 f(x) = ex

g(x) = 2x

41 y = (x − 2)3 − 1

43 {3,−7, 19, 4, 178, 2, 1}

45 Not invertible

47 Not invertible

49 g(2r) ft3

51 f−1(g−1(10,000)) min

53 18

55 Cannot be done

57 0.4

59 −0.9

61

−3 3

−3

3

x

g(f(x))
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63 (a) f(15) ≈ 48
(b) Yes
(c) f−1(120) ≈ 35

Rock is 35 millions yrs old at depth
of 120 meters

65 4000π/3 cm3

67 Reflected about t-axis,
shifted up S

69 Shift left

71 f−1(x) = x

73 f(x) = x2 + 2

75 f(x) = 1.5x, g(x) = 1.5x + 3

77 True

79 False

81 True

83 True; f(x) = 0

85 Impossible

87 Impossible

Section 1.4
1 1/2

3 5A2

5 −1 + lnA + lnB

7 (log 11)/(log 3) = 2.2

9 (log(2/5))/(log 1.04) = −23.4

11 1.68

13 6.212

15 0.26

17 1

19 (log a)/(log b)

21 (logQ − logQ0)/(n log a)

23 ln(a/b)

25 P = 15e0.4055t

27 P = 174e−0.1054t

29 p−1(t) ≈ 58.708 log t

31 f−1(t) = et−1

33 16 kg

35 (a) 2023
(b) 338.65 million people

37 (a) Q0(1.0033)
x

(b) 210.391 microgm/cu m

39 (a) 10 mg
(b) 18%
(c) 3.04 mg
(d) 11.60 hours

41 C = 2, α = − ln 2 = −0.693, y(2) =
1/2

43 (a) B(t) = B0e
0.067t

(b) P (t) = P0e
0.033t

(c) t = 20.387; in 2000

45 2023

47 (a) 0.00664
(b) t = 2.167; March 2, 2013

49 6,301 yrs; 385,081 yrs

51 (a) 47.6%
(b) 23.7%

53 2054

55 Yes

57 To the left

59 No effect

61 Function even

63 f(x) = −x

65 True

67 False

Section 1.5
1 Negative

0
Undefined

�

3 Positive
Positive
Positive

�

5 Positive
Positive
Positive

#

7 Positive
Negative
Negative




9 Negative
Positive
Negative

�

11 8π; 3

13 2; 0.1

15 f(x) = 5 cos(x/3)

17 f(x) = −8 cos(x/10)

19 f(x) = 2 cos(5x)

21 f(x) = 3 sin(πx/9)

23 f(x) = 3 + 3 sin ((π/4)x)

25 0.588

27 (sin−1(2/5))/3 ≈ 0.1372

29 (tan−1 2)/5 = 0.221

31 No solution

33 If f(x) = sin x and
g(x) = x2 then
sin x2 = f(g(x))
sin2 x = g(f(x))
sin(sin x) = f(f(x))

35 (a)

Jan. 1 Jul. 1 Jan. 1

100

700
800
900

t (months)

P

(b) P = 800 − 100 cos(πt/6)

37 (a) f(t) = −0.5 + sin t
g(t) = 1.5 + sin t
h(t) = −1.5 + sin t
k(t) = 0.5 + sin t

(b) g(t) = 1 + k(t)

39 (a) 1
60

second
(b) V0 represents the amplitude of oscillation.
(c)

1
120

1
60

V0

t

V

41 θ = π/4; R = v2
0/g

π
4

π
2

v2
0

g R =
v2
0

g
sin 2θ

θ

R

43 (a) Average depth of water
(b) A = 7.5
(c) B = 0.507
(d) The time of a high tide

45 0.3 seconds

47 27.3 days ≈ one month

49 f(t)is C; g(t) is B; h(t) is A; r(t) is D
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51 (a) 2π

53 (a) 0.4 and 2.7
(b) arcsin(0.4) ≈ 0.4

π − arcsin(0.4) ≈ 2.7
(c) −0.4 and −2.7.
(d) −0.4 ≈ − arcsin(0.4)

−2.7 ≈ arcsin(0.4) − π

55 (b)

−1 1

π
2

πy = arccos x

�� Domain

�

�

Range

x

y

(c) The domain of arccos and arcsin are the
same because their inverses (sine and cosine)
have the same range

(d) [0, π]
(e) On [−π/2, π/2] sine is invertible but cosine

is not

57 Max y = A + C

59 400(cosx) + 1600.

61 False

63 False

65 False

67 True

69 True

71 True

Section 1.6
1 As x → ∞, y → ∞

As x → −∞, y → −∞

3 f(x) → −∞ as x → +∞
f(x) → −∞ as x → −∞

5 f(x) → +∞ as x → +∞
f(x) → +∞ as x → −∞

7 f(x) → 3 as x → +∞
f(x) → 3 as x → −∞

9 f(x) → 0 as x → +∞
f(x) → 0 as x → −∞

11 0.2x5

13 1.05x

15 25 − 40x2 + x3 + 3x5

17 (I) (a) 3 (b) Negative
(II) (a) 4 (b) Positive

(III) (a) 4 (b) Negative
(IV) (a) 5 (b) Negative
(V) (a) 5 (b) Positive

19 y = − 1
2
(x + 2)2(x− 2)

21 f(x) = kx(x + 3)(x − 4)
(k < 0)

23 f(x) =
k(x + 2)(x − 2)2(x − 5)
(k < 0)

25 r

27 1, 2, 3, 4, or 5 roots

x

(a) 5 roots

x

(b) 4 roots

x

(c) 3 roots

x
(d) 2 roots

x
(e) 1 root

29 −105 ≤ x ≤ 105, − 1015 ≤ y ≤ 1015

31 (a) 1.3 m2

(b) 86.8 kg
(c) h = 112.6s4/3

33 (a) R = kr4

(k is a constant)
(b) R = 4.938r4

(c) 3086.42 cm3/sec

35 (a) S = 2πr2 + 2V/r
(b) S → ∞ as r → ∞
(c)

1 2 3 4 5
0

25

50

75

100

r

S

S = 2πr2 + 2V
r

V = 10

37 Horizontal: y = 1;
Vertical: x = −2, x = 2

39 (a) 0
(b) t = 2v0/g
(c) t = v0/g
(d) (v0)

2/(2g)

41 (a) (i) 1 = a + b + c

(ii) b = −2a and c = 1 + a

(iii) c = 6
(b) y = 5x2 − 10x + 6

43 (3/x) + 6/(x − 2)
Horizontal asymptote: x-axis
Vertical asymptote: x = 0 and x = 2

45 h(t) = abt

g(t) = kt3

f(t) = ct2

47 (a) R(P ) = kP (L − P )
(k > 0)

(b)

L
P

R

49 (a) v = 3 · 108

(b) v < 1.5 · 108

51 f(x) = (x3 + 1)/x has no horizontal asymp-
tote

53 f(x) = 3x/(x− 10)

55 f(x) = 1/(x+ 7π)

57 f(x) = (x− 1)/(x − 2)

59 True

Section 1.7
1 Yes

3 Yes

5 Yes

7 No

9 No

15 (a) Continuous
(b) Not continuous

17 Velocity: Not continuous
Distance: Continuous

time

velocity

time

distance

19 k = 5/3

21 k = 5/4

23 (a)

2 4

7 f(x), k = 1

x

y

(b) 3/2
(c)

2 4

7 f(x), k = 1.5

x

y

25 k = −3

27 k = (ln 3)/2

29 k = (e6 − 1)/2

31 No

33 Q =

{
1.2t 0 ≤ t ≤ 0.5

0.6e0.001e−.002t 0.5 < t

35 Three zeros: one between 5 and 10, one between
10 and 12, the third either less than 5 or greater
than 12
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37 (a)

3 5

2

9

x

(b) No

39 Only for continuous function

41 f(x) =

{
1 x ≥ 15

−1 x < 15

43 f(x) =

{
1 x ≤ 2

x x > 2

45 False, f(x) =

{
1 x ≤ 3

2 x > 3

47 False

Section 1.8
1 (a) 3

(b) 7
(c) Does not exist
(d) 8

3 (a) 8
(b) 6
(c) 15
(d) 4

5 Other answers are possible

x

y

7 Other answers are possible

3

x

y

9 Other answers are possible

3

5

x

y

11 lim
x→−∞

f(x) = +∞;

lim
x→+∞

f(x) = −∞

13 lim
x→−∞

f(x) = 3/5;

lim
x→+∞

f(x) = 3/5

15 lim
x→−∞

f(x) = 0;

lim
x→+∞

f(x) = +∞

17 0

19 2

21 0.01745 . . .

23 1

25 0.693

27 0

29 lim
x→4+

f(x) = 1, lim
x→4−

f(x) =
−1, limx→4 f(x) does not exist

2 4 6 8

−1

0

1

x

f(x)

31 lim
x→3+

f(x) = lim
x→3−

f(x) =
limx→3 f(x) = 7

1 2 3 4 5−2
0
2
4
6
8

10

x

f(x)

35 No. Limit does not exist at 0

37 No. f(0) �= limit at 0

39 2.71828 . . .

47 (b) −1
(c)

−0.099 0.099
−1.01

−0.99

(d) −0.099 < x < 0.099,
−1.01 < y < −0.99

49 (b) 0
(c)

−0.0033 0.0033
−0.01

0.01

(d) −0.0033 < x < 0.0033,
−0.01 < y < 0.01

51 (b) 3
(c)

−0.047 0.047
2.99

3.01

(d) −0.047 < x < 0.047,
2.99 < y < 3.01

53 (b) 2
(c)

−0.0049 0.0049
1.99

2.01

(d) −0.0049 < x < 0.0049,
1.99 < y < 2.01

55 3/π

57 1/3

59 2/3

61 3/2

63 3/2

65 5

67 k ≥ 2

69 k ≥ 3

71 k ≥ 0

73 0.46, 0.21, 0.09

75 (a) x = 1/(nπ),
n = 1, 2, 3, . . .

(b) x = 2/(nπ),
n = 1, 5, 9, . . .

(c) x = 2/(nπ),
n = 3, 7, 11, . . .

77 (b) 0
(c)

−0.0029 0.0029
−0.01

0.01

(d) −0.0029 < x < 0.0029,
−0.01 < y < 0.01

85 Limit does not exist

87 f(x) = (x + 3)(x − 1)/(x− 1)

89 True

91 True

93 False

95 True

97 False

99 False

101 (a) Follows
(b) Does not follow (although true)
(c) Follows
(d) Does not follow

Chapter 1 Review
1 y = 2x − 10

3 y = −3x2 + 3

5 y = 2 +
√

9 − (x + 1)2

7 y = −5x/(x − 2)

9

administration
of drug

time

heart
rate
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11 (a) [0, 7]
(b) [−2, 5]
(c) 5
(d) (1, 7)
(e) Concave up
(f) 1
(g) No

13 (a) Min gross income for $100,000 loan
(b) Size of loan for income of $75,000

15 t ≈ 35.003

17 t = log(12.01/5.02)/ log(1.04/1.03) =
90.283

19 P = 5.23e−1.6904t

21 f(x) = x3

g(x) = lnx

23 Amplitude: 2
Period: 2π/5

25 (a) f(x) → ∞
as x → ∞;
f(x) → −∞
as as x → −∞

(b) f(x) → −∞
as as x → ±∞

(c) f(x) → 0 as x → ±∞
(d) f(x) → 6 as x → ±∞

27 0.25
√
x

29 y = e0.4621x or y = (1.5874)x

31 y = −k(x2 + 5x)
(k > 0)

33 z = 1 − cos θ

35 x = k(y2 − 4y)
(k > 0)

37 y = −(x + 5)(x + 1)(x − 3)2

39 Simplest is y = 1 − e−x

41 f(x) = sin (2(π/5)x)

43 Not continuous

45 lim
x→3+

f(x) = 54, lim
x→3−

f(x) =
−54, limx→3 f(x) does not exist

1 2

3 4

−100

−50

0

50

100

x

f(x)

47 (b) 200 bushels
(c) 80 lbs
(d) 0 ≤ Y ≤ 550
(e) Decreasing
(f) Concave down

49 (a) (i) q = 320 − (2/5)p

(ii) p = 800 − (5/2)q
(b)

100 320

550

800

q (items)

p (dollars)

51 (a) (i) Attractive force, pulling atoms to-
gether

(ii) Repulsive force, pushing atoms apart
(b) Yes

53 2011

55 (a) Increased: 2009; decreased: 2006, 2007
(b) False
(c) True

57 Parabola opening downward

59 10 hours

61 About 14.21 years

63 (a) 81%
(b) 32.9 hours
(c)

510 32.9

P0

t

P

65 One hour

67 US: 156 volts max, 60 cycles/sec
Eur: 339 volts max, 50 cycles/sec

69 (a) (i) V = 3πr2

(ii) V = πr2h
(b) (i)

r

V

(ii)

k

V

71 (a)

−1 0 1 2 3 4 5

1

2

3

4

x

y

73 (a) III
(b) IV
(c) I
(d) II

75 0.1, 0.05, 0.00007

77 20

79 (a) f(x) = (x− a)(x + a)(x + b)(x − c)
(b)

−b −a a c

a2bc

x

y

81 (a) f(x) → ∞ as x → ∞
f(x) → 16 as x → −∞

(b) (ex+1)(e2x−2)(ex−2)(e2x+2ex+4)
Two zeros

(c) (ln 2)/2, ln 2
One twice other

83 (a) p(x) = x2 + 3x + 9
r(x) = −3, q(x) = x− 3

(b) f(x) ≈ −3/(x − 3) for x near 3
(c) f(x) ≈ x2 + 3x + 9 as x → ±∞

85 (a) 1 − 8 cos2 x + 8 cos4 x
(b) 1 − 8 sin2 x + 8 sin4 x

Section 2.1
1 265/3 km/hr

3 −3 angstroms/sec

5 2 meters/sec

7 0 cm/sec

9 (a) (i) 0.04 m/sec
(ii) 0.0004 m/sec
(iii) 0.000004 m/sec

(b) 0 m/sec

11 distance

time

13 distance

time

15 0

17 2.7

19 Positive: A and D
Negative: C and F
Most positive: A
Most negative: F

21 F < B < E < 0 < D < A < C

23 f(t)

t

25 4

27 12

29 |velocity| = speed

33 s(t) = t2

35 False

37 True

39 False
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Section 2.2
1 12

3 (a) 70 $/kg; 50 $/kg
(b) About 60 $/kg

5 (b) 0.24
(c) 0.22

7 negative

π 2π 3π 4π

−1

1 y = sinx

x

y

9 f ′(2) ≈ 9.89

11 f ′(d) = 0, f ′(b) = 0.5, f ′(c) = 2,
f ′(a) = −0.5, f ′(e) = −2

13 About 41

15 (a) f(4)
(b) f(2) − f(1)
(c) (f(2) − f(1))/(2 − 1)
(d) f ′(1)

17 (4, 25); (4.2, 25.3); (3.9, 24.85)

19

x x+ h
x

y

��(d) h

�

�

(a) f(x)

�

�

(b) f(x+ h)

�
�
(c) f(x+ h)− f(x)

(e) Slope =
f(x+h)−f(x)

h

x

�

y = f(x)

21 (a) (f(b) − f(a))/(b − a)
(b) Slopes same
(c) Yes

23 g′(−4) = 5

25 y = 7x − 9

27 f ′(2) ≈ 6.77

29 f ′(1) ≈ −1.558
f ′(π

4
) ≈ −1

31 8.84 million people/year
9.28 million people/year

35 −6

37 −1

39 1/4

41 100

43 −1

45 −1/4

47 y = 100x − 500

49 y = x

51 f ′(0.5) > 0

53 f(x) = ex

55 True

57 True

Section 2.3
1 (a) 3

(b) Positive: 0 < x < 4
Negative: 4 < x < 12

3

−4 4

−4

4

x

5

−4 4

−4

4

x

7

−4 4

−4

4

x

9

−4 4

−4

4

x

11

−4 4

−4

4

x

13

−2−1 1 2

−10

−6

2

6

10 f(x) = 5x

x

−2 −1 1 2

5
f ′(x)

x

15

−1 1 2

1

2

3

f(x)

x

−1 1 2

−4

−2

2

4 f ′(x)

x

17

π
2

π 3π
2

2π
−1

1 f(x)

x

π
2

π 3π
2

2π
−1

1
f ′(x)

x

19 −1/x2

21 4x

23

x

y(a)

x

y(b)

x

y(c)

x

y(d)

25 f ′(1) = 1
f ′(2) = 0.5
f ′(5) = 0.2
f ′(10) = 0.1
f ′(x) = 1

x

27 5.2
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29

−3 3

1
f ′(x)

x

31

2 4

f ′(x)

x

33

4
x

f ′(x)

35

−3 3

−20

20 f ′(x)

x

37

−1 1 23 4 5 6
x

f ′(x)

39

1 3 5

f ′(0) = 3

f ′(2) = 1
f ′(3) = 0

(1, 3)

41 (a) t = 3
(b) t = 9
(c) t = 14
(d)

3 6 9 12

15 181

−2

t

V ′(t)

43 (a) x1 < x < x3

(b) 0 < x < x1; x3 < x < x5

45 (a) Periodic: period 1 year

J
t = 0

F M A M J J A S O N D J
t = 1

3500
4000
4500

t (in months)

P (t)

(b) Max of 4500 on July 1st

Min of 3500 on Jan 1st

(c) Growing fastest:
around April 1st

Decreasing fastest:
around Oct 1st

(d) ≈ 0

47

−4 −2 2 4
x

y

49 0

53 Counterexample: e−x

55 f(t) = t(1 − t)

57 True

59 False

Section 2.4
1 (a) Costs $1300 for 200 gallons

(b) Costs about $6 for 201st gallon

3 (a) Positive
(b) ◦F/min

5 (a) Quarts; dollars.
(b) Quarts; dollars/quart

7 Dollars/percent; positive

9 Dollars/year; negative

11 (a) Investing the $1000 at 5%
would yield about $1649 after 10 years

(b) Extra percentage point would yield an in-
crease of about $165; dollars/%

13 (b) Pounds/(Calories/day)

15

15 30

f(t)

years

people

15 30

f ′(t)

years

people/year

or

15 30

f ′(t)

years

people/year

19 (a) 1986: pop. Mexico inc. 2 m. people/yr
(b) Pop. 95.5 m. in 1996
(c) 95.5 m.: about 0.46 yrs for pop. inc. of 1 m

21 (a) Depth 3 ft at t = 5 hrs
(b) Depth increases 0.7 ft/hr
(c) Time 7 hrs when depth 5 ft
(d) Depth at 5 ft increases 1 ft in 1.2 hrs

23 Inches/year
g′(10) > 0
g′(30) = 0

25 Barrels/year; negative

27 (a) Gal/minute
(b) (i) 0

(ii) Negative
(iii) 0

29 (a) 0.0851 people/sec
(b) 12 seconds

31 Number of people 65.5–66.5 inches
Units: People per inch
P ′(66) between 17 and 34 million people/in
P ′(x) is never negative

33 (a) 2.6 · 1012; not compressible
(b) 1.5 · 1017; even less compressible

35 r(t) is decreasing

39 True

41 False

43 (b), (d)

Section 2.5
1 (a) Increasing, concave up

(b) Decreasing, concave down

3 B

5

x

f(x)(a)

x

f(x)(b)

x

f(x)(c)

x

f(x)(d)

7

time

height
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9 f ′(x) < 0
f ′′(x) = 0

11 f ′(x) < 0
f ′′(x) > 0

13 f ′(x) < 0
f ′′(x) < 0

15 (a) Positive; negative
(b) Neither; positive
(c) Number of cars increasing at

600,000 million cars per year in 2005

17 (a)

(b)

(c)

19

−4 4

−4

4

x

y

21

−4 4
x

y

23

−4 4
x

y

25 (a)

quantity

utility

(b) Derivative of utility is positive
2nd derivative of utility is negative

29 (a) t3, t4, t5
(b) t2, t3
(c) t1, t2, t5
(d) t1, t4, t5
(e) t3, t4

31 22 only possible value

33 It could be neither

35 f(x) = b + ax, a �= 0

37 True

39 True

41 False

Section 2.6
1 (a) x = 1

(b) x = 1, 2, 3

3 No

5 Yes

7 Yes

9 Yes

11 (a) Yes
(b) Not at t = 0

13 (a) Yes
(b) No

15 (a) Yes
(b) No

17 Other cases are possible

19 f(x) = |x− 2|

21 f(x) = (x2 − 1)/(x2 − 4)

23 True; f(x) = x2

25 True; f(x) =

{
1 x ≥ 0

−1 x < 0

27 (a) Not a counterexample
(b) Counterexample
(c) Not a counterexample
(d) Not a counterexample

Chapter 2 Review
1 72/7 = 10.286 cm/sec

3 (ln 3)/2 = 0.549 mm/sec

5 0 mm/sec

7 0 mm/sec

9 distance

time

11 (a)

−10 −5 5 10

−4

4

8

x

y y = x sinx

(b) Seven

(c) Increasing at x = 1
Decreasing at x = 4

(d) 6 ≤ x ≤ 8
(e) x = −9

13

x
f ′(x)

15

−1

1

2 3 4
x

f ′(x)

17

x

f ′(x)

19

−1

2 4 6−1

1
2

3
4
5

x

y

21

−4 4
x

y

23 −1/x2

25 (a) (i) C and D

(ii) B and C
(b) A and B,

C and D

27 10x

29 6x

31 2a

33 −2/a3

35 −1/(2(
√
a)3)

37 From smallest to largest:
0, Vel at C , Vel at B, Av vel between A and B,
1, Vel at A

39 (a) A, C , F , and H.
(b) Acceleration 0

41 (a) f ′(t) > 0: depth increasing
f ′(t) < 0: depth decreasing

(b) Depth increasing 20 cm/min
(c) 12 meters/hr
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43 (a) Thousand $ per $ per gallon
Rate change revenue with price/gal

(b) $ per gal/thousand $
Rate change price/gal with revenue

47 Concave up

49 (a)

1 2 3 4 5 6

4

5

6



Student C’s answer
=slope of this line

�Student A’s answer
=slope of this line

�
Student B’s
answer
= slope
of this line

x

(b) Student C’s

(c) f ′(x) =
f(x+ h) − f(x − h)

2h

51 x1 = 0.9, x2 = 1, x3 = 1.1
y1 = 2.8, y2 = 3, y3 = 3.2

53 (a) Negative
(b) dw/dt = 0
(c) |dw/dt| increases; dw/dt decreases

55 (a) Dose for 140 lbs is 120 mg
Dose increases by 3mg/lb

(b) About 135 mg

57 P ′(t) = 0.008P (t)

59 (a) f ′(0.6) ≈ 0.5
f ′(0.5) ≈ 2

(b) f ′′(0.6) ≈ −15
(c) Maximum: near x = 0.8

minimum: near x = 0.3

61 (a) At (0,
√
19): slope = 0

At (
√
19, 0): slope is undefined

(b) slope ≈ 1/2

(c) At (−2,
√
15): slope ≈ 1/2

At (−2,−
√
15): slope ≈ −1/2

At (2,
√
15): slope ≈ −1/2

63 (a) Period 12 months

3 6 9 12 15 18 21 24
AprilJuly Oct Jan AprilJuly Oct Jan April

4000

5000

(b) Max of 4500 on June 1st

(c) Min of 3500 on Feb 1st

(d) Growing fastest:
April 1st

Decreasing fastest:
July 15 and Dec 15

(e) About 400 deer/month

65 (a) Concave down

20◦C

200◦C

temperature

time

(b) 120◦ < T < 140◦

(c) 135◦ < T < 140◦

(d) 45 < t < 50

67 (a) f ′(0) = 1.00000
f ′(0.3) = 1.04534
f ′(0.7) = 1.25521
f ′(1) = 1.54314

(b) They are about the same

69 0, because f(x) constant

71 (a) −2a/eax
2
+ 4a2x2/eax

2

(b)

−2 2

−6

−4

−2

1
2

3

g(x)g′′(x)

a = 1

x

y

−2 2

−6

−4

−2

1

2

3

�

g(x)g′′(x)

a = 2

x

y

−2 2

−6

−4

−2

1

2

3

�

g(x)g′′(x)

a = 3

x

y

73 (a) 4x(x2 + 1), 6x(x2 + 1)2 , 8x(x2 + 1)3

(b) 2nx(x2 + 1)n−1

Section 3.1
3 Do not apply

5 y′ = πxπ−1 (power rule)

7 11x10

9 −12x−13

11 −3x−7/4/4

13 3x−1/4/4

15 3t2 − 6t + 8

17 −5t−6

19 −(7/2)r−9/2

21 x−3/4/4

23 −(3/2)x−5/2

25 6x1/2 − 5
2
x−1/2

27 17 + 12x−1/2

29 20x3 − 2/x3

31 −12x3 − 12x2 − 6

33 6t − 6/t3/2 + 2/t3

35 3t1/2 + 2t

37 (1/2)θ−1/2 + θ−2

39 (z2 − 1)/3z2

41 1/(2
√
θ) + 1/(2θ3/2)

43 3x2/a + 2ax/b − c

45 a/c

47 3ab2

49 b/(2
√
t)

51 Rules of this section do not apply

53 6x
(power rule and sum rule)

55 −2/3z3

(power rule and sum rule)

57 y = 2x − 1

59 y = 7x − 9

61 y = 2x and y = −6x

(−2, 12)

(2, 4)

y = −6x

y

y = x2 − 2x+ 4

y = 2x

x

63 x > 1

65 f ′(x) = 12x+ 1 and
f ′′(x) = 12

67 Proportional to r2

69 (a) v(t) = −32t
v ≤ 0 because the height is decreasing

(b) a(t) = −32
(c) t = 8.84 seconds

v = −192.84 mph

71 56 cm/sec2

73 (a) dg/dr = −2GM/r3

(b) dg/dr is rate of change of acceleration
g decreases with distance

(c) −3.05 × 10−6

(d) Magnitude of dg/dr small; reasonable

75 (a) dA/dr = 2πr
(b) Circumference of a circle

79 n = 1/13

81 (a) a = 4
(b) No

83 x2 + a

85 f(x) = x2, g(x) = 3x

87 f(x) = 3x2

89 False

91 True
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Section 3.2
1 2ex + 2x

3 5 ln(a)a5x

5 10x + (ln 2)2x

7 4(ln 10)10x − 3x2

9 ((ln 3)3x)/3 − (33x−3/2)/2

11 (ln 4)24x

13 5 · 5t ln 5 + 6 · 6t ln 6

15 exe−1

17 (lnπ)πx

19 (ln k)kx

21 et+2

23 ax ln a + axa−1

25 2 + 1/(3x4/3) + 3x ln 3

27 2x + (ln 2)2x

29 Rules do not apply

31 ex+5

33 Rules do not apply

35 Rules do not apply

37 Rules do not apply

39 ≈ 7.95 cents/year

41 US, since dU/dt > dM/dt at t = 0

43 (a) f ′(0) = −1
(b) y = −x
(c) y = x

45 g(x) = x2/2 + x + 1

ex

1
2
x2 + x+ 1

x

47 e

49 f ′(x) = (ln 2)2x

51 f(x) = 0.5x

53 False; f(x) = lnx

55 False; f(x) = |x|

Section 3.3
1 5x4 + 10x

3 ex(x + 1)

5 2x/(2
√
x) +

√
x(ln 2)2x

7 3x[(ln 3)(x2 − x
1
2 ) +

(2x− 1/(2
√
x))]

9 (1 − x)/ex

11 (1 − (t + 1) ln 2)/2t

13 6/(5r + 2)2

15 1/(5t + 2)
2

17 2et + 2tet + 1/(2t3/2)

19 2y − 6, y �= 0

21
√
z(3 − z−2)/2

23 2r(r + 1)/(2r + 1)2

25 17ex(1 − ln 2)/2x

27 1, x �= −1

29 6x
(
x2 + 5

)
2
(
3x3 − 2

)(
6x3 + 15x − 2

)
31 (a) 4

(b) Does not exist
(c) −4

33 (a) −2
(b) Does not exist
(c) 0

35 Approx 0.4

37 Approx 0.7

39 Approx −21.2

41 f ′(x) = 2e2x

43 x > −2

45 y = 7x − 5

47 (a)
d

dx

(
ex

x

)
=

ex

x
−

ex

x2

d

dx

(
ex

x2

)
=

ex

x2
−

2ex

x3

d

dx

(
ex

x3

)
=

ex

x3
−

3ex

x4

(b)
d

dx

(
ex

xn

)
=

ex

xn

−
nex

xn+1

49 4x(ln 4 ·f(x)+ln4 ·g(x)+f ′(x)+g′(x))

51 (f ′(x)g(x)h(x) + f(x)g′(x)h(x) −
f(x)g(x)h′(x))/(h(x))2

53 (a) 19
(b) −11

55 f(x) = x10ex

57 r22/(r1 + r2)
2

59 (a) g(v) = 1/f(v)
g(80) = 20 km/liter
g′(80) = −(1/5) km/liter for each

1 km/hr increase in speed
(b) h(v) = v · f(v)

h(80) = 4 liters/hr
h′(80) = 0.09 liters/hr for

each 1 km/hr inc. in speed

61 (a) f ′(x) =
(x − 2) + (x − 1)

(b) f ′(x) =
(x − 2)(x − 3) +
(x − 1)(x − 3) +
(x − 1)(x − 2)

(c) f ′(x) =
(x − 2)(x − 3)(x− 4) +
(x − 1)(x − 3)(x− 4) +
(x − 1)(x − 2)(x− 4) +
(x − 1)(x − 2)(x− 3)

63 (a) (FGH)′ =
F ′GH + FG′H + FGH′

(c) f ′

1f2f3 · · · fn +
f1f

′

2f3 · · · fn + · · ·+
f1 · · · fn−1f

′

n

65 f ′′(x)g(x) + 2f ′(x)g′(x) + f(x)g′′(x)

67 Signs in numerator reversed

69 f(x) = ex sin x

71 False

73 False; f(x) = x2, g(x) = x2 − 1

Section 3.4
1 99(x + 1)98

3 56x(4x2 + 1)6

5 ex/(2
√
ex + 1)

7 5(w4 − 2w)4(4w3 − 2)

9 2r3/
√
r4 + 1

11 e2x
[
2x2 + 2x + (ln 5 + 2)5x

]
13 πeπx

15 −200xe−x
2

17 (lnπ)π(x+2)

19 e5−2t(1 − 2t)

21 (2t − ct2)e−ct

23 (e
√

s)/(2
√
s)

25 3s2/(2
√
s3 + 1)

27 (e−z)/(2
√
z) −

√
ze−z

29 5 · ln 2 · 25t−3

31 −(ln 10)(10
5
2
−

y

2 )/2

33 (1 − 2z ln 2)/(2z+1
√
z)

35

√
x + 3(x2 + 6x− 9)

2
√
x2 + 9(x + 3)2

37 −(3e3x + 2x)/(e3x + x2)2

39 −1.5x2(x3 + 1)−1.5

41 (2t + 3)(1 − e−2t) +

(t2 + 3t)(2e−2t)

43 30e5x − 2xe−x
2

45 2wew
2
(5w2 + 8)

47 −3te−3t2/

√
e−3t2 + 5

49 2ye[e
(y2)+y

2]

51 6ax(ax2 + b)2

53 ae−bx − abxe−bx

55 abce−cxe−be
−cx

57 (a) 2
(b) Chain rule does not apply
(c) −2

59 (a) Chain rule does not apply
(b) Chain rule does not apply
(c) Chain rule does not apply

61 1/2

63 −1

65 y = 3x − 5

67 y = −16.464t + 87.810

69 x < 2

71 (a) 13,394 fish
(b) 8037 fish/month

73 (a) 4
(b) 2
(c) 1/2

75 e(x
6)/6

77 (a) g′(1) = 3/4
(b) h′(1) = 3/2

79 d; 0

81 Decreasing

83 Value of h(x) decreases from d to −d

85 P = 308.75e0.00923t

87 f(5) = 6.3 billion dollars;
f ′(5) = 0.272 billion dollars per year

89 (a) P (1 + r/100)t ln(1 + r/100)

(b) Pt(1 + r/100)t−1/100

91 (a) dm/dv = m0v/

(
c2
√

(1 − v2/c2)3
)

(b) Rate of change of mass with respect to speed
v

95 f ′′(x)(g(x))−1−2f ′(x)(g(x))−2g′(x)+

2f(x)(g(x))−3(g′(x))2 −

f(x)(g(x))−2g′′(x)

97 w′(x) = 2xex
2

99 f(x) = (x2 + 1)2
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101 False;f(x) = 5x + 7, g(x) = x + 2

Section 3.5
3 cos2 θ − sin2 θ = cos 2θ

5 3 cos(3x)

7 −8 sin(2t)

9 3π sin(πx)

11 3π cos(πt)(2 + sin(πt))2

13 et cos(et)

15 (cos y)esin y

17 3 cos(3θ)esin(3θ)

19 2x/ cos2(x2)

21 4 cos(8x)(3 + sin(8x))−0.5

23 cosx/ cos2(sin x)

25 2 sin(3x) + 6x cos(3x)

27 e−2x[cosx− 2 sin x]

29 5 sin4 θ cos θ

31 −3e−3θ/ cos2(e−3θ)

33 −2e2x sin(e2x)

35 − sinα + 3 cosα

37 3θ2 cos θ − θ3 sin θ

39 cos(cosx + sin x) ·
(cosx − sin x)

41 (−t sin t − 3 cos t)/t4

43

√
1 − cosx(1 − cosx − sin x)

2
√
1 − sin x(1 − cosx)2

45 (6 sin x cos x)/(cos2 x + 1)2

47 −ab sin(bt + c)

49 y = 6t − 13.850

51 (sin x + x cosx)x sin x

53 F (x) = −(1/4) cos(4x)

55 2 sin(x4) + 8x4 cos(x4)

57 (a) v(t) = 2π cos(2πt)
(b)

1 2 3

14
15
16

y = 15 + sin 2πt

t

y

1 2 3
−2π

2π
v = 2π cos 2πt
t

v

59 (a) t = (π/2)(m/k)1/2;
t = 0;
t = (3π/2)(m/k)1/2

(b) T = 2π(m/k)1/2

(c) dT/dm = π/
√
km;

Positive sign means an increase in
mass causes the period to increase

61 (a) 0 ≤ t ≤ 2
(b) No, not at t = 2

63 At x = 0:
y = x, sin(π/6) ≈ 0.524

At x = π/3:
y = x/2 + (3

√
3 − π)/6,

sin(π/6) ≈ 0.604

69 Cannot use product rule

71 sin x

73 True

Section 3.6
1 2t/(t2 + 1)

3 10x/(5x2 + 3)

5 1/
√

1 − (x+ 1)2

7 (6x + 15)/(x2 + 5x+ 3)

9 2

11 e−x/(1 − e−x)

13 ex/(ex + 1)

15 aeax/ (eax + b)

17 3w2 ln(10w) + w2

19 e

21 1/t

23 −1/(1 + (2 − x)2)

25 earctan(3t2)(6t)/(1 + 9t4)

27 (ln 2)z(ln 2−1)

29 k

31 −x/
√
1 − x2

33 −1/z(ln z)2

35 3w−1/2 − 2w−3 + 5/w

37 (cos x− sin x)/(sin x + cosx)

39 1/(1 + 2u + 2u2)

41 −(x + 1)/(
√

1 − (x + 1)2)

43 −1 < x < 1

45 d

dx
(log x) = 1

(ln 10)x

47 g(5000) = 32.189 years
g′(5000) = 0.004 years per dollar

49 (a) y = x − 1
(b) 0.1; 1
(c) Yes

51 (a) f ′(x) = 0
(b) f is a constant function

53 Any x with 25 < x < 50

55 Any x with 75 < x < 100

57 2.8

59 1.4

61 −0.12

63 (a) 12
(b) f−1(x) = 3

√
x

(c) 1/12

65 1/5

67 (a) Pop is 296 m in 2005
(b) 2005
(c) Pop incr by 2.65 m/yr
(d) 0.377 yr/million

69 1/3

71 (a) 1
(b) 1
(c) 1

73 (a) 1
(c) e

75 f ′(x) = 1/(x ln x)

77 f(x) = 2x

79 y = ln x

81 False

Section 3.7
1 dy/dx = −x/y

3 dy/dx = (y2 − y − 2x)/(x − 3y2 − 2xy)

5 −(1 + y)/(1 + x)

7 dy/dx = (y − 2xy3)/(3x2y2 − x)

9 dy/dx = −
√

y/x

11 −3x/2y

13 −y/(2x)

15 dy/dx = (2 − y cos(xy))/(x cos(xy))

17 (y2 + x4y4 − 2xy)/(x2 − 2xy − 2x5y3)

19 (a − x)/y

21 (y + b sin(bx))/
(a cos(ay)− x)

23 Slope is infinite

25 −23/9

27 y = e2x

29 y = x/a

31 (a) (4 − 2x)/(2y + 7)
(b) Horizontal if x = 2,

Vertical if y = −7/2

33 y = 2, y = −2

35 (a) dy/dx = (y2 − 3x2)/(3y2 − 2xy)
(c) y ≈ 1.9945
(d) Horizontal:

(1.1609, 2.0107)
and
(−0.8857, 1.5341)

Vertical:
(1.8039, 1.2026)
and
( 3
√
5, 0)

37 (a) −(1/2P )f(1 − f2)

41 (nb − V )/(P − n2a/V 2 + 2n3ab/V 3)

43 Formula applies if point is on circle

45 −x2 + y2 = 1

Section 3.8
1 3 cosh(3z + 5)

3 2 cosh t · sinh t

5 3t2 sinh t + t3 cosh t

7 cosh x/(cosh2(3 + sinhx))

9 tanh(1 + θ)

11 0

15 (t2 + 1)/2t

19 sinh(2x) = 2 sinh x cosh x

23 0

25 1

27 |k| ≤ 3

29 (a) 0.54 T/w

31 (a)

−3 3

20

40 y = 2ex + 5e−x

(0.5, 6.3)x

y

(b) A = 6.325
(stretch factor)

c = 0.458
(horizontal shift)
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33 (a) 0
(b) Positive for x > 0

Negative for x < 0
Zero for x = 0

(c) Increasing everywhere
(d) 1, −1

−5 5

−1

1

x

y

(e) Yes; derivative positive everywhere

35 f ′(x) = sinhx

37 tanh x → 1 as x → ∞

39 k = 0

41 True

43 True

45 False

Section 3.9
1

√
1 + x ≈ 1 + x/2

3 1/x ≈ 2 − x

5 ex
2
≈ 2ex − e

9 |Error| < 0.2
Overestimate, x > 0
Underestimate, x < 0

11 (a) L(x) = 1 + x
(b) Positive for x �= 0
(c) 0.718

−1 1

1
f(x) = ex

L(x) = 1 + x

�

�

L(1)

�

�
�E(1) �

�

f(1)

x

(d) E(1) larger
(e) 0.005

13 (a) and (c)

2

−3

3
True value

Approximation
� Error

f(x) = x3 − 3x2 + 3x+ 1

y = 3x− 3
x

y

(b) y = 3x − 3

15 a = 1; f(a) = 1
Underestimate
f(1.2) ≈ 1.4

17 0.1

19 (b) 0.1

21 (a)

30

P = 30e−3.23×10−5h

P

h

(b) y = (−9.69 × 10−4)h + 30
(c) P = 30 − 0.001h
(d) Both have P intercepts of 30, and slopes are

almost the same
(e) Too small because it has a slightly smaller

slope

23 (b) 1% increase

25 f(1 + Δx) ≥ f(1) + f ′(1)Δx

27 (a) 16,398 m
(b) 16,398 + 682(θ − 20) m
(c) True: 17,070 m

Approx: 17,080 m

29 (a) 1492 m
(b) 1492 + 143(θ − 20) m
(c) True: 1638 m

Approx: 1635 m

31 f(x) ≈ 1 + kx
e0.3 ≈ 1.3

33 E(x) = x4 − (1 + 4(x − 1))
k = 6; f ′′(1) = 12
E(x) ≈ 6(x− 1)2

35 E(x) = ex − (1 + x)
k = 1/2; f ′′(0) = 1
E(x) ≈ (1/2)x2

37 E(x) = lnx − (x − 1)
k = −1/2; f ′′(1) = −1
E(x) ≈ −(1/2)(x− 1)2

39 (c) 0

45 Only near x = 0

47 f(x) = x3 + 1, g(x) = x4 + 1

49 f(x) = |x+ 1|

Section 3.10
1 False

3 False

5 True

7 No; no

9 No; no

11 f ′(c) = −0.5, f ′(x1) > −0.5,
f ′(x2) < −0.5

13 6 distinct zeros

19 Racetrack

21 Constant Function

23 21 ≤ f(2) ≤ 25

31 Not continuous

33 1 ≤ x ≤ 2

35 Possible answer: f(x) = |x|

37 Possible answer

f(x) =

{
x2 if 0 ≤ x < 1

1/2 if x = 1

39 False

41 False

Chapter 3 Review
1 200t(t2 + 1)99

3 (t2 + 2t + 2)/(t + 1)2

5 −8/(4 + t)2

7 x2 ln x

9 (cos θ)esin θ

11 − tan(w − 1)

13 kxk−1 + kx ln k

15 3 sin2 θ cos θ

17 6 tan(2 + 3α) cos−2(2 + 3α)

19 (−e−t − 1)/(e−t − t)

21 1/ sin2 θ − 2θ cos θ/ sin3 θ

23 −(2w ln 2 + ew)/(2w + ew)2

25 1/(
√

sin(2z)
√

cos3(2z))

27 2−4z [−4 ln(2) sin(πz) + π cos(πz)]

29 e(e
θ+e

−θ)(eθ − e−θ)

31 etan(sin α) cosα/ cos2(sinα)

33 e(tan 2 + tan r)e−1/ cos2 r

35 2e2x sin(3x)
(sin(3x) + 3 cos(3x))

37 2sinx

(
(ln 2) cos2 x − sin x

)
39 eθ−1

41 (−cat2 + 2at − bc)e−ct

43 (ln 5)5x

45 (2abr − ar4)/(b + r3)2

47 −2/(x2 + 4)

49 20w/(a2 − w2)3

51 aeau/(a2 + b2)

53 ln x/(1 + lnx)2

55 et cos
√
et + 1/(2

√
et + 1)

57 18x2 + 8x − 2

59 (2 ln 3)z + (ln 4)ez

61 3x2 + 3x ln 3

63 − 5
2

sin(5θ)√
cos(5θ)

+ 12 sin(6θ) cos(6θ)

65 4s3 − 1

67 kekt(sin at + cos bt)+

ekt(a cosat − b sin bt)

69 f ′(t) = 4(sin(2t) − cos(3t))3

(2 cos(2t) + 3 sin(3t))

71 −16 − 12x + 48x2 − 32x3 +
28x6 − 9x8 + 20x9

73 f ′(z) = 5
2
(5z)−1/2+ 5

2
z−1/2− 5

2
z−3/2+

√

5

2
z−3/2

75 dy/dx = 0

77 dy/dx = −3

79 f ′(t) = 6t2 − 8t + 3
f ′′(t) = 12t − 8

81 x = −1 and x = 5

−1

5
x

f(x)

83 (a) −6
(b) 0
(c) −2

85 (a) 0
(b) 4
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87 (a) −10
(b) 4

89 Approx 0.8

91 Approx −0.4

93 (a) h(4) = 1
(b) h′(4) = 2
(c) h(4) = 3
(d) h′(4) = 3
(e) h′(4) = −5/16
(f) h′(4) = 13

95 (a) f ′(2) = 20
(b) f ′(2) = 11/9
(c) f ′(2) = −4
(d) f ′(2) = −24
(e) f ′(2) = sin 3 − 8 cos 3
(f) f ′(2) = 4 ln 3 − 16/3

97 These functions look like the line y = 0:

sin x − tan x,
x2

x2 + 1

x − sin x,
1 − cos x

cosx
These functions look like the line y = x:

arcsin x,
sin x

1 + sin x
arctan x, ex − 1

x

x + 1
,

x

x2 + 1
These functions are undefined at the origin:
sin x

x
− 1, −x ln x

Defined at the origin but with a vertical tangent:
x10 + 10

√
x

99 Perpendicular; x = 0 and x = 1

101 y = x − eb

103 −2

105 (a) y = 2 + (x− 4)/4
(b) 2.02485..., 2.025
(c) True = 4, Approx= 5

107 (a) f(t) : linear
g(t) : quadratic polynomial
h(t) : exponential

(b) 0.006◦C/yr; 0.0139◦C/yr; 0.00574◦C/yr
(c) 0.78◦C; 1.807◦C; 0.746◦C
(d) 0.78◦C; 0.793◦C; 0.728◦C
(e) Linear
(f) Quadratic

109 −2GMm/r3

111 (a) P ′(t) = kP (t)

113 (a) 1,000,000 people
(b) No. Max number of people to fall sick in a

day is 25,000

115 (c) −0.135%

117 (f−1)′(5) �= 1/f ′(10)

119 (b)

123 (a) x(x+ 1)x−1 + (x + 1)x ln(x+ 1)

x cosx(sin x)x−1 + (sin x)x ln(sin x)

(b) xf ′(x) (f(x))x−1 + (f(x))x ln(f(x))

(c) (ln x)x−1 + (lnx)x ln(ln x)

125 (a) 0
(b) 0
(c) 2−2r4r = 1

Section 4.1
1

local max
�

local min
�

local max

�

3

Local min

Critical point
Not local max or min

x

5 Critical points: x = 0, x = −
√
6, x =

√
6

Inflection points: x = 0, x = −
√
3, x =

√
3

7 Critical point: x = 3/5
No inflection points

9 Critical points:
x = 0 and x = 1

Extrema:
f(1) local minimum
f(0) not a local extremum

11 Critical points:
x = 0 and x = 2

Extrema:
f(2) local minimum
f(0) not a local extremum.

13 Critical point: x = 1/3, local maximum

15 (a) Critical point x ≈ 0;
Inflection points between −1 and 0
and between 0 and 1

(b) Critical point at x = 0,
Inflection points at x = ±1/

√
2

17 (a) Increasing for all x
(b) No maxima or minima

19 (a) Incr: −1 < x < 0 and x > 1
Decr: x < −1 and 0 < x < 1

(b) Local max: f(0)
Local min: f(−1) and f(1)

21 (a) x = b
(b) Local minimum

23 t = 0.5 ln(V/U)

25

x

f ′(x)

x-values of
these points give
inflection points of f

�

��

�

27

x1 x2 x3

x

y

y′′ < 0
y′ > 0

y′′ > 0
y′ > 0

y
′′

< 0

y
′
> 0

y′′ < 0
y′ < 0

y′′ = 0
y′ = 0

y′′ = 0y′ = 0

y = f(x)

29

x1 x2

x

y
y′, y′′ undefined

y′′ > 0
y′ > 0

y′′ > 0
y′ < 0

y′′ > 0
y′ > 0

y = f(x)

y′ = 0

31 (a) x ≈ 2.5 (or any 2 < x < 3)
x ≈ 6.5 (or any 6 < x < 7)
x ≈ 9.5 (or any 9 < x < 10)

(b) x ≈ 2.5: local max;
x ≈ 6.5: local min;
x ≈ 9.5: local max

33

�

Time at which water
reaches corner of vase

time

depth of water

35 x = 0: not max/min
x = 3/7: local max
x = 1: local min

37 (a) Yes, at 2000 rabbits

10 20 30 40

500

1000

1500

2000

years since 1774

population of rabbits

(b) 1787
1000 rabbits

39 a = −1/3

41 Most: x = 0,±2π,±4π,±6π . . .
Least: x = ±π,±3π,±5π . . .

43 C = f , B = f ′, A = f ′′

45 I, III even; II odd
I is f ′′ , II is f ′ , III is f

47 Incr: −105 < x < 5
Decr: x < −105 and x > 5

49 (a) x = ±2
(b) x = 0,±

√
5

51 (a) No critical points
(b) Decreasing everywhere

53 Consider f(x) = x3

55 f(x) = x

57 f(x) = cosx or f(x) = sin x

59 True

61 False

63 True

65 False

67 f(x) = x2 + 1

69 f(x) = −x2 − 1

71 Impossible
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73 (a), (c)

Section 4.2
1

1 2 3 4 5

2
4
6
8

Global and local min

Global and local max

Local min

x

y

3 (a)

4

50
57

x

y

(b) x = 4, y = 57

5 Max: 9 at x = −3;
Min: −16 at x = −2

7 Max: 2 at x = 1;
Min: −2 at x = −1, 8

9 Max: 8 at x = 4;
Min: −1 at x = −1, 1

11 (a) f(1) local minimum;
f(0), f(2) local maxima

(b) f(1) global minimum
f(2) global maximum

13 (a) f(2π/3) local maximum
f(0) and f(π) local minima

(b) f(2π/3) global maximum
f(0) global minimum

15 Global min = 2 at x = 1
No global max

17 Global min = 1 at x = 1
No global max

19 Global max = 2 at t = 0,±2π, . . .
Global min = −2 at t = ±π,±3π, . . .

21 0.91 < y ≤ 1.00

23 0 ≤ y ≤ 2π

25 0 ≤ y < 1.61

27 x = −b/2a,
Max if a < 0, min if a > 0

29 t = 2/b

t

y

31 (a) Ordering: a/q
Storage: bq

(b)
√

a/b

33 (a) 0 ≤ y ≤ a

a/2 a

Max rate

y (gm)

rate (gm/sec)

(b) y = a/2

35 r = 3B/(2A)

37 (a) k(ln k − lnS0) − k + S0 + I0
(b) Both

39

(3, 3)

y = t(x)

y

x

41

−2 −1 1

(−1, 2)

x

y

h(x)

43 x =
(∑

n

i=1
ai

)
/n

47 On 1 ≤ x ≤ 2, global minimum at x = 1

49 f(x) = 1 − x

51
√
2 ≤ x ≤

√
5

53 True

55 True

57 True

59 False

61 True

63 True

Section 4.3
1 2500

3 1536

5 1250 square feet

7 x = 161/3 cm, h = 161/3/2 cm

9 r = h = (8/π)1/3 cm

11 0

13 Max: 0.552; Min: 0.358

15 2000 − (1200/
√
5)

17 w = 34.64 cm, h = 48.99 cm

19 1/
√
2

21 (a) xy + πy2/4
(b) 2x + πy
(c) x = 0, y = 100/π

23 (a) Min at x = πL/(4 + π)
Max at x = L

(c) Yes

25 5,
√
125

27 5
√
5, 25

29 (a) (9/4,±
√
7/4)

(b) (3, 0)

31 Radius =
√

2/3

Height =
√

1/3

33 13.13 mi from first smokestack

35 Minimum: x = −r0/
√
2

Maximum: x = r0/
√
2

37 (a) T 2/3/21/3

(b) Increases by ≈ 58.74%

39 15 miles/hour

41 (a)

P O

4

8 Number of worms

time

load
(number of worms)

(b) 7 worms
(c) increases

43 (a) E = 500e

(
2 − cos θ

sin θ

)
+ 2000e(

arctan

(
500

2000

)
≤ θ ≤ π/2

)
(b) θ = π/3
(c) Independent of e, but dependent

on AB/AL

45 (a) x = 1, P = (1, 1)

47 (a) The arithmetic mean unless a = b,
in which case the two means are equal

(b) The arithmetic mean unless a = b = c,
in which case the two means are equal

49 (b) 2 hours
(c) Equal

51 (b) f(v) = v · a(v)
(c) When a(v) = f ′(v)
(d) a(v)

53 (a) g(v) = f(v)/v
(b) 220 mph
(c) 300 mph

55 Max V on 0 ≤ h ≤ 10

57 9 cm by 1 cm

Section 4.4
1 (a)

�

large a



small a

x

(b) Critical point moves right
(c) x = a

3 (a)

�

large a

�

small a

x

(b) 2 critical points move closer to origin

(c) x = ±
√

1/(3a)

5 (a)

�

large a �

small a

x
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(b) Nonzero critical point moves down to the left
(c) x = 0, 2/a

7 (a) Larger |A|, steeper
(b) Shifted horizontally by B

Left for B > 0; right for B < 0
Vertical asymptote x = −B

(c)

−10

10

−10

10

x

y

A = 20, B = 0

� A = 2, B = 0

A = 2, B = 5

9 A has a = 1, B has a = 2, C has a = 5

11 (a)

�

large a

�

small a

x

(b)

�

large b

�

small b x

(c) a moves critical point right;
b moves critical point up

(d) x = a

13 (a)

�

large a

�

small a

x

(b)

�

large b

�small b
x

(c) a moves one critical point up, does not move
the other;
b moves one critical point up to right, moves
the other right

(d) x = b/3, b

15 (a)

�

large a

�

small a

x

(b)

�

large b

�

small b

x

(c) a moves critical points to the right;
b moves one critical point left, one up, one
right

(d) x = a, a ±
√
b

17 C has a = 1, B has a = 2, A has a = 3

19 (a)

1 3

0.5

x

y

�
b = 1

�

b = 2

�

b = 3

�

b = 4

(b) (1/b, 1/be)

21 Ax3 + Cx, Two

23 (a)

−10 10

−10

10
a = 0.5

a = 3

x

(b) −1 ≤ a ≤ 1

25 Flatten out, raises min

−5 5

1

10

x

y
a = 1

a = 2

a = 3

29 (a) x = −1/b
(b) Local minimum

31 k > 0

33 y = 3x−x
2
/2

35 y = 12/(1 + 2e−1.386x)

37 y = x3 − 3x2 + 6

39 y = (3/(2π)) sin(πt2/2)

41 y = e1−x + x

43 y = 2t + 18/t

45 (a) x = ea

(b) a = −1:

1 2 3

−1

1

x

a = 1:

1 2 3

−1

1

x

(c) Max at (ea−1, ea−1) for any a

49 (a) x = 0 and x = ±
√

−a/2

(b) For any a or b, x = 0 is crit pt.
Only crit pt if a ≥ 0
Local minimum

(c) If a is negative:
x = 0 is local max,

x = ±
√

−a/2 are local min
(d) No

51 (a) b = 20◦C, a = 180◦C
(b) k = (1/90)min−1

53

3aa 2a

(2a,−b/4)
(3a,−b/(27a))

U F

x

55 (a) Zero: r = B/A
Vertical asymptote:
r = 0

Horizontal asymptote:
f(r) = 0

(b) Minimum:(
3B/(2A),−4A3/(27B2)

)
Point of inflection:(

2B/A,−A3/(8B2)
)

(c)

B
A

( 3B
2A

, −4A3

27B2 )
( 2B

A
, −A3

8B2 )

f(r)

r

57 f(x) = x2 + 1 has no zeros

59 f(x) = kx(x − b)

61 One possibility:
f(x) = ax2, a �= 0

63 (a), (c)

Section 4.5
1 5.5 < q < 12.5 positive;

0 < q < 5.5 and q > 12.5 negative;
Maximum at q ≈ 9.5



1157

3 $5000, $2.40, $4

5 C(q) = 35,000 + 10q, R(q) = 15q,
π(q) = 5q − 35,000.

7 C(q) = 0.20q, R(q) = 0.25q,
π(q) = 0.05q

9 Global maximum of $6875 at q = 75

11 (a) q = 2500
(b) $3 per unit
(c) $3000

13 (a) Fixed costs
(b) Decreases slowly, then increases

15 Increased

17 (a) No
(b) Yes

19 L = [βpcKα/w]1/(1−β)

21 (a) and (b)

x

Optimal point on r(x)

Line through origin
is tangent here

�

�
R(x)

r(x)

23 (a) C(q) = 0.01q3 − 0.6q2 + 13q
(b) $1
(c) q = 30, a(30) = 4
(d) Marginal cost is 4

25 (a)

4

4



x2 + y2 = 1



x2 + y2 = 4



x2 + y2 = 9

x+ y = 4
x

y

(c) 8

27 (a)

2 4

2

4

�

C = 4

�

C = 3

�

C = 2

Q = x1/2y1/2

x

y

(c) 2
√
2

29 Maximum profit ≈ 13,000 units

31

C

R
x

y

33 (a)

Section 4.6
1 −0.32◦C/min; −0.262◦C/min

3 −81/R2

5 −1◦C minute

7 −4 newtons/sec

9 0.9 cm2/min

11 (a) −a/q2 dollars/cell phone
(b) −100a/q2 dollars/week; decreasing

13 24meters3/yr

15 (a) 1.19 meter2

(b) 0.0024 meter2/year

17 1.8 cm/min

19 1/16 cm/min

21 (a) CD − D2

(b) D < C

23 (a) 2A/r3−3B/r4; units of force/units of dis-
tance

(b) k(2A/r3 − 3B/r4); units of force/units of
time

25 (a) 0.218 m/sec
(b) 0.667 m/sec

27 0.038 meter/min

29 2513.3 cm3/sec

31 (a) −92.8V −2.4 atm/cm3

(b) Decreasing at 0.0529 atm/min

33 (a) 94.248 m2/min
(b) 0.0000267 m/min

35 (a) 80π = 251.327 sec
(b) V = 3πh3/25 cm3

(c) 0.0207 cm/sec

37 8/π meters/min

39 0.253 meters/second

41 (a) 0.04 gal/mile; 0.06 gal/mile
(b) 25 mpg; 16.67 mpg
(d) 1.4 gallons
(e) 2.8 gal/hour; 1.8 gal/hour

43 (a) k ≈ 0.067
(b) t ≈ 10.3 hours
(c) Formula:

T (24) ≈ 74.1◦F,
rule of thumb: 73.6◦F

45 2/ cos2 θ

47 (1/V )dV/dt

49 No

51 (b) (i) Brian’s affection decreases
(ii) Brian’s affection increases

(c) (i) Angela’s affection increases
(ii) Angela’s affection decreases

(d) Brian

53 dD/dt = 2 · dR/dt

55 y = f(x) = 2x + 1 and x = g(t) = 5t

57 True

59 (c)

Section 4.7
1 1/4

3 1.5

5 0

7 0

9 0

11 (1/3)a−2/3

13 0.01x3

15 e0.1x

17 Negative

19 Negative

21 0

23 0

25 ∞/∞, yes

27 none, no

29 none, no

31 1/2

33 1

35 2

37 Does not exist

39 ∞

41 e3

43 ∞

45 0.909297

47 Does not exist

49 e2

53 3

55
√
15

57 0

59 −1/6

61 1

63 ex dominates xn for all positive integers n

65 limx→0
x+1

x+2

67 False

Section 4.8
1 The particle moves on straight lines from (0, 1)

to (1, 0) to (0,−1) to (−1, 0) and back to
(0, 1)

3 Two diamonds meeting at (1, 0)

5 x = 3 cos t, y = −3 sin t, 0 ≤ t ≤ 2π

7 x = 2 + 5 cos t, y = 1 + 5 sin t,
0 ≤ t ≤ 2π

9 x = t, y = −4t + 7

11 x = −3 cos t, y = −7 sin t,
0 ≤ t ≤ 2π

13 Clockwise for all t

15 Clockwise: −
√

1/3 < t <
√

1/3

Counterclockwise: t < −
√

1/3 or t >√
1/3

17 Clockwise: 2kπ < t < (2k + 1)π
Counterclockwise: (2k − 1)π < t < 2kπ

19 Line segment:
y + x = 4 , 1 ≤ x ≤ 3

21 Line y = (x − 13)/3, left to right

23 Parabola y = x2 − 8x+ 13, left to right

25 Circle x2 + y2 = 9, counterclockwise

27 (y − 4) = (4/11)(x − 6)

29 y = −(4/3)x

31 Speed = 2|t|, stops at t = 0

33 Speed = ((2t − 4)2 + (3t2 − 12)2)1/2,
Stops at t = 2
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35

8 16 24 32
0

1 f(t)

t

x

8 16 24 32
0

1 g(t)

t

y

37 (a) The part of the line with
x < 10 and y < 0

(b) The line segment between
(10, 0) and (11, 2)

39 (a) Both parameterize line
y = 3x − 2

(b) Slope = 3
y-intercept = −2

41 (a) a = b = 0, k = 5 or −5
(b) a = 0, b = 5, k = 5 or −5
(c) a = 10, b = −10, k =

√
200 or −

√
200

43 A straight line through the point (3, 5)

45 (a) dy/dx = 4et

(b) y = 2x2

(c) dy/dx = 4x

47 (a) (i) t = −0.25 ln 3 = −0.275

(ii) No vertical tangent
(b) (3e2t − e−2t)/(e2t + e−2t)
(c) 3

49 (a)

5−5

4

−4

x

y

(b) x(π/4) = 5 and y(π/4) = 0;
x′(π/4) = 0 and y′(π/4) = −8

(c) Twice
(d) Parallel to y-axis, negative y direction
(e) 10

51 (a) No
(b) k = 1
(c) Particle B

53 (a) y + 1
2
= −

√

3

3
(x − π)

(b) t = π
(c) 0.291, concave up

55 (a) t = π/4; at that time, speed =
√

9/2

(b) Yes, when t = π/2 or t = 3π/2
(c) Concave down everywhere

57

x

y

−1 1

59

x

y

1

61 (b) For example:
R = 12, t = π

(c)

63 Gives circle centered at (0, 0)

65 x = t, y = 2t, 0 ≤ t ≤ 1

67 False

Chapter 4 Review
1

1 2 3 4 5 6

10
20
30
40
50 f(x)

x

Local max

Local min

Local and global max

Local and global min

Local max

3 (a) f ′(x) = 3x(x − 2)
f ′′(x) = 6(x − 1)

(b) x = 0
x = 2

(c) Inflection point: x = 1
(d) Endpoints:

f(−1) = −4 and f(3) = 0
Critical points:
f(0) = 0 and f(2) = −4

Global max:
f(0) = 0 and f(3) = 0

Global min:
f(−1) = −4 and f(2) = −4

(e) f increasing:
for x < 0 and x > 2
f decreasing:
for 0 < x < 2
f concave up:
for x > 1
f concave down:
for x < 1

|

−1

|
|

3

|
|

1

decreasing
concave down

| |
concave up

−4

incr. incr.

5 (a) f ′(x) =

− e−x sin x + e−x cosx
f ′′(x) = −2e−x cosx

(b) Critical points:
x = π/4 and 5π/4

(c) Inflection points:
x = π/2 and 3π/2

(d) Endpoints:
f(0) = 0 and f(2π) = 0

Global max:
f(π/4) = e−π/4(

√
2/2)

Global min:
f(5π/4) = −e−5π/4(

√
2/2)

(e) f increasing:
0 < x < π/4 and
5π/4 < x < 2π
f decreasing:
π/4 < x < 5π/4

f concave down:
for 0 ≤ x < π/2
and 3π/2 < x ≤ 2π
f concave up:
for π/2 < x < 3π/2

π
2 π

3π
2 2π

|
|

conc. down

|incr. decreasing

| concave up

|
|

increasing

conc. down |
|

x

7 limx→∞ f(x) = ∞
limx→−∞ f(x) = −∞

(a) f ′(x) = 6(x− 2)(x − 1)
f ′′(x) = 6(2x − 3)

(b) x = 1 and x = 2
(c) x = 3/2
(d) Critical points:

f(1) = 6, f(2) = 5
Local max: f(1) = 6
Local min: f(2) = 5
Global max and min: none

(e) f increasing: x < 1 and x > 2
Decreasing: 1 < x < 2
f concave up: x > 3/2
f concave down: x < 3/2

1 2

5
6

f(x) = 2x3 − 9x2 + 12x+ 1

x
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9 limx→−∞ f(x) = −∞
limx→∞ f(x) = 0

(a) f ′(x) = (1 − x)e−x

f ′′(x) = (x − 2)e−x

(b) Only critical point is at x = 1
(c) Inflection point: f(2) = 2/e2

(d) Global max: f(1) = 1/e
Local and global min: none

(e) f increasing: x < 1
f decreasing: x > 1
f concave up: x > 2
f concave down: x < 2

1 2
x

f(x) = xe−x

11 Max: 22.141 at x = π;
Min: 2 at x = 0

13 Max: 1 at x = 0;
Min: Approx 0 at x = 10

15 Global max = 1 at t = 0
No global min

17 Local max: f(−3) = 12
Local min: f(1) = −20
Inflection pt: x = −1
Global max and min: none

−3 1

−20

12 f(x) = x3 + 3x2 − 9x− 15

x

19 Global and local min: x = 2
Global and local max: none
Inflection pts: none

2

f(x) = x− lnx

x

21 Local max: f(−2/5)
Global and local min: f(0)
Inflection pts: x = (−2 ±

√
2)/5

Global max: none

−0.4

f(x) = x2e5x

x

23 Max: r = 2
3
a; Min: r = 0, a

25 A has a = 1, B has a = 2, C has a = 3

27 (a) Critical points: x = 0, x =
√
a,

x = −
√
a

Inflection points: x =
√

a/3,

x = −
√

a/3

(b) a = 4, b = 21

(c) x =
√

4/3, x = −
√

4/3

29 Domain: All real numbers except x = b;
Critical points: x = 0, x = 2b

31 18

33 (a) C(q) = 3 + 0.4q m
(b) R(q) = 0.5q m
(c) π(q) = 0.1q − 3 m

35 2.5 gm/hr

37 Line y = −2x + 9, right to left

39 (a) x3

(b) x1, x5

(c) x2

(d) 0

41

f has crit. pt.
Neither max or min

f has a
local min.

f ′(x)

43 y = x3 − 6x2 + 9x + 5

45 y = 3x−1/2 ln x

47 y = 2xe(1−x
2)/2

49 x =
√

8/3 cm, h =
√

2/3 cm

51 r = h =
√

8/3π cm

53 −4.81 ≤ f(x) ≤ 1.82

55 Max: m = −5k/(12j)

57 (a) t = 0 and t = 2/b
(b) b = 0.4; a = 3.547
(c) Local min: t = 0; Local max: t = 5

59

� y = − 1
2
x3

�a = −2
�a = 0 �a = 2

�a = 4
�a = 6

61 1.688 mm/sec away from lens

63 Minimum: −2 amps
Maximum: 2 amps

65 Max area = 1(
± 1

√

2
, 0
)
;
(
± 1

√

2
, 1

√

2

)
67 (0.59, 0.35)

69 r =
√

2A/(4 + π);

h = A

2
·

√
4+π

√

2A
− π

4
·

√

2A√
4+π

71 40 feet by 80 feet

73 (a) π(q) max when
R(q) > C(q) and R and Q are farthest
apart

q0

C(q)

R(q)

�
maximum π(q)

q

$

(b) C′(q0) = R′(q0) = p
(c)

q0

p

q

C′(q)
$

75 About 331 meters, Maintain course

77 (a) g(e) is a global maximum;
there is no minimum

(b) There are exactly two solutions
(c) x = 5 and x ≈ 1.75

79 (a)

d(t)

t

depth of water

slope = K

(b) depth of water

t

d(t)

81 −0.0545 m3/min

83 0/0, yes

85 −1/2

87 −1/6

89 1/π ≈ 0.32μm/day

91 (a) Angular velocity
(b) v = a(dθ/dt)

93 dM/dt = K(1 − 1/(1 + r))dr/dt

95 Height: 0.3/(πh2) meters/hour
Radius: (0.3/

√
3)/(πh2) meters/hour

97 (a) Increasing
(b) Not changing
(c) Decreasing

99 398.103 mph

101 (a) Decreases
(b) −0.25 cm3/min



1160

103 (a)

1/a

−2

2

x

y

a = 0.5

1/a

−2

2

a = 1

x

y

1/a

−2

2

a = 2

x

y

(b) Same graph all a

x

dy/dx

(c) dy/dx simplifies to
√
x/(2x(1 + x))

105 (a) 1/
√
x2 − 1

107 (a) dy/dx =
tan(x/2)

2
√

(1−cos x)/(1+cos x)

(b) dy/dx = 1/2 on 0 < x < π
dy/dx = −1/2 on π < x < 2π

−4π −2π 2π 4π

−0.5

0.5

x

y

Section 5.1
1 (a) Left sum

(b) Upper estimate

(c) 6
(d) Δt = 2
(e) Upper estimate ≈ 24.4

3 (a) 408
(b) 390

5 Between 140 and 150 meters

7 (a) Always same direction; speeding up, then
slowing down

(b) Overestimate = 15 cm; Underestimate =
6 cm

9 0 cm, no change in position

11 15 cm to the left

13 (a) 2; 15, 17, 19, 21, 23; 10, 13, 18, 20, 30
(b) 122; 162
(c) 4; 15, 19, 23; 10, 18, 30
(d) 112; 192

15 (a) Lower estimate = 5.25 mi
Upper estimate = 5.75 mi

(b) Lower estimate = 11.5 mi
Upper estimate = 14.5 mi

(c) Every 30 seconds

17 1/5

19 0.0157

21 (a)

3 6

−96

96

v(t)

t

(b) 3 sec, 144 feet
(c) 80 feet

23 (a) 14.73 minutes
15.93 minutes

(b) 0.60 minutes

25 (a) A: 8 hrs
B: 4 hrs

(b) 100 km/hr
(c) A: 400 km

B: 100 km

27 (a)

5

50

v(t)

t

(b) 125 feet
(c) 4 times as far

29 v(t) = 32t ft/sec
For Δt = 1:

Right sum = 320 feet
Left sum = 192 feet
Precise dist = 256 feet

31 About 335 feet

33 If the acceleration is large the difference between
the estimates can be large.

35 f(x) = 10x, [a, b] = [0, 1]

37 True

39 (a) 3 ≤ t ≤ 5, 9 ≤ t ≤ 10
(b) 3600 ft east
(c) At t = 8 minutes
(d) 30 seconds longer

Section 5.2
1 (a) Right

(b) Upper
(c) 3
(d) 2

3 (a) Left; smaller

(b) 0, 2, 6, 1/3

5 28.5

7 1.4936

9 0.3103

11 17,000, n = 4, Δx = 10

13 543

15 60

17 −40

19 (a) 13
(b) 1

21 (a) 16.25
(b) 15.75
(c) No

23 1

25 1.977

27 24.694

29 (a) 13
(b) −2
(c) 11
(d) 15

31 (a) −2
(b) −A/2

33 (a)

−2 1

2

x

y
y = f(x)

A1

A2

(b) 3.084
(c) 2.250

35 Positive

37 (a) (ln 1.5)0.5

1.5 21
x

lnx

(b) (ln 1.5)0.5 + (ln2)0.5

1.5 21
x

lnx

(c) Right: overestimate
left: underestimate

39 (a) 78

3 6

20

40

x

y

y = x2 + 1
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(b) 46; underestimate

3 6

20

40

x

y

y = x2 + 1

(c) 118; overestimate

3 6

20

40

x

y

y = x2 + 1

41 Left-hand sum = 1.96875
Right-hand sum = 2.71875
The most the estimate could be off is 0.375

43

a b

y

x

45 (c) n ≥ 105

47 Too many terms in sum

49 f(x) = 2 − x

51 False

53 False

55 False

57

0.4 10

5

f(x)

x

Section 5.3
1 Dollars

3 Foot-pounds

5 Change in velocity; km/hr

7 Change in salinity; gm/liter

9
∫

3

1
2t dt = 8

11
∫

5

1
1/t dt = ln 5

13
∫

3

2
7 ln(4) · 4t dt = 336

15 (a) 3x2 + 1

(b) 10

17 (a) sin t cos t
(b) (i) ≈ 0.056

(ii) 1
2
(sin2(0.4) − sin2(0.2))

19 (a) Removal rate 500 kg/day on day 12
(b) Days, days, kilograms
(c) 4000 kg removed between day 5 and day 15

21 (a)
∫

2

0
R(t) dt

(b)

1 2

1

2

R(t)

(0, 2)

(1, 1.6)

(2, 1)

t

(c) lower estimate: 2.81
upper estimate: 3.38

23 (a)
∫

5

0
f(t) dt

(b) 177.270 billion barrels
(c) Lower estimate of year’s oil consumption

25 (a) Upper estimate: 340 liters
Lower estimate: 240 liters

(b)

5 10 15

12
16
20
24

t

r(t)

27 $2392.87

29 About $13,800

31 45.8◦C.

33 f(1) < f(0)

35 12 newton · meters

37 (iii) < (ii) < (i) < (iv)

39 0.732 gals, 1.032 gals;
Better estimates possible

41
∫

3t0

2t0

r(t) dt <
∫

2t0

t0

r(t) dt <∫
2t0

0
r(t) dt

43 0.14

45 1.53

47 0.5; cost of preparing is $0.5 million

49
∫

4

2
r(t) dt >

∫
2

0
r(t) dt

51
∫

8

0
r(t) dt < 64 million

53 d

dx
(
√
x) �=

√
x

55

1 2 3 4

50

t (hours)

velocity
(miles/hour)

Section 5.4
1 10

3 9

5 2c1 + 12c22

7 2

9 2

11 (a) 8.5
(b) 1.7

13 4.389

15 0.083

17 7.799

19 0.172

21 (a) 2
(b) 12, 2
(c) 0, 0

23 (a)
∫

b

a

1 dx = b − a

(b) (i)
∫

5

2
1 dx = 3

(ii)
∫

8

−3
1 dx = 11

(iii)
∫

3

1
23 dx = 46

25 $6080

27 30

29 0

31 14/3

33 (a) −4
(b) (ii)

35 (a) 140.508 million
(b) 142.743 million
(c) Graph below secant line

39

a b

f(x)

�

�
f(b)− f(a)

x

41

a b

f(x)

x

43 (viii) < (ii) < (iii) < (vi) < (i) <
(v) < ( iv) < (vii)

45 (b) 0.64

47 Not enough information

49 5

51 25

53 (a)

−1

1

A

B

C

D
x

(b) Largest to smallest:
n = 1, n = 3,
n = 4, and n = 2

55

a b

�

�
F (b)− F (a)

F (x)

x
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59
∫

b

a

(5 + 3f(x)) dx = 5(b − a) +

3
∫

b

a

f(x) dx

61 f(x) = −1

63 (1/5)
∫

5

0
v(t) dt, where v(t) miles/hr at t

hours

65 False

67 True

69 True

71 False

73 True

75 False

77 True

79 (a) Does not follow
(b) Follows
(c) Follows

Chapter 5 Review
1 (a) Lower estimate = 122 ft

Upper estimate = 298 ft
(b)

2 4 6

20

40

60

80

t

v

3 20

5 396

7 (a) Upper estimate = 34.16 m/sec
Lower estimate = 27.96 m/sec

(b) 31.06 m/sec;
It is too high

9
∫

1

−2
(12t3 − 15t2 + 5) dt = −75

11 36

13 1.142

15 13.457

17
∫

1

−1
|x|dx = 1

19 (a) 260 ft
(b) Every 0.5 sec

21 0.399 miles

23 (a) Emissions 1970–2000, m. metric tons
(b) 772.8 million metric tons

25 (a) Overestimate = 7 tons
Underestimate = 5 tons

(b) Overestimate = 74 tons
Underestimate = 59 tons

(c) Every 2 days

27 (a) (1/5)
∫

5

0
f(x) dx

(b) (1/5)(
∫

2

0
f(x) dx−

∫
5

2
f(x) dx)

29 (a) f(1), f(2)
(b) 2, 2.31, 2.80, 2.77

31 (a) F (0) = 0
(b) F increases
(c) F (1) ≈ 0.7468

F (2) ≈ 0.8821
F (3) ≈ 0.8862

33 4

35 3

37 3

39 (a) Odd integrand; areas cancel
(b) 0.4045
(c) −0.4049
(d) No. Different sized rectangles

41 (a) 21,000 megawatts; 189,525.284
megawatts

(b) 22%
(c) 76,602.402 megawatts

43
∫

0.5T

0
r(t)dt >

∫
T

0.5T
r(t) dt

45
∫

T
h

0
r(t) dt <

∫
0.5T

0
r(t) dt

47 30/7

49 V < IV < II < III < I
I, II, III positive
IV, V negative

51 2.5; ice 2.5 in thick at 4 am

53 (a) 2
∫

2

0
f(x) dx

(b)
∫

5

0
f(x)dx −

∫
5

2
f(x)dx

(c)
∫

5

−2
f(x) dx− 1

2

∫
2

−2
f(x) dx

55 (a) At t = 17, 23, 27 seconds
(b) Right: t = 10 seconds

Left: t = 40 seconds
(c) Right: t = 17 seconds

Left: t = 40 seconds
(d) t = 10 to 17 seconds,

20 to 23 seconds, and
24 to 27 seconds

(e) At t = 0 and t = 35

57 About 48 feet

59 (a) 300 m3/sec
(b) 250 m3/sec
(c) 1996: 1250 m3/sec

1957: 3500 m3/sec
(d) 1996: 10 days

1957: 4 months
(e) 109 meter3

(f) 2 · 1010 meter3

61 Overestimate

63 Overestimate

65 (a)
∫

T

0
(f(t) − Hmin) dt

(b) T ≈ 11 days

67 (a)
∑

n

i=1
i4/n5

(b) (6n4 + 15n3 + 10n2 − 1)/30n4

(c) 1/5

69 (a)
∑

n−1

i=0
(n + i)/n2

(b) 3/2 − 1/(2n)
(c) 3/2
(d) 3/2

71 (a)
∑

n

i=1
sin(iπ/n)π/n

(b) π cos(π/2n)/n sin(π/2n)
(c) 2
(d) 2

73 (a) − ln(1 + a2b)/2b + ln(1 + c2b)/2b
(b) ln(1 + bx2)/2b

Section 6.1
1 (a) Increasing

(b) Concave up

3 1, 0,−1/2, 0, 1

5

1

1

F (0) = 1

F (0) = 0

x

7

1

1

x

F (0) = 0

F (0) = 1

9

1

1

F (0) = 1

F (0) = 0

x

11

1

1

x

F (0) = 0

F (0) = 1

13 128, 169, 217

15 Oscillates between x = 5 and x = 15

1 2 3 4 5 6

5

10

15

t (hr)

x (km)

17

t1 t2 t3 t4t5

2

t

y

19 Critical points: (0, 5), (2, 21), (4, 13), (5, 15)

1 2 3 4 5

5

10

15

20 G(t)

(2, 21)

(4, 13)

(0, 5)

(5, 15)

t

y

21

2 4 6 8
t (minutes)

adrenaline
concentration (μg/ml)
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23 x1 local max;
x2 inflection pt;
x3 local min

x1 x2 x3

F (x)

x

25 x2, x3 inflection pts

x1 x2 x3

F (x)

x

27 Maximum = 6.17 at x = 1.77

29 (a) 0; 3000; 12,000; 21,000; 27,000; 30,000
(b)

10 20 30 40 50

10,000

20,000

30,000

x

y

31 Statement has f(x) and F (x) reversed

33 f(x) = 1 − x

35 True

Section 6.2
1 5x

3 x3/3

5 2z3/2/3

7 −1/t

9 −1/(2z2)

11 ez

13 2t3/3 + 3t4/4 + 4t5/5

15 t2/2 + ln |t|

17 3t2 + C

19 x3/3 − 2x2 + 7x+ C

21 t4/4 + 5t2/2 − t + C

23 − cosx + sin x + C

25 2t1/2 + C

27 −5/(2x2) + C

29 F (x) = 3x
(only possibility)

31 F (x) = −7x2/2
(only possibility)

33 F (x) = x2/8
(only possibility)

35 F (x) = (2/3)x3/2

(only possibility)

37 (5/2)x2 + 7x + C

39 2t + sin t + C

41 3ex − 2 cosx + C

43 (5/3)x3 + (4/3)x3/2 + C

45 16
√
x + C

47 ex + 5x + C

49 (2/5)x5/2 − 2 ln |x|+ C

51 36

53 −(
√
2/2) + 1 = 0.293

55 3e2 − 3 = 19.167

57 1 − cos 1 ≈ 0.460

59 16/3 ≈ 5.333

61 5.500 ft

63 (a) −60 revs/min2

(b) 5.83 min
(c) 1020.83 revs

65 9

67
√
3 − π/9

69 (a) 253/12
(b) −125/12

71 8/3

73 1.257

75 c = 3/4

77 2

79 −104/27

81 (a) xx = (elnx)x = ex ln x

(b) d

dx
(xx) = xx(ln x+ 1)

(c) xx + C
(d) 3

83 5 to 1

85 All n �= −1

87 f(x) = −1

89 True

91 False

93 True

95 False

Section 6.3
3 y = x2 + C

5 y = x4/4 + x5 + C

7 y = sin x + C

9 y = x3 + 5

11 y = ex + 6

13 80.624 ft/sec downward

15 10 sec

17 (a) R(p) = 25p − p2

(b) Increasing for p < 12.5
Decreasing for p > 12.5

19 (a) a(t) = −9.8 m/sec2

v(t) = −9.8t + 40 m/sec
h(t) = −4.9t2 + 40t + 25 m

(b) 106.633 m; 4.082 sec
(c) 8.747 sec

21 (a) 32 ft/sec2

(b) Constant rate of change
(c) 5 sec
(d) 10 sec
(e)

5

Highest
point

10

Ground

−160

160
v(t)

A
t (sec)

velocity (ft/sec)

(f) Height = 400 feet

(g) v(t) = −32t + 160
Height = 400 feet

23 5/6 miles

25 −33.56 ft/sec2

27 (a) y = − cosx + 2x + C

−2π −π 2ππ

−15

−5

−10

10

15

5

x

y

C = −20

C = −15

C = −10

C = −5
C = −1.99
C = 0

C = 5

C = 10

C = 15

C = 20

(b) y = − cosx + 2x − 1.99

29 (a) 80 ft/sec
(b) 640 ft

31 128 ft/sec2

33 10 ft; 4 sec

35 v = −gt + v0
s = −gt2/2 + v0t + s0

37 (a) t = s/( 1
2
vmax)

39 (a) First second: −g/2
Second: −3g/2
Third: −5g/2
Fourth: −7g/2

(b) Galileo seems to have been correct

41 If y = cos(t2), dy/dt �= − sin(t2)

43 dy/dx = 0

45 dy/dx = −5 sin (5x)

47 True

49 False

51 True

53 True

Section 6.4
3 (a) Si(4) ≈ 1.76

Si(5) ≈ 1.55
(b) (sin x)/x is negative on that interval

5 f(x) = 5 +
∫

x

1
(sin t)/t dt

7

x

F (x)

9

x

F (x)

11 cos(x2)

13 (1 + x)200

15 arctan(x2)

17 Concave up x < 0, concave down x > 0

19 F (0) = 0
F (0.5) = 0.041
F (1) = 0.310
F (1.5) = 0.778
F (2) = 0.805
F (2.5) = 0.431
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21 Max at x =
√
π;

F (
√
π) = 0.895

23 500

25 (a) 0
(b)

π

−1

1 sin 2t

x

(c) F (x) ≥ 0 everywhere
F (x) = 0 only at integer multiples of π

27 (a) R(0) = 0, R is an odd function.
(b) Increasing everywhere
(c) Concave up for x > 0, concave down for

x < 0.
(d)

−10 10

−35

35
R(x)

x

(e) 1/2

29 2.747

31 1.99, overestimate; or 1.85, underestimate

33 w′(0.4) = 3.9; exact

35 2x ln(1 + x4)

37 −2 sin(
√
2t)

39 erf(x) + (2/
√
π)xe−x

2

41 3x2e−x
6

43 d

dx

∫
5

0
t2 dt = 0

45 Local min at x = −1 and x = 3

47 G(x) =
∫

x

7
etdt

49 True

51 False

53 True

Chapter 6 Review
3

1 2 3

1

2

3

x

F (x)

5 (a) −19
(b) 6

7 x4/4 + C

9 x4/4 − 2x + C

11 −4/t + C

13 8w3/2/3 + C

15 sin θ + C

17 x2/2 + 2x1/2 + C

19 3 sin t + 2t3/2 + C

21 tan x + C

23 (1/2)x2 + x + ln |x|+ C

25 2x/ ln 2 + C

27 2ex − 8 sin x + C

29 4

31 x4/4 + +2x3 − 4x + 4.

33 ex + 3

35 sin x + 4

39 x4/4 + 5x + C

41 8t3/2/3 + C

43 2x3 + 2x2 − 14

45 −16t2 + 100t + 50

47 − cos(t3)

49 (0, 1); (2, 3); (6,−4); (8, 0)

4 8

(0, 1)

(2, 3)

(6,−4)

(8, 0)
x

F (x)

51 (a) x = 1, x = 3
(b) Local min at x = 1, local max at x = 3
(c)

1 2 3 4

F (x)

x

53 (a) f(x) is greatest at x1

(b) f(x) is least at x5

(c) f ′(x) is greatest at x3

(d) f ′(x) is least at x5

(e) f ′′(x) is greatest at x1

(f) f ′′(x) is least at x5

55 21

57 1/20

59 1/3

61 4
√
2

63 2 sinh 1

65 c = 3

67 c = 6

69 0.4

71 16/3

73 3x2 sin(x6)

75 2e−x
4

77 (a) f(t) = Q −
Q

A
t

(b) Q/2

79 (a) t = 2, t = 5
(b) f(2) ≈ 55, f(5) ≈ 40
(c) −10

81 (a) 14,000 revs/min2

(b) 180 revolutions

83 19.55 ft/sec2

85 (b) Highest pt: t = 2.5 sec
Hits ground: t = 5 sec

(c) Left sum:
136 ft (an overest.)

Right sum:
56 ft (an underest.)

(d) 100 ft

87 V (r) = (4/3)πr3

89 (b) t = 6 hours
(c) t = 11 hrs

5 10 15 20

bacteria

B
D

time (hours)

5 ≈ 1115 20

bacteria

B
D

time (hours)
N

91 Increasing; concave down

93 (a) Zeros: x = 0, 5; Critical points: x = 3
(b) Zeros: x = 1; Critical points: x = 0, 5

95 (a) Δx = (b − a)/n
xi = a + i(b − a)/n

(b) (b4 − a4)/4

97 (a) −(1/3) cos(3x), −(1/4) cos(4x),
−(1/3) cos(3x + 5)

(b) −(1/a) cos(ax + b)

99 (a) (1/2)(ln |x− 3| − ln |x− 1|),
(1/3)(ln |x− 4| − ln |x− 1|),
(1/4)(ln |x+ 3| − ln |x − 1|)

(b) (1/(b − a))(ln |x− b| − ln |x − a|)

Section 7.1
1 (a) (ln 2)/2

(b) (ln 2)/2

3 (1/3)e3x + C

5 −e−x + C

7 −0.5 cos(2x) + C

9 cos(3 − t) + C

11 (r + 1)4/4 + C

13 (1/18)(1 + 2x3)3 + C

15 (1/6)(x2 + 3)3 + C

17 (1/5)y5 + (1/2)y4 + (1/3)y3 + C

19 (1/3)ex
3+1 + C

21 −2
√
4 − x+ C

23 −(1/8)(cos θ + 5)8 + C

25 (1/7) sin7 θ + C

27 (1/35) sin7 5θ + C

29 (1/3)(ln z)3 + C

31 t + 2 ln |t| − 1/t + C

33 (1/
√
2) arctan(

√
2x) + C

35 2 sin
√
x + C

37 2
√
x+ ex + C

39 (1/2) ln(x2 + 2x + 19) + C

41 ln(ex + e−x) + C

43 (1/3) cosh 3t + C

45 (1/2) sinh(2w + 1) + C

47 1
3
cosh3 x+ C

49 (π/4)t4 + 2t2 + C

51 sin x2 + C

53 (1/5) cos(2 − 5x) + C

55 (1/2) ln(x2 + 1) + C
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57 0

59 1 − (1/e)

61 2e(e − 1)

63 2(sin 2 − sin 1)

65 40

67 ln 3

69 14/3

71 (2/5)(y + 1)5/2 − (2/3)(y + 1)3/2 + C

73 (2/5)(t + 1)5/2 − (2/3)(t + 1)3/2 + C

75 (2/7)(x − 2)7/2 + (8/5)(x − 2)5/2 +

(8/3)(x − 2)3/2 + C

77 (2/3)(t + 1)3/2 − 2(t + 1)1/2 + C

79 y = 3x

81 w = ez

83 1/(2
√
w)

85 Substitute w = sin x

87 Substitute w = sin x, w = arcsin x

89 Substitute w = x + 1, w = 1 +
√
x

91 e11 − e7

93 3

95 218/3

97 (g(x))5/5

99 − cos g(x) + C

101 w = 1 − 4x3, k = −1/12, n = 1/2

103 w = x2 − 3, k = 1, n = −2

105 k = 1/ ln 2, n = −1, w0 = 4, w1 = 35

107 w = −x2, k = −1/2

109 w = 0.5r, k = 2

111 w = 5t, k = 1/(5e4)

113 a = 1, b = −1, A = −1/π,w = cos(πt)

115 (a) Yes; −0.5 cos(x2) + C
(b) No
(c) No
(d) Yes; −1/(2(1 + x2)) + C
(e) No
(f) Yes; − ln |2 + cosx| + C

117 ln 3

119 e3(e6 − 1)/3

121 3 ln 3 − 2

123 (1/2) ln 3

2

0.54931

f(x) = 1
1+x

x

125 (a) 10
(b) 5

127 (a) 0
(b) 2/3

129 (a) (sin2 θ)/2 + C
(b) −(cos2 θ)/2 + C
(c) −(cos 2θ)/4 + C
(d) Functions differ by a constant

131 k = 1/2, w = ln(x2 + 1), a = ln 5, b =
ln 26

135 (a) I C(t) = 1.3t + 311

II C(t) = 0.5t + 0.015t2 + 311

III C(t) = 25e0.02t + 286

(b) I 402 ppm

II 419.5 ppm

III 387.380 ppm

137 (a) 6.9 billion, 7.8 billion
(b) 6.5 billion

139 (a) E(t) = 1.4e0.07t

(b) 0.2(e7 − 1) ≈ 219
million megawatt-hours

(c) 1972
(d) Graph E(t) and estimate t such that

E(t) = 219

141 (mg/k)t− (m2g/k2)(1− e−kt/m) + h0

143 (a) First case: 19,923
Second case: 1.99 billion

(b) In both cases, 6.47 yrs
(c) 3.5 yrs

145 Integrand needs extra factor of f ′(x)

147 Change limits of integration for substitution in
definite integral

149
∫

sin(x3 − 3x)(x2 − 1) dx

151 False

Section 7.2
1 (a) x3ex/3 − (1/3)

∫
x3exdx

(b) x2ex − 2
∫

xexdx

3 −t cos t + sin t + C

5 1
5
te5t − 1

25
e5t + C

7 −10pe(−0.1)p − 100e(−0.1)p + C

9 (1/2)x2 ln x− (1/4)x2 + C

11 (1/6)q6 ln 5q − (1/36)q6 + C

13 −(1/2) sin θ cos θ + θ/2 + C

15 t(ln t)2 − 2t ln t + 2t + C

17 (2/3)y(y + 3)3/2

− (4/15)(y + 3)5/2 + C

19 −(θ + 1) cos(θ + 1) + sin(θ + 1) + C

21 −x−1 lnx − x−1 + C

23 −2t(5 − t)1/2 − (4/3)(5 − t)3/2

− 14(5 − t)1/2 + C

25 r2[(ln r)2 − ln r + (1/2)]/2 + C

27 z arctan 7z − 1
14

ln(1 + 49z2) + C

29 (1/2)x2ex
2
− (1/2)ex

2
+ C

31 x cosh x − sinh x + C

33 5 ln 5 − 4 ≈ 4.047

35 −11e−10 + 1 ≈ 0.9995

37 π/4 − (1/2) ln 2 ≈ 0.439

39 π/2 − 1 ≈ 0.571

41 (a) Parts
(b) Substitution
(c) Substitution
(d) Substitution
(e) Substitution
(f) Parts
(g) Parts

43 w = 5 − 3x, k = −2/3

45 w = ln x, k = 3

47 2 arctan 2 − (ln 5)/2

49 2 ln 2 − 1

51 π

53 Integration by parts gives:
(1/2) sin θ cos θ + (1/2)θ + C

The identity for cos2 θ gives:
(1/2)θ + (1/4) sin 2θ + C

55 (1/2)eθ(sin θ + cos θ) + C

57 (1/2)θeθ(sin θ + cos θ) −

(1/2)eθ sin θ + C

59 xf ′(x) − f(x) + C

61 Integrate by parts choosing u = xn, v′ = ex

63 Integrate by parts, choosing
u = xn, v′ = sin ax

65 (a) A = a/(a2 + b2),
B = −b/(a2 + b2)

(b) eax(b sin bx +
a cos bx)/(a2 + b2) + C

67 3

69 −5

71 45.71 (ng/ml)-hours

73 (a) −(1/a)Te−aT + (1/a2)(1 − e−aT )
(b) limT→∞ E = 1/a2

75 (a) v = x, u′ = (2/
√
π)e−x

2
1, v′ = 1

(b) w = −x2, dw = −2xdx

(c) x erf(x) + (1/
√
π)e−x

2
+ C

77 u = ln t, v′ = t

79
∫

f(x)dx = xf(x)−
∫

xf ′(x) dx

81
∫

x3ex dx

83 True

85 False

Section 7.3
1 (1/6)x6 ln x − (1/36)x6 + C

3 −(1/5)x3 cos 5x + (3/25)x2 sin 5x +
(6/125)x cos 5x − (6/625) sin 5x + C

5 (1/7)x7 + (5/2)x4 + 25x + C

7 −(1/4) sin3 x cosx
− (3/8) sin x cosx + (3/8)x + C

9 ((1/3)x2 − (2/9)x + 2/27)e3x + C

11 ((1/3)x4 − (4/9)x3 +(4/9)x2 − (8/27)x
+ (8/81))e3x + C

13 (1/
√
3) arctan(y/

√
3) + C

15 (1/4) arcsin(4x/5) + C

17 (5/16) sin 3θ sin 5θ
+ (3/16) cos 3θ cos 5θ + C

19 1
2

sinx

cos2 x

+ 1
4
ln
∣∣ sinx+1

sinx−1

∣∣ + C

21 (1/34)e5x(5 sin 3x − 3 cos 3x) + C

23 −(1/2)y2 cos 2y + (1/2)y sin 2y
+ (1/4) cos 2y + C

25 1
21

(tan 7x/cos2 7x) + 2
21

tan 7x + C

27 − 1
2 tan 2θ

+ C

29 1
2
(ln |x+ 1| − ln |x + 3|) + C

31 −(1/3)(ln |z| − ln |z − 3|) + C

33 arctan(z + 2) + C

35 − cosx + (1/3) cos3 x + C

37 1
5
cosh5 x− 1

3
cosh3 x + C

39 −(1/9)(cos3 3θ) + (1/15)(cos5 3θ) + C

41 1
3
(1 −

√

2
2

)

43 9/8 − 6 ln 2 = −3.034

45 1/2

47 π/12

49 0.5398

51 k = 0.5, w = 2x + 1, n = 3

53 Form (i) with a = −1/6, b = −1/4, c = 5

55 Form (iii) with a = 1, b = −5, c = 6, n = 7
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57 a = 5, b = 4, λ = 2

61 (a) 0
(b) V0/

√
2

(c) 156 volts

63 Use V-26

65 1
4
e2x+1(sin(2x + 1) − cos(2x + 1)) + C

67 Table only has formulas for
∫

p(x) sin x dx

where p(x) polynomial

69
∫

1/ sin4 x dx

71 False

73 True

Section 7.4
1 (1/6)/(x) + (5/6)/(6 + x)

3 1/(w − 1) − 1/w − 1/w2 − 1/w3

5 −2/y + 1/(y − 2) + 1/(y + 2)

7 1/(2(s − 1))−1/(2(s + 1))−1/(s2 + 1)

9 −2 ln |5 − x|+ 2 ln |5 + x|+ C

11 ln |y − 1|+arctan y− 1
2
ln
∣∣y2 + 1

∣∣+C

13 ln |s| − ln |s + 2| + C

15 ln |x − 2| + ln |x + 1| + ln |x − 3| + K

17 2 ln |x − 5| − ln
∣∣x2 + 1

∣∣ + K

19 x3/3 + ln |x + 1| − ln |x + 2| + C

21 arcsin(x − 2) + C

23 (a) Yes; x = 3 sin θ
(b) No

25 w = 3x2 − x− 2, k = 2

27 a = −5/3, b = 4/5, c = −2/15, d =
−3/5

29 A = 3.5, B = −1.5, w = ex, dw =
exdx, r = 1, s = 7

31 x = (tan θ) − 1

33 y = (tan θ) − 3/2

35 z = (sin θ) + 1

37 w = (t + 2)2 + 3

39 (ln |x − 5| − ln |x− 3|)/2 + C

41 (− ln |x+ 7| + ln |x − 2|)/9 + C

43 ln |z| − ln |z + 1| + C

45 (1/3) ln |P/(1 − P )| + C

47 (3/2) ln |2y + 1| − ln |y + 1| + C

49 ln |x| + (2/x) − (1/2) ln
∣∣1 + x2

∣∣ +

2arctan x + K

51 z/(4
√
4 − z2) + C

53 arctan((x + 2)/3)/3 + C

55 −(
√
1 + x2)/x+ C

57 −
√
1 − 4x2/x− 2 arcsin(2x) + C

59 (1/6) ln |(
√
9 − 4x2 − 3)/(

√
9 − 4x2 +

3)| + C

61 −(1/4)
√
4 − x2/x+ C

63 (1/16)(x/
√
16 − x2) + C

65 5 ln 2

67 π/12 −
√
3/8

69 ln(1 +
√
2)

71 (ln |1 + x| − ln |1 − x|)/2 + C

73 ln |x| + ln
∣∣x2 + 1

∣∣ + K

75 (a) (ln |x − a| − ln |x− b|)/(a − b) + C
(b) −1/(x − a) + C

77 (a) (ln
∣∣x −

√
a
∣∣− ln
∣∣x +

√
a
∣∣)/(2√a)+

C
(b) −1/x + C
(c) (1/

√
−a) arctan(x/

√
−a) + C

79 (a) (k/(b − a)) ln |(2b − a)/b|
(b) T → ∞

81 1/(x − 1) term missing

83 f(x) = 1/(1 + x2)

85 P (x) = x, Q(x) = x2 + 1

87 False

89 (e)

Section 7.5
1 (a) Underestimate

a b
x

(b) Overestimate

a b
x

(c) Overestimate

a b
x

(d) Underestimate

a b
x

a b
x

3 (a) Underestimate

a b
x

(b) Overestimate

a b
x

(c) Underestimate

a b
x

(d) Overestimate

a b
x

a b
x

5 (a) Underestimate

a b
x

(b) Overestimate

a b
x
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(c) Overestimate

a b
x

(d) Underestimate

a b
x

a b
x

7 (a) 27
(b) 135
(c) 81
(d) 67.5

9 (a) MID(2)= 24;
TRAP(2)= 28

(b) MID(2) underestimate;
TRAP(2) overestimate

2 4

f(x) = x2 + 1

Area shaded
= MID(2)

x

2 4

f(x) = x2 + 1

Area shaded
= TRAP(2)

x

11 −2.2

13 0.1703

15 (a) (i) 0.8160

(ii) 0.7535

(iii) 0.7847

17 RIGHT < TRAP < Exact < MID < LEFT

19 RIGHT: over; LEFT: under

21 LEFT, TRAP: over; RIGHT, MID: under

23 (a) 16.392

(b) 2(43/2) = 16
(c) −0.392
(d) −0.00392
(e) 16.00392

25 (a) TRAP(4); 1027.5
(b) Underestimate

27 Large |f ′| gives large error

29 (a)

O Q

R
P = (1, 1)

√
2

1

1

(b) LEFT(5) ≈ 1.32350
error ≈ −0.03810
RIGHT(5) ≈ 1.24066
error ≈ 0.04474
TRAP(5) ≈ 1.28208
error ≈ 0.00332
MID(5) ≈ 1.28705
error ≈ −0.001656

35 RIGHT(10) = 5.556
TRAP(10) = 4.356
LEFT(20) = 3.199
RIGHT(20) = 4.399
TRAP(20) = 3.799

39 TRAP(n) approaches value of definite inte-
gral, not 0

41 Total time grows exponentially with
number of digits

43 f(x) = ex

45 False

47 True

49 False

51 True

53 False

55 False

Section 7.6
1 (a)

1
x

y

(b)

1
x

y

3 (a) 0.9596, 0.9995, 0.99999996
(b) 1.0

5 Diverges

7 −1

9 Converges to 1/2

11 1

13 ln 2

15 4

17 Does not converge

19 π/4

21 Does not converge

23 Does not converge

25 0.01317

27 1/ ln 3

29 1/3

31 Does not converge

33 Does not converge

35 (a) 0.421
(b) 0.500

37 The area is infinite

39 1/2

41 2/27

43 (b) t = 2
(c) 4000 people

45
√
bπ

47 π4/120

49 f(x) = g(x) = 1/x

51 f(x) = 1/x

53 True

55 False

57 True

59 True

61 True

Section 7.7
1 Converges; behaves like 1/x2

3 Diverges; behaves like 1/x

5 Diverges; behaves like 1/x

7 Converges; behaves like 5/x3

9 Converges; behaves like 1/x2

11 Does not converge

13 Converges

15 Does not converge

17 Converges

19 Converges

21 Converges

23 Converges

25 Does not converge

27 Converge

29 Converges for p < 1
Diverges for p ≥ 1

31 (a) et is concave up for all t

33 Converges

35 f(x) = 1/x2

37 f(x) = 3/(7x + 2)

39 True

Chapter 7 Review
1 (t + 1)3/3

3 5x/ ln 5

5 3w2/2 + 7w + C

7 − cos t + C

9 (1/5)e5z + C

11 (−1/2) cos 2θ + C

13 2x5/2/5 + 3x5/3/5 + C

15 −e−z + C

17 x2/2 + ln |x| − x−1 + C

19 (1/2)et
2
+ C

21 ((1/2)x2 − (1/2)x + 1/4)e2x + C
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23 (1/2)y2 ln y − (1/4)y2 + C

25 x(lnx)2 − 2x lnx
+ 2x + C

27 (1/3) sin3 θ + C

29 (1/2)u2 + 3u + 3 ln |u| − 1/u + C

31 tan z + C

33 (1/12)t12 − (10/11)t11 + C

35 (1/3)(ln x)3 + C

37 (1/3)x3 + x2 + ln |x| + C

39 (1/2)et
2+1 + C

41 (1/10) sin2(5θ) + C (other forms of answer
are possible)

43 arctan z + C

45 −(1/8) cos4 2θ + C

47 (−1/4) cos4 z +
(1/6) cos6 z + C

49 (2/3)(1 + sin θ)3/2 + C

51 t3et − 3t2et + 6tet − 6et + C

53 (3z + 5)4/12 + C

55 arctan(sinw) + C

57 − cos(ln x) + C

59 y − (1/2)e−2y + C

61 ln | ln x|+ C

63 sin
√
x2 + 1 + C

65 ueku/k − eku/k2 + C

67 (1/
√
2)e

√

2+3 + C

69 (u3 lnu)/3 − u3/9 + C

71 − cos(2x)/(4 sin2(2x))

+ 1
8
ln
∣∣ (cos(2x)−1)

(cos(2x)+1)

∣∣+ C

73 −y2 cos(cy)/c+ 2y sin(cy)/c2

+ 2 cos(cy)/c3 + C

75 1
34

e5x(5 cos(3x) + 3 sin(3x)) + C

77 (
√
3/4)(2x

√
1 + 4x2

+ ln |2x+
√
1 + 4x2|) + C

79 x2/2 − 3x − ln |x+ 1|
+ 8 ln |x+ 2|+ C

81 (1/b) (ln |x| − ln |x + b/a|) + C

83 (x3/27) + 2x − (9/x) + C

85 −(1/ ln 10)101−x + C

87
(
(1/2)v2 − 1/4

)
arcsin v+

(1/4)v
√
1 − v2 + K

89 z3/3 + 5z2/2 + 25z
+ 125 ln |z − 5| + C

91 (1/3) ln | sin(3θ)|+ C

93 (2/3)x3/2 + 2
√
x+ C

95 (4/3)(
√
x + 1)3/2 + C

97 −1/(4(z2 − 5)2) + C

99 (1 + tan x)4/4 + C

101 ex
2+x + C

103 −(2/9)(2 + 3 cosx)3/2 + C

105 sin3(2θ)/6 − sin5(2θ)/10 + C

107 (x + sin x)4/4 + C

109 1
3
sinh3 x+ C

111 49932 1
6

113 201,760

115 3/2 + ln 2

117 e − 2 ≈ 0.71828

119 −11e−10 + 1

121 3(e2 − e)

123 0

125 1
2
ln |x− 1| − 1

2
ln |x + 1| + C

127 (ln |x| − ln |L − x|)/L+ C

129 arcsin(x/5) + C

131 (1/3) arcsin(3x) + C

133 2 ln |x− 1| − ln |x+ 1| − ln |x|+ K

135 arctan(x+ 1) + C

137 (1/b) arcsin(bx/a) + C

139 (1/2)(ln |ex − 1| − ln |ex + 1|) + C

141 Does not converge

143 6

145 Does not converge

147 Does not converge

149 Converges to π/8

151 Converges to 2
√
15

153 Does not converge

155 Converges to value between 0 and π/2

157 Does not converge

159 e9/3 − e6/2 + 1/6

161 Area = 2
√
2

163 w = 3x5 + 2, p = 1/2, k = 1/5

165 A = 2/5, B = −3/5

167

∫
0.5ueu du;

k = 0.5, u = −x2

169 Substitute w = x2 into second integral

171 Substitute w = 1 − x2, w = ln x

173 w = 2x

175 5/6

177 (a) 3.5
(b) 35

179 11/9

181 Wrong; improper integral treated as
proper integral, integral diverges

183 RT(5) < RT(10) < TR(10) < Exact < MID(10)
< LF(10) < LF(5)

185 (a) 4 places: 2 seconds
8 places: ≈ 6 hours
12 places: ≈ 6 years
20 places: ≈ 600 million years

(b) 4 places: 2 seconds
8 places: ≈ 3 minutes
12 places: ≈ 6 hours
20 places: ≈ 6 years

187 (a) (k/L) ln 3
(b) T → ∞

189 (a) 0.5 ml
(b) 99.95%

191 (a) 360 degree-days
(b)

18

10

30

H = Hmin = 10

H = f(t) = 30
t = T = 18

S = Area = 360

t, days

H , ◦C

(c) T2 = 36

18 36

10

20

30

H = Hmin

H = g(t)t = T2

S = Area = 360

x

y

193 (a) (ln x)2/2, (ln x)3/3, (lnx)4/4

(b) (ln x)n+1/(n + 1)

195 (a) (−9 cosx + cos(3x))/12
(b) (3 sin x − sin(3x))/4

197 (a) x + x/(2(1 + x2)) − (3/2) arctan x
(b) 1 − (x2/(1 + x2)2) − 1/(1 + x2)

Section 8.1
1 (a)
∑

2xΔx

(b) 9

3 (a)
∑

(3 − y/2)Δy

(b) 9

5 15

7 15/2

9 (5/2)π

11 1/6

13
∫

9

0
4π dx = 36π cm3

15
∫

5

0
(4π/25)y2dy = 20π/3 cm3

17
∫

5

0
π(52 − y2) dy = 250π/3 mm3

19 Triangle; b, h = 1, 3

21 Quarter circle r =
√
15

23

1
x

y

1

1

x

y

25 (a)
∫

4

0
((12 − x) − 2x) dx = 24

(b)
∫

8

0
(y/2) dy+

∫
12

8
(12 − y) dy = 16+

8 = 24

27 (a)
∫

3

0
2x dx+

∫
5

3
6 dx = 9 + 12 = 21

(b)
∫

6

0
(5 − (y/2)) dy = 21

29 Cone, h = 12, r = 4

31 Hemisphere r = 2

33 36π = 113.097 m3

35 (a) 3Δx;∫
4

0
3 dx = 12 cm3
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�

�

3 cm

� �Δ x �

�

2 cm

(b) 8(1 − h/3)Δh;∫
3

0
8(1 − h/3) dh = 12 cm3

�

�
Δ h �

�w

�

�

4 cm
�

�

2 cm

37
∫

150

0
1400(160 − h) dh = 1.785 · 107 m3

39 Change to
∫

10

−10
π
(
102 − x2

)
dx

41 Region between positive x-axis, positive y-axis,
and y = 1 − x

43 False

45 True

Section 8.2
1 (a) 4π

∫
3

0
x2 dx

(b) 36π

3 (a) (π/4)
∫

6

0
(36 − y2) dy

(b) 36π

5 π/5

7 256π/15

9 π(e2 − e−2)/2

11 π/2

13 2π/15

15 2.958

17 2.302

19 π

21
√
42

23 ≈ 24.6

25 V =
∫

2

0
[π(9 − y3)2 − π(9 − 4y)2] dy

27 V =
∫

9

0
[π(2 + 1

3
x)2 − π22] dx

29 V =
∫

5

0
π((5x)2 − (x2)2) dx

31 V =
∫

5

0
π((4 + 5x)2 − (4 + x2)2) dx

33 3.820

35 (a) 16π/3
(b) 1.48

37 V = (16/7)π ≈ 7.18

x

y
(y = −1)



Radius = 1 + x3

39 V = (π2/2) ≈ 4.935

x

y

z

�

Radius = sinx

41 4π/5

43 8/15

45
√
3/8

47 V ≈ 42.42

49 V = (e2 − 1)/2

51 g(x) = 2 sin x,−2 sin x

53 2267.32 cubic feet

55 (a) Volume ≈ 152 in3

(b) About 15 apples

57 40, 000LH3/2/(3
√
a)

59 (a) dh/dt = −6/π
(b) t = π/6

61 (a) 4
∫

r

0

√
1 + (−x/y)2 dx

(b) 2πr

63
∫

4

0

√
1 + (4 − 2x)2 dx

65
∫ √

1/2

−

√
1/2

√
1 + 4x2e−2x2 dx

67 4.624 meters

69 (c) f(x) =
√
3x

71 Change to
∫

5

0

(
π(3x)2 − π(2x)2

)
dx

73 Greater than 32

75 Region bounded by y = 2x, x-axis, 0 ≤ x ≤
1

77 f(x) = x2

79 False

81 False

Section 8.3
1 (−1/2,

√
3/2)

3 (3,−
√
3)

5 (
√
2, π/4)

7 (2
√
2,−π/6)

9 (b)

−2 −1 1 2

−2

−1

1

2

x

y

(c) Cartesian:
(
√
3/4, 1/4);

(−
√
3/4, 1/4) or polar:

r = 1/2, θ = π/6 or 5π/6
(d)

−2 −1 1 2

−2

−1

1

2

x

y

11 Looks the same

13 Rotated by 90◦ clockwise

15 π/4 ≤ θ ≤ 5π/4;
0 ≤ θ ≤ π/4 and 5π/4 ≤ θ ≤ 2π

17
√
8 ≤ r ≤

√
18 and π/4 ≤ θ ≤ π/2

19 0 ≤ θ ≤ π/2 and 1 ≤ r ≤ 2/ cos θ

21 −1

23
√
2(eπ − eπ/2)

25

−1 1

−1

1

x

y

27 4π3

29 (a) r = 1/ cos θ; r = 2

(b) 1
2

∫
π/3

−π/3
(22 − (1/ cos θ)2) dθ

(c) (4π/3) −
√
3

31 2πa

33 (5π/6) + 7
√
3/8

35 (a)

1 2

1

2
r = 2 sin θ

r = 2 cos θ

θ = π/4

x

y

(b) (π/2) − 1

37 (a)

−2 2

−1.5

1.5
r =

√
2

r2 = 4 cos 2θ

x

y

(b) 2
√
3 − 2π/3

39 Horiz: (±1.633,±2.309); (0, 0)
Vert: (±2.309,±1.633); (0, 0)

41 (a) y = (2/π)x + (2/π)
(b) y = 1

43 21.256

47 2.828

49 Points are in quadrant IV
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51

r = 3 sin 2θ

x

y

53 r = 100

55 r = 1 + cos θ

Section 8.4
1 1 − e−10 gm

3 (a)

N∑
i=1

(2 + 6xi)Δx

(b) 16 grams

5 (b)
∑

N

i=1
[600 +

300 sin(4
√
xi + 0.15)](20/N)

(c) ≈ 11513

7 2 cm to right of origin

9 45

11 186,925

13 1 gm

15 (a) 3 miles
(b) 282,743

17 (a)
∫

5

0
2πr(0.115e−2r)dr

(b) 181 cubic meters

19 (a) πr2l/2
(b) 2klr3/3

21
∫

60

0
(1/144)g(t) dt ft3

23 x = 2

25 π/2

27 (a) Right
(b) 2/(1 + 6e − e2) ≈ 0.2

29 (a) 2/3 gm
(b) Greater than 1/2

��
Δx

1

x2

x

y

(c) x = 3/4 cm

33 x = (1 − 3e−2)/(2 − 2e−2) ≈ 0.343;
ȳ = 0

35 Density cannot be negative

37 δ(x) = x2, for − 1 ≤ x ≤ 1

39 δ(x) =

{
5, 0 ≤ x ≤ 1
1, 1 < x < 5
4, 5 ≤ x ≤ 10

41 δ(x) = 1

43 False

45 True

47 True

Section 8.5
1 30 ft-lb

3 1.333 ft-lb

5 27/2 joules

7 1.176 · 107 lb

9 20 ft-lb

11 1.489 · 1010 joules

13 3437.5 ft-lbs

15 6860 joules

17 784.14 ft-lb

19 1,058,591.1 ft-lbs

21 (a) 156,828 ft-lbs
(b) 313,656 ft-lbs
(c) 150,555 ft-lbs

23 27,788 ft-lbs

25 0.366(k + 1.077)gπ joules

27 (a) Force on dam

≈
∑

N−1

i=0
1000(62.4hi)Δh

(b)
∫

50

0
= 1000(62.4h) dh =

78,000,000 pounds

29 4,992,000 lbs

31 (a) 1.76 · 106 nt/m2

(b) 1.96 · 107
∫

180

0
h dh = 3.2 · 1011 nt

33 (a) 780,000 lb/ft2

About 5400 lb/in2

(b) 124.8
∫

3

−3
(12,500 − h)

√
9 − h2 dh

= 2.2 · 107 lb

35 Potential
= 2πσ(

√
R2 + a2 − R)

37 15231 ergs

39
GM1M2

l1l2
ln

(
(a + l1)(a + l2)

a(a + l1 + l2)

)
41 (2GMmy/a2)

(
y−1 − (a2 + y2)−1/2

)
43 Less than twice as much

45 Book raised given vertical distance

47 False

49 False

51 False

Section 8.6
1 C(1 + 0.03)25 dollars

3 C/e0.03(5) dollars

5
∫

15

0
C e0.02(15−t) dt dollars

7 ln(25,000/C)/30 per year

9 (a) Future value = $6389.06
Present value = $864.66

(b) 17.92 years

11 (a) $43, 645.71
(b) $20, 000.00
(c) $23, 645.71

13 4.621%/ yr

15 $4000/ yr; $21,034.18

17 $1000/ yr; $24,591.23

19

1 2
t (years from present)

$/year

21 (a) $5820 per year
(b) $36,787.94

23 Installments

25 3.641%/ yr

27 9.519%/ yr

29 (a) Option 1
(b) Option 1: $10.929 million;

Option 2: $10.530 million

31 In 10 years

33 (a)
∑

n−1

i=0
(2000 − 100ti)e

−0.1t
iΔt

(b)
∫

M

0
e−0.10t(2000 − 100t) dt

(c) After 20 years
$11,353.35

35 $85,750,000

39 (a) Less
(b) Can’t tell
(c) Less

41 Future value more than $20,000

43 PV requires integral

47 5%, $4761.90

Section 8.7
1 (a)-(II), (b)-(I), (c)-(III)

3

income

% of population
per dollar of income

income

% of population having
at least this income

5 pdf; 1/4

1
4

1

x

P (x)

7 cdf; 1

5

1/5

x

P (x)

9 cdf; 1/3

2 4

1
3

1
6

x

p(x)
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11 For small Δx around 70, fraction of families
with incomes in that interval about 0.05Δx

13 A is 300 kelvins;
B is 500 kelvins

15 (a) 0.9 m–1.1 m

19 (a) Cumulative distribution
increasing

(b) Vertical 0.2,
horizontal 2

21 (a) 22.1%
(b) 33.0%
(c) 30.1%
(d) C(h) = 1 − e−0.4h

23 (b) About 3/4

25 Prob 0.02Δx in interval around 1

27
∫

∞

−∞

p(t) dt �= 1

29 P (x) grows without bound as x → ∞, instead
of approaching 1

31 Cumulative distribution increasing

33 P (t) =

{
0, t < 0
t, 0 ≤ t ≤ 1
1, t > 1

35 P (x) = (x − 3)/4, 3 ≤ x ≤ 7

37 False

Section 8.8
5 Mean 2/3; Median 2 −

√
2 = 0.586

7 (a) 0.684 :1
(b) 1.6 hours
(c) 1.682 hours

9 (a) P (t) = Fraction of population who survive
up to t years after treatment

(b) S(t) = e−Ct

(c) 0.178

11 (a) p(x) = 1

15
√

2π
e
−

1
2

(
x−100

15

)2
(b) 6.7% of the population

13 (c) μ represents the mean of the distribution,
while σ is the standard deviation

15 (b)

17 (a) p(r) = 4r2e−2r

1 2 3

0.5

1

p(r)

r

1 2 3

0.5

1 P (r)

r

(b) Mean: 1.5 Bohr radii
Median: 1.33 Bohr radii
Most likely:

1 Bohr radius

19 Median cannot be 1 since all of the area is to the
left of x = 1

21 p(x) =

{
0 for x < 0

1 for 0 ≤ x ≤ 1

0 for x > 1

23 True

25 False

Chapter 8 Review
1

3 2
∫

r

−r

√
r2 − x2 dx = πr2

5 3772π/15 = 790.006

7 π(1 − e−4)/4 = 0.771

9 27π = 84.823

11 V =
∫

2

0
π(y3)2 dy

13 V =
∫

2

0

[
π(10 − 4y)2 − π(2)2

]
dy

15 V =
∫

2

0

[
π(4y + 3)2 − π(y3 + 3)2

]
dx

17 V = π

19 36π = 113.097 m3

21 2
∫

a

−a

√
1 + b2x2/(a2(a2 − x2)) dx

23 45.230

25 4.785

27 15.865

29
∫

1

0
f(x) dx < 1/2

31
∫

1

0
f−1(x) dx > 1/2

33
∫

1

0

√
1 + (f ′(x))2 dx >

√
2

35

2

4

y = 2
√
4− x2

x

y

2

−2

2
y =

√
4− x2

y = −
√
4− x2

x

y

37 V =
∫

25

0
π((8 − y/5)2 − (8 −

√
y)2) dy

39 (a) V = 5π/6
(b) V = 4π/5

41 (a) (1 − e−b)/b

(b) π(1 − e−2b)/(2b)

43 736π/3 = 770.737

45 2π/3

47 π2/2 − 2π/3 = 2.840

49 π/24

51 Area under graph of f from x = 0 to x = 3

53 e− e−1

55 (a) a = b/l
(b) (1/3)πb2l

57 Volume = 6π2

59 5π cubic inches/second

61 πa2

63 (a) (sin2 θ − cos2 θ)/(2 cos θ sin θ)
(b) π/4

65
∫

1

−2
π
(
(x − 1)2(x + 2)

)2
dx

67 (a) 2/3 gm
(b) Less than 1/2

� �
Δx

1

1

y =
√
x

y = x2

x

y

(c) x = y = 9/20 cm

69 100 ft-lbs

71 1,404,000 ft-lbs

73 20,617 ft-lbs

75 21,600 ft-lbs

77 49 kg

79 y = x4

81 B

83 $6.2828 billion

85 1.25 gallons

87 (a) y = h + (2 − 2h)x2

(b) Both events happen
simultaneously

89 The hoop rotating about the cylindrical axis

91 (a) 1
2
t
√
1 + 4t2 + 1

4
arcsinh (2t)

(b) t2

93 (b) (4π/3)(r2 − a2)3/2
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Section 9.1
1 0, 3, 2, 5, 4

3 2/3, 4/5, 6/7, 8/9, 10/11

5 1,−1/2, 1/4,−1/8, 1/16

7 sn = 2n+1

9 sn = n2 + 1

11 sn = n/(2n + 1)

13 Diverges

15 Converges to 3

17 Diverges

19 Converges to 2

21 Diverges

23 Converges to 0

25 (a) (IV)
(b) (III)
(c) (II)
(d) (I)

27 (a) (II)
(b) (III)
(c) (IV)
(d) (I)
(e) (V)

29 1, 3, 6, 10, 15, 21

31 1, 5, 7, 17, 31, 65

33 13,27,50,85

35 0.25, 0.00, 0.25, 1.00, 2.25, 4.00

37 0.841, 0.455, 0.047, −0.189, −0.192, −0.047

39 0, 0, 6, 6, 6, 0, 0 . . . and
0, 2, 4, 6, 4, 2, . . .

41 sn = sn−1 + 2, s1 = 1

43 sn = 2sn−1 − 1, s1 = 3

45 sn = sn−1 + n, s1 = 1

51 Converges to 0.5671

53 Converges to 1

55 (a) 2, 4, 2n

(b) 33 generations; overlap

57 (a) k rows; an = n
(b) Tn = Tn−1 + n, n > 1;T1 = 1

61 For all ε > 0, there is an N such
that |sn − L| < ε for all n ≥ N

63 Converges to 3/7

65 sn = −1/n

67 False

69 True

71 False

73 True

75 (b)

Section 9.2
1 Sequence

3 Sequence

5 Series

7 Series

9 No

11 Yes, a = 1, ratio = −1/2

13 Yes, a = 1, ratio = 2z

15 Yes, a = 1, ratio = −x

17 Yes, a = y2, ratio = y

19 26 terms; 2.222

21 9 terms; 0.0000222

23 54

25 80
√
2/(

√
2 − 1) = 273.137.

27 1/(1 − 3x),−1/3 < x < 1/3

29 2/(1 + 2z),−1/2 < z < 1/2

31 4 + y/(1 − y/3),−3 < z < 3

33 (a) Pn =
250(0.04) + 250(0.04)2

+ 250(0.04)3 + · · ·

+ 250(0.04)n−1

(b) Pn =
250 · 0.04(1− (0.04)n−1)/(1− 0.04)

(c) lim
n→∞

Pn ≈ 10.42

Difference between them is 250 mg

35

125

Q0 =
250

1 2 3 4 5 6

t (time,
days)

q (quantity, mg)

Q1 Q2 Q3 Q4 Q5

P1 P2 P3 P4 P5

37 (a) 14.916 years
(b) 6.25 % annual reduction in consumption

39 (a) (i) $16.43 million

(ii) $24.01 million
(b) $16.87 million

41 $65,742.60

43 $400 million

45 $900 million

49 |x| ≥ 1

51 1 + (−1) + 1 + (−1) + . . .

53
∑

∞

n=0
5(1/2)n

Section 9.3
1 1, 3, 6, 10, 15

3 1/2, 2/3, 3/4, 4/5, 5/6

5 Diverges

7 Converges

11 f(x) = (−1)x/x undefined

13 Diverges

15 Diverges

17 Converges

19 Converges

21 Converges

23 Diverges

25 Converges

27 Diverges

29 Diverges

31 Converges

35 (a) ln(n + 1)
(b) Diverges

37 (b) S3 = 1 − 1/4;S10 = 1 − 1/11;Sn =
1 − 1/(n + 1)

49 (a) 1.596
(b) 3.09
(c) 1.635; 3.13
(d) 0.05; 0.01

53 Terms approaching zero does not guarantee con-
vergence

55
∑

∞

n=1
1/n

57 True

59 False

61 True

63 False

65 (d)

Section 9.4
5 Behaves like

∑
∞

n=1
1/n2; Converges

7 Behaves like
∑

∞

n=1
1/n1/2; Diverges

9 Converges

11 Converges

13 Diverges

15 Converges

17 Converges

19 Converges

21 Alternating

23 Not alternating

25 Converges

27 Converges

29 Absolutely convergent

31 Divergent

33 Conditionally convergent

35 Conditionally convergent

37 Absolutely convergent

39 Converges

41 Converges

43 Diverges

45 Diverges

47 Converges

49 Terms not positive

51 Limit of ratios is 1

53 an+1 > an or limn→∞ an �= 0

55 limn→∞ an �= 0

57 Does not converge

59 Converges to approximately 0.3679

61 Converges

63 Diverges

65 Diverges

67 Converges

69 Diverges

71 Diverges

73 Converges

75 Diverges

77 Converges

79 Converges if a > 1 and diverges if a ≤ 1

81 Converges for 1/e < a < e; diverges for
a ≥ e and 0 < a ≤ 1/e

83 Converges

85 12 or more terms

87
∑

cn converges,
∑

an diverges

95 Converges

97 Limit of ratios is 1, so ratio test inconclusive

99
∑

∞

n=1
(−1)n/n

101 an = 3n

103 False

105 True

107 False

109 False
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111 True

113 True

115 True

117 True

Section 9.5
1 Yes

3 No

5 1 · 3 · 5 · · · (2n − 1)xn/(2n · n!); n ≥ 1

7 (−1)k(x − 1)2k/(2k)!; k ≥ 0

9 (x − a)n/(2n−1 · n!); n ≥ 1

11 1

13 1

15 2

17 2

19 1

21 1/4

23 1

25 (a) R = 1
(b) −1 < x ≤ 1

27 −3 < x < 3

29 −2 < x < 2

31 −∞ < x < ∞

33 −1/5 ≤ x < 1/5

35
∑

∞

n=0
(−2z)n,−1/2 < z < 1/2

37
∑

∞

n=0
3(z/2)n,−2 < z < 2

39 1

41 5 ≤ R ≤ 7

43 (a) False
(b) True
(c) False
(d) Cannot determine

45 (a) All real numbers
(b) J(0) = 1

(c) S4(x) = 1− x
2

4
+ x

4

64
− x

6

2304
+ x

8

147,456

(d) 0.765
(e) 0.765

47 (a) Odd; g(0) = 0
(c) sin x

49 Radius ∞, not 0

51
∑

∞

n=0
(x − 2)n/n

53
∑

xn/n2

55 True

57 True

59 False

61 True

63 False

65 False

67 (d)

Chapter 9 Review
1 3(211 − 1)/210

3 619.235

5 b5(1 − b6)/(1 − b) when b �= 1;
6 when b = 1

7 (317 − 1)/(2 · 320)

9 36, 48, 52, 53.333;
Sn = 36(1 − (1/3)n)/(1 − 1/3); S = 54

11 −810,−270,−630,−390;
Sn = −810(1 − (−2/3)n)/(1 + 2/3);

S = −486

13 Converges 4/7

15 Diverges

17 Converges

19 Converges

21 Converges

23 Diverges

25 Converges

27 Divergent

29 Divergent

33 Converges

35 Converges

37 Converges

39 Converges

41 Diverges

43 Diverges

45 Convergent

47 Converges

49 Converges

51 Diverges

53 Converges

55 Diverges

57 Diverges

59 ∞

61 1

63 −3 < x < 7

65 −∞ < x < ∞

67 sn = 2n + 3

69 9, 15, 23

71 Converges if r > 1, diverges if 0 < r ≤ 1

73 (a) All real numbers
(b) Even

75 240 million tons

77 $926.40

79 (a) $124.50
(b) $125

81 £250

83 (a) (i) B04
n

(ii) B02
n/10

(iii) (21.9)n

(b) 10.490 hours

85 5/6

87
∑

(3/2)n ,
∑

(1/2)n , other answers possi-
ble

89 Converges

91 Not enough information

93 Converges

95 (a) C0

C1

C2

C3

(b) 1/3+2/9+4/27+· · ·+(1/3)(2/3)n−1

(c) 1

97 12

Section 10.1
1 P3(x) = 1 + x+ x2 + x3

P5(x) = 1 + x+ x2 + x3

+ x4 + x5

P7(x) = 1 + x + x2 + x3

+ x4 + x5 + x6 + x7

3 P2(x) = 1 + (1/2)x − (1/8)x2

P3(x) = 1+(1/2)x−(1/8)x2+(1/16)x3

P4(x) = 1 + (1/2)x − (1/8)x2

+ (1/16)x3 − (5/128)x4

5 P2(x) = 1 − x2/2!
P4(x) = 1 − x2/2! + x4/4!
P6(x) = 1 − x2/2! + x4/4! − x6/6!

7 P3(x) = P4(x) = x − (1/3)x3

9 P2(x) = 1 − (1/2)x + (3/8)x2

P3(x) = 1 − (1/2)x + (3/8)x2

− (5/16)x3

P4(x) = 1 − (1/2)x + (3/8)x2

− (5/16)x3 + (35/128)x4

11 P3(x) = 1 − x

2
− x

2

8
− x

3

16

13 P4(x) = 1
3
[1 − x−2

3

+
(x−2)2

32
−

(x−2)3

33

+
(x−2)4

34
]

15 P3(x) =
√

2

2
[−1 +

(
x+ π

4

)
+ 1

2

(
x + π

4

)2
− 1

6

(
x + π

4

)3
]

17 1 − x/3 + 5x2/7 + 8x3

19 P2(x) = 4x2 − 7x + 2
f(x) = P2(x)

21 (a) If f(x) is a polynomial of degree n, then
Pn(x), the nth degree Taylor polynomial
for f(x) about x = 0, is f(x) itself

23 −3 + 5x − x2 − x4/24 + x5/30

25 c < 0, b > 0, a > 0

27 a < 0, b > 0, c > 0

31 (a) 1/2
(b) 1/6

33 (a) fs are Figure 10.9
gs are Figure 10.8

(b) A = (0, 1)
B = (0, 2)

(c) f1 = III, f2 = I, f3 = II
g1 = III, g2 = II, g3 = I

35 (a) 1 + 3x + 2x2

(b) 1 + 3x + 7x2

(c) No

37 (a) P4(x) = 1 + x2 + (1/2)x4

(b) If we substitute x2 for x in the Taylor poly-
nomial for ex of degree 2, we will get

P4(x), the Taylor polynomial for ex
2

of de-
gree 4

(c) P20(x) = 1 + x2/1! + x4/2!
+ · · · + x20/10!

(d) e−2x ≈ 1 − 2x+ 2x2

− (4/3)x3 + (2/3)x4 − (4/15)x5

39 (a) Infinitely many; 3
(b) That near x = 0

Taylor poly only accurate near 0

41 (b) 0, 0.2

43 f ′(0) = 1

45 p(x) = 1 + 3(x− 1) + (x− 1)3

47 False

49 False

51 False

53 True

Section 10.2
1 f(x) = 1 + 3x/2 + 3x2/8 − x3/16 + · · ·
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3 f(x) = −x+x3/3!−x5/5!+x7/7!+ · · ·

5 f(x) = 1 + x + x2

+ x3 + · · ·

7 f(y) = 1 − y/3 − y2/9
− 5y3/81 − · · ·

9 cos θ =
√
2/2 − (

√
2/2) (θ − π/4)

− (
√
2/4) (θ − π/4)2 +

(
√
2/12) (θ − π/4)3

− · · ·

11 sin θ = −
√
2/2 + (

√
2/2) (θ + π/4)

+ (
√
2/4) (θ + π/4)2

− (
√
2/12) (θ + π/4)3 + · · ·

13 1/x = 1 − (x− 1) +
(x− 1)2 − (x − 1)3 + · · ·

15 1
x

= −1 − (x+ 1)

− (x+ 1)2 − (x + 1)3

− · · ·

17 (−1)nxn; n ≥ 0

19 (−1)n−1xn/n; n ≥ 1

21 (−1)kx2k+1/(2k + 1); k ≥ 0

23 (−1)kx4k+2/(2k)!; k ≥ 0

25 −1 < x < 1

27 (a) −1 < x < 1
(b) 1

29 1

31 1

33 d

dx
(x2ex

2
)|x=0 = 0

d
6

dx
6 (x2ex

2
)|x=0 = 6!

2
= 360

35 e2

37 4/3

39 ln(3/2)

41 e3

43 e−0.1

45 e0.2 − 1

47 Only converges for −1 < x < 1

49 f(x) = cosx

51 False

53 True

55 True

Section 10.3
1 e−x = 1 − x + x2/2!

− x3/3! + · · ·

3 cos (θ2) = 1 − θ4/2! + θ8/4!
− θ12/6! + · · ·

5 arcsin x = x + (1/6)x3

+ (3/40)x5 + (5/112)x7 + · · ·

7 1/
√
1 − z2 = 1 + (1/2)z2 + (3/8)z4

+ (5/16)z6 + · · ·

9 φ3 cos(φ2) = φ3 − φ7/2!
+ φ11/4! − φ15/6! + · · ·

11 1 + 3x + 3x2 + x3

0 · xn for n ≥ 4

13 1 + (1/2)y2 + (3/8)y4 + · · · +
((1/2)(3/2) · · · (1/2 + n − 1)y2n)/n! +
· · ·;
n ≥ 1

15
√
T + h =

√
T (1 + (1/2)(h/T )

− (1/8)(h/T )2 + (1/16)(h/T )3 + · · ·)

17 1/(a + r)2 = (1/a2)(1 − 2(r/a)
+ 3(r/a)2 − 4(r/a)3 + · · ·)

19 a/
√
a2 + x2 = 1 − (1/2)(x/a)2 +

(3/8)(x/a)4

− (5/16)(x/a)6 + · · ·

21 et cos t = 1 + t − t3/3
− t4/6 + · · ·

23 1 + t + t2/2 + t3/3

25 (a) 2x + x3/3 + x5/60 + · · ·
(b) P3(x) = 2x + x3/3

27 1/(1 − x)2

29 1 + sin θ ≤ eθ ≤ 1/
√
1 − 2θ

31 (a) I
(b) IV
(c) III
(d) II

33 f(x) = (1/3)x3 − (1/42)x7 +
(1/1320)x11 − (1/75,600)x15 + · · ·

35 1

37 sinh 2x =
∑

∞

m=0
(2x)2m+1/(2m + 1)!

cosh 2x =
∑

∞

m=0
(2x)2m/(2m)!

39 (a) f(x) = 1 + (a − b)x
+ (b2 − ab)x2 + · · ·

(b) a = 1/2, b = −1/2

41 (a) If M >> m, then
μ ≈ mM/M = m

(b) μ = m[1− m/M + (m/M)2

− (m/M)3 + · · ·]
(c) −0.0545%

43 (a) ((l1 + l2)/c) ·
(v2/c2 + (5/4)v4/c4)

(b) v2 , (l1 + l2)/c
3

45 (a) Set dV /dr = 0, solve for r. Check for max
or min.

(b) V (r) = −V0

+ 72V0r
−2

0
· (r − r0)

2(1/2)
+ · · ·

(d) F = 0 when r − r0

47 Right hand missing a factor of 1/2

49 ln x

51 True

53 False

55 False

57 (c)

Section 10.4
1 |E3| ≤ 0.00000460, E3 = 0.00000425

3 |E3| ≤ 0.000338, E3 = 0.000336

5 |E4| ≤ 0.0156, E3 = −0.0112

7 |E3| ≤ 16.5, E3 = 0.224

9 (c)

−0.5 0.5

−0.03

0.03

x
E1

11 (a) 5
(b) 1.06

13 (a) Overestimate:
0 < θ ≤ 1

Underestimate:
−1 ≤ θ < 0

(b) |E2| ≤ 0.17

15 (a) Underestimate
(b) 1

17 (a) (i) 4, 0.2

(ii) 1
(b) −4 ≤ x ≤ 4

19 Four decimal places: n = 7
Six decimal places:n = 9

23 (a) π ≈ 2.67
(b) π ≈ 2.33
(c) |En| ≤ 0.78
(d) Derivatives unbounded near x = 1

25 Cannot make |f(x) − Pn(x)| < 1 for all x
simultaneously

27 1 − (x − 1) + (x − 1)2 − (x − 1)3

29 False

31 False

33 False

Section 10.5
1 Not a Fourier series

3 Fourier series

5 F1(x) = F2(x) = (4/π) sin x
F3(x) = (4/π) sin x + (4/3π) sin 3x

−π

π
−1

1

x

F1(x) = F2(x) =
4
π
sinx

−π

π
−1

1

x

F3(x) =
4
π
sinx+ 4

3π
sin 3x

7 99.942% of the total energy

9 Hn(x) =

π/4 +
∑

n

i=1
((−1)i+1 sin(ix))/i+∑

[n/2]

i=1
(−2/((2i − 1)2π)) cos((2i −

1)x),
where [n/2] denotes the biggest integer smaller
than or equal to n/2

−π π

π

� H1(x)
� H2(x)

� H3(x)

�h(x)

x

11 a0 = 1/2

13 (b) (1/7) sin 7x
(c) f(x) = 1 for 2π ≤ x < −π

f(x) = −1 for −π ≤ x < 0
f(x) = 1 for 0 ≤ x < π
f(x) = −1 for π ≤ x < 2π. . .
Not continuous

15 F4(x) = 1/2 − (2/π) sin(2πx)
− (1/π) sin(4πx)− (2/3π) sin(6πx)
− (1/2π) sin(8πx)

1

1 f(x) = x

F4(x)

x
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17 52.93

23 (a) 6.3662%, 18.929%
(b) (4 sin2(k/5))/(k2π2)
(c) 61.5255%
(d) F5(x) =

1/(5π) + (2 sin(1/5)/π) cosx
+ (sin(2/5)/π) cos 2x +
(2 sin(3/5)/(3π)) cos 3x
+ (sin(4/5)/(2π)) cos 4x +
(2 sin 1/(5π)) cos 5x

−3π−2π −π− 1
5
1
5

π 2π 3π

1

x

f(x)
F5(x)

25 The energy of the pulse train is spread out over
more harmonics as c gets closer to 0

33 a0 is average of f(x) on interval of approxima-
tion

35 Any odd function with period 2π

37 (b)

Chapter 10 Review
1 ex ≈ 1 + e(x − 1) + (e/2)(x − 1)2

3 sin x ≈ −1/
√
2 + (1/

√
2)(x + π/4)

+ (1/2
√
2)(x+ π/4)2

5 P3(x) = 4 + 12(x − 1)
+ 10(x − 1)2 + (x − 1)3

7 P3(x) =
√
2[1 + (x− 1)/4

− (x− 1)2/32 + (x − 1)3/128]

9 P7 = 3x − 9x3 + (27/2)x5 − (27/2)x7

11 t2 + t3 + (1/2)t4 + (1/6)t5 + · · ·

13 θ2 cos θ2 =
θ2 − θ6/2! + θ10/4! − θ14/6! + · · ·

15 t/(1 + t) = t − t2 + t3

− t4 + · · ·

17 1/
√
4 − x =

1/2+(1/8)x+(3/64)x2+(5/256)x3+
· · ·

19 a/(a+b) = 1−b/a+(b/a)2−(b/a)3 · · ·

21 (B2 + y2)3/2 = B3(1 + (3/2)(y/B)2

+ (3/8)(y/B)4 − (1/16)(y/B)6 + · · ·)

23 1.45

25 3/4

27 sin 2

29 (a) 7(1.02104 − 1)/
(0.02(1.02)100)

(b) 7e0.01

31 Smallest to largest:
1 − cosx, x

√
1 − x,

ln(1 + x), arctan x, sin x,
x, ex − 1

33 1/2

35 0.10008

37 0.9046

39 (a) arcsin x = x+ (1/6)x3 + (3/40)x5 +
(5/112)x7 + (35/1152)x9 + · · ·

(b) 1

41 (a)

−0.1 0.1

−0.01

0.01

x

y

y = x2

E1

(b)

−0.1

0.1

−0.001−0.001

x

y

y = x3

E2

43 (a) V (x) ≈ V (0) + V ′′(0)x2/2
V ′′(0) > 0

(b) Force ≈ −V ′′(0)x
V ′′(0) > 0
Toward origin

45 x − x2 + (3/2)x3 − (8/3)x4

47 P3(t) = t + t2/4 + (1/18)t3

49 (a) F = GM/R2 + Gm/(R + r)2

(b) F = GM/R2

+ (Gm/R2)(1 − 2 (r/R)
+ 3 (r/R)2 − · · ·)

51 (b) F = mg(1 − 2h/R + 3h2/R2

− 4h3/R3 + · · ·)
(c) 300 km

57 (b) If the amplitude of the kth harmonic of f is
Ak , then the amplitude of the kth harmonic
of f ′ is kAk

(c) The energy of the kth harmonic of f ′ is k2

times the energy of the kth harmonic of f

61 (a) P7(x) = x−x3/6+x5/120−x7/5040
Q7(x) = x − 2x3/3 + 2x5/15 −
4 x7/315

(b) For n odd, ratio of coefficients of xn is
2n−1

63 (a) P10(x) = 1 + x2/12 − x4/720+
x6/30240 − x8/1209600 +
x10/47900160

(b) All even powers
(c) f even

Section 11.1
1 Yes

3 (a) Not a solution
(b) Solution
(c) Not a solution

9 12, 18, 27, 40.5

11 x(t) = 5e3t

13 y =
√
2t + 7

19 k = 5

21 (a) C = 0 and any n; C �= 0 and n = 3
(b) C = 5 and n = 3

23 (b) A = k

25 (a) (IV)
(b) (III)
(c) (III), (IV)
(d) (II)

27 No

29 Q = 6e4t is particular solution, not general

31 dy/dx = x/y and y = 100 when x = 0

33 dy/dx = 2x with solutions y = x2 and
y = x2 + 5

35 dy/dx = 1/x

37 dy/dx = y − x2

39 False

41 False

43 False

45 True

47 False

Section 11.2
1 (a) 1; −1; 0; 3; −3; 0

(b)

1 2

1

2

x

y

3

−1 1

1

2

x

y

5 Possible curves:

y

x

y

x

7 First graph

9 (a)

−4 4

−4

4

x

y
i

iiiii

(b) y = −x − 1
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11

2

5

t

P

13 (a)

(−5, 1)

(−2, 10)

(−2, 12)

(0, 0)

(1, 4)

(4, 1)

t

P

(b) Incr: 0 < P < 10; decr: P > 10; P tends
to 10

15 Slope field (b)

17 (a) (II)
(b) (I)
(c) (V)
(d) (III)
(e) (IV)

19 (e) y′ = 0.05y(y − 10)

21 (b)

23 (a) IV
(b) I
(c) III
(d) V
(e) II
(f) VI

25 Graph of y = x not tangent to slope field at
(1, 1)

27 dy/dx = x2 + 1

29

x

y

31 False

33 False

35 False

37 True

39 True

41 True

43 False

Section 11.3
3 1548, 1591.5917, 1630.860

5 (a) 24.39
(b) Concave up
(c) Underestimates

7 (a) y(0.4) ≈ 1.5282
(b) y(0.4) = −1.4

9 (a)

11 (a) y = 0.667
(b) y = 0.710

13 Error in ten-step is half error ins five-step;
y = 0.753

15 (a) Δx = 0.5, y(1) ≈ 1.5
Δx = 0.25, y ≈ 1.75

(b) y = x2 + 1, so y(1) = 2
(c) Yes

17 (a) B ≈ 1050
(b) B ≈ 1050.63
(c) B ≈ 1050.94

19 For dy/dx = k, Euler’s method gives exact so-
lutions.

21 dy/dx = 5

23 False

Section 11.4
1 (a) Yes (b) No (c) Yes

(d) No (e) Yes (f) Yes
(g) No (h) Yes (i) No
(j) Yes (k) Yes (l) No

3 P = 20e0.02t

5 Q = 50e(1/5)t

7 m = 5e3t−3

9 z = 5e5t−5

11 u = 1/(1 − (1/2)t)

13 y = 10e−x/3

15 P = 104et − 4

17 Q = 400 − 350e0.3t

19 R = 1 − 0.9e1−y

21 y = (1/3)(3 + t)

23 y = 3x5

25 z = 5et+t
3
/3

27 w = −1/(ln | cosψ| − 1/2)

29 (a) y = 3
√
6x2 + B

(b) y = 3
√
6x2 + 1; y = 3

√
6x2 + 8; y =

3
√
6x2 + 27

−4 4

4

x

y

31 (a) y(t) = 100 − Ae−t

(b)

t

y

110

25

(c) y(t) = 100 − 75e−t

y(t) = 100 + 10e−t

(d) y(t) = 100 − 75e−t

33 (a)

(0, 1)
(0, 0)

(0,−1)

x

y

(b) One end asymptotic to y = 0, other end un-
bounded

(c) y = −1/(x + C), x �= −C

35 Q = Aet/k

37 Q = b − Ae−t

39 R = −(b/a) + Aeat

41 y = −1/
(
k(t + t3/3) + C

)
43 L = b + Aek((1/2)x2+ax)

45 x = eAt

47 y = 2(2−e
−t

)

49 (a) and (b)

y

x

(c) y2 − x2 = 2C

53 Solution to dP/dt = 0.2t is P = 0.1t2 + C

55 dy/dx = x + y

57 dy/dx = 2x

59 True

61 True

Section 11.5
1 (a) (III)

(b) (IV)
(c) (I)
(d) (II)

3 (a) y = 2: stable; y = −1: unstable
(b)

x

y
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5

α

t

y

7 (a) H = 200 − 180e−kt

(b) k ≈ 0.027 (if t is in minutes)

9 (a) y = 0, y = 4, y = −2
(b) y = 0 stable, y = 4 and y = −2 unstable

x

y

13 Longest: Lake Superior
Shortest: Lake Erie
The ratio is about 75

15 (a) N = amount of nicotine in mg at time t;
t = number of hours since smoking a
cigarette

(b) dN/dt = −0.347N

(c) N = 0.4e−0.347t

17 (a) G = size in acres of Grinnell Glacier in year
t;
t = number of years since 2007

(b) dG/dt = −0.043G

(c) G = 142e−0.043t

19 dS/dt = −k(S − 65), k > 0

S = 65 − 25e−kt

40◦
65◦

t

S (◦F)

21 (a)

37

1
2
Q0

Q0

t

Q

Q = Q0e−0.0187t

(b) dQ/dt = −0.0187Q
(c) 3 days

23 (a) 69,300 barrels/year
(b) 25.9 years

25 About 2150 B.C.

27 (a) dT/dt = −k(T − 10)
(b) 48◦F

The pipes won’t freeze

29 (a) dH/dt = k(68 − H)
(b) H = 68, stable
(c) H = 68 − Ae−kt

(d) 57.8◦F

31 (a) dB/dt = (r/100)B
Constant = r/100

(b) B = 0, unstable
(c) B = Ae(r/100)t

(d)

15 30
1000

10,000

20,000

t

B = 1000e0.10t

B = 1000e0.04t

B = 1000e0.15t

33 y = x2 is not a constant solution

35 dy/dt = −2y

37

25

t

P

Section 11.6
1 (a) (III)

(b) (V)
(c) (I)
(d) (II)
(e) (IV)

3 dB/dt = 0.037B + 5000

5 dB/dt = −0.065B − 50,000

7 (a) H′ = k(H − 50); H(0) = 90

(b) H(t) = 50 + 40e−0.05754t

(c) 24 minutes

9 (a) dB/dt = 0.08B − 2000
(b) B = 25000, unstable
(c) B = 25,000 + Ae0.08t

(d) (i) $17,540.88

(ii) $32,459.12

11 (a) Increasing; decreasing
(b) Approach 50 metric tons

13 (a) I = Ae−kl

(b) 20 feet: 75%
25 feet: 82.3%

15 (a) Mt. Whitney:
17.50 inches

Mt. Everest:
10.23 inches

(b) 18,661.5 feet

17 (b) dQ/dt = −0.347Q + 2.5
(c) Q = 7.2 mg

19 P = AV k

21 5.7 days, 126.32 liters

23 (a) dp/dt = −k(p − p∗)

(b) p = p∗ + (p0 − p∗)e−kt

(c)

p∗

t

p

p0 > p∗

p0 < p∗

(d) As t → ∞, p → p∗

25 (a) Q = (r/α)(1 − e−αt)
Q∞ = r/α

r
α

Q

t

Q = r
α
(1− e−αt)

(b) Doubling r doubles Q∞;
Altering r does not alter the time it takes to
reach (1/2)Q∞

(c) Both Q∞ and the time to reach (1/2)Q0

are halved by doubling α

27 t = 133.601 min

29 y = A
√
x

31 (a) dB/dt = 0.05B + 1200
(b) B = 24,000(e0.05t − 1)
(c) $6816.61

33 dB/bt > 0 when B = 5000

35 dQ/dt = 50 − 0.08Q

37 dQ/dt = 0.5(1/Q)

Section 11.7
1 (b) 1

3

1250

2500

(a)

(b)

(c)

x

y

5

5000
A

dA/dt

7

800
Q

dQ/dt

9 (a) P = 0, P = 2000
(b) dP/dt positive; P increasing

11 (a) k = 0.035; gives relative growth rate when
P is small
L = 6000; gives limiting value on the size
of P

(b) P = 3000

13 P = 2800/(1 + Ae−0.05t)

15 P = 4000/(1 + Ae−0.68t)

17 k = 10, L = 2, A = 3, P = 2/(1 +

3e−10t), t = ln(3)/10

19 k = 0.3, L = 100, A = 1/3, P =

100/(1 + e−0.3t/3), t = − ln(3)/0.3

21 P = 8500/(1 + 16e−0.8t)

23 (a) 1
(b) 2 people; 48 people
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(c)

5 10 15 20

200

400

t

N(t)

(d) About 15 hours; 30 hours
(e) When 200 people have heard the rumor

25 (a) 2500 fish
(b) 2230 fish
(c) 1500 fish

27 (a) 36 thousand; total number infected
(b) t ≈ 16, n ≈ 18 thousand
(c) Virus spreading fastest
(d) Number infected half total

29 (a) 22.0 bn barrels/yr, 26.9 bn barrels/yr
(b) 3.04% per year, 2.45% per year
(c) (1/P )(dP/dt) = 0.0418 −

0.0000157P
(d) 2662 billion barrels
(e) dP/dt = 0.0418P (1 − P/2662)

P = 2662/(1 + 2.677e−0.0418t)

31 (a)

500 1000 1500

10

20

30
1993

1998
2003

2008

P (bn barrel)

dP/dt (bn barrel/yr)

(b)

1993 2008 2043

1000

2000

2662

19931998

2003
2008

t (year)

P (bn barrel)

33 (a) 1426.603 bn barrels
(b) 2066

35 (a) dI/dt = k(M − I)
(k > 0)

M

t

I

(b) dI/dt = kI(M − I)
(k > 0)

I0 = 0
I0 = 0.05M

I0 = 0.75M

0.5M

M

t

I

37 (a) logistically
(b) k ≈ 0.045

L ≈ 5.8

39 (a) dp/dt = kp(B − p)
(k > 0)

(b) Half of the tin

B
2

B

t

t

43 Occurs at Q = 25 not t = 25

45 Sales of a new product

47

500
Q

dQ/dt

49 False

Section 11.8
1 x and y increase, about same rate

3 x decreases quickly while y increases more
slowly

5 (0, 0) and (5, 3)

7 (0, 0) and (−5, 3)

9 (a) Both x and y are decreasing
(b) x is increasing; y is decreasing

11 (a) Susceptibles: 1950,1850, 1550, 1000, 750,
550, 350, 250, 200, 200, 200

Infecteds: 20, 80, 240, 460, 500, 460,
320, 180, 100, 40, 20

(b) Day 22, 500
(c) 1800, 200

13 (a) a is negative; b is negative; c is positive
(b) a = −c

17 r = r0e
−t , w = w0e

t

19 Worms decrease, robins increase. Long run: pop-
ulations oscillate

21

P0 P2 P0 P2 P0 P2 P0

t

population

�

Robins

�

Worms

1
1.5

23 Robins increase;
Worms constant, then decrease;
Both oscillate in long run

25 (a) Symbiosis
(b) Both → ∞ or both → 0

27 (a) Predator-prey
(b) x, y tend to ≈ 1

29 (a) dy/dx = bx/ay

31 (b) dx/dt = −xy, dy/dt = −x
(c) dy/dx = 1/y

soln: y2/2 = x + C

(d) If C > 0, y wins
If C < 0, x wins
If C = 0, mutual annihilation

(e)

1 2 3 4

1

2

3

4

x (guerrilla)

y (conventional)

C > 0
conventional wins

y2

2
= x

(i.e. C = 0)

C < 0
guerrilla wins

33 (a) w = 0, r = 0 and w = b/k, r = a/c
(b) Worm equilibrium unchanged, robin equilib-

rium reduced

35 dy/dx = (dy/dt)/(dx/dt)

37 dx/dt = 0.5x − 0.2xy; dy/dt = 0.1y −
0.3xy

39 True

Section 11.9
1 (4, 10)

3

2 4 6

5

10

15

x

y

5 Tends towards point (4, 10)

7 (a) dx/dt > 0 and dy/dt > 0
(b) dx/dt < 0 and dy/dt = 0
(c) dx/dt = 0 and dy/dt > 0

9

5 10 15

2

4

6

x

y

11

5

3

x

y
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13 Vertical nullclines:
x = 0, x+ y = 2

Horizontal nullclines:
y = 0, x+ y = 1

Equilibrium points:
(0, 0), (0, 1), (2, 0)

1 2

1

2

x

y

�

x+ y = 1
dy/dt = 0

�

x+ y = 2
dx/dt = 0

1 2

1

2

x

y

(I)

(II)

(III)

15 Horizontal nullclines;
y = 0, y = 1 − 2x
Vertical nullclines;
x = 0, y = (1/2)(2 − x)
Equilibrium points;
(0, 0), (0, 1), (2, 0)

0.5 2

1

I II

III

0.5 2

1

� 

�

� �
�

�

x

y

17 dx/dt = 0 when
x = 0 or x + y/3 = 1

dy/dt = 0 when
y = 0 or y + x/2 = 1

Equilibrium points:
(0, 0), (0, 1), (1, 0), (4/5, 3/5)

1 2

1

3

x

y

� x+ y/3 = 1
dx/dt = 0

�

y + x/2 = 1
dy/dt = 0

( 4
5
, 3
5
)

1 2

1

3

x

y

(I)

(IV)
(III)

(II)

( 4
5
, 3
5
)

19 (a) dS/dt = 0 where S = 0 or I = 0
dI/dt = 0 where I = 0 or S = 192

(b) Where S > 192,
dS/dt < 0 and dI/dt > 0

Where S < 192,
dS/dt < 0 and dI/dt < 0

(c)

192
S

I

21 (a) In the absence of the other, each company
grows exponentially
The two companies restrain each other’s
growth if they are both present

(b) (0, 0) and (1, 2)
(c) In the long run, one of the companies will go

out of business

1 2 3 4

1

2

3

4

A

B

23 (a) dP1/dt = 0 where P = 0 or
P1 + 3P2 = 13
dP2/dt = 0 where P = 0 or
P2 + 0.4P1 = 6

25 dx/dt �= 0

27

1 2 3

1

2

3

x

y

Chapter 11 Review
1 (I) satisfies equation (d)

(II) satisfies equation (c)

3 (a) (I)
(b) (IV)
(c) (III)

5 y(x) = 40 + Ae0.2x

7 H = Ae0.5t − 20

9 P = 100Ae0.4t/(1 + Ae0.4t)

11 P = (40000/3)(e0.03t − 1)

13 y = 3
√
33 − 6 cosx

15 1
2
y − 4 ln |y| = 3 ln |x| − x

+ 7
2
− 4 ln 5

17 z(t) = 1/(1 − 0.9et)

19 20 ln |y| − y =
100 ln |x| − x + 20 ln 20 − 19

21 y = ln(ex + e− 1)

23 z = sin(−ecos θ + π/6 + e)

25 y = − ln( ln 2
3

sin2 t cos t

+ 2 ln 2
3

cos t − 2 ln 2
3

+ 1)/ ln 2

27 (a) y = 3 and y = −2
(b) y = 3 unstable;

y = −2 stable

29 No

31 (a) y(1) ≈ 3.689
(b) Overestimate

5

5

x

y

(c) y = 5 − 4e−x

y(1) = 5 − 4e−1 ≈
3.528

(d) ≈ 3.61

33 (b) 2070

35 (a) dM/dt = rM
(b) M = 2000ert

(c)

t = 0
2010

t = 30
2040

2000

10000

40000

t

M

M = 2000e0.05t

M = 2000e0.10t
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37

t ≈ 13.86

1000
i = 0.1

i = 0.15

i = 0.05
years

B

39 (a) dB/dt = 0.05B − 12,000
(b) B = (B0 − 240,000)e0.05t

+ 240,000
(c) $151,708.93

41 C(t) = 30e−100.33t

43 No, no

100

200

t

P

45 (a) dx/dt = k(a − x)(b − x)

(b) x = ab(ebkt − eakt)/(bebkt − aeakt)

47 (a) x → ∞ exponentially
y → 0 exponentially

(b) Predator-prey

49 (a) x → ∞ exponentially
y → 0 exponentially

(b) y is helped by the presence of x

51 (a) dy/dx = y(x + 3)/(x(y + 2))
y2ey = Ax3ex

(d) y2ey = x3ex+4

(e) y = x = e−4 ≈ 0.0183
(f) y ≈ e−13

53 (a) x → ∞ if y = 0
y → 0 if x = 0

(b) (0, 0) and (10, 000, 150)
(c) dy/dx = y(−10 + 0.001x)/(x(3 −

0.02y))
3 ln y − 0.02y =
− 10 ln x + 0.001x + 94.1

(f) A → B → C → D
(h) At points A and C:

dy/dx = 0
At points B and D:
dx/dy = 0

55 P decreases to 0

57 P decreases towards 2L

59 (c)

1 2−0.5

1

2

3
y(s)

y1(s)

y2(s)
�

y3(s)

x

y

Section 12.1
1 Q

3 B, B, B

5

x
y

z

7

x

y

z

9

x

y

z

y = 1

1

11 (2, 3, 15)

13 (x − 1)2 + y2 + z2 = 4

15 (a) 80-90◦F
(b) 60-72◦F
(c) 60-100◦F

17

North South

60
80

100
�

Boise

West East

60
80

100
�

Boise

21 (a) −19◦F
(b) 20 mph
(c) About 17.5 mph
(d) About 16.7◦F

27 (1.5, 0.5, −0.5)

29 Cone, tip at origin, along x-axis with slope of 1

31 (a) z = 7, z = −1
(b) x = 6, x = −2
(c) y = 7, y = −1

33 (a) (12, 7, 2); (5, 7, 2); (12, 1, 2)
(b) (5, 1, 4); (5, 7, 4); (12, 1, 4)

35 (a) yz-plane: circle (y + 3)2 + (z − 2)2 = 3
xz-plane: none
xy-plane: point (1,−3, 0)

(b) Does not intersect

37 (8, 0,
√
3)

39 y = 1 is a plane, not a line

41 Distance is 5

43 (−2,−1,−5)

45 True

47 False

49 True

51 True

53 True

55 False

57 False

Section 12.2
1 (a) Decreases

x

z

(b) Increases

y

z

3 (a) I
(b) V
(c) IV
(d) II
(e) III

5 Sphere, radius 3

3 3

3

x y

z

7 Upside-down bowl, vertex (0, 0, 5)

5

x
y

z
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9 Plane, x-intercept 6, y-intercept 3, z-intercept 4

6 3

4

x y

z

11 Circular cylinder extended in the y-direction

2

2

x
y

z

13 x2 + (y −
√
7)2 + z2 = 9

15 (a)

−1

1−2 2

−5

5

−10

10 x = 1

x = 0

x = −1

y

(b)

−2 −1 1 2

−3

−2

−1

1

2

3
� y = 1

� y = −1

�

y = 0

x

17 (a)

1 2 3 4 5

0.1

0.2

0.3 C = f(4, t)

C (mg per liter)

t (hours)

(b)

1 2 3 4 5

0.1
0.2
0.3
0.4
0.5

C = f(x, 1)

x (mg)

C (mg per liter)

19 (a) is (IV)
(b) is (IX)
(c) is (VII)
(d) is (I)
(e) is (VIII)
(f) is (II)
(g) is (VI)
(h) is (III)
(i) is (V)

21 (a)

0−2 2−4 4

4

16

25

� x = 1

�
x = 0
y

z(i)

0−2 2−4 4

4

16

25

� y = 1

�
y = 0
x

z(ii)

(b)
2 4

5

1

−4

−16

−25 �

x = 1

�

x = 0y

z(i)

2

4 5

1

−4

−16

−25 �

y = 1

�

y = 0x

z(ii)

(c)

−4 4

4

−4

y

z�

x = 0

�

x = 1

(i)

−4 4

4

−4

x

z�

y = 0

�

y = 1

(ii)

(d)

−2.5

2.5

−2

2

�

x = 0

�

x = 1

y

z
(i)

−2.5

2.5

−2

2

�

y = 0

�

y = 1

x

z(ii)

(e)

4−4
−3

3

y

z



x = 0

�

x = 1(i)

4−4
−3

3

x

z



y = 0

�

y = 1(ii)

23

yx

z

5
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25 z

y

x

27

1 2 3 4 5
0

5

10

15

20

25

r

Volume

h = 1
3

f(r, 1
3
)

h = 2
3

f(r, 2
3
)

f(r, 1)
h = 1

1 2 3 4 50

10

20

30

40

50

r = 1
f(1, h)

r = 2
f(2, h)

r = 3

f(3, h)

h

Volume

29 Cross-sections graph I:

4 8
0

0.5

1
�

pizza fixed at 4

�

pizza fixed at 1
(or pizza fixed at 7)

cola

happiness

(a)

4 8
0

0.5

1
�

cola fixed at 4

�

cola fixed at 1
(or cola fixed at 7)

pizza

happiness

(b)

Cross-sections graph II:

2 4
0

0.5

1

cola

happiness

0.5

�

pizza fixed at 2

�

pizza fixed at 4
(or pizza fixed at 0)

(a)

2 4
0

1

2

3

pizza

happiness

�
cola fixed at 1

�

cola fixed at 2(b)

Cross-sections graph III:

2 4
0

2

4

cola

happiness

�
pizza fixed at 1

�

pizza fixed at 2(a)

1 2
0

1

2

pizza

happiness



cola
fixed at 2

�
cola fixed at 1
(or cola fixed at 3)

(b)

Cross-sections graph IV:

1 2
0

2

4

cola

happiness



pizza
fixed at 2

�
pizza fixed at 1

(a)

1 2
0

2

4

pizza

happiness



cola
fixed at 2

�
cola fixed at 1

(b)

31 (a)

π

−1

1 �

t = 0

�

t = π/4

x

π 2π

−1

1
�

x = π/2

�

x = π/4

t

(b) f = 0; ends of string don’t move

33 Cross-sections are lines parallel to y-axis

35 f(x, y) = x2 − 1

37 False

39 True

41 True

43 True

45 True

47 True

49 False

51 (c)

Section 12.3
1

x

y

4

3
2
1
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3

x

y

z = 1
z = 2

z = 3

5 Contours evenly spaced

x

y

−2 −1 1 2

−2

−1

1

2

c
=
0c

=
−
1

c
=
−
2

c
=
−
3

c
=
1

c
=
2

c
=
3

7

x

y

c
=
1

c
=
2

c
=
3

c
=
4

c = 0

−2 −1 1 2

−2

−1

1

2

9

x

y

c
=
−
1c

=
−
2

c
=
−
3

c
=
−
4

c
=
−
1

c
=
−
2

c
=
−
3

c
=
−
4

c
=
1c

=
2c

=
3

c
=
4

c
=
1

c
=
2

c
=
3

c
=
4

c
=
0

11

−2 −1 1 2

−2

−1

1

2

x

y

c =
1

c =
4

c = 0

15 (a)

z = 1
z = 2

z = −1

z = −2

x

y

z = −1
z = −2

z = 1

z = 2

(b)

y

z

z = −2y (x = −2)

z = 2y (x = 2)

z = y (x = 1)

z = −y (x = −1)

(c)

Line x = y

z
Curve z = x2

17 Table 12.5 matches (II)
Table 12.6 matches (III)
Table 12.7 matches (IV)
Table 12.8 matches (I)

19 Price: x; Advertising: y

21 (a) is III
(b) is VI
(c) is I
(d) is IV
(e) is II
(f) is V

23

10

10

2

4

6

8

10 12 14 16 18

0
2
4
6
8
10
12
14
16

x

y

25 72◦F; 76◦F

27 (a) A
(b) B
(c) A

29

Trail
1000

101
0

10
20

990980

Elevation in meters

31 E-W, N = 50:

60 120 180

0.5

1
1.5

2
2.5

East

Density of the
fox population P

E-W, N = 100:

30 60 90 120150 180

0.5
1

1.5

East

Density of the
fox population P

N-S, E = 60:

35 70

0.5

1

North

Density of the
fox population P

N-S, E = 120:

50 100 150

0.5
1

1.5
2

2.5

North

Density of the
fox population P

33 (a) (II) (E)
(b) (I) (D)
(c) (III) (G)

35 (a) (I) g
(II)f

(b) 0.2 < α < 0.8

37 (a)

−6
−3
0
3
6

x

y
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(b)

−12
−11
−10
−9
−8

x

y

(c)

−4
−3
−2
−1
0

x

y

(d)

−2
−1
0
1
2

x

y

43 Contour diagram is curves in xy-plane

45 f(x, y) = x2

47 Could not be true

49 Might be true

51 True

53 True

55 False

57 False

59 True

Section 12.4
1 −1.0

3 Not a linear function

5 Linear function

7 Linear

9 z = 4
3
x − 1

2
y

11 z = −2y + 2

13 Δz = 0.4; z = 2.4

15 CDs cost $8
DVDs cost $12

17 (a) Linear
(b) Linear
(c) Not linear

19 180 lb person at 8 mph
120 lb person at 10 mph

21 g(x, y) = 3x + y

23 f(x, y) = 2x − 0.5y + 1

25

x

y

z

1

−2

2

27

x

y

z

2

−4

4

31 (a) 7/
√
29

(b) −5/
√
104

33 Contours of f(x, y) = ex+y parallel lines

35

x\y 1 2 3

1 1 2 3

2 2 4 6

3 3 6 9

37 False

39 False

41 True

43 True

45 True

47 False

Section 12.5
1 (a) I

(b) II

3 f(x, y) = 1
3
(5 − x− 2y)

5 f(x, y) = (1 − x2 − y)2

7 Elliptical and hyperbolic paraboloid, plane

9 Hyperboloid of two sheets

11 Ellipsoid

13 Yes, f(x, y) = (2x + 3y − 10)/5

15 No

17 f(x, y) =
√

10 − x2 − y2

g(x, y, z) = x2 + y2 + z2 = 10

19 (a) Parallel planes: 2x − 3y + z = c+ 20
(b) fz(0, 0, 0) = 1

(c) �n = 2�i − 3�j + �k
(d) Yes; −3◦F

21 Incr of A and r
Decr of t

23 f(x, y) = 3
√

1 − x2 − y2/4;

g(x, y) = −3
√

1 − x2 − y2/4

25 (a) Graph of f is graph of
x2 + y2 + z2 = 1, z ≥ 0

(b)
√

1 − x2 − y2 − z = 0

27 g(x, y, z) = 1 −
√
x2 + z2 − y = 0

29 Ellipsoid

31 Parallel planes

35

x

y

z

� h = e2� h = e

� h = 1

37

x y

z

�

g = 0

�
g = −1

�

g = −2

39 Level surfaces hyperbolic cylinders

41 f(x, y, z) = y + z

43 f(x, y, z) = (x + y + z)2

45 True

47 True

49 True

51 False

53 False

Section 12.6
1 Not continuous

3 Continuous

5 Not continuous

7 1

9 0

11 1

19 No

21 c = 1

23 (c) No

25 For quotient, need g(a, b) �= 0

27 f(x, y) = (x2 + 2y2)/(x2 + y2)

29 f(x, y) = 1/((x − 2)2 + y2)

Chapter 12 Review
1 A, B, C

3

x

y

z

5 Not a function

7 IV

9 (a) is (I)
(b) is (IV)
(c) is (II)
(d) is (III)

11 y = k
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−2 −1 1 2
−2

−1

1

2

x

y

−0.2

0.2
0.4

−0.4
−0.6

0.6
0.8

−0.8

0.95

0.95

−0.95

−0.95

13 2x2 + y2 = k

15 (x − 1)2 + (y − 2)2 + (z − 3)2 = 25

17 (−2, 3,−6); 7

19 Linear

21 f(x, y, z) = x2 + y2

23 z = f(x, y) = 4 − 2x − 4y/3
g(x, y, z) = (x/2) + (y/3) + (z/4) = 1

25 z = f(x, y) = −
√

4 − (x − 3)2 − y2

g(x, y, z) = (x− 3)2 + y2 + z2 = 4

27 Cylinder

29 g(x, y) = 200x + 100y

31 Doubles production

37 (a) No
(b) No
(c) No
(e) 0.5 of GPA

39 (a)

10

10

x

y

T = 0

T = 50
T = 75

T = 25
Motion of bug

�
�
�

�
��
�
�

T = 100

�

(b) Toward origin

41 (a)

x

y

1

.5
0

−
.5

−
1

−
.5 0.5

.5 0−
.5

(b)

−π π

1
x

z

(c)

−π π

1
r

z

47 (a) 9 + 3x + 4y, 21 + 7x + 8y
(b) 189 + 63x + 64y

Section 13.1
1 �a =�i + 3�j

�b = 3�i + 2�j

�v = −2�i − 2�j

�w = −�i + 2�j

3 −3�i − 4�j

5 �a = �b = �c = 3�k
�d = 2�i + 3�k
�e = �j
�f = −2�i

7 �i + 3�j

9 −4.5�i + 8�j + 0.5�k

11 −3�i − 12�j + 3�k

13 0.9�i + 0.2�j − 0.7�k

15
√
6

17
√
11

19 5.6

21 −6�i + 20�j + 13�k

23 21�j

25 2
√
73

27 0.6�i − 0.8�k

29 −�i /2 +�j /4 +
√
11�k /4

31 0,−10

33 − 1
√

2
�i + 1

√

2
�j .

35 (a) �u = 8.2�i + 1.8�j ,
�v = −8.2�i − 1.8�j

(b) �v = −�u

37 (a) True
(b) Does not makes sense
(c) True
(d) False

39 (a) t = 1
(b) No t values
(c) Any t values

41 −�i /2 +
√
3�j /2

−�i /2 −
√
3�j /2

45 Opposite direction if c < 0, no direction if
c = 0

47 �w = �0 so �v + �w = �v

49 �u =�i , �v = (1/2)�i + (
√
3/2)�j

51 False

53 True

55 False

57 False

59 False

Section 13.2
1 Scalar

3 Scalar

5 Vector

7 −37.59�i ,−13.68�j

9 21�i + 35�j

11 (a) 8.64 km/hr
(b) 0.093 radian or about 5◦ off course

13 (a) 17.93�i − 7.07�j
(b) 19.27 km/hr
(c) 21.52◦ south of east

15 48.3◦ east of north
744 km/hr

17 4.87◦ north of east
540.63 km/hr

19 �E = 27.908�i + 1.823�j
Speed 27.97 km/hr in direction 3.74◦ north of
east

21 38.7◦ south of east

23 −98.76�i + 18.94�j + 2998.31�k
2998.31 newtons directly up

25 0.4v�i + 0.7v�j

27 0.01875�i + .0125�j + .03125�k

39 �i or�j components could be different

41 �F =�i − 2�j

43 Yes

45 Yes

47 Yes

Section 13.3
1 −14

3 14

5 −2

7 28�j + 14�k

9 185

11 �i + 3�j + 2�k (multiples of)

13 3�i + 4�j − �k (multiples of)

15 3x − y + 4z = 6

17 x − y + z = 3

19 2x + 4y − 3z = 5

21 2x − 3y + 5z = −17

23 2π/3 radians (120◦)

25 π/6 radians (30◦)

27 (a) (2/
√
13)�i + (3/

√
13)�j

(b) Multiples of 3�i − 2�j

29 (a) (21/5, 0, 0)
(b) (0,−21, 0); (0, 0, 3) (for example)
(c) �n = 5�i −�j + 7�k (for example)
(d) 21�j + 3�k (for example)

31 Possible answers:

(a) 2�i + 3�j − �k

(b) 3�i − 2�j

33 (a) (�a ,�c ) and (�b , �d )
(b) None
(c) (�a , �d ) and (�c , �d )

(d) (�a ,�b ) and (�b ,�c )

35 Many answers possible

(a) 8�i + 6�j

(b) −3�i + 4�j

37 (a) Increases
(b) Decreases

39 71.57◦

41 (a)
√
2

(b) 0.32

43 (a) �F parallel = −0.168�i − 0.224�j

(b) �F perp = 0.368�i − 0.276�j
(c) W = −1.4

45 (a) �F parallel = �0

(b) �F perp = �F
(c) W = 0

47 (a) �F parallel =
�F
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(b) �F perp = �0
(c) W = −50

49 (a) �F parallel = 3.846�i − 0.769�j

(b) �F perp = −3.846�i − 19.231�j
(c) W = 20

51 (a) �F parallel = �0

(b) �F perp = �F
(c) W = 0

53 No

55 (a) 2.24 m/sec
(b) 1.89 m/sec

57 10/
√
30

59 Averages; weightings
85.65%; class average

71 Can’t take dot product of a scalar and a vector

73 Normal vector is 2�i + 3�j − �k

75 f(x, y) = (−1/3)x + (−2/3)y

77 True

79 False

81 True

83 False

85 True

Section 13.4
1 −�i

3 −�i +�j + �k

5 �i + 3�j + 7�k

7 7�i +�j + 4�k

9 −2�k

11 �i −�j

13 �v × �w = −6�i + 7�j + 8�k

�w × �v = 6�i − 7�j − 8�k
�v × �w = −(�w × �v )

15 x − y − z = −3

17 4

19 0

21 4x + 26y + 14z = 0

23 3x − y − 2z = 0

25 4�i + 26�j + 14�k

27 4(x − 4) + 26(y − 5) + 14(z − 6) = 0

29 (a) �u and −�u where
�u = 12

13
�i − 4

13
�j − 3

13
�k

(b) θ ≈ 49.76◦

(c) 13/2

(d) 13/
√
29

31 Parallel to the z-axis

33
√
38/3

35 (a) Increases force
(b) Ball moves down and to the left

37 (a) −−−→
P1P2 =

−−−→
P3P4 = 2�i + 4�j + 2�k ;

−−−→
P1P3 =

−−−→
P2P4 = 3�i

(b)
√
180

51 4π�i

53 (a) ((u2v3 − u3v2)
2 + (u3v1 − u1v3)

2 +

(u1v2 − u2v1)
2)1/2

(b) |u1v2 − u2v1|
(c) m = (u2v3 − u3v2)/(u2v1 − u1v2),

n = (u3v1 − u1v3)/(u2v1 − u1v2)

55 Parallel, not perpendicular

57 �v = (8�i − 6�j )/5

59 False

61 True

63 True

65 True

67 False

Chapter 13 Review
1 Scalar; −1

3 −1

5 �a = −2�j ,�b = 3�i , �c =�i +�j ,
�d = 2�j , �e =�i − 2�j , �f = −3�i −�j

7 5�i + 30�j

9 3
√
2

11 3�i + 7�j − 4�k

13 −3

15 �0

17 0

19 �0

21 −5�i + 3�j + �k (multiples of)

23 (a) 4
(b) −4�i − 11�j − 17�k

(c) 3.64�i + 2.43�j − 2.43�k
(d) 79.0◦

(e) 0.784.
(f) 2�i − 2�j + �k (many answers possible)
(g) −4�i − 11�j − 17�k .

25 ±(−�i +�j − 2�k )/
√
6

27 �n = 4�i + 6�k

29 −3�i + 4�j

31 �u and �w ; �v and �q .

33 �F parallel =
�F

�F perp = �0
W = −10

35 �F parallel = −(6/5)�i + (8/5)�j

�F perp = (16/5)�i + (12/5)�j
W = −10

37 �F parallel = 2�j

�F perp = 5�i
W = 6

39 (a) True
(b) False
(c) False
(d) True
(e) True
(f) False

41 548.6 km/hr

43

P R

Q

45 Parallel:
3�i +

√
3�j and

√
3�i +�j

Perpendicular:
√
3�i +�j and�i −

√
3�j

3�i +
√
3�j and�i −

√
3�j

47 2, 8

49 2x − 3y + 7z = 19

51
√
6/2

53 (a) 1.5

(b) y = 1

55 9x − 16y + 12z = 5
0.23

57 7.0710�i + 2.5882�j + 6.580�k

59 228.43 newtons
85.5◦ south of east

61 |ywr − vzr + zus − xws+ xvt − yut|

63 (b) (1, 1/
√
3,

√
6/6)

(c) 109.471◦

Section 14.1
1 fx(3, 2) ≈ −2/5; fy(3, 2) ≈ 3/5

3 −0.0493, −0.3660
−0.0501, −0.3629

5 ∂P/∂t:
dollars/month
Rate of change in pay-
ments with time
negative
∂P/∂r:
dollars/percentage point
Rate of change in pay-
ments with interest rate
positive

7 (a) Payment $376.59/mo at 1% for 24 mos
(b) 4.7c/ extra/mo for $1 increase
(c) Approx $44.83 increase for 1% interest in-

crease

9 (a) Negative
(b) Positive

11 fx > 0, fy < 0

13 fx < 0, fy > 0

15 fT (5, 20) ≈ 1.2◦F/◦F

17 Positive, Negative, 10, 2, −4

19 ∂Q/∂b < 0
∂Q/∂c > 0

21 −1.5 and −1.22

23 (a)

10

10

10
20
30

40
50

60

5060

x

y

(b)

10

10

10
20
30

40
50
60

50
60

x

y

25 (a) Negative
(b) Positive

27 (a) 2.5, 0.02
(b) 3.33, 0.02
(c) 3.33, 0.02

29 (i)(c); (ii)(a)

31 −2.5
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33

T (◦C)

w (gm/m3)

0.1 0.2 0.3

10 1300 900 1200

20 800 800 900

30 800 700 800

35 (a)

−
5

−
4

−
3

−
2

−
1

0
1
2
3
4
5

x

y

(b)

−
5

−
4

−
3

−
2

−
1

0
1
2
3
4
5

x

y

(c)

−
5−

4−
3−

2−
10

1
2

3
4

5

x

y

(d)

5
4
3
2
1
0
−
1

−
2

−
3

−
4

−
5

x

y

37 fy = 0

39 f(x, y) = 4x − y

41 False

43 False

45 True

47 False

49 False

Section 14.2
1 (a) 7.01

(b) 7

3 fx(1, 2) = 15,
fy(1, 2) = −5

5 ∂z/∂x = 14x+7

(x2+x−y)−6

∂z/∂y = −7(x2 + x − y)6

7 fx = 0.6/x
fy = 0.4/y

9 2xy + 10x4y

11 −2πr/T 2

13 e
√

xy(1 +
√
xy/2)

15 g

17 (a + b)/2

19 2B/u0

21 2mv/r

23 Gm1/r
2

25 −e−x
2
/a

2
(a2 − 2x2)/a4

27 v0 + at

29 −πr3/2/(M
√
GM)

31 (15x2y − 3y2) cos(5x3y − 3xy2)

33 ∂F/∂L = 3
2

√
K/L

35 ε0E

37 cγa1b1K
b1−1(a1K

b1 + a2L
b2 )γ−1

39 13.6

41 (a) 3.3, 2.5
(b) 4.1, 2.1
(c) 4, 2

43 (a) a < 3
(b) Up

45 (a) ∂g/∂m = G/r2

∂g/∂r = −2Gm/r3

(b)

m

g

r

g

47 (a) c2((1 − v2/c2)−1/2 − 1); positive
(b) mv(1 − v2/c2)−3/2; positive

49 (a)

10.5

� H(x, 0) =
100 sin(πx)

� H(x, 1) =
100e−0.1 sin(πx)
= 90.5 sin(πx)

100

x (meters)

temp (◦C)

(b) 254.2e−0.1t ◦C/m

(c) −254.2e−0.1t ◦C/m
(d) −10e−0.1t sin(πx) ◦C/sec

51 f(x, y) = x4y2 − 3xy4 + C

53 Derivative is limit, not a difference quotient
Counterexample: f(x, y) = x2 + y2

55 f(x, y) = xy, g(x, y) = xy + y2

57 True

59 True

61 False

63 False

65 (d)

Section 14.3
1 z = ex

3 z = 6y − 9

5 z = −4 + 2x + 4y

7 z = −36x − 24y + 148

9 df = y cos(xy) dx+ x cos(xy) dy

11 dz = −e−x cos(y)dx− e−x sin(y)dy

13 dg = 4 dx

15 dP ≈ 2.395 dK + 0.008 dL

17 (a) Dollars/Square foot
(b) Larger plots at same distance $3/ft2 more
(c) Dollars/Foot
(d) Farther from beach but same area $2/ft less
(e) 998 ft2

19 (b) f(x, y) ≈
0.3345 − 0.33(x − 1) − 0.15(y − 2)

(c) f(x, y) ≈ 0.3345 −
0.3345(x − 1) − 0.1531(y − 2)

21 376

23 df = 1
3
dx+ 2dy

f(1.04, 1.98) ≈ 2.973

25 136.09◦C

27 P (r, L) ≈
80 + 2.5(r − 8) + 0.02(L − 4000)
P (r, L) ≈
120 + 3.33(r − 8) + 0.02(L − 6000)
P (r, L) ≈
160 + 3.33(r − 13) + 0.02(L − 7000)

31 (a) nRT/(V − nb) − n2a/V 2

(b) ΔP ≈ (nR/(V0 − nb))ΔT +
(2n2a/V 3

0 −nRT0/((V0 − nb)2))ΔV

33 (a) dρ = −βρdT
(b) 0.00015, β ≈ 0.0005

35 −43200Δt
Slow if Δt > 0; fast if Δt < 0

37 z = f(3, 4) + fx(3, 4)(x − 3) +
fy(3, 4)(y − 4)

39 Equation not linear

41 sphere of radius 3 centered at the origin

43 True

45 False

47 True

49 False

Section 14.4
1 ( 15

2
x4)�i − ( 24

7
y5)�j

3 2m�i + 2n�j

5

(
5α√

5α2+β

)
�i +

(
1

2

√
5α2+β

)
�j

7 ∇z = ey�i + ey(1 + x+ y)�j



1188

9 sin θ�i + r cos θ�j

11 ∇z =
1

y
cos (

x

y
)�i −

x

y2
cos (

x

y
)�j

13

(
−12β

(2α − 3β)2

)
�i +

(
12α

(2α − 3β)2

)
�j

15 60�i + 85�j

17 10π�i + 4π�j

19 (π/2)1/2�i

21 1
100

(2�i − 6�j )

23 −46/5

25 22/5

27 84/5

29 (2x + 3ey)dx + 3xeydy

31 (x + 1)yex�i + xex�j

33 Negative

35 Positive

37 Positive

39 −�j

41 �j

43 −�i −�j

45 �i −�j

47 (a) (3.96838, 5.09487)
(b) 0.1052
(c) 1/(3

√
10)

49 4.4

51 (a) −16�i + 12�j

(b) 16�i − 12�j

(c) 12�i + 16�j ; answers may vary

53 (a) −3.268
(b) −4.919

55 (a) Should be number
(b) 11/5

57 −0.5; better estimate is −1.35

59 −1.1; better estimate is −1.8

61 4�i + 6�j ; 4(x− 2) + 6(y − 3) = 0

63 −4�i +�j ; −4(x − 2) + (y − 3) = 0

65 (a) Negative
(b) Negative

67 (a) Negative
(b) Positive
(c) Positive
(d) Negative

69 Yes

71 Yes

73 (a)

x y

z

(b)

z = 4

z = 1
z = 0

z = 1
z = 4
z = 9
z = 164

−2

x

y

(c) �j

75 (a) Circles centered at P
(b) away from P
(c) 1

77 (3
√
5 − 2

√
2)�i + (4

√
2 − 3

√
5)�j

79 4
√
2,

6�i + 2�j

81 5/
√
2

83 (a) P,Q
(b)

S (Zero f
u )

P (Max f
u )R (Zero f
u )

Q (Min f
u )

grad f
�u θ

(c) ‖ grad f‖
f
�u

= ‖ grad f‖ cos θ

89 f
�u
(0, 0) is scalar, not vector

91 Closer contours give longer gradients

93

321−1−2−3

3

2

1

−1

−2

−3

P

Q

x

y

4

4

2

2

6

6

8

8

95 False

97 False

99 True

101 False

103 True

105 True

107 True

109 True

111 False

Section 14.5
1 2x�i

3 exeyez(�i +�j + �k )

5
−2xyz2

(1 + x2)2
�i +

z2

1 + x2
�j +

2yz

1 + x2
�k

7 (x�i + y�j + z�k )/
√

x2 + y2 + z2

9 y�i + x�j + ez cos (ez)�k

11 ep�i + (1/q)�j + 2rer
2�k

13 �0

15 6�i + 4�j − 4�k

17 −π�i − π�k

19 9/
√
3

21 −1/
√
2

23 −
√

77/2

25 −2�i − 2�j + 4�k ;
−2(x + 1) − 2(y − 1) + 4(z − 2) = 0

27 2�j − 4�k ; 2(y − 1) − 4(z − 2) = 0

29 −2�i + �k ; −2(x + 1) + (z − 2) = 0

31 (a) 0
(b) 24/

√
19

33 (a) (2x − yz)�i + (2y − xz)�j − xy�k
(b) x + 4y + 6z = 20

35 z = 12 − 4x − 2y

37 6(x − 1) + 3(y − 2) + 2(z − 1) = 0

39 2x + 3y + 2z = 17

41 z = 2x + y + 3

43 x + 4y + 10z = 18

45 (a) is (III); (b) is (I); (c) is (IV); (d) is (II)

47 22/
√
14

49 (a) Spheres centered at the origin
(b) 2x sin(x2 + y2 + z2)�i + 2y sin(x2 +

y2 + z2)�j + 2z sin(x2 + y2 + z2)�k
(c) 0, 180◦

51 (a) −�j ,
2
3
�i − 1

3
�j + 2

3
�k

(b) y = 0; 2x − y + 2z = 3
(c) x = y = 0 and z �= 0

53 (a) 1.2x + 1.6y + 6z = 8
(b) Yes; ±(0.8, 0.6, 1)

55 (a)

π
2

π 3π
2

2π
−2

−1

1

2

3

x

y

� �
�
�

2
1
0

−
1

(b) Valley

57 (a) −4�i + 4�j + 2�k
(b) 24 mg/cm3/sec

59 f
�u 3

< f
�u 2

< 0 < f
�u 4

< f
�u 1

61 (a) Spheres centered at origin

(b) (−2x�i − 2y�j − 2z�k )e−(x2+y
2+z

2)

(c) −3
√
2e−1 degrees/sec

63 (a) is (V); (b) is (IV); (c) is (V)

71 fx(0, 0, 0)x+fy(0, 0, 0)y+fz(0, 0, 0)z =
0

73 f(x, y, z) = 2x + 3y + 4z + 100

75 False

77 False

79 (a) ◦C per meter
(b) ◦C per second
(c) ◦C per second

Section 14.6



1189

1
dz

dt
= e−t sin(t)(2 cos t − sin t)

3 2 cos
(

2t

1−t
2

)
1+t

2

(1−t
2)2

5 2e1−t
2
(1 − 2t2)

7
∂z

∂u
=

1

vu
cos

(
lnu

v

)
∂z

∂v
= −

lnu

v2
cos

(
lnu

v

)
9

∂z

∂u
=

ev

u
∂z

∂v
= e

v

lnu

11
∂z

∂u
= 2ue(u

2
−v

2)(1 + u2 + v2)

∂z

∂v
= 2ve(u

2
−v

2)(1 − u2
− v2)

13
∂z

∂u
=

(e−v cos u − v(cosu)e−u sin v) sin v

− (−u(sin v)e−v cosu + e−u sinv)v sinu
∂z

∂v
=

(e−v cos u − v(cosu)e−u sin v)u cos v

+ (−u(sin v)e−v cos u + e−u sin v) cosu

15
∂z

∂u
=

−2uv2

u4 + v4

∂z

∂v
=

2vu2

u4 + v4

17 −2ρ cos 2φ, 0

19 401.1

21 −5 pascal/hour

23 −0.6

25 Three

27 dw

dt
= ∂w

∂x

dx

dt
+ ∂w

∂y

dy

dt
+ ∂w

∂z

dz

dt

29 b · e + d · p

35 b · e + d · p

37 (a)
∂z

∂r
= cos θ

∂z

∂x
+ sin θ

∂z

∂y
∂z

∂θ
= r(cos θ

∂z

∂y
− sin θ

∂z

∂x
)

(b)
∂z

∂y
= sin θ

∂z

∂r
+

cos θ

r

∂z

∂θ
∂z

∂x
= cos θ

∂z

∂r
−

sin θ

r

∂z

∂θ

39 (
∂U3
∂P

)V

41 ( ∂U

∂T
)V = 7/2

( ∂U

∂V
)T = 11/4

45
∫

b

0
Fu(x, y) dy

49 CR and CT must be evaluated at (5, 1)

51 g(t) = 3 + t, h(t) = t

53 z = x + y, x = et and y = t2, many other
answers are possible

55 z = x + y, x = t and y = t

Section 14.7
1 fxx = 2

fyy = 2
fyx = 2
fxy = 2

3 fxx = 6y
fxy = 6x + 15y2

fyx = 6x + 15y2

fyy = 30xy

5 fxx = 0
fyx = ey = fxy

fyy = ey(x+ 2 + y)

7 fxx = −
(
sin
(

x

y

))(
1

y
2

)
fxy = −

(
sin
(

x

y

))(
−x

y
2

)(
1
y

)
+
(
cos
(

x

y

)) (
−1

y
2

)
= fyx

fyy = −
(
sin
(

x

y

))(
−x

y
2

)2
+
(
cos
(

x

y

)) (
2x

y
3

)
9 fxx = 30xy2 + 18

fxy = 30x2y − 21y2

fyx = 30x2y − 21y2

fyy = 10x3 − 42xy

11 fxx = −12 sin 2x cos 5y
fxy = −30 cos 2x sin 5y
fyx = −30 cos 2x sin 5y
fyy = −75 sin 2x cos 5y

13 Q(x, y) = 1 + 2x − 2y + x2 − 2xy + y2

15 Q(x, y) = 1 + x + x2/2 − y2/2

17 Q(x, y) = 1 − x2/2 − 3xy − (9/2)y2

19 Q(x, y) = −y + x2 − y2/2

21 1 + x− y/2 − x2/2 + xy/2− y2/8

23 (a) Negative
(b) Zero
(c) Negative
(d) Zero
(e) Zero

25 (a) Positive
(b) Zero
(c) Positive
(d) Zero
(e) Zero

27 (a) Zero
(b) Negative
(c) Zero
(d) Negative
(e) Zero

29 (a) Positive
(b) Positive
(c) Zero
(d) Zero
(e) Zero

31 (a) Positive
(b) Negative
(c) Negative
(d) Negative
(e) Positive

33 L(x, y) = y
Q(x, y) = y + 2(x − 1)y
L(0.9, 0.2) = 0.2
Q(0.9, 0.2) = 0.16
f(0.9, 0.2) = 0.162

39 a = −b2

41 Positive, negative

43 (a) zyx = 4y
(b) zxyx = 0
(c) zxyy = 4

45 d = e = f = 0

47 d = 0, e > 0, f < 0

49 (a)

Trail
1000

101
0

10
20

990980

Elevation in meters

(b) ∂h/∂x = 0, ∂h/∂y > 0,
(∂2h)/(∂x∂y) < 0

(c) (∂2h)/(∂x∂y)

51 (a) A
(b) B

53 (a) xy
1 − 1

2
(x − π

2
)2 − 1

2
(y − π

2
)2

(b)

x

y

0

0

x

y

π
2

π
2

55 (a) (i) Dollars/Year, negative, (ii)
Dollars/Dollar, positive

(b) ∂2P/(∂A∂C) < 0
(c) eCA

57 (a) 1 + x/2 + y
(b) 1 + x/2 + y − x2/8 − xy/2 − y2/2

61 Counterexample: f(x, y) = x3 + y4

63 f(x, y) = x2 + y2

65 f(x, y)

x

y

g(x, y)

x

y

Section 14.8
1 (0, 0)

3 x-axis and y-axis

5 None
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7 None

9 (1, 2)

11 (a)

2

2

4
4

3

3

4
3

43

−
4 −
3

−3
−4

−3
−4

−
3 −
4

−2 2

−2

2

x

y

(b) No
(c) No
(d) No
(e) Exist, not continuous

13 (a)

−2 2

−2

2

x

y

−
.2

−
.4

−
.2

−
.4

.2 .4.2

.4

−
.2

−
.4

−
.2

−.4

.2.4 .2

.4

(b) Yes
(c) Yes
(d) No
(e) Exist, not continuous

15 (a)

−2 2

−2

2

x

y

−.8
−.6
−.4

−.2

.8
.6
.4

.2

−.8
−.6
−.4

−.2

.8
.6
.4

.2

(b) Yes
(d) No
(f) No

17 (a)

−2 2

−2

2

x

y

−.
4

−.4−.2

−
.2

−.4

−.4−.2

−
.2

.4

.4

.2

.2

.4

.4

.2

.2

(c) No, no

19 (a) fx(x, y) =
(x4y + 4x2y3 − y5)/(x2 + y2)2

fy(x, y) =

(x5 − 4x3y2 − xy4)/(x2 + y2)2

(c) Yes
(d) Yes

21 Counterexample:
√

x2 + y2

23 f(x, y) =
√

x2 + y2

25 (a) Differentiable
(b) Not differentiable
(c) Not differentiable
(d) Differentiable

Chapter 14 Review
1 Vector; 3e−1�i − 1

2
e−1�j

3 Vector;−(sin x)ey�i + (cosx)ey�j + �k

5 fx = 2xy + 3x2 − 7y6

fy = x2 − 42xy5

7 π/
√

lg

9 fx = 2xy
3

(x2+y
2)2

, fy = x
4
−x

2
y
2

(x2+y
2)2

11 ∂f/∂p = (1/q)ep/q

∂f/∂q = −(p/q2)ep/q

13 fN = cαNα−1V β

15 x/
(
2
√
ωx cos2

(√
ωx
))

17
270x3y7 − 168x2y6 − 15xy2 + 16y

(15xy − 8)2

19 πxy/
√

2πxyw − 13x7y3v

21 7
2

(
w−1

x
2
yw−xy

3
w

7

)
−9/2(

x
2
y+6xy

3
w

7
−7xy

3
w

6

(w−1)2

)
23 −1/(4πL

√
LC)

25 uxx = ex sin y, uyy = −ex sin y

27 fxxy = fyxx = 2 cos(x − 2y)

29 2x�i + (2y + 3y2)�j

31 −((1/x)�i + (1/y)�j + (1/z)�k )/(xyz)

33 ∇z = 2x cos (x2 + y2)�i

+ 2y cos (x2 + y2)�j

35 cos(x2 + y2 + z2)
(
2x�i + 2y�j + 2z�k

)
37 −

(t2−2t+4)

(2s
√

s)
�i +

(2t−2)
√

s

�j

39 y[cos(xy)− sin(xy)]�i

+ x[cos(xy)− sin(xy)]�j

41 2�i + �k

43 −1

45 0

47 2/
√
3

49 5�i + 4�j + 3�k

51 −4x − 3y + 4z = 9

53 x + y + z = 3

55 cos t sin(cos t) − sin2 t cos(cos t)

57 100t3

59 3/t + 2t/(t2 + 1)

61 Q(x, y) = 2 + 6x + y + 6x2 + 3xy

63 Q(x, y) = 1 + (x − 3) − 1
2
(y − 5)

− 1
2
(x−3)2+ 1

2
(x−3)(y−5)− 1

8
(y−5)2

65 (a) 2x − 4y + az = a − 2

(b) a = 2

67 (a) Q,R
(b) Q,P
(c) P,Q,R, S
(d) None

71 F = 684 newtons,
∂F/∂m = 9.77 newtons/kg,
∂F/∂r = −0.000214 newtons/meter

73 (a) 20 hours per day
(b) 18.615 hours per day

75 (a) P, S
(b) R,S
(c) P,Q,R, S
(d) None

77 0.3

79 0.8

81 0

83 (a) −5
√
2/2

(b) 4�i +�j

85 (a) 98.387 ft/mile
(b) 295.161 ft/hour

87 (a) −4e−81 ◦C/meter
(b) −40e−81 ◦C/sec
(c)

√
932e−81 ◦C/meter

89 −2x�i − 2y�j

91 Yes

95 (a) Fu(x, y, 3)
(b) Fw(3, y, x)
(c) Fu(x, y, x) + Fw(x, y, x)
(d) Fu(x, y, xy) + yFw(x, y, xy)

97 dP ≈ 47.6 dL+ 17.8 dK

101 (a) −3�i + 4�j − �k

(b) −3�i + 4�j

105 15◦C/minute

107 Approx 7.5 at (1.94, 1.08)

109 x − y

111 (a) Negative, positive,
Up if positive, down if negative

(b) π < t < 2π
(c) 0 < x < 3π/2 and

0 < t < π/2 or 3π/2 < t < 5π/2

113 (a) A0 +A1 + 2A2 +A3 + 2A4 + 4A5 +
(A1+2A3+2A4)(x−1)+(A2+A4+
4A5)(y − 2), 1 + B1t, 2 + C1t

(b) A1B1 + 2A3B1 + 2A4B1 + A2C1 +
A4C1 + 4A5C1

115 ∂w

∂x

∂x

∂u

du

dt
+ ∂w

∂y

∂y

∂u

du

dt
+ ∂w

∂x

∂x

∂v

dv

dt
+

∂w

∂y

∂y

∂v

dv

dt
+ ∂w

∂z

dz

dt

Section 15.1
1 (I) and (V) Local maximum, (II) and (VI) Local

minimum, (III) and (IV) Saddle point

3 (a) None
(b) E, G
(c) D, F

5 Local minimum

7 Local maximum

9 Local max: (4, 2)

11 Local max: (1, 5)

13 Saddle point: (0, 0)
Saddle point: (2, 0)
Local min: (1, 0.25)

15 Saddle pts: (1,−1), (−1, 1)
Local max: (−1,−1)
Local min: (1, 1)

17 Local max: (−1, 0)
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Saddle pts: (1, 0), (−1, 4)
Local min: (1, 4)

19 Saddle point: (0, 0)
Local max: (1, 1), (−1,−1)

21 A = −2, B = 21

23 (a) (a, b)
(b) a = −1, b = 5
(c) Local maximum

25 (a) Local maximum
(b) Saddle point
(c) Local minimum
(d) None of these

27 y

x

0

00

0

12
34

5
6

11
2

3
45

6

−1

−
1

−
2

−
3

−
4

−
5

−6

−
1

−
2

−
3

−
4

−5

−6
−6

Q
�

R

P

S

29 (kπ, lπ),
for k = 0,±1,±2, · · · ,
l = 0,±1,±2, · · ·
(kπ + π

2
, lπ + π

2
),

for k = 0,±1,±2, · · · ,
l = 0,±1,±2, · · ·

(kπ, lπ), k = 0,±1,±2, · · · ,
l = 0,±1,±2, · · · are saddle points
If k and l are both even or k and l are both odd,
then (kπ + π

2
, lπ + π

2
) are local max

If k is even but l is odd or k is odd but l is even,
then (kπ + π

2
, lπ + π

2
) are local min

31 y = 0,±2π,±4π, . . . Local minima

33 (a) (a, b) is a saddle point.
(b)

1

1
x

y

0

0

0

0

1
3579

1
3

5 7
9−1

−3
−5

−7

−1

−3

−5

−7

35

−1 1 2 3 4 5 6
−1

1

2

3

4

5

6

0 1 2 3 4

−1

−1
−2
−3

−4

x

y

37 (a) (0, 0)
(b) D = −24x2

(c) Saddle point

39

−2
−1 21

0
0

−1
−2

0

11
2

0

−1
−2

0

11
2

� y = x/
√
3

� y = −x/
√
3

f > 0f < 0

f < 0f > 0

f > 0 f < 0

x

y

41 (1, 3) could be saddle point

43 Can be saddle if fxy large

45 f(x, y) = 4 − (x− 2)2 − (y + 3)2

47 False

49 True

51 False

53 True

55 False

Section 15.2
1 Mississippi:

87 − 88 (max), 83 − 87 (min)
Alabama:
88 − 89 (max), 83 − 87 (min)

Pennsylvania:
89 − 90 (max), 80 (min)

New York:
81 − 84 (max), 74 − 76 (min)

California:
100 − 101 (max), 65 − 68 (min)

Arizona:
102 − 107 (max), 85 − 87 (min)

Massachusetts:
81 − 84 (max), 70 (min)

3 Max: 30.5 at (0, 0)
Min: 20.5 at (2.5, 5)

5 Min = 0 at (0, 0)
(not on boundary)

Max = 2 at (1, 1), (1,−1),
(−1,−1) and (−1, 1)

(on boundary)

7 max= 1 at (1, 0) and (−1, 0)
(on boundary)

min= −1 at (0, 1), (0,−1)
(on boundary)

9 Global min

11 Global max = 0
No global min

13 (a) Local min: (−13/55, 1/55)
(b)

(−13
55

, 1
55

)

0

0.5
1

2
3

0.5

0.5-0.5

15 All edges (32)1/3 cm

17 l = w = h = 45 cm

19 (3/14, 1/7, 1/14)

23 q1 = 300, q2 = 225.

25 (a) L =

[
pA
(

a

k

)
a
(

l

b

)(a−1)
]
1/(1−a−b)

K = la

kb
L

(b) No

27 y = 24x2/49 − 2/7

31 (a) p =
√
P0PF

(b) p1 = 3
√

P 2
0
PF , p2 = 3

√
P0P 2

F

33 Must have global maximum if continuous and R
closed, bounded

35 Local max not necessarily global max

37 f(x, y) = x2 + y2, R is 0 ≤ x, y ≤ 1

39 False

41 False

43 False

45 True

Section 15.3
1 Min = −

√
2, max =

√
2

3 Max: 20 at (−1, 2);
Min: 0 at (1,−2)

5 Min = −22, max = 22

7 Global min: 1/2
No global max

9 Min = −
√
35, max =

√
35

11 Max: 4 at (2, 2, 1),(2,−2,−1),
(−2, 2,−1),(−2,−2, 1);
Min: −4 at (−2,−2,−1),(−2, 2, 1),
(2,−2, 1),(2, 2,−1)

13 Max = f( 1
√

5
, 3
√

5
) = 2

√
5

Min = f(− 1
√

5
,− 3

√

5
) = −2

√
5

15 No global extrema

17 Max: 30 +
√
10 at (0,−

√
10);

Min: −5 at (±3,−1)

19 1 at (1/2, 1/2)

21 0.5
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23 (a)

20 40 60 80 100

500

1000

1500
I

II
III

(50, 500)

s = 1000 − 10l

l

s

(b) s = 1000 − 10l

25 (a) Min; max at endpt of constraint
λ neg

(b) Max; min at endpt of constraint
λ pos

27 Δc/4; −Δc/4

31 (a) C = $4349
(b) $182

33 (a) W = 225
K = 37.5

(c) W = 225
K = 37.5
λ = 0.29

35 (a) No
(b) Yes
(c) a + b = 1

37 x1 = ((v1)
1/2 + (v2)

1/2)/(m(v1)
1/2)

x2 = ((v1)
1/2 + (v2)

1/2)/(m(v2)
1/2)

39 (a) f1 =
k1

k1+k2
mg, f2 =

k2
k1+k2

mg

(b) Distance the mass stretches the top spring and
compresses the lower spring

43 (a) Cost of producing quantity u when prices are
p, q

(b) 2
√
pqu

45 (a) −5λ2 + 15λ
(b) 1.5, 11.25
(c) 11.25, 1.5
(d) same

47 (a) S = ln(aa(1 − a)(1−a)) + ln b −
a ln p1 − (1 − a) ln p2

(b) b = ecpa

1p
(1−a)

2
/(aa(1 − a)(1−a))

49 Maximum value is 1

51 f(x, y) = 3x + 4y

53 f(x, y) = x2 + y2

55

6

3

6
−
2 −

1
0

−
2
6

−
1
8

−
3
4

x

y

59 False

61 False

63 False

65 False

67 True

69 True

Chapter 15 Review
1 (3,−1), Saddle point

3 Saddle pt: (0,−5)
Local min: (2,−5)

5 (2, 1); local min

7 (2, 3): Local and global max

9 Local minimum: (1, 2)
Local maximum: (−1,−2)
Saddle points: (1,−2) and (−1, 2)
No global maximum or minimum

11 Minimum f(−3/
√
5, 4/

√
5) = −5

√
5,

Maximum f(3/
√
5,−4/

√
5) = 5

√
5

13 Min = 11.25; no max

15 Minimum f(27.907, 23.256) = 1860.484;
No maximum

17 Maximum = f(48, 52) = 37,600
No minimum

19 Max = 21, no min

21 No global extrema.

23 Maximum

25 Both

27 0.204

29 Δc/2; Δc/(2
√
2)

31

1

3

x

y

�

0

−
1−

4−
16−

32−
64−

12
0

33 (a) (i) Power function

(ii) Linear function
(b) lnN = 1.20 + 0.32 lnA

Agrees with biological rule

35 (a) 2c2/3
(b) 4c/3
(c) λ = m′(c)

37 c
(

aK

(a+b)P1

)
a
(

bK

(a+b)P2

)
b

39 (a) Points A,B,C,D, E
(b) Point F
(c) Point D

9
10

11

12

13



g = c

A

B
C

D

E

F

41 f(x, y, z) =
|Aa+Bb+Cc+D|√

A
2+B

2+C
2

43 K = 20
L = 30
C = $7, 000

47 Base: 4 cm by 4 cm
Height: 2 cm

49 −1/2

51 (a) x = 1/4 − a, y = 1, saddle point

53 (a) 21.0208
(b) g = 20.5, 21.2211; g = 20.2, 21.1008
(c) g = 20.5, 21.2198; g = 20.2, 21.1007

Section 16.1
1 24; 43.5

3 Over: Approx 137
Under: Approx 60

5 about 2300

7 Positive

9 Zero

11 Zero

13 Positive

15 25.2◦C

17 Need f nonnegative everywhere

19 f(x, y) = 5−x−y; R is square with vertices
(±1,±1)

21 False

23 False

25 True

27 True

29 False

Section 16.2
1

π

π

∫ π

0

∫ x

0

y sinx dy dx

x

y

3

2 4

1

2

∫ 2

0

∫ y2

0

y2x dx dy

x

y

5 150

7 54

9 e− 2

11 3 − sin 3

13 (e4 − 1)(e2 − 1)e

15 −2.678

17
∫

4

1

∫
2

1
f dy dx or

∫
2

1

∫
4

1
f dxdy

19
∫

3

−1

∫
(1−3x)/4

−2
f dy dx

or
∫

1

−2

∫
(1−4y)/3

−1
f dxdy
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21
∫

3

1

∫
−

1
2
(y−5)

1
2
(y−1)

f dx dy

23 4
15

(9
√
3 − 4

√
2 − 1) = 2.38176

25 32/9

27 13/6

29 0

31 2/3

33 (e− 1)/2

35 2
9
(3

√
3 − 2

√
2)

37 1
2
(e2 − 1)

39 (a) 8/3
(b) 16/3

41 (a)
∫

1/2

0

∫
1−y

y

f(x, y) dx dy∫
1/2

0

∫
x

0
f(x, y) dy dx +∫

1

1/2

∫
1−x

0
f(x, y) dy dx

(b) 1/8

43 15

45
∫

5

−5

∫√
25−y

2

−

√
25−y

2
(25 − x2 − y2) dx dy

47
∫

4

0

∫
(4−y)/2

y−4
(4 − 2x − y) dx dy

49 1/3

51 16/3

53 Volume = 1/(6abc)

55 (a) Circles centered at (1, 0)

(b)
∫ √

3

−

√

3
e−y

2
dy

(c)
∫

2

−2

∫√
4−x

2

−

√
4−x

2
e−(x−1)2−y

2
dy dx

57 (a)

1

1

100

98
96
94

x

y

(b)

1

1

0

0.1
0.2
0.3

x

y

59 (a) (4/3)a + b + (4/3)c = 20
(b) f(x, y) = x2 + 44

3
xy + 3y2:

x

y

f(x, y) = −3x2 + 24xy:

x

y

61 k(a3b + ab3)/3

63 Integrals not over same region

65
∫

1

−1

∫ √
1−x

2

−

√
1−x

2
2 dx dy

67
∫

2

0

∫
6−3y

0
1 dx dy

69 False

71 False

73 False

75 False

Section 16.3
1 2

3 −8

5

x y

z

1 1

1

7

x
y

z

1

1

1

9

1
1

1

x
y

z

11

1 1

1

x
y

z

13

1
1

1

x

y

z

15 Positive

17 Positive

19 Zero

21 Positive

23 Zero

25 Positive

27 Positive

29 125

31 (a) 2
∫

10

0

∫
1

0

∫
1

y

e−3xdz dy dx

Other answers are possible
(b) (1 − e−30)/3

33 V =
∫

1

0

∫
2

0

∫
1+2x+2y

x+y

1 dz dy dx

Can reverse order x, y

35 V =
∫

1

0

∫
1−x

0

∫
6−2x−2y

6−3x−4y
1 dz dy dx

Can reverse order x, y

37 V =
∫ √

5

−

√

5

∫√
5−x

2

−

√
5−x

2

∫ √
9−x

2
−y

2

2
1 dz dy dx

Can reverse order x, y

39
∫

1

0

∫
r

−r

∫√
r
2
−x

2

0
f(x, y, z) dz dx dy

41
∫

r

−r

∫√
r
2
−x

2

−

√
r
2
−x

2

∫√
r
2
−x

2
−z

2

0
f(x, y, z) dy dz dx

43 1/2

45 162

47 1

49 29 gm

51 243

53 (a) x + y + z = 1
(b) 1/6

55
∫

2

0

∫
1− z

4

0

∫
2−2y− z

2

0
f(x, y, z) dxdy dz

57
∫

4

−4

∫√
16−x

2

−

√
16−x

2

∫√
25−x

2
−y

2

3
dz dy dx

59
∫

1

−1

∫√
1−x

2

−

√
1−x

2

∫ √
1−z

2

−

√
1−z

2
dy dz dx

61
∫

2

0

∫
6y2

0

∫ √
12−3y2

0
f(x, y, z) dx dz dy

63 4

65 m = 2;
(x̄, ȳ, z̄) = (13/24, 13/24, 25/24)

67 5m/3

71 Need same limits on innermost integral

73 f(x, y, z) = z

75 True

77 True

79 False

81 True

83 True

Section 16.4
1
∫

π/2

0

∫
1/2

0
f rdr dθ

3
∫

3π/4

π/4

∫
2

0
f rdr dθ
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5
∫

5

1

∫
4

2
f(x, y) dy dx

7
∫

2π

π

∫
4

2
f(r cos θ, r sin θ) r dr dθ

9

x

y

θ = −π/2

θ = π/2 �

r = 4

11

1 2
x

y

�

r = 2

�
r = 1

13

x

y

θ = π/4

r = 1/ cos θ
or r cos θ = 1
or x = 1

15

x

y

r = 2/ sin θ
or r sin θ = 2
or y = 2

θ = π/4

17 π(1 − cos 4)

19 −2/3

21 1.

23 (a) (i)
∫

π/6

0

∫
π

0

∫
5

0
ρ2 sinφdρ dφdθ;

125π/9

(ii)
∫

π/6

0

∫
5

0

∫√
25−r

2

−

√
25−r

2
r dz dr dθ;

2
∫

π/6

0

∫
5

0

∫ √
25−z

2

0
r dr dz dθ;

125π/9
(b) 1/12(4/3π53)

25 (a)

1 2

1

2

x2 + y2 = 4



x2 + y2 = 1

x

y

(b) 7/3

27 32π(
√
2 − 1)/3

29 (a)
∫

2π

0

∫
3

0
r/(r2 + 1) dr dθ

(b) π ln 10

31 250π/3 grams

33 (a)

1
2

1

x = 1/2

�
θ = π/3

�
θ = −π/3

x

y

(b) (4π − 3
√
3)/12

35 (a)
∫ √

3/2

−

√

3/2

∫√
1−y

2

1−

√
1−y

2
dxdy

(b)
∫

1

0

∫
arccos(r/2)

− arccos(r/2)
r dθdr

37 Upper limit for inner integral 1/ cos θ

39 Quarter disk 0 ≤ x ≤ 1, 0 ≤ y ≤
√
1 − x2

41 (a), (c), (e)

Section 16.5
1 (a) is (IV); (b) is (II); (c) is (VII); (d) is (VI); (e)

is (III); (f) is (V)

3 z =
√
1 − r2

5 φ = π/4

7 ρ = 4/ cosφ

9 200π/3

11 25π

13
∫

1

0

∫
2π

0

∫
4

0
f · rdr dθ dz

15
∫

π

0

∫
π

0

∫
3

2
f · ρ2 sinφ dρ dφ dθ

17
∫

5

0

∫
2

0

∫
x/5

0
f dz dy dx

19
∫

2π

0

∫
K

0

∫ √
K

2
−r

2

−

√
K

2
−r

2
r dz dr dθ

21
∫

2π

0

∫
2

0

∫
4

2r
f(r, θ, z)r dz dr dθ

23
∫

2

−2

∫ √
4−x

2

−

√
4−x

2∫
4

2

√
x
2+y

2
h(x, y, z) dz dy dx

25 (a)
∫

1/
√

2

−1/
√

2

∫√
(1/2)−x

2

−

√
(1/2)−x

2∫√
1−x

2
−y

2
√

x
2+y

2
dz dy dx

(b)
∫

2π

0

∫
1/

√

2

0

∫√
1−r

2

r

r dz dr dθ

(c)
∫

2π

0

∫
π/4

0

∫
1

0
ρ2 sin φdρ dφ dθ

27 (a)
∫

2π

0

∫ √

2

0

∫√
4−r

2

r

r dz dr dθ

(b)
∫

2π

0

∫
π/4

0

∫
2

0
ρ2 sin φdρ dφ dθ

29 V =
∫

2π

0

∫
π/3

0

∫
3

0
ρ2 sinφdρ dφ dθ

Order of integration can be altered;
other coordinates can be used

31 V =
∫

π

0

∫ √

3
√

2

∫
10

5
r dz dr dθ;

Order of integration can be altered;
other coordinates can be used

33 V =
∫

2π

0

∫
3

0

∫ √
10−r

2

1
r dz dr dθ

or

V =
∫

2π

0

∫ √

10

1

∫√
10−z

2

0
r dr dz dθ Or-

der of integration can be altered;
other coordinates can be used

35 (a)
∫

2π

0

∫
1/

√

3

0

∫
1
√

3r
r dz dr dθ

(b) π/9

37 16π(
√
2 − 1)/(3

√
2)

39 28π/15

41
∫

2π

0

∫
5/

√

2

0

∫
5/

√

2

r

r dz dr dθ =

125π/(6
√
2) = 46.28 cm3

43 (a) Negative
(b) Zero

45 pqr/6

47
∫

2π

0

∫
π/2

0

∫
b

a

ρ2 sinφdρ dφdθ

= 2π(b3 − a3)/3

49 (a)
∫

2π

0

∫ √

2

0

∫
2−r

2

0
(2 − z)r dz dr dθ

(b)
(

16
√

2

3
− 4

3

)
π

51
∫

2π

0

∫
π

0

∫
3

0
2ρ3 sinφ dρ dφ dθ

53 1/32

55 (a) Mass =∫
2π

0

∫
a

0

∫√
a
2
−r

2

−

√
a
2
−r

2
k|z|r dz dr dθ

(b) πka4/2

57 3/4

61 3I = 6
5
a2; I = 2

5
a2

63 (q2/8πε)((1/a)− (1/b))

65 Mass =
∫

2

−2

∫ √
4−x

2

−

√
4−x

2∫
4−x

2
−y

2

0
e−x−y dz dy dx gm

67 1/27

69 2πGδ(H + R −
√
R2 + H2)

71 Total charge = 2πkR2

73 (c)

75 Limits of outer integral not constant

77
∫
W

√
x2 + y2 + z2 dx dy dz;

W is unit ball x2 + y2 + z2 ≤ 1

Section 16.6
1 Is a joint density function

3 Not a joint density function

5 Is joint density function

7 0

9 1

11 7/8

13 1/16

15 (a) 20/27
(b) 199/243

17 (a) k = 3/8
(b) 15/32
(c) 1/16

19
∫

100

65

∫
1

0.8
f(x, y) dx dy

23
∫

∞

−∞

∫
∞

−∞

(p1(x, y) + p2(x, y)) dx dy =

2
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25 a = 0, b = 1, c = 0, d = 1

27 True

29 False

Chapter 16 Review
1 94.5

3 14

5

−2

2

x

y

�x2 + y2 = 4

7

1

π
2

x

y
y = sinx or
x = sin−1 y

11
∫

2π

0

∫
2

0

∫
3

0
fr drdzdθ

13
∫

π/2

0

∫
π

0

∫
5

0
fρ2 sinφdρdφdθ

15 (a)

2

4

x

y

x = −(y − 4)/2 or y = −2x+ 4

(b)
∫

2

0

∫
−2x+4

0
g(x, y) dy dx

17 10(e − 2)

19 (1/20) sin5 1

21 (π/2)(1 − e−1)

23 1/48

25
∫

2π

0

∫
π

3π/4

∫ √

2

0
f(ρ, φ, θ)ρ2 sinφ dρ dφ dθ

27
∫

1

−1

∫√
1−x

2

−

√
1−x

2∫
−

√
x
2+y

2

−

√
2−x

2
−y

2
h(x, y, z) dz dy dx

29 Positive

31 Positive

33 Negative

35 Zero

37 Positive

39 1.571

41 (a)
∫

2π

0

∫
π/2

π/4

∫
3/ sin θ

0
ρ2 sinφdρ dφ dθ

(b) 18π

43 z

z = 3

z = 2

∫
2π

0

∫
3

2

∫ √

6
√

5
r dr dz dθ

Order of integration can be changed

45

x

z

�

Sphere: x2 + y2 + z2 = 9

�

Cylinder: x2 + y2 = 1

∫
2π

0

∫
1

0

∫√
9−r

2

0
r dz dr dθ

47 Negative

49 Can’t tell

51 Zero

53 Zero

55 Zero

57 Negative

59 π(3 − 2 ln 2)

61 162π/5

63 (a)

2
√
8

2

√
8

y = x

x2 + y2 = 8

x

y

(b) π(1 − e−8)/8

65 (a) z =
√

1 − (y − 1)2 0 ≤ y ≤

2 0 ≤ x ≤ 10

(b)
∫

10

0

∫
2

0∫ √
1−(y−1)2

0
f(x, y, z) dz dy dx

67 (a) Half cylinder, radius 1, along x-axis,
y ≥ 0, −1 ≤ x ≤ 1

(b) 2π/5

69
∫

2π

0

∫
4

0

∫√
25−r

2

3
r dz dr dθ

= 52π/3 = 54.45 cm3

71
∫

2π

0

∫
arccos(3/5)

0

∫
5

3/ cos φ

ρ2 sinφ dρ dφ dθ

= 52π/3 = 54.45 cm3

73 8π gm

75
∫

1

−1

∫ √
1−x

2

−

√
1−x

2

∫√
1−x

2
−y

2

−1+

√
2−x

2
−y

2
dzdydx

= 2π((7/6) − 2
√
2/3)

77 8πR5/15

79 (a) 3/2000
(b) 343/1000

81 6π/7

83 a, b + c, 0

Section 17.1
1 x = 0, y = t, −2 ≤ t ≤ 1

3 x = t, y = 3 − 3t, 0 ≤ t ≤ 1

5 x = 1 + 2t, y = 1 + t, 0 ≤ t ≤ 1

7 x = t, y = 1, z = −t

9 x = 1, y = 0, z = t

11 x = 1 + 3t, y = 2 − 3t, z = 3 + t

13 x = −3 + 2t, y = −2 − t, z = 1 − 2t

15 x = 2 + 3t, y = 3 − t, z = −1 + t

17 x = 3 − 3t, y = 0, z = −5t

19 x = 3 cos t, y = 3 sin t, z = 5, 0 ≤ t < 2π

21 x = 2 cos t, y = −2 sin t, z = 0

23 x = 2 cos t, y = 0, z = 2 sin t

25 x = 0, y = 3 cos t, z = 2 + 3 sin t

27 x = t2, y = t, z = 0

29 x = −3t2, y = 0, z = t

31 x = t, y = 4 − 5t4, z = 4

33 x = 3 cos t, y = 2 sin t, z = 0

35 x = −1 + 3t, y = 2, z = −3 + 5t

37 �r (t) =�i − 3�j +2�k + t(3�i +4�j − 5�k ),
0 ≤ t ≤ 1, x = 1 + 3t, y = −3 + 4t,
z = 2 − 5t, 0 ≤ t ≤ 1

39 x = cos t, y = sin t, z = 0, 0 ≤ t ≤ π

41 Two arcs:
�r (t) = 5�i + 5(− cos t�i + sin t�j ),
0 ≤ t ≤ π or

�r (t) = 5�i + 5(cos t�i + sin t�j ),
π ≤ t ≤ 2π

43 �r (t) = (2 + 10t)�i + (5 + 4t)�j

45 �r (t) = (2 + ((t − 20)/10)10)�i

+(5 + ((t − 20)/10)4)�j

47 �r (t) = (2 − 10t)�i + (5 − 4t)�j

49 No

51 (b) −�i − 10�j − 7�k

(c) �r = (1 − t)�i + (3 − 10t)�j − 7t�k

53 (a) �r = (�i +3�j +7�k )+ t(2�i − 3�j −�k )
(b) (3, 0, 6)

(c)
√
14

55 (a) 2�i − 5�j + 3�k
(c) x = 1 + 2t, y = −1 − 5t, z = 1 + 3t

57 Different lines

59 Different lines

61 (a) (−1, 4,−2)

(b) −�i −�j + 2�k ; other answers possible
(c) �r = −�i +4�j −2�k + t(−�i −�j +2�k )

63 x = − 3
2
t + 5

2
, y = 1

2
t + 1

2
, z = t.

65 x = −4, y = 2 + t, z = 3 + t

67 (a) Straight lines
(b) No
(c) (1, 2, 3)

69 (a) Repeats every year
(b) Mid-August
(c) Mid-April
(d) 2◦C per month

71 Circle, cosine, sine
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−1 1

−1

1

x

y
x = cos t
y = sin t

−1 0 1

5

10

x

z

x = cos t
z = t

−1 0 1

5

10

y

z

y = sin t
z = t

73 (a) x = 2 + at, y = 1 + bt, z = 3 + ct
(b) a/2 = b/1 = c/3

75 α is radius of cylinder
β determines vertical distance moved

77 (a) (vii)
(b) (ii)
(c) (iv)

79 �r = 9.65�k + t(325�i + 563�j − 0.84�k )

81 (a) Parallel
(b) (i) Perpendicular

(ii) Parallel

83 Different parameterization of same curve

85 x = cos t, y = sin t, z = 0
x = 0, y = cos t, z = sin t

87 x = t3 , y = 2t3 , z = 3 + 4t3

89 True

91 True

93 True

95 True

97 False

99 False

Section 17.2
1 �v = 3�i +�j − �k , �a = �0

3 �v =�i + 2t�j + 3t2�k , �a = 2�j + 6t�k

5 �v = −3 sin t�i + 4 cos t�j ,
�a = −3 cos t�i − 4 sin t�j

7 �v =�i + 2t�j + 3t2�k ,
Speed =

√
1 + 4t2 + 9t4,

Particle never stops

9 �v = 6t�i + 3t2�j ,
‖�v ‖ = 3|t| ·

√
4 + t2,

Stops when t = 0

11 �v = 6t cos(t2)�i − 6t sin(t2)�j ,
‖�v ‖ = 6|t|,
Stops when t = 0

13 Length =
√
42

15 Length = e− 1

17 �v = −6π sin(2πt)�i + 6π cos(2πt)�j ,
�a = −12π2 cos(2πt)�i −12π2 sin(2πt)�j ,
�v · �a = 0, ‖�v ‖ = 6π, ‖�a ‖ = 12π2

19 Line through (2, 3, 5) in direction of
�i − 2�j − �k ,
�v = 2t(�i −2�j −�k ), �a = 2(�i −2�j −�k )

21 x = 1+2(t− 2), y = 2, z = 4+12(t− 2)

23 Vertical: t = 3
Horizontal: t = ±1
As t → ∞, x → ∞, y → ∞
As t → −∞, x → ∞, y → −∞

−10 10 20
−10

40

90

140

190

x

y

25 (a) �v (2) ≈ −4�i + 5�j ,
Speed ≈

√
41

(b) About t = 1.5
(c) About t = 3

27 (a) x = 2 + 0.6t, y = −1 + 0.8t, z =
5 − 1.2t, 0 ≤ t ≤ 5

(b) x = 2 + 1.92t, y = −1 + 2.56t, z =
5 − 3.84t, 0 ≤ t ≤ 1.56

29 (a) 6.4 meters
(b) 1.14 sec
(c) 15.81 m/sec
(d) (11.4,−5.7, 0)
(e) −9.8 m/sec2

31 (a) 5 secs; (10, 15, 100)
(b) t = 0, 10 secs,

√
113 cm/sec

(c) 5 secs,
√
13 cm/sec

33 (a) t = 5.181 sec
(b) x = 103.616 meters
(c) 2 meters
(d) 9.8 meters/sec2

(e) θ = 0.896; v = 32.016 meters/sec

35 (a) (IV); 4.5 sec; (0, 8.9 m, 0)
(b) (II); 3.2 sec; base of tower
(c) (V); 10 sec; halfway up

37 �r (t) = 22.1t�i + 66.4t�j

+ (442.7t − 4.9t2)�k

41 (a) No
(b) t = 5

(c) �v (5) ≈ 0.959�i + 0.284�j + 2�k

(d) �r ≈ 0.284�i − 0.959�j + 10�k

+ (t − 5)(0.959�i + 0.284�j + 2�k ).

43 (a) �r (t) = t cos(2πt)�i + t sin(2πt)�j ,
0 ≤ t ≤ 100

(b) �v = �r ′(t) =

(cos(2πt) − 2πt sin(2πt))�i +

(sin(2πt) + 2πt cos(2πt))�j

‖�v ‖ = (1 + 4π2t2)1/2 cm/sec
(c) �a = �v ′(t) =

(−4π sin(2πt) − 4π2t cos(2πt))�i +

(4π cos(2πt) − 4π2t sin(2πt))�j

‖�a ‖ = 4π(1 + π2t2)1/2 cm/sec2

45 (a) x ≈ 694.444t
+ 20 cos(2πt)cm

y = 30 + 20 sin(2πt) cm
(c) At least 5.526 revs/sec

47 No

49 (a) 2�r · d�r /dt
(b) �a × d�r /dt
(c) r3d�r /dt+ 3r2�r

55 Acceleration is a vector, not a scalar

57 �r (t) =
(
t + 2t2

)
�i + 2t�j + 3t2�k

59 False

61 False

63 False

65 False

67 True

69 False

Section 17.3
1 �V = x�i

3 �V = x�i + y�j = �r

5 �V = −x�i − y�j = −�r

7 (a) y-axis
(b) Increasing
(c) Neither

9 (a) x-axis
(b) Increases
(c) Decreases

11

x

y

13

x

y
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15

x

y

17

x

y

19

x

y

21 (a) IV
(b) III
(c) I
(d) II

23 (1 + x2)(3�i + 2�j ), other answers possible

25 x�i + y�j , other answers possible

27 (A) = (IV); (B) = (II); (C) = (I); (D) = (III)

29 (a) II
(b) III
(c) IV
(d) I

31 �F (x, y) = −x
�
i −y

�
j√

x
2+y

2
(for example)

33 (a) (1,−3,−7); other answers possible
(b) (0, 0, 0); other answers possible
(c) −4x + y − 3z = 0; plane through origin

35 (a) Radiates out from origin

x

y

(b) Spirals outward counterclockwise around ori-
gin

x

y

(c) Spirals outward clockwise around origin

x

y

37 (a) z = f(x, y):

5
4
32
10

x

y

z = g(x, y):

5
43
21

0

x

y

(b)

x

z

f(x, y)

g(x, y)

39 To plot �G (x, y, z) move arrows of
�F (2x, 2y, 2z) halfway to origin

41 (x2 + 1)
(
�i +�j + �k

)

Section 17.4
1 Field:

−12 12

−12

12

x

y

Flow, x = constant:

−12 12

−12

12

x

y

3 Field:

−9 9

−9

9

x

y

Flow, y = −(2/3)x+ c:

−9 9

−9

9

x

y
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5 Field:

x

y

Flow:

−12 12

−12

12

x

y

7 Field:

x

y

Flow:

x

y

9 Field:

x

y

Flow:

x

y

15 (a) Same directions, different magnitudes
(b) Same curves, different parameterizations

23 (a) h′(t) = 0

25 Counterexample: �F (x, y, z) = (x2 + 1)�i

27 �F (x, y, z) = x�i + y�j + z�k

29 False

31 False.

33 False

35 False

37 False

Chapter 17 Review
1 �r = 2�i −�j + 3�k + t(5�i + 4�j − �k )

3 x = t, y = 5

5 x = 4 + 4 sin t, y = 4 − 4 cos t

7 x = 2 − t, y = −1 + 3t, z = 4 + t.

9 x = 1 + 2t, y = 1 − 3t, z = 1 + 5t.

11 x = 3 cos t
y = 5
z = −3 sin t

13 �r = 10 cos (2πt/30)�i −

10 sin (2πt/30)�j + 7�k

15 �v =�i + (3t2 − 1)�j

17 �v = 6t�i + 2t�j − 2t�k

19 Vector;
(
(3 cos

√
2t + 1)�i −

(3 sin
√
2t + 1)�j + �k

)
/
√
2t + 1

21 Vector; −(cos t/(2
√
3 + sin t))�i −

(sin t/(2
√
3 + cos t))�j

23 No

25 Same direction −�i + 4�j − 2�k ,
point (3, 3,−1) in common

27

x

y

29

x

y

31 (a) (2, 3, 0)
(b) 2
(c) No; not on line

33 (b) (i) Yes

(ii) No

(iii) Yes

(iv) No

35 �E : (IV); �F : (I);
�G : (II); �H : (III)

37 �v = 0.2�i − 0.4�j + 0.4�k m/sec
�a = �0

39 (a) Max rate change temp with distance;
◦

C/cm

(b)
√

(g′(t))2 + (k′(t))2; cm/sec

(c) fx · g′(t) + fy · k′(t);
◦

C/sec

41 (a) Yes, t = 1, (x, y) = (−2,−1)
(b) Yes, t = −1, (x, y) = (2, 3)
(c) No

43 (a) x(t) = 5 sin t, y(t) = 5 cos t, z(t) = 8

(b) �v = −5�j , �a = −5�i
(c) xtt(t) = ytt(t) = 0,

ztt(t) = −g,
xt(0) = zt(0) = 0,
yt(0) = −5, xt(0) = 5, yt(0) = 0,
zt(0) = 8

45 (a) In the direction given by the vector:�i −�j
(b) Directions given by unit vectors:

1
√

2
�i + 1

√

2
�j

− 1
√

2

�i − 1
√

2

�j

(c) −4

47 −(2 + 4t2)/(t3(1 + t2)2)

49 (a) 52/
√
13, (8, 12)

(b) 52/
√
13, (18, 62)

51 No, since the point (0, 1) is not on the curve

53 ω: Rate of change of polar angle θ of particle,
a: Rate of change of particle’s distance from ori-
gin

55 (a) 1

x
2+y

2+z
2

(b) 1√
x
2+y

2+z
2

(c) x√
x
2+y

2+z
2
�i + y√

x
2+y

2+z
2
�j

+ z√
x
2+y

y+z
2

�k

(d) −x√
x
+

y
2+z

2
�i + −y√

x
2+y

2+z
2
�j

+ −z√
x
2+y

y+z
2

�k

(e) cos t

2
√

2
�i + sin t

2
√

2
�j + 1

2
√

2

�k

(f) 1
√

2

57 No

59 (b) �i + 2�j + 3�k + 5 cos t((1/
√
2)�i −

(1/
√
2)�j ) + 5 sin t((1/

√
6)�i +

(1/
√
6)�j − (

√
2/

√
3)�k )

61 (b) e−t�i − 2e−t�j ,
(0.0025e3t + 0.9975e−t)�i

+(0.005e3t − 1.995e−t)�j ,
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(−0.0025e3t + 1.0025e−t)�i

+(−0.005e3t + 2.005e−t)�j

Section 18.1
1 Negative

3 Zero

5 Zero

7 0

9 0

11 28

13 16

15 −48

17 19/3

19 20

21 28

23 C1 is pos; C2, C3 are zero

25 C1 is neg; C2 is neg; C3 is zero

27
∫
C3

�F ·d�r <
∫
C1

�F ·d�r <
∫
C2

�F ·d�r

29 (b)

1 2 3
x

−1

1

2

3

y

� � $
$�
�

�
%

(c) 60

31 a > 0

33 b < 0

35 c > 3

37 0

39 Negative

41 0

43 Yes

49 −GMm/8000

51 Sphere of radius a centered at the origin

53 (a) φ(�r ) = −
Q

4πε

1

a
+

Q

4πε

1

||�r ||

(b) Because then φ(�r ) =
Q

4πε

1

||�r ||

55 Value of a line integral is not a vector

57

C2 C1 x

y

59 True

61 True

63 False

65 False

67 False

Section 18.2
1
∫

π

0
(cos2 t − sin2 t) dt

Other answers are possible

3
∫

2π

0
(− sin t cos(cos t) +

cos t cos(sin t))dt

5 24

7 −4

9 −6

11 9

13 82/3

15 12

17 116.28

19 12

21 21

23 0

25
∫
C

y2dx + z2dy + (x2 − 5)dz

27 e−3y�i − yz(sin x)�j + (y + z)�k

29 18π2

31 −18π

33 (a)

−1

1
C2

C1
x

y

(b) 0; −3π/2

37 (a) −5
(b) 5
(c) 0

41 (a) Greater than zero
(b) 88
(d) t = 2 ± 1/

√
3

(e) 88; yes

43 Sign depends on C

45 y = π/2, x = t, 0 ≤ t ≤ 3,
∫
C

�F ·d�r = 3

47 True

49 True

51 False

53 False

Section 18.3
1 12

3 Negative, not path-independent

5 Negative, not path-independent

7 Path-independent

9 Path-independent

11 Path-independent

13 f(x, y) = x2y + K

15 f(x, y, z) = exyz + sin(xz2) + C
C = constant

17 −2

19 2

21 0

23 e3 − 1

25 0

27 PQ

31 Yes

33 Yes.

35 e9 − 1

37 (a) −(1/3) − π

(b) 3π/4

39 9π/4

41 e9/2 + sin(3
√
2) − 1

43 107; 109.5

45 −2

47 (b) No

49 (a)
∫
C2

�F · d�r

(b)
∫
C3

�F · d�r <
∫
C2

�F · d�r

<
∫
C4

�F · d�r <
∫
C1

�F · d�r

(c)
∫
C3

�F · d�r = −
∫
C4

�F · d�r < 0

51 −3.6

53 (a) �a
(b) �r 0 · �a
(c) 10||�a ||

55 (a) π/2
(b) No

57 (a) �F − gradφ = x grad h
(b) 50

59 (a) �F − gradφ = x grad h
(b) 384

63 (b) Yes

65 Only if �F is path-independent

67 �F = grad f , f(x, y) = 50xy

73 False

75 False

77 False

79 True

81 True

83 False

Section 18.4
1 No

3 No

5 f(x, y) = x3/3 + xy2 + C

7 Yes, f = lnA|xyz| where A > 0

9 No

11 −12

13 1/2

15 −3π

17 (a)

1−1

1

−1

x

y

(b) −π

19 e− cos 1

21 −9π/8

23 (a) 0
(b) 0
(c) 0
(d) −6π
(e) −6π
(f) 0
(g) −6π
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25 (b) 0
(c) �G = ∇(xyz + zy + z)

(d) �H1 = ∇(yx2), �H2 = ∇(y(x + z))

27 πab

a

b

x

y

29 3/2

2

2

x

y

31

x

y

33 (a) Possible answers are:
�F = grad(xy)
�G = grad(arctan(x/y)), y �= 0
�H = grad

(
(x2 + y2)1/2

)
, (x, y) �=

(0, 0)
(b) 0, −2π, 0
(c) Does not apply to �G , �H ; holes in domain

35 L1 < L2 < L3

37 (a) 21π/2
(b) 2

39 (a) �0
(b) q/||�r ||

41 Green’s Theorem does not apply;
Line integral depends on �F

43

C1

C2

(0, 1)

(1, 0)
x

y

45 True

47 True

49 True

51 True

Chapter 18 Review
1 Positive

3 (a) Zero
(b) C1, C3: Zero

C2: Negative
C4: Positive

(c) Zero

5 Scalar; 12

7 −58

9 50

11 18

13 1372

15 Not path-independent

17 Path-independent

19 Path-independent

21 Path-independent

23 350

25 27π/2

27 45

29 0, 100

31 (ii), (iv)

33 (a) 24
(b) 12
(c) −12

37 18

39 −36

41 (a) 0
(b) 24

43 (a) 0
(b) 6
(c) 75π/2
(d) 14

45 (a) 9/2
(b) −9/2

47

(0,−1)

(0, 1)

x

y

C

49 (a) Closed curve oriented counterclockwise
(b) Closed curve oriented clockwise

with y > 0 or
Closed curve oriented counterclockwise
if y < 0

(Other answers are possible)

51 (a)

1 2

1

22.7

23
23.3

Q
P

x

y

(b) Longer

(c) −0.3

53 (a) π/2
(b) 0

57 (a) ω = 3000 rad/hr
K = 3 · 107 m2·rad/hr

(b) Inside tornado:

x

y

View from great distance:

x

y

(c) r < 100 m, circulation is 2ωπr2

r ≥ 100 m, circulation is 2Kπ

59 (a) −(π/2)(−6a2 + a4), a =
√
3

(b) Integrand 3 − x2 − y2 positive inside disk
of radius

√
3, negative outside

61 18a + 18b + 36c + (81d/2),
−18a − 18b − 36c − (81d/2),
curves go in opposite directions

Section 19.1
1 −3�i

3 15�j

5 Rectangle in xz plane with area 150, oriented
pos y direction

7 (a) 45
(b) −45

9 (a) Positive
(b) Negative
(c) Zero
(d) Zero
(e) Zero

11 (a) Zero
(b) Zero
(c) Zero
(d) Negative
(e) Zero

13 8

15 −6

17 4

19 3/2

21 2π

23 0

25 3
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27 108π

29 9π
√
75

31 2π

33 28

35 28π

37 0

39 114

41 64/3

43 756π

45 18

47 81π/2

49 π(e4 − 1)

51 8π

53 (a) (i) Positive
(ii) Zero

(iii) Zero
(iv) Negative

(b) Integral over B

55 6π cm3/sec

57 �j components parallel to S, other components
same

59 4πR

61 (a) Zero
(b) Zero

65 (a)

−2 2

−2

2

x

y

(b) 4πλh

67 (a) 0
(b) 0

69 Sign of
∫
S

�F · d �A depends on both �F and S

71 �F = z�k
S: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = 1,

oriented upwards

73 False

75 True

77 True

79 False

81 False

Section 19.2
1
(
−3�i + 5�j + �k

)
dxdy

3
(
−4x�i + 6y�j + �k

)
dx dy

5
∫

3

−2

∫
5

0
70 dy dx

7
∫

5

0

∫
5−x

0
(yz sin x − 2xy cos 2y +

xy) dy dx

9 −500

11 −5/3 − sin 1 = −2.508

13
∫

π/2

0

∫
5

0
10 (cos θ + 2 sin θ) dz dθ

15
∫

2π

0

∫
8

−8

(
6z2 cos θ + 6 sin θe6 cos θ

)
dz dθ

17 2000

19 100
√
2/3

21
∫

2π

0

∫
π/2

0
100 (sinφ cos θ + 2 sinφ sin θ + 3 cosφ) sinφ dφdθ

23
∫

π/2

−π/2

∫
π

0
16 cos2 φ sin2 φ cos θ dφ dθ

25 8000/3

27 (8 − 5
√
2)π/6 = 0.486

29 6

31 6

33 18

35 36π

37 7/3

39 π sin 25

41 π/2

43 1296π

45 1/4

47 36π

49 2π/3

51 4πa3

53 −1

55 11π/2

57 (a) Constant inside sphere of radius a

(b) �E =

{
k
δ0

3
ρ�e ρ ρ ≤ a

k
δ0a

3

3r3
�e ρ ρ > a

59 Cone not on a cylinder

61 f(x, y) = −x − y

63 True

65 False

Section 19.3
1 2x + xez

3 (I)

5 0

7 −1

9 6x − (x + z) cos(xz)

11 0

13 2/‖�r − �r 0‖

15

x

y

x

y

17 −0.030

19 (a) (i) 0.016π/3

(ii) −0.08
(b) Flux positive at (2, 0, 0) and negative at

(0, 0, 10)

21 (a) 4w3

(b) 4
(c) 4

23 div�v = −6

25 (a) −1/3, 1
(b) 1/3

27 (b)

29 (a) 0
(b)

x

z

31 (a) 0
(b) Undefined

33 (a) ρ(0) < ρ(1000) < ρ(5000)
(b) cars/hour
(d) ρ(x) = 4125/(55 − x/50)

if 0 ≤ x < 2000
ρ(x) = 4125/15 = 275

if 2000 ≤ x < 7000

ρ(x) =
4125

(15 + (x − 7000)/25)
if 7000 ≤ x < 8000

ρ(x) = 4125/55 = 75
ifx ≥ 8000

(e) 139 ft. at x = 0
89 ft. at x = 1000
38 ft. at x = 5000

39 (3 − a)x−a

43 (d)

x

y

45 div(2x�i ) = 2

47 Only vector fields have divergence

49 �F (x, y, z) = y2�i + xz�j + x�k

51 True

53 True

55 True

57 False

59 False

61 True

63 False

Section 19.4
1 24

3 8
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5 Zero

7 24

9 72

11 288

13 36π

15 620π

17 48π

19 1.571

21 Yes; −3.22

23
∫
S

�F · d �A =
∫
W

div �F dV = 0

25 (a) 0
(b) No
(c) 4π
(d) 4π

27 (a) cb(12a − a2)
(b) 6, 10, 10; 3600

29 4π

31 (a) 24π/5

(b)
∫
S2

�F ·d �A <
∫
S3

�F ·d �A <
∫
S4

�F ·

d �A

33 S closed, oriented inward

39
∫
S

�F · d �A =
∫
W

div �F dV

41 �F = (9x/4π)�i

43 True.

45 False.

47 False.

49 True

51 True

53 True

55 True

Chapter 19 Review
1 Scalar; −100π

3 (a) 16
(b) 16
(c) −16
(d) −16
(e) 32

5 Negative

7 Positive

9 0

11 −45

13 27/2

15 −4

17 12

19 −8(1 + e−1)

21 24π

23 (π/6) − 1/3

25 c > 0

27 a + b + c > 0

29 (a) 24
(b) 24

31 1500π

33 8π/3

35 2π

37 (a) (y + yzexyz)�i + (x + xzexyz)�j +

xyexyz�k
(b) 5 + e24 − e1

(c) 2

39 (a) Flux through S3

(b) 13π

41 (a) (i) 0.0168

(ii) −0.004

(i) Pointing outward

(ii) Pointing inward

43 (a) Flux = c3

(b) 1
(c) 1

45 −10π

47 0

49 34π

51 (a) 0
(b) z-axis
(c) 0
(d) 0

53 (a) 0
(b) 0

55 (a) x = 2,�i direction
(b) (i) 24π

(ii) 8π

57 81π

61 (a) Maximum speed
(b) 0
(c) πua2/2

63 (a)

(
1 +

y2 − x2

(x2 + y2)2

)
�i +

−2xy

(x2 + y2)2
�j

(d)

65 (a) 0.0958
(b) 0.0958
(c) 0.0958

Section 20.1
1 Vector:�i +�j − �k

3 6�i

5 −�i −�j − �k

7 �0

9 (2x3yz + 6x7y5 − xy)�i

+ (−3x2y2z − 7x6y6 + y)�j

+ (yz − z)�k

11 Nonzero curl

13 Zero curl

15 (a) −2y�i + 2x�j

(b) 4�k

17 (a) 0.0005π
(b) 0.0002π
(c) −0.0003π

19 curl(F1(x)�i + F2(y)�j + F3(z)�k ) = �0

21 (a) Counterclockwise
(b) Clockwise
(c) �0

33 (b) Direction of �k for A = −1
Zero vector for A = −2
Direction of −�k for A = −3

(c) At (1, 1, 1): Positive for A = −1
Zero for A = −2

Negative for A = −3
At (0, 0, 0): Can’t say anything

35 Counterexample: �F = y�i

37 �F = z�i

39 True.

41 True

43 False

45 False

Section 20.2
1 9π/2

3 25

5 −π

7 −5π

9 6

11 −6
√
3π

13 Negative

15 (a) −�i −�j − �k
(b) −6

17 (a) �i +�j + �k
(b) −4

√
3

19 8π/
√
3

21 0

23 8
√
3π

25 (a) x2 + y2 = 9, z = 2
(b) −18π

27 72

31 120π

33 (a) Parallel to xy-plane; same in all horizontal
planes

(b) (∂F2/∂x − ∂F1/∂y)�k
(d) Green’s Theorem

35 C not the boundary of a surface

37 Any oriented circle

39 True

41 False

43 True

45 True

47 False

Section 20.3
1 Yes

3 Yes

5 No

7 Yes

9 Yes

11 Yes

13 Curl yes; Divergence yes

15 Curl yes; Divergence yes

19 (1/2)�b × �r

21 No

23 (a) Yes
(b) Yes
(c) Yes

25 (a) Yes
(b) No
(c) No

29 (b) ∇2ψ = − div �A

31 Curl of scalar function not defined

33 f(x, y, z) = x2
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35 False

37 True

Chapter 20 Review
1 �i −�j − �k

3 (c), (d), (f)

5 C2, C3, C4, C6

7 Defined; scalar

9 Defined; vector

11 Nonzero curl

13 div �F = y + z + x

curl �F = −y�i − z�j − x�k
�F not solenoidal; not irrotational

15 div �F = 0
curl �F = (2y − cos(x + z))�i −(

2x − ey+z

)
�j +
(
cos(x + z) − ey+z

)
�k

�F is solenoidal; not irrotational

17 (a) 18π
(b) 18π

19 20π

21 0

23 (a) is (I); (b) is (I); (c) is (V); (d) is (III); (e) is
(IV); (f) is (V)

25 (a) −1125π
(b) Not defined
(c) 0
(d) Not defined
(e) 384π/5
(f) 353/4
(g) Not defined
(h) 54

27 (a) 23
(b) Approx 0.0003π/

√
3

29 (a) div �F < 0, div �G < 0

(b) curl �F = 0, curl �G = 0
(c) Yes
(d) Yes
(e) No
(f) No

31 0

33 4π

35 210

37 12π/5

39 150π

41 e − 1

43 (a) 18
(b) 81/2

45 (a) No
(b) No

47 (a) 2π
(b) �0 except on z-axis
(c) No
(d) Yes; 0
(e) No

49 (a) 50
(b) 30π
(c) 8
(d) −18π

51 (a) (4(p + q)πR3/3)
(b) (4(p + q)πR3/3)

Section 21.1
1 Curve

3 Surface

5 Horizontal disk of radius 5 in plane z = 7

7 Helix radius 5 about z-axis

9 Top hemisphere

11 Vertical segment

13 �r (s, t) = (s + 2t)�i + (2s + t)�j + 3s�k ,
other answers possible

15 �r (s, t) = (3+s+t)�i +(5−s)�j +(7−t)�k ,
other answers possible

17 (a) Yes
(b) No

19 s = s0: lines parallel to y-axis with z = 1
t = t0: lines parallel to x-axis with z = 1

21 s = s0: parabolas in planes parallel to yz-plane
t = t0: parabolas in planes parallel to xz-plane

23 s = 4, t = 2
(x, y, z) = (x0 + 10, y0 − 4, z0 + 18)

25 Horizontal circle

27 (a) x =
(
cos
(

π

3
t
)
+ 3
)
cos θ

y =
(
cos
(

π

3
t
)
+ 3
)
sin θ

z = t 0 ≤ θ ≤ 2π, 0 ≤ t ≤ 48
(b) 456π in.3

29 If θ < π, then (θ + π, π/4)
If θ ≥ π, then (θ − π, π/4)

31 x = r cos θ, 0 ≤ r ≤ a
y = r sin θ, 0 ≤ θ ≤ 2π
z = (1 − r/a)h

33 (a) −x + y + z = 1,
0 ≤ x ≤ 2,
−1 ≤ y − z ≤ 1

(b)

x y

z

35 (a) z = (x2/2) + (y2/2)
0 ≤ x + y ≤ 2
0 ≤ x − y ≤ 2

(b)

x

y

z

37 Radius: R sinφ

39 x + y − z − 3 = 0

41 True

43 True

45 True

47 False

Section 21.2
1 1

3 e2s

5 a = 1/10, b = 1

7 a = 1/50, b = 1/10

9 3

11 ρ2 sinφ

13 13.5

15 72

17 (a) (1/(2πσ2)
∫

∞

−∞

∫
2t−x

−∞

e−(x2+y
2)/(2σ2)dy dx

(b) (1/(
√
πσ))
∫

t

−∞

e−u
2
/σ

2
du

(c) (1/(
√
πσ))e−t

2
/σ

2

(d) Normal, mean 0, standard deviation σ/
√
2

19 R does not correspond to T

21 x = 2s, y = 3t

23 False

Section 21.3
1 ((s + t)�i − (s − t)�j − 2�k ) ds dt

3 −es(cos t�j + sin t�k ) ds dt

5 4/3

7 6(e4 − 1)

9 −πR7/28

11 200
√
14

13
√
6π

15 khw3/6 meter3/sec.

21 Integral gives volume

23 �r (s, t) = 2s�i + t�j

25 True

27 False

Chapter 21 Review
1 Cone, height 7 and radius 14

3 a = 1/15, b = 1/15

5 −1/2

7 0

9 x = 2 + 5 sinφ cos θ
y = −1 + 5 sinφ sin θ
z = 3 + 5 cosφ

11 (a) Cylinder
(b) Helices

13 x = a sinφ cos θ 0 ≤ φ ≤ π
y = b sinφ sin θ 0 ≤ θ ≤ 2π
z = c cosφ

15 (a) x2 + y2 = 9, x ≥ 0, 1 ≤ z ≤ 2.
(b)

x

y

z

17 0

19 2πc(a2 + b2)

Appendix A
1 (a) y ≤ 30

(b) two zeros

3 −1.05

5 2.5

7 x = −1.1
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9 0.45

11 1.3

13 (a) x = −1.15
(b) x = 1, x = 1.41,

and x = −1.41

15 (a) x ≈ 0.7
(b) x ≈ 0.4

17 (a) 4 zeros
(b) [0.65, 0.66], [0.72, 0.73],

[1.43, 1.44], [1.7, 1.71]

19 (b) x ≈ 5.573

21 Bounded −5 ≤ f(x) ≤ 4

23 Not bounded

Appendix B
1 2eiπ/2

3
√
2eiπ/4

5 0eiθ , for any θ.

7
√
10ei(arctan(−3)+π)

9 −3 − 4i

11 −5 + 12i

13 1/4 − 9i/8

15 −1/2 + i
√
3/2

17 −125i

19
√
2/2 + i

√
2/2

21
√
3/2 + i/2

23 −250

25 2i 3
√
4

27 (1/
√
2) cos(−π/12)+(i/

√
2) sin(−π/12)

29 −i, −1, i, 1
i−36 = 1, i−41 = −i

31 A1 = 1 + i
A2 = 1 − i

37 True

39 False

41 True

Appendix C
1 (a) f ′(x) = 3x2 + 6x + 3

(b) At most one
(c) [0, 1]
(d) x ≈ 0.913

3 4
√
100 ≈ 3.162

5 x ≈ 0.511

7 x ≈ 1.310

9 x ≈ 1.763

11 x ≈ 0.682328

Appendix D
1 3, 0 radians

3 2, 3π/4 radians

5 7�j

7 ‖3�i +4�j ‖ = ‖−5�i ‖ = ‖5�j ‖, ‖�i +�j ‖ =

‖
√
2�j ‖

9 5�j and −6�j ;
√
2�j and −6�j

11 (a) (−3/5)�i + (4/5)�j

(b) (3/5)�i + (−4/5)�j

13 8�i − 6�j

15 �i + 2�j

17 Equal

19 Equal

21 �i +�j ,
√
2,�i −�j

23 Pos: (1/
√
2)�i + (1/

√
2)�j

Vel: (−1/
√
2)�i + (1/

√
2)�j

Speed: 1



INDEX

S-I-R model, 640
SARS, 663
threshold value, 642, 663

Δt, 276
Δ, Delta, notation, 5, 136
∇f , gradient, 782
∇· �F , divergence, 1025
δ, delta, 59
ε, epsilon, 59
γ, Euler’s constant, 511∫

, 326∫
C

�F · d�r , 958∫ b

a
, 282

μ, mean, 478
∇× �F , curl, 1050
∂/∂x, partial derivative, 759
ρ, θ, φ, spherical coordinates, 899
σ, standard deviation, 478∫
S
�F · d �A , 1008∑

, Sigma, notation, 281
→, tends to, 49
�i , �j , �k , 721
�v × �w , cross product, 744
�v · �w , dot product, 734
d/dx notation, 99
e, the number, 15

as limit, 161, 245, 533
property of, 29

f ′(x) notation, 91
g, 334, 450
i, the number, 1104
n factorial, 493
p-series, 509
r, θ, z, cylindrical coordinates, 896
r, θ, polar coordinates, 431∫
C

P dx+Qdy +Rdz, 971

absolute growth rate, 609
absolute value function, 112
absolutely convergent, 518, 1131
acceleration, 336, 930–932

average, 107
instantaneous, 107
straight line motion, 932
uniform circular motion, 931
vector, 728, 930–932, 1119

components of, 930
limit definition, 930

acceleration due to gravity, 334
accuracy, 1100

to p decimal places, 1101

addition of vectors, 1117
components, 723, 1133
geometric view, 718
properties, 729

air pressure, 173
alternating series, 517

error bounds for, 518
test, 517, 1131

Ampere’s law, 1000, 1003, 1015
amplitude, 37
analytical solution

of differential equation, 604
angular frequency, 572
antiderivative, 320, 1129

computing, 321, 327
constructing with definite integral,

340
Construction Theorem for, 340,

1129
differential equations and, 332
family of, 320
from graph, 321
Fundamental Theorem and, 321
most general, 326
of 0, 326
of 1/x, 328, 1129
of sin x, cos x, 1129
of sin x, cos x, 328
of ex, 328, 1129
of e−x2

, 320, 340
of xn, 327, 1129
of constant function, 327
of rational functions, 379
of same function, 326
of sinmx cosnx, 372
properties of, 328
reduction formulas, 369

xn cos ax, 369
xn sin ax, 369
xnex, 369
cosnx, 369

tables of, 371
visualizing, 320

apple orchard yield, 350
approximation

bisection, 1098
error in Taylor polynomial, 560,

1132
Euler’s method, 600
finite difference, 583
Fourier polynomial, 566
global vs. local, 568
linear, 169, 538, 771–775, 1127

Newton’s method, 184, 1099,
1112

of definite integral, 387
Picard’s method, 660
quadratic, 539, 809–811
tangent line, 169, 538, 1127
tangent plane, 773

arc length, 425, 932, 936, 1130
circle, 36
in polar coordinates, 437
of hanging cable, 488
of parametric curve, 427

arccosh, 266
arccosine function, 44, 1125
Archimedean spiral, 433
Archimedes’ Principle, 430, 1039
arcsine function, 41, 1125

derivative of, 158
domain and range, 41, 1125
graph of, 41

arcsinh, 266
arctangent function, 41, 1125

derivative of, 157
domain and range, 41, 1125
graph, 41
Taylor series, 553

area
between curves, 301
definite integral and, 283, 291, 414
double integral for, 871
finding by slicing, 414
of parallelogram, 747
of parameterized surface, 1090
polar coordinates, 435

area vector, 747, 751, 1007
of parallelogram, 1017

Aristotle (384-322 BC), 336
arithmetic mean, 214
Aswan Dam, 458
asymptote

horizontal, 16, 49, 63, 1125
of rational functions, 49, 1125
vertical, 30, 49, 1125

average cost, 231
average rate of change, 83, 1127
average value of function, 304, 1129

two-variable, 872, 1136
average velocity, 76, 308

slope and, 79
axes

coordinate, 668
right-handed, 668

1205
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bank deposits as series, 502
Barbra Streisand, 504
barometric pressure, 626
base

of exponential function, 13
of logarithm function, 29, 1124

basketball, 953
Bay of Fundy, 152
beef consumption, 667
behaves like principle, 404
bell-shaped curve, 216, 308, 477
bending of light, 558
Bernoulli, Johann (1667-1748), 628
Bessel functions, 528
binomial series, 549, 1132
bioavailability, 370
biodiesel fuel, 10, 20
birthdays, 827
bisection, method of, 1099, 1111
bladder, 324
Bohr radius, 480
Bohr, Niels (1885-1962), 480
Boltzmann constant, 489
bonds, 531

trading at a discount, 504
trading at a premium, 504

bound, 560
above, 303
below, 303
best possible, 200, 1102
greatest lower, 1102
least upper, 1102
lower, 200, 1102
upper, 200, 1102

boundary
of region, 844
of solid region, 1034
of surface, 1056
point, 772, 844

bounded region, 844, 1135
bounded sequence, 494
Boyle’s Law, 265
Brahe, Tycho (1546–1601), 954
bridge design, 756

caffeine, 34, 626
calculators

round-off error, 121, 133
Cantor Set, 532
carbon dioxide level, 363
carbon-14, 14, 618, 657
cardiac output, 765
cardioid, 438, 439
carrying capacity, 52, 107, 629, 1133
Cartesian coordinates, 431

conversion to
cylindrical, 896
spherical, 899

three-dimensional, 668
catalog of surfaces, 702
catenary, 165, 168, 483
Cauchy, Augustin (1789-1857)

formal definition of limit, 58
cdf, 470
center of mass, 442, 904

continuous mass density, 444
moment, 442
of point masses, 443
triple integral for, 890

center of mass, 1130
central vector field, 1001
cephalexin, antibiotic, 531
chain rule, 143, 796–801

and units, 143
application to chemistry, 801
applications, 156
diagram for, 798
integration and, 354

change of coordinate, 1084
change of coordinates, 1087
channel capacity, 798
chaos, 1114
Chernobyl accident, 19
chlorofluorocarbons, 103, 111
circle

parameterization of, 249
circulation, 962

density, 1048, 1138
path-dependent field and, 986

closed curve, 962
closed curves

as trajectories in phase plane, 645
closed form of series, 499
closed interval, 2
closed region, 844, 1135
closed surface, 1006, 1034
CO2

in pond water, 292
coal production in US, 296
coaxial cable, 905
Cobb-Douglas

function, 231
Cobb-Douglas function, 688, 770, 862

contour diagram of, 687
formula for, 688
returns to scale, 692

code-red computer virus, 636
common ratio, 500
comparison test

for improper integrals, 404
for series, 512, 1131

competition, 647
Competitive Exclusion

Principle of, 649
completing the square, 373, 383, 834

complex number
algebra of, 1105
complex plane, 1106
conjugates, 1105
definition, 1105
imaginary part, 1105
polar representation, 1106
powers of, 1108
real part, 1105
roots of, 1108

complex plane, 1106
polar coordinates, 1106

compliance, 103
components of vector, 252, 721, 723,

1115
composite functions, 21, 796

derivative of, 142
compound interest, 460, 621

continuous, 610
Rule of Seventy, 184

compressibility index, 103
concavity, 12

downward, 12, 104, 1127
error in definite integrals and, 389
Euler’s method and, 600
inflection point and, 190
of parametric curve, 256
power functions and, 128
second derivative and, 104, 186
upward, 12, 104, 1127

concentration, 624
conditionally convergent, 518, 1131
cone, 702

parameterization of, 1080
conjugates, 1105
conservation of energy, 1002
conservative force, 1004
conservative vector field, 977
consols, 531
Constant Function Theorem, 177, 179,

1128
constant of proportionality, 6
constrained optimization, 848–852

graphical approach, 849
inequality constraint, 851
Lagrangian function, 854

constrained optimization
Lagrange multiplier, 850

constraint, 850
Construction Theorem for Antideriva-

tives, 340
consumer surplus

definite integral for, 463
definition, 463

consumption vector, 731
continuity, 53

at a point, 63
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definition, 63
definition of, 1126
differentiability and, 113, 819,

1128
extrema and, 196
graphically, 53
limits and, 55, 63
numerically, 55
of composite functions, 64
of function, 54, 707
of sums, products, quotients of

functions, 64, 1127
of vector field, 959
on an interval, 53, 63, 1126, 1127

continuous function, 53
continuous rate, 16
continuous variable, 2, 4
contour diagram, 681–688

algebraic formula, 684
Cobb-Douglas, 687
critical point, 832

local maximum, 830
density and, 868
linear function, 696
partial derivative and, 760
reading, 666
saddle, 686
table and, 686

contour line, 682
convergence

of p-series, 509
of alternating series, 517
of geometric series, 501
of improper integrals, 395, 399
of partial sums, 505, 1131
of power series, 522
of sequence, 494, 1131

bounded, monotone, 495
of Taylor series, 548, 562
of upper and lower sums, 873
radius of, 525

coordinate
plane, 669
axis, 668

coordinates
Cartesian, 431
Cartesian, three-space, 668
cylindrical, 896–897
polar, 431
relation between Cartesian and po-

lar, 432
space-time, 731
spherical, 899–901

corn production, 682, 796
Coroner’s Rule of Thumb, 240
correlation coefficient, 843
cosh x, 165, 1125

Taylor polynomial, 558

cosine function, 37
addition formula, 154
derivative of, 149, 151
graph of, 37, 1125
Taylor polynomial approximation,

541
Taylor series, 547

convergence, 562
cost

average, 231
fixed, 11, 224, 331
marginal, 100, 225, 331

definition of, 226
total, 224
variable, 11

cost function, 224
Coulomb’s law, 1046
coupon, 531
credit multiplier, 532
critical point, 187, 322, 830, 1128

classifying, 833, 835
contour diagram and, 832
critical value, 187
discriminant and, 835
extrema and, 188, 830, 1128
how to find, 831
local maximum

contour diagram and, 830
graph of, 832

local minimum
graph of, 831

second derivative test and, 833,
835

cross product, 744–748
components of, 1121
definition, 744, 755
determinant and, 748
diagram of, 746
equation of plane and, 747
properties, 746

cross-section, 425
cross-section of functions, 676–677
cubic polynomial, 47, 1125
cumulative distribution function, 469

probability and, 473
properties of, 470

curl, 1048–1050
alternative notation, 1050
Cartesian coordinates, 1138
definition

Cartesian coordinate, 1049
geometric, 1049

device for measuring, 1048
divergence and, 1063
field, 1138
formula for, 1049, 1138
gradient and, 1063

scalar, 987
test for gradient field, 1063, 1139

three-space, 992
two-space, 990

curl field, 1059
divergence test for, 1064

curl free, 1052, 1058
curve

closed, 962
indifference, 856
integral, 944
length of, 427, 932, 936
level, 682

graph and, 684
oriented, 958
parameter, 1081
parameterization, 254, 918
piecewise smooth, 959

curve fitting, 842
cylinder

parabolic, 678, 702
parameterization of, 1075

cylindrical coordinates, 896–897
conversion to Cartesian, 896
integration in, 897
volume and, 898
volume element, 897

daylight hours
as a function of latitude, 122
Madrid, 120

decreasing, 5
decreasing function, 6

derivative of, 92, 104, 186, 1127
integral of, 277

Decreasing Function Theorem, 179
definite integral, 281, 1128∫

∞

−∞
e−x2

dx, 915
odd and even functions, 302
symmetry and, 302
as antiderivative, 340
as area, 283, 291, 414, 1129

in polar coordinates, 435
as area above axis minus area be-

low axis, 284
as average, 304
as total change, 291, 1129
by substitution, 358
changing limits of, 358
comparison of, 303
definition of, 282
for arc length, 426

in polar coordinates, 437
of parametric curve, 427

for average value, 304
for center of mass, 442
for consumer surplus, 463
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for cumulative distribution func-
tion, 469

for electric potential, 458
for force, 454
for force of gravity, 458
for fraction of population, 469
for kinetic energy, 458
for mass, 440
for mean, 477
for present/future value, 462
for probability, 473
for producer surplus, 463
for surface area, 488
for volume, 415
for volume of revolution, 422
for work, 450
Fundamental Theorem of Calcu-

lus, 290, 294, 329, 1129
interpretation, 283, 291
limits of integration, 298
notation for, 289
of density, 439
of density function, 469
of rate of change, 291
of sums and multiples, 300
one variable, 868
properties of, 298, 1129
units, 289

definite integral, double, 868–881
change of coordinates, 1086
change of variables, 1136
definition, 869, 1135
for area, 871
for average value, 872
for fraction of population, 907
for probability, 907
for surface area, 1090
for volume, 870
of joint density function, 907
polar coordinates, 891–894

definite integral, triple, 884–887
change of coordinates, 1087
cylindrical coordinates, 896–898
for center of mass, 890
for electrical energy, 905
for moment of inertia, 890
spherical coordinates, 899–901

degree
homogeneous function, 805

degree of a polynomial, 47
degree-days, 315, 412
Delta, Δ, notation, 5, 136
demand curve, 462
density, 439

circulation, 1048
of earth, 448
of water, 454
probability, 468

slicing and, 440
density function, 468, 1130

definite integral and, 868
flux, 1025
joint, 907, 1136
probability and, 473
properties of, 469, 907
two-variable, 875, 906, 907

probability and, 907
dependent variable, 2, 4, 666
depreciation, 9
derivative, 1127

ex, 1127
nth, 181
of inverse function, 158
approximation of, 583
as a function, 90

definition of, 91
finding algebraically, 94
finding graphically, 91
finding numerically, 92
formulas for, 93

at a point, 83
chain rule, 143, 1127
critical points, 187, 1128
definition of, 83, 1127
differentiability and, 112
directional, 779–781, 789
estimating graphically, 91
estimating numerically, 85
graphical interpretation, 92
higher-order partial, 806
inflection point, 1128
interpretation, 83, 99
Leibniz notation for, 99
local maxima/minima, 188

test for, 188
of ax, 134
of ex, 133
of composite functions, 142, 1127
of constant functions, 94
of constant multiples of a function,

124, 1127
of cosine, 150, 1127
of exponential functions, 132, 133,

157, 1127
of hyperbolic functions, 167
of implicit functions, 162
of integral, 805
of inverse trigonometric functions,

157, 1127
of linear functions, 94
of ln x, 156, 1127
of polynomials, 127
of positive integer powers, 125
of power functions, 126, 156, 1127
of products of functions, 136, 1127

of quotients of functions, 138,
1127

of sine, 151, 152, 1127
of sums and differences of func-

tions, 124, 1127
of tangent function, 151, 155
ordinary, 758
partial, 758–762
power rule, 95
product rule, 137, 1127
quotient rule, 138, 1127
second derivative, 104, 1127

concavity and, 104
test, 189

second-order partial, 806
slope of curve, 84

in polar coordinates, 437
slope of tangent line, 84
units of, 99, 1127
visualizing, 84, 591
visualizing, 1127

derivative function, 91
Descartes, René (1596-1650), 336
determinant, 1120

area and, 747
cross product, 1121
Jacobian, 1086
volume and, 748

diagram, for chain rule, 798
difference quotient, 5, 83

partial derivative and, 759
differentiability, 772, 815

continuity and, 113, 819, 1128
determining from graph, 111
local linearity and, 170, 172, 1128
partial derivatives and, 816, 819

differentiable, 83, 91, 111
everywhere, 91

differential, 775–776
computing, 775
local linearity, and, 775
notation, 776

differential equations, 586, 1132
S-I-R model, 640

SARS, 663
account balance, 610
analytical solution, 604
antiderivatives and, 332
arbitrary constants, 588
compartmental analysis, 624
concentration, 624
decay, 609
equilibrium solution, 616, 1132
Euler’s method, 599, 946
existence of solutions, 593
exponential decay, 604
exponential growth, 604
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SARS, 662
exponential growth and decay,

1133
first-order, 588
flow of vector field, 944
general solution, 587, 1132

exponential equation, 604, 610
growth, 609
implicit functions and, 593
initial conditions, 333, 587, 1132
initial value problem, 333, 587,

1132
logistic, 629, 631, 1133
Lotka-Volterra, 643
net worth of a company, 621
Newton’s Law of Cooling (Heat-

ing), 613
nullclines, 649, 650
numerical solutions of first-order,

599
oil prices, 629
order of, 1132
particular solution, 333, 587, 1132
phase plane, 641
Picard’s method, 660
pollution, 611
population growth, 633
predator-prey model, 643
second-order, 588
separation of variables, 604, 623
slope field, 591, 1132
solution(s) to, 587, 1132
systems of, 639, 1133
thickness of ice, 620
uniqueness of solutions, 593

differential notation
for line integral, 971

differentiation
implicit, 162
of series, 553

dipole, 556, 984, 1015, 1021, 1029
direction cosine, 723, 754
direction field, 351
direction of vector, 1116
directional derivative, 779–781

definition, 780
examples, 784
from contour diagram, 779
gradient vector and, 782
partial derivatives and, 781
three-variable, 789

directly proportional, 6
disability index, 910
discrete variable, 2, 4
discriminant, 834, 835
disease, 639
disease incidence, 573
displacement, 442

displacement vector, 718–722, 1117
direction of, 718
magnitude of, 718

distance
estimating from velocity, 272
visualizing on velocity graph, 273

distance formula
in three-space, 671
in two-space, 670

distribution function, 466
cumulative, 469
probability and, 473

distribution of resources, 350
divergence, 1025

alternative notation, 1025
curl and, 1063
definition

Cartesian coordinate, 1025
geometric, 1025

free, 1138
of geometric series, 501
of harmonic series, 507
of improper integrals, 396, 399
of partial sums, 505, 1131
of sequence, 494, 1131
test for curl field, 1064, 1139
with spherical symmetry, 1045

Divergence Theorem, 1034–1037, 1062
divergence-free, 1028, 1036
diverging to infinity, 62, 396
domain, 2

restricting, 3
dominance

l’Hopital’s rule and, 244
dominates, 46
Dorfman-Steiner rule, 847
dot product, 734–736

definition, 734
equation of plane and, 737
line integral and, 958
properties, 735
work and, 740

double angle formulas, 362, 369, 1109,
1125

double factorial, 512
doubling time, 14, 610, 1124
drug dosage as series, 498, 503
Dubois formula, 51, 238, 770

Ebbinghaus model, 627
economy of scale, 224
Einstein, Albert (1879-1955), 558

Theory of Relativity, 148
electric charge, 149
electric circuits, 140

resonance, 559
electric dipole, 556
electric field, 967, 1032, 1045

electric potential, 580, 967
definite integral for, 458

electron wave function, 412
elementary functions, 354
ellipsoid, 702
ellipsoid, volume of, 1087
end behavior of a function, 49
endocrinologist, 297
energy

conservation of, 1002
electrical, 363
potential, 977
wind, 312

energy spectrum, 570
musical instruments, 571, 576

energy theorem, 570
entropy function, 865
Envelope Theorem, 859
epidemic, 639, 642, 663
equation

graphing in polar coordinates, 433
equations of motion, 334
equilibrium

stable, 70
equilibrium point, 650

predator-prey model, 644
equilibrium price/quantity, 462
equilibrium solution

of differential equation, 587
of differential equation, 615, 621,

1132
stable, 615, 616
unstable, 615, 616

equipotential surface, 967
erf(x), 121, 344, 370
error, 1100

alternating series bounds, 518
concavity and, 389
Euler’s method, 601
in approximating definite integral,

1130
in approximating derivative, 583
in linear approximation, 169
in numerical integration, 389
left and right rules, 390
Riemann sum approximation, 277
round-off, 89, 121, 133
tangent line approximation, 170,

171
estimation of, 170

Taylor polynomial, 560
trapezoid vs. midpoint rule, 390

error bound, 560
Lagrange, 560

error function, erf(x), 121, 344, 370
escape velocity, 628
Ethanol fuel, 34
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Euler’s Constant, 511
Euler’s formula, 1108
Euler’s method, 599, 1132

accuracy of, 601
error, 601
for flow lines, 946

Euler’s theorem, 770
Euler, Leonhard (1707-1783), 599, 1108
Eulerian logarithmic integral, 370
even function, 22, 1126

definite integral of, 302
expansions, Taylor, 547
explicit function, 162
exponential decay, 13, 16, 1124

differential equation for, 609
half-life, 14, 610, 1124
radioactive decay, 14

exponential function, 12, 13, 1124
y-intercept, 15
population growth, 12
as solution to differential equation,

604
base e, 15
base of, 13
compared to power functions, 46
concavity, 12
derivative of, 132, 157
domain, 14
formula for, 13, 16, 1124
Padé approximant to, 558
table of values, 12
Taylor polynomial approximation,

542
Taylor series, 547

convergence, 564
exponential growth, 12, 13, 16, 1124

annual, 611, 1124
continuous, 611, 1124
differential equation for, 609
doubling time, 14, 610, 1124
growth factor, 12, 15
rate

absolute, 609
annual, 611, 1124
continuous, 16, 611, 1124
continuous vs. annual, 611
relative, 609

SARS, 662
exponential growth and decay

differential equation, 1133
extrapolation, 4, 633
extrema, 196, 830

continuity and, 196
critical point and, 188, 1128
global, 845
local, 187

Extreme Value Theorem, 196, 845, 1127

extremum
on closed bounded region, 845

factorial, 540
double, 512

factoring, 1096
family of functions, 5, 216

antiderivatives, 320
exponential, 15

with limit, 218
Gompertz growth, 223
linear, 5
logistic, 219
motion due to gravity, 217
normal density, 216
power, 45
sinusoidal, 38
surge, 221

family of level surfaces, 703
Fermat’s Principle, 214
Fibonacci sequence, 497
finite difference approximation, 583
firebreaks, 268
first derivative

inflection point and, 191
test, 188, 1128

First Fundamental Theorem of Calculus,
290

fixed cost, 11, 224, 331
flow

fluid, 937
flux and, 1009
through surface, 1007

flow line
definition, 943
Euler’s method, 946
numerical solution, 946

fluid flow and flux, 1009
flux

orientation and, 1006
through cylinder, 1019
through function graph, 1018
through parameterized surface,

1089
through sphere, 1020

flux density, 1025
flux diagram, 955
flux integral, 1006–1012

definition, 1008
Divergence Theorem and, 1034
independent of parameterization,

1092
fog clearance, 765
foot-pound, 454
force, 336, 453, 1130

between atoms, 70
between molecules, 664
conservative, 1004

definite integral for, 454
from pressure, 454
gravitational, 728
of gravity

definite integral for, 458
spring, 450
units, 449
vector, 728

force of gravity, 450
Four, Rule of, 2
Fourier coefficients

formulas for
period 2π, 566
period b, 572

justification of, 573, 577
Fourier polynomial, 566

square wave, 567
Fourier series, 565, 1132

period 2π, 568
period b, 572
square wave, 568

Fourier, Joseph (1768–1830), 565
fox population, 868, 875
fraction of population

from cumulative distribution func-
tion, 470

from density function, 469, 907
frequency

angular, 572
fuel consumption, 215
function, 2

absolute value, 112
average value of, 304, 1129
bounded, 1101
Cobb-Douglas, 231, 688, 770
composite, 21, 796
concave (up or down), 12, 1127
continuous, 53, 705, 707

at a point, 707
cost, 224
cross-section of, 676–677
cumulative distribution, 469
decreasing, 5, 6, 1127
density, 468

two-variable, 907
differentiable

two-variable, 815–819
differential of, 775
discontinuous, 705
distribution, 466
drug buildup, 16
elementary, 354
energy theorem, 570
even, 22
exponential, 12, 13, 1124
family of, 217
fixing one variable, 676
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Fourier series for, 568
gamma, 402
global approximation, 568
global behavior of, 46
graph of, 2
hyperbolic, 1125
increasing, 4, 6, 1127
input, 2
inverse, 23
inverse trigonometric, 40
invertible, 23
joint cost, 861
Lagrangian, 854
limit of, 707
linear, 4, 5, 677, 694–697, 1124
local approximation, 568
local behavior of, 46
logarithm, 29
logistic, 631
monotonic, 6
notation, 666
objective, 850
odd, 22
output, 2
periodic, 37, 565
piecewise linear, 112
polynomial, 46, 1125
potential, 978, 1137
power, 45
probability density, 468, 473, 907
profit, 225
pulse train, 569
quadratic, 833

graph of, 834
rational, 49, 1125
reflection about x-axis, 21
representation, 2
revenue, 224
shift and stretch, 21
sinusoidal, 38, 1124
smooth, 808
surge, 221
table, 2
Taylor series for, 547
three-variable, 700

level surface of, 700
surface, 703

trigonometric, 36
cosine, 37
sine, 37
tangent, 40

two-variable, 666
algebraic formula, 667
contour diagram of, 681
graph of, 674–677
surface, 703

unbounded, 1101
utility, 859

zeros of, 47, 1096
fundamental harmonic, 569
Fundamental Theorem of Calculus, 290,

294, 321, 329, 340, 974,
1129

for Line Integrals, 975, 1062
line integral, 1137

future value, 1130
annual compounding, 460
continuous compounding, 460
definite integral for, 462
definition, 459
of income stream, 461

G. H. Hardy, 1847− 1947, 511
Galilei, Galileo (1564-1642), 11, 339,

619
Dialogues Concerning Two New

Sciences, 336
gamma function, 402
gauge equivalent, 1066
Gause yeast population model, 638, 654
Gauss’s law, 1011, 1045, 1046
Gauss’s Theorem, 1037
Gauss, Carl Friedrich (1777–1855),

1037
general solution of differential equation,

332
general term, 547
general term of a series, 505
genetics, 755
geometric mean, 214
geometric series, 498, 500, 1131

as binomial series, 550
common ratio, 500
convergence of, 501
divergence of, 501
finite, sum of, 500, 1131
infinite, 500
infinite, sum of, 501, 1131
partial sum of, 500

geometry
definite integral and, 422

Gini’s index of inequality, 350
global behavior of a function, 46, 48
global extremum, 830

closed bounded region, 845
definition, 839
how to find, 839, 844

global maxima/minima, 196, 830, 1128
global warming, 804
Golden Gate Bridge, 488
golden ratio, 497
Gompertz equation, 598
Gompertz growth, 223
gradient field

curl and, 1063
curl test for, 1063

line integral of, 975
path-independence and, 978

gradient vector, 781
alternative notation, 782
examples, 784
field, 940
geometric properties, 783, 790
three-variable, 789
two-variable, 781

Grand Canyon flooding, 314
Grand Coulee Dam, 421
graph

circular symmetry of, 676
in polar coordinates, 433
in three-space, 669
partial derivative and, 760
plane, 694
two-variable function, 694

gravitational constant, 339, 940
gravitational field, 580, 1043

picture of, 937
gravity

acceleration due to, 131, 174, 183,
334, 336, 338, 628

force of, 183, 237, 339, 458, 581
Gravity, Law of, 940
Great Lakes, 611, 617
Great Pyramid of Egypt, 418, 453
greatest lower bound, 1102
Green’s Theorem, 988, 1066
Greenland Ice Sheet, 102
Gregory, James (1638–1675), 553
Grinnell Glacier, 618
growth

continuous, 16
growth factor, 12, 15
growth of children, 297
growth rate

absolute, 609
annual, 611
continuous, 611
relative, 609

guess-and-check, 354
guitar string, vibrating, 767
Gulf Stream, 937, 943

Half Dome
Yosemite National Park, 705

half-life, 14, 610, 1124
hanging cable, 590

arc length, 488
harmonic series, 507
harmonics, 569
heat equation, 827, 1033
heated metal plate, 758
heater in room, 714, 761
height velocity graph, 297
helix, 918
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higher-order partial derivative, 806
histogram, 466, 468, 906
homogeneous function, 805
Hooke’s Law, 450
Hoover Dam, 455
l’Hopital, Marquis de (1661–1704),

266, 628
l’Hopital’s rule, 243, 1128
horizontal asymptote, 16, 49
horizontal line, 5
horizontal line test, 24
Hubbert, M. King (1903–1989), 629
hybrid cars, 280, 314
hydroelectric power, 10, 20
hydrogen, reduced mass of, 559
hyperbola, 166
hyperbolic

cosine, 165, 1125
identities, 166
sine, 165, 1125
tangent, 167

hyperbolic functions
derivative of, 167

hyperbolic tangent
inverse, 580

hyperboloid
of one sheet, 702
of two sheets, 702

hyperinflation, 35

ideal gas equation, 776
identities, 1125
imaginary numbers, 1104, 1105
imaginary part of complex number,

1105
implicit differentiation, 162, 1127
implicit function

as solution to differential equation,
593

derivative of, 162
improper integral, 395, 1130

comparing, 403, 404
with 1/xp, 404
with e−ax, 404

comparison test, 404, 1130
convergence/divergence, 395, 399
energy and, 397
infinite integrand, 398

income stream, 461
increasing function, 4, 6, 176

derivative of, 92, 104, 186, 1127
integral of, 277

Increasing Function Theorem, 176,
1128

indefinite integral, 326, 1129
computing, 327
properties of, 328, 1129
visualizing, 320

independent variable, 2, 4, 666
index in power series, 547
index in Taylor series, 547
indifference curve, 856
inertia, moment of, 904

triple integral for, 890
inertia, principle of, 336
infinite series

geometric, 500
sum of, 498

inflection point, 190, 322, 1128
first derivative and, 191

initial condition, 333
initial value problem, 333, 587, 1132
input into a function, 2
instantaneous

velocity, 79
growth rate, 611
rate of change, 83, 759, 1127
speed, 252
velocity, 78, 927

integral
definite

one variable, 868
definite vs. indefinite, 326
definite see definite integral, 281
double

limits of, 879
equation, 660
improper see improper integral,

395
indefinite see indefinite integral,

326
iterated, 875, 876
triple

limits of, 887
integral test for series, 509
integrand, 282

infinite, 398
sums and multiples, 300

integration
applications, 1130
Cartesian coordinates, 876, 885,

1136
cylindrical coordinates, 897
iterated, 875
limits of, 282, 298, 879, 887
non-rectangular region, 872, 878–

881
numerical methods, 387

error, 389
LEFT(n), 387
left-hand sum, 282
MID(n), 387
midpoint rule, 387
Riemann sums, 282, 387
RIGHT(n), 387

right-hand sum, 282
SIMP(n), 391
TRAP(n), 388

of series, 553
order of, 877, 881
polar coordinates, 891–894
reduction formulas, 369, 371
spherical coordinates, 900
techniques

by parts, 364, 365, 1129
completing the square, 373, 383
factoring, 373
guess-and-check, 354
long division, 373
partial fractions, 376, 1129
reduction formulas, 371
sine substitution, 380
substitution, 354, 355, 358,

1129
tangent substitution, 382
trigonometric substitutions, 380
using table, 371

intercept
factored form and, 47
vertical, 4, 5, 1124

interest, 621
compound, 460
continuously compounded, 610
Rule of Seventy, 184

interior
of region, 844
point, 772, 844

Intermediate Value Theorem, 53, 54,
1127

intersection
of curve and surface, 921
of two curves, 922

interval notation, 2
interval of convergence, 523, 1132
inverse

hyperbolic tangent function, 580
inverse function, 23

definition, 24
derivative of, 158
domain and range, 23
for exponential function, 32
formulas for, 24
graphs of, 25

inverse square law, 339
inverse trigonometric functions, 40

arccosine, 44, 1125
arcsine, 41, 1125
arctangent, 41, 1125
derivative of, 157

inversely proportional, 6
invertible function, 23
irrotational vector field, 1052, 1138
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island species, 861

isotherms, 666
isotopes, 35
iterated integral, 875, 876

double integral and, 876
double integral, and, 1136
limits of, 879
non-rectangular region, 878–881
numerical view, 875
triple integral and, 885
triple integral, and, 1136

iteration, 1100, 1111
Iwo Jima, Battle of, 648

Jacobian, 1086, 1136
joint

density function, 1136
joint cost function, 861
joint density function, 907
joule, 449

Keeling Curve, 148
Kepler’s Laws, 728, 954
Kepler, Johann (1571–1630), 954
kinetic energy, 485

definite integral for, 458

l’Hopital’s rule, 243, 1128
0 · ∞, 245
and e, 245
limits involving ∞, 244

l’Hopital, Marquis de (1661–1704),
266, 628

Lagrange error bound, 560, 1132
Lagrange multiplier, 850

constrained optimization, 850
meaning of, 852–853

Lagrange, Joseph-Louis (1736–1813),
560, 848

Lagrangian function, 854
Lake Mead, 421
Lambert function, 580
Lanchester, F.W. (1868–1946)

differential equations, 648
square law, 648

Laplace equation, 825
lapse rate, 102
Law

of Cosines, 735, 743
law

Ampere’s, 1000
Kepler’s, 954

leading coefficient, 46
leaf decomposition, 626
least squares, 842, 864
least upper bound, 1102
left rule, LEFT(n), 387

error in approximation, 390

LEFT(n), 387
left-hand limit, 61
left-hand sum, 1128
Leibniz, Wilhelm Gottfried (1646-

1716), 99, 607
lemniscate, 439
Lennard-Jones model, 223
Leonardo di Pisa, 497
level

curve, 682
graph and, 684

set, 682, 684, 700
surface, 700, 703

level surface
tangent plane to, 792

light
reflection, 214

light, bending of, 558
limaçon, 434
limit, 57, 707, 1126

ε, δ definition, 1126
ε, δ definition, 59
at infinity, 63, 66, 1126
continuity and, 55, 63
definite integral and, 281
definition, 58, 1126
instantaneous acceleration and,

107
instantaneous velocity and, 78
left-hand, 61

definition, 66
local linearity and, 242
meaning of, 58
notation, 58
of (1 + h)1/h, 133, 161, 533
of xn/n, 563
of (sin h)/h, 150
of a constant function, 60
of a constant multiple, 60
of a product, 60
of a quotient, 60
of a sum, 60
of improper integrals, 395
of sequence, 494
of sum, 125
one-sided, 61, 1126
properties of, 60, 67, 1126
right-hand, 61

definition, 66
round-off error and, 133
two-sided, 61

limit comparison test, 514, 1131
limits of integration, 282, 298

substitution and, 358
line

best fitting, 268
contour, 682

equation of, 5, 1124
least squares, 842
parametric equation, 251
parametric equation for, 919, 921,

1136
regression, 842
tangent, 84

line integral, 958–963
circulation, 962
computing, 967–971
conversion to one-variable inte-

gral, 968
definition, 958
differential notation for, 971
for electric potential, 967
for work, 961
Fundamental Theorem of, 1137
Fundamental Theorem of Calculus

for, 975, 1062
justification, 984

independent of parameterization,
971

meaning of, 959
of gradient field, 975
properties, 963
simple case, 966
using parameterization, 968

linear approximation, 169, 538, 773,
1127

linear function, 4, 5, 677, 694–697, 1124
contour diagram of, 696
derivative of, 94
equation for, 694
intercept of, 5, 1124
numerical view, 695
slope of, 5, 1124
table of, 5, 695
two-variable, 694

linearization, local, 771–775
differential, and, 775
from table, 774
three-variable or more, 775
two-variable function, 771, 773

linearization, 169
Lissajous figure, 255, 259
Liu Hui, 488
loading curve, 213
local behavior of a function, 46, 48
local extrema, 187, 830

how to find, 830, 835
local linearity, 170, 242, 1128

differentiability and, 170
local linearization, 169, 1127
local maxima/minima, 187, 830, 1128

tests for, 187
logarithm function, 29

derivative of, 156
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domain, 30, 1124
graph, 30
intercept, 30
Taylor polynomial approximation,

543
Taylor series, 548
vertical asymptote, 30

logarithms, 29
base e (natural), 29
base ten (common), 29, 1124
definition of, 29
properties, 30
rules of manipulation, 30, 1124
solving equations, 31

logistic equation, 629
logistic function, 631
logistic model, 106, 219, 266, 411, 629,

1133
analytic solution to, 631
carrying capacity, 107, 629
equation, 634
peak oil, 629
qualitative solution to, 630
SARS, 662
spread of information, 637

long division, 373, 379
Lotka-Volterra equations, 643
lottery winnings, 464
lower bound, 200, 1102
lung, 103

Machin’s formula for π, 583
magnetic field, 1000, 1003, 1029, 1042,

1071
magnitude of vector, 1116
Magnus force, 750
marginal, 224, 225

costs/revenues, 100, 225, 331
marginal utility, 859
Marquis de l’Hopital (1661–1704), 266,

628
mass

center of, 442
from density, 440
of earth, 448
relativistic, 559
vs weight, 454

Mass Action, Law of, 386
mass vs weight, 450
Massachusetts Turnpike, 440
Mauna Loa Observatory, 44, 148
maxima/minima

concavity and, 189
global, 196, 1128

continuity and, 196
on (a, b), 197
on [a, b], 197

local, 187, 229, 1128

first derivative test, 188, 1128
second derivative test, 189,

1128
Maxwell distribution, 489
mean, 476

arithmetic vs. geometric, 214
definite integral for, 477
of normal distribution, 478

Mean Value Inequality, 179
Mean Value Theorem, 175, 204, 1128
measles, 573
median, 475
metal plate, heated, 758
meteorology, 102
Michelson-Morley experiment, 559
MID(n), 387
midpoint rule, MID(n), 387

error in approximation, 389, 391
mixed partials, 807
Mobius strip, 1012
modeling, 205

and differential equations, 586,
620

compartmental analysis, 624
competitive exclusion, 649
epidemic, 639
growth and decay, 609
logistic

peak oil, 629
optimization, 206
predator-prey, 643
US population, 633

modeling
with random numbers, 915

moment, 442
moment of inertia

triple integral for, 890
monkey saddle, 693, 838
monotone sequence, 495
monotonic function, 6, 104, 111, 186
Montgolfier brothers, 314
morphine, 627
motion

xy-plane, 253
parametric equations, 249, 918
position vectors and, 1117
straight line, 932
uniform circular, 931

Mt. Shasta, 484
murder, 613, 619

natural logarithm, 29
derivative of, 156
graph of, 30

Nelson, Admiral Horatio, 659
newton, 449, 454
Newton’s law of gravity, 339
Newton’s method, 1099, 1112

chaos, 1114
failure, 1114
initial estimate, 184, 1113

Newton, Isaac (1642–1727)
Law of Gravity, 728, 940, 954

Newton, Isaac (1642-1727)
Law of Cooling (Heating), 148,

613
Law of Gravity, 45
laws of motion, 336

First Law, 336
Second Law, 336, 623

Nicotine, 618
Noiselevels, 716
nondecreasing function, 176
nondifferentiability, examples, 112
normal distribution, 216, 308, 477, 478

standard, 478
normal line, 135
normal vector, 737

to curve, 783
to plane, 737

nullclines, 649, 650
numerical methods

accuracy, 1100
bisection, 1099, 1111
decimal answer, 1101
differential equations, 599
error, 1100

left and right rules, 390
trapezoid and midpoint rules,

390
Euler’s method, 599

for flow lines, 946
finding derivative, 92
integration, 387, 1130

error, 389
left rule, 387
midpoint rule, 387
right rule, 387
Simpson’s rule, 391
trapezoid rule, 388

iterative, 184, 1100, 1112
Newton’s method, 184, 1112
Picard’s method, 660

objective function, 850
odd function, 22, 1126

definite integral of, 302
oil prices, 629
oil production

worldwide, 637
Olympic pole vault, 4
one-sided limit, 61
open interval, 2
open region, 844
optimization

constrained, 848–852
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unconstrained, 839–845
optimization, 196, 205

constrained, 232
maximizing/minimizing averages,

209
optimal values, 196
orientation

of curve, 958
of surface, 1006

origin, 668
orthogonal surfaces, 796
output of a function, 2
ozone, 111
ozone depleting gas index, 103

Padé approximants, 558
parabola, 47
parabolic cylinder, 678, 702
paraboloid, 674
parallel lines, 7
parallelepiped, volume of, 748
parallelogram

area of, 747
parameter, 6, 216

change of, 250
curve, 1081
rectangle, 1082

parameterization, 1082
length of a curve and, 427
line in three-space, of, 1136
line integral and, 968, 971
of circle, 249
of cone, 1080
of curve, 254, 918

changing, 250
of cylinder, 1075
of graph of function, 254
of helix, 918
of line, 251, 919
of sphere, 1077
of surface, 1075–1082
of surface of revolution, 1079
plane, of, 1137
speed and, 252
surface

cylindrical coordinates, 1080
tangent lines and, 253
using position vector, 919, 1076
velocity, 252

components, 252
parameterization

of line, 921
of plane, 1077
of torus, 1094

parametric curve, 918
concavity of, 256
slope of, 255

parametric equations, 249, 918

parasite drag, 215
Pareto’s Law, 664
partial derivative, 758–762

alternative notation, 759
computing

algebraically, 766
graphically, 761

contour diagram and, 760
definition, 759
difference quotient and, 759
differentiability and, 816, 819
directional derivatives and, 781
graph and, 760
higher-order, 806
interpretation of, 761
rate of change and, 758–759
second-order, 806
units of, 761

partial fractions, 376, 1129
method of, 1129

partial sum, 505, 1131
of geometric series, 500

particular solution, 333
parts

integration by, 364, 1129
pascal, 454
path-dependent vector field

circulation and, 986
definition, 976

path-independent vector field, 976–980
definition of, 1137
definition, 976
gradient field and, 978, 979

pdf, 469
peak oil, 629

US, 633
pendulum, 131, 237, 778

differential equation for, 546
period, 37, 1125

angular frequency and, 572
periodic function, 37, 565
permittivity, 905
perpendicular lines, 7
perpendicular vector, 735
pH, 160
phase difference, 38
phase plane, 641, 644

equilibrium point, 650
nullclines, 650
trajectories, 641, 645, 652

phase shift (angle), 38
phyllotaxis, 497
Picard’s method, 660
piecewise linear function, 113
piecewise smooth curve, 959
Pisa, Tower of, 336
Planck, Max (1858-1947)

radiation law, 263, 407
plane, 694, 702

contour diagram of, 696
coordinate, 669
equation for, 694, 737, 747
parameterization of, 1137
parameterization of, 1077
points on, 694
tangent, 772

planimeter, 1002
plutonium, 35
point

boundary, 772, 844
interior, 772, 844
sink, 1033
source, 1033

Poiseuille’s Law, 51, 485
polar coordinates, 431

Archimedean spiral, 433
area, 435
area element, 892
cardioid, 438
circle, 433
cylindrical, 896–897
graphing equations, 433
integration in, 891–894
lemniscate, 439
limaçon, 434
negative r, 434
roses, 434
slope, 437
spherical, 899–901

polynomial, 46, 1125
cubic, 47, 1125
degree of, 47
derivative of, 127
double zero, 48
factoring, 1096
Fourier, 566
intercepts, 47
leading coefficient, 50
quadratic, 47, 1125
quartic, 47, 1125
quintic, 47, 1125
zeros, 48

population
of Burkina Faso, 12, 31
of China, 34
of Hungary, 183
of India, 34, 618
of Mexico, 135, 307
of US, 33, 122, 135, 148, 633
of world, 18, 34, 134, 148, 183,

237, 294, 363, 497, 626
population growth, 633

equilibrium population, 644
exponential, 12
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logistic, 633
predator-prey model, 643

population vector, 731
position vector, 722, 1114

motion and, 1117
notation for vector field, 938
parameterization, 919
parameterization with, 1076

positive flow, 1006
potential

electric
line integral for, 967

energy, 977
function, 978, 1137
vector, 1059, 1138

potential energy, 559
power function, 45, 1125

compared to exponential func-
tions, 46

concavity of, 128
derivative of, 125, 156
formula for, 45
long-term behavior, 1126

power rule, 95, 126
power series, 521, 1132

convergence of, 522
interval of convergence, 523, 1132
radius of convergence, 523
ratio test, 524, 1132
Taylor, 547

predator-prey model, 643
equilibrium values, 644

prednisone, immunosuppressant, 534
present value, 504, 1130

annual compounding, 460
continuous compounding, 460
definite integral for, 461
definition, 459
of income stream, 461

pressure, 453, 1130
air, 173
barometric, 626
definite integral of, 454
units, 454

price vector, 731
principal, 531
Principle of Competitive Exclusion, 649
probability, 473, 906

cumulative distribution function,
473

definite integral for, 473
density function and, 473, 907
double integral for, 907
histogram, 466, 906

probability density function, 468
producer surplus, 463

definite integral for, 463
product rule, 137

three dimensional, 141
production

and price of raw materials, 231
production function

Cobb-Douglas, 231, 688
general formula, 687

profit, 225
maximizing, 840
maximizing, 227, 228

projectile
motion of, 174

projection
of vector on line, 739

projection, stereographic, 1094
properties of

addition and scalar multiplication,
729

cross product, 746
dot product, 735
gradient vector, 783
line integral, 963

proportional
directly, 6
inversely, 6

pulmonologist, 103
pulse train, 569, 577
Pyramid of Egypt, 418, 453
Pythagoras’ theorem, 671

Quabbin Reservoir, 325
quadratic approximation, 539, 809–811
quadratic formula, 1097
quadratic function, 833

discriminant of, 834
graph of, 834

quadratic polynomial, 47, 1125
second derivative test and, 833

quarantine, 663
quartic polynomial, 47, 1125
quintic polynomial, 47, 1125
quotient rule, 138

Racetrack Principle, 177, 179, 1128
radians, 36

conversion to degrees, 36
vs degrees for calculus, 85

radius of convergence, 523
and ratio test, 525

range, 2
Rankine model of tornado, 1001
rate of change, 233, 758–759, 779

absolute, 184
average, 83, 1127
instantaneous, 83, 1127
related, 234
relative, 184

rate of substitution
economic and technical, 864

ratio test
finding radius of convergence, 525
power series, 524, 1132
series of constants, 515, 1131

rational functions, 49, 1125
asymptotes, 49, 1125
end behavior, 49
intercepts, 49

real part of complex number, 1105
rectangle

parameter, 1082
recurrence relations, 494
reduction formulas

p(x)cos x, 371
p(x)sin x, 371
p(x)ex, 371
xnln x, 371
cosnx, 371
sinnx, 371

reflection coefficient, 154
reflection of light, 214
reflection, Law of, 214
region

bounded, 844, 1135
closed, 844, 1135
open, 844

regression line, 842
related rate, 233, 234
relative growth rate, 609
relative rate of change, 184
relativistic mass, 559
Relativity, Theory of, 148, 559
rent controls, 466
resistance, wind, 363
resonance, 559
returns to scale, 692
revenue

marginal, 225
definition of, 226

total, 224
revenue function, 224
Richardson arms race model, 654, 660
Riemann sum, 282, 285

area, 414
in polar coordinates, 435

density, 439
for arc length, 425
for center of mass, 442
for consumer surplus, 463
for force, 454
for mass, 440
for mean, 476
for present/future value, 461
for producer surplus, 463
for volume of revolution, 422
for work, 450
slicing and, 415
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three-variable, 884
two-variable, 869

right rule, RIGHT(n), 387
error in approximation, 390

RIGHT(n), 387, 394
right-hand limit, 61
right-hand rule, 744, 746, 1048
right-hand sum, 1128
right-handed axes, 668
rise, 5, 1124
Rolle’s Theorem, 176, 204
root mean square, 376
root test, 520
roots, 1096

by bisection method, 1098
by factoring, 1096
by Newton’s method, 184, 1112
by numerical methods, 1098
by zooming, 1097

roses, 434
round-off error, 133
Rule of Four, 2
Rule of Seventy, 184
run, 5, 1124

saddle, 677, 832
monkey, 838

saddle point, 834
Saint Louis arch, 168
sample a signal, 496
SARS, 661
satellite power, 317
saturation level, 16, 218
scalar, 718, 1115
scalar curl, 1071
scalar multiplication, 1118

definition, 719
properties, 729
vectors

components, 723
scalar product, 734
second derivative, 104

concavity and, 104, 186
inflection point and, 190
interpretation, 106
maxima/minima, 189
test, 189, 1128

second derivative test, 833, 835
Second Fundamental Theorem of Cal-

culus, 340
second-order partial derivative, 806

interpretation of, 808
sensitivity of a drug, 202
separation of variables, 604, 623, 1132

exponential growth equation, 604
justification, 606

sequence, 492, 494
bounded, 494

bounded, monotone
convergence of, 495

Calkin-Wilf-Newman, 497
convergence of, 494, 1131
defined recursively, 493
divergence of, 494, 1131
Fibonacci, 497
general term, 492
limit of, 494
monotone, 495
of partial sums, 505
smoothing, 496

series, 498
p-series, 509
general term, 547
alternating, 517

harmonic, 517
alternating series test, 517
binomial, 549, 1132
closed form, 499
comparison test, 512, 1131
convergence, 505

absolute vs conditional, 518,
1131

convergence properties, 507, 1131
divergence, 505
Fourier, 565, 568, 1132

period b, 572
general term, 505
geometric, 498, 500, 1131

as binomial series, 550
harmonic, 507

alternating, 517
infinite, 498
integral test, 509, 1131
limit comparison test, 514, 1131
of constants, 1131
partial sum of, 505, 1131
power, 521, 1132
ratio test, 515, 1131
root test, 520
sum of, 498
Taylor, 547, 1132
terms in, 498

Si(x), 342
Sigma,

∑
, notation, 281

sigmoid curve, 630
signal, 496
SIMP(n), 391
Simpson’s rule

approximating by quadratic, 394
Simpson’s rule, SIMP(n), 391
sine function, 37

addition formula, 154
derivative of, 149, 151
graph of, 37, 1125
Taylor polynomial approximation,

541
Taylor series, 547

convergence, 564
sine-integral, Si(x), 342, 343, 351
sinh x, 165, 1125

Taylor polynomial, 558
sink, 1025, 1031, 1033
sinusoidal functions, 38, 1124
slicing, 415, 440
slope, 5

of curve, 78, 84
of line, 5, 1124
of parametric curve, 255
parallel lines, 7
perpendicular lines, 7
polar coordinates, 437
units of, 5
velocity and, 79

slope field, 351, 591, 1132
smooth

curve, 959
function, 808

smooth a sequence, 496
Snow tree cricket, 2
solar panels, 10
solar photovoltaic installations, 618
solar power, 43
solenoidal vector field, 1028, 1138
solid angle, 1044
solid of revolution, 422

surface area, 489
solution curve, 592
source, 1025, 1031, 1033
Soviet-German pipeline, 465
space-time coordinates, 731
species on islands, 861
speed, 76, 427, 932, 1119

instantaneous, 252
parameterized curve, 253
velocity and, 726
vs. velocity, 76

speed of sound, 173
sphere

equation for, 671
parameterization of, 1077
surface area of, 1090

spherical coordinates, 899–901
conversion to Cartesian, 899
integration in, 900
parameterizing a sphere, 1078
volume element, 900

spinning baseball, 750
spiral, Archimedean, 433
spring, 154, 858
square wave, 566

Fourier polynomial, 567
Fourier series, 568
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Srinivasa Ramanujan, 1887−1920, 511
stable equilibrium, 70, 615
standard deviation of normal distribu-

tion, 478
state equation, 776
Statue of Liberty, 213
stereographic projection, 1094
Stokes’ Theorem, 1056–1059, 1062
streamline, 944
Streisand, Barbra, 504
strontium-90, 19, 71
substitution, 1129

into definite integrals, 358
into indefinite integrals, 355
into Taylor series, 552

subtraction of vectors
components, 723, 1133
geometric view, 719

sum
left-hand, 276
of infinite series, 498
overestimate vs. underestimate,

276
Riemann, 282, 285
right-hand, 276
visualizing left- and right-hand,

276, 277
sum formulas for sin/cos, 1125
summation notation, 281
supply curve, 462
surface

of revolution
parametric equations, 1079

boundary of, 1056
catalog of, 702
closed, 1006, 1034
cylindrical, 702
level, 700
nonorientable, 1012
orientation of, 1006
parameterization, 1075–1082
saddle-shaped, 677, 832
three-variable function, 703
two-variable function, 703

surface area, 488, 1090
of sphere, 1090
of surface of revolution, 1092

surge function, 199, 221
surplus, consumer and producer, 462
survival time, 479
symbiosis, 643, 647
symmetry, 22

definite integral and, 302
Syracuse snowfall, 2
systems of differential equations, 639,

1133

table, 2

contour diagram and, 686
exponential function, and, 12
linear function and, 695
linear function, and, 5
reading, 667
two-variable function, 667

table of integrals, 371
tangent

approximation, 773
plane, 772

tangent field, 351
tangent function, 40

asymptotes, 40
derivative of, 151, 155
domain, 40
graph, 40
period, 40

tangent line, 84, 1127
approximation, 169, 538, 1127

error, 169–171, 175, 1128
for parametric curves, 253, 929
slope of, 84
velocity vector and, 929

tangent plane
to level surface, 792

tangential surfaces, 795
tanh x, 167
tax cut, 504
Taylor expansions, 547
Taylor polynomial

for ln x near x = 1, 543
about x = 0, 541
about x = a, 543
accuracy, 544
degree n, 541, 1132
degree one, 538, 809, 811
degree two, 539, 809, 811
error, 560

bound, 560, 1132
for 1/(1− x), 542
for cosx, 541
for cosh x, 558
for sinh x, 558
for sin x, 541
for ex, 542
inequalities, 412
linear approximation and, 171

Taylor series, 546, 1132
(1 + x)p, 549
cos x, 547, 1132
sin x, 547, 1132
ex, 547, 1132
e−x2

, 552
general term, 547
about x = 0, 547
about x = a, 547
arctan x, 553

comparing, 555
condition for, 547
convergence of, 548, 561

ex, 564
cos x, 561, 562
ln(1 + x), 548
sin x, 564

differentiation of, 553
general, 547
integration of, 553
ln(1 + x), 548
manipulations of, 552
multiplying, 554
substitution, 552, 554

terminal velocity, 102, 218, 623
terms in series, 498
theorem

Antiderivative Construction, 340
Constant Function, 177
Divergence, 1035, 1062, 1138
Euler’s, 770
Extreme Value, 196, 845
Fundamental, for Line Integrals,

975, 1062
Fundamental, of Calculus, 290,

340
Green’s, 988, 1066
Increasing Function, 176
Lagrange Error Bound, 560
Mean Value, 175
Pythagoras’, 671
Stokes’, 1056, 1057, 1062

Theory of Relativity, 148, 559
thermal conductivity, 827
Three Gorges Dam, 458
threshold value, 642, 663
tin pest, 638
Titanic, 454, 458
topographical map, 681
tornado model, 1001
Torricelli’s Law, 484
torus, 1094
total cost, 224
total quantity

from density, 440
total revenue, 224
total utility, 110
Trafalgar, Battle of, 659
trajectories

phase plane, 641, 645, 652
transmission coefficient, 154
TRAP(n), 388, 394
trapezoid rule, TRAP(n), 388

error in approximation, 389, 391
trapezoid, area of, 388
triangular wave, 566
trigonometric functions, 36
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amplitude, 37, 1125
cosine, 37
derivatives of, 149, 154
inverse, 40
period, 37, 1125
phase difference, 38
sine, 37
tangent, 40

trigonometric identity, 37, 1125
addition formula, 1111
double angle, 362, 369, 1109

trigonometric substitutions, 380
method of, 380

truss, 756
two-sided limit, 61

unbounded function, 1101
unconstrained optimization, 839–845
unit circle, 36, 37, 1124
unit vector, 724
units

force, 449, 454
pressure, 454
work, 449

universal gravitational constant, 940
unstable equilibrium, 615
upper bound, 200, 1102
urologist, 324
utility function, 859

Van der Waal’s equation, 165, 559, 778
variable

continuous, 2
dependent, 2, 4, 666
discrete, 2
discrete vs. continuous, 4
independent, 2, 4, 666

variable cost, 11
vector, 718, 1114

n-dimensional, 730
acceleration, 728, 930, 1119
addition, 718, 723, 1117
area, 747, 751, 1007
components, 721, 723, 1115
consumption, 731
cross product, 744–748
direction, 1116
displacement, 718–722, 1117
dot product, 734–736
force, 728
geometric definition, 718
gradient, 781
magnitude, 722, 736, 1116, 1133
normal, 737
notation, 721
orthogonal, 735
parallel, 720
perpendicular, 735

population, 731
position, 722, 1114
potential, 1138
price, 731
projection on line, 739
scalar multiplication, 719, 1118
subtraction, 719, 723
unit, 724, 1115
velocity, 727, 927–929, 1119
zero, 722

vector area
of parallelogram, 1017

vector field, 937–940
central, 1001
conservative, 977
continuous, 959
curl free, 1058, 1138
curl of, 1048–1050
curl-free, 1052
definition, 938
definition of, 1136
divergence free, 1028, 1138
divergence of, 1025
divergence-free, 1036
electric, 967, 1032, 1037, 1045
flow, 943, 944, 1136
flow line

definition of, 1136
flow line of, 944
force, 937
gradient, 940, 974
gravitational, 937, 940, 1043
integral curve, 944
irrotational, 1052, 1138
magnetic, 1000, 1003, 1029, 1042,

1071
path-independent, 976–980
solenoidal, 1028, 1138
streamline, 944
velocity, 937
writing with position vector, 938

vector potential, 1059
gauge equivalence, 1066

velocity
xy-plane, 253
as derivative, 83
average, 76, 308
escape, 628
instantaneous, 78, 107, 927
of a falling body, 622
parameterized curve, 253
slope and, 79
speed, 427
speed and, 726, 932
terminal, 102, 623
vector, 726, 927–929, 1119

components of, 928
geometric definition, 927

limit definition, 928
tangent line and, 929

vector field, 937
visualizing from distance graph,

78
vs. speed, 76

velocity vector, 252
Verhulst, P. F. (1804–1849), 629
Vermeer (1632–1675), 35
vertical asymptote, 30, 49
vibrating guitar string, 767
voltage, 43, 376
volume

definite integral for, 415
double integral for, 870
element, 885

cylindrical, 897
spherical, 900

finding by slicing, 415
from cross-sections, 425
of ellipsoid, 1087
of parallelepiped, 748
of revolution, 422

surface area, 488
vortex, free, 1001
vorticity, 1071

warfarin, anticoagulant, 618
water clock, 484
water, density of, 454
wave, 680
wave-guide, 715
weather map, 666
weight, 450
weight vs mass, 454
wind chill, 672, 690, 763
wind power, 20
wind resistance, 363
winning probability, 534
work, 449, 739, 1130

definite integral for, 450
definition, 449, 740, 960
dot product and, 740, 960
line integral for, 961
units, 449

Yosemite National Park
Half Dome, 705

Zeno, 76
zero vector, 719

components of, 722
zeros, 1096
zeros of a function, 47

continuity and, 53
double, 48
multiplicity m, 149

zooming, 1097



 



Lines
Slope of line through (x1, y1) and (x2, y2):

m =
y2 − y1
x2 − x1

Point-slope equation of line through (x1, y1)
with slope m:

y − y1 = m(x− x1)

Slope-intercept equation of line with slope m
and y-intercept b:

y = b+mx

Rules of Exponents

axat = ax+t

ax

at
= ax−t

(ax)t = axt

Definition of Natural Log

y = lnx means ey = x
ex: ln 1 = 0 since e0 = 1

1

1

x

y

y = ln x

y = ex

Identities

ln ex = x

elnx
= x

Rules of Natural Logarithms

ln(AB) = lnA+ lnB

ln

(
A

B

)
= lnA− lnB

lnAp
= p lnA

Distance and Midpoint Formulas
Distance D between (x1, y1) and (x2, y2):

D =
√

(x2 − x1)
2 + (y2 − y1)2

Midpoint of (x1, y1) and (x2, y2):(
x1 + x2

2
,
y1 + y2

2

)

Quadratic Formula
If ax2 + bx+ c = 0, then

x =
−b±

√
b2 − 4ac

2a

Factoring Special Polynomials

x2 − y2 = (x+ y)(x− y)
x3

+ y3 = (x+ y)(x2 − xy + y2)
x3 − y3 = (x− y)(x2

+ xy + y2)

Circles

Center (h, k) and radius r:

(x− h)2 + (y − k)2 = r2

Ellipse

x2

a2
+

y2

b2
= 1

−a a

−b

b

x

y

Hyperbola

x2

a2
−

y2

b2
= 1

a x

y

y = bx/a

y = −bx/a



Geometric Formulas
Conversion Between Radians and Degrees: π radians = 180

◦

Triangle
A = 1

2bh
= 1

2ab sin θ

θ
�� b

a
h

Circle
A = πr2

C = 2πr

r

Sector of Circle
A = 1

2r
2θ (θ in radians)

s = rθ (θ in radians)

θ
r

r s

Sphere
V = 4

3πr
3 A = 4πr2

�
r

Cylinder
V = πr2h

�r

�

�

h

Cone
V = 1

3πr
2h

�
r

�

�

h

Trigonometric Functions

sin θ =
y

r

cos θ =
x

r

tan θ =
y

x

tan θ =
sin θ

cos θ

cos
2 θ + sin

2 θ = 1

�

�

r

(x, y)

θ

�

�

y

�� x

sin(A±B) = sinA cosB±cosA sinB

cos(A±B) = cosA cosB∓sinA sinB

sin(2A) = 2 sinA cosA

cos(2A) = 2 cos
2 A−1 = 1−2 sin

2 A

π 2π
−1

1 y = sin x

x

y

π 2π
−1

1 y = cosx

x

y

−π π

y = tanx

x

y

The Binomial Theorem
(x + y)n = xn

+ nxn−1y +
n(n− 1)

1 · 2
xn−2y2 +

n(n− 1)(n− 2)

1 · 2 · 3
xn−3y3 + · · ·+ nxyn−1

+ yn

(x − y)n = xn − nxn−1y +
n(n− 1)

1 · 2
xn−2y2 −

n(n− 1)(n− 2)

1 · 2 · 3
xn−3y3 + · · · ± nxyn−1 ∓ yn



Differentiation Formulas

1. (f(x)± g(x))
′
= f ′

(x) ± g′(x) 2. (kf(x))
′
= kf ′

(x)

3. (f(x)g(x))′ = f ′
(x)g(x) + f(x)g′(x) 4.

(
f(x)

g(x)

)′

=
f ′(x)g(x) − f(x)g′(x)

(g(x))2

5. (f (g(x)))
′
= f ′

(g(x)) · g′(x) 6.
d

dx
(xn

) = nxn−1

7.
d

dx
(ex) = ex 8.

d

dx
(ax) = ax ln a (a > 0) 9.

d

dx
(ln x) =

1

x

10.
d

dx
(sinx) = cosx 11.

d

dx
(cosx) = − sinx 12.

d

dx
(tan x) =

1

cos2 x

13.
d

dx
(arcsinx) =

1
√
1− x2

14.
d

dx
(arctanx) =

1

1 + x2

A Short Table of Indefinite Integrals

I. Basic Functions

1.
∫

xn dx =
1

n+ 1
xn+1

+ C, n �= −1

2.
∫

1

x
dx = ln |x|+ C

3.
∫

ax dx =
1

ln a
ax + C, a > 0

4.
∫

lnx dx = x lnx− x+ C

5.
∫

sinx dx = − cosx+ C

6.
∫

cosx dx = sinx+ C

7.
∫

tanx dx = − ln | cosx|+ C

II. Products of ex, cosx, and sinx

8.
∫

eax sin(bx) dx =
1

a2 + b2
eax[a sin(bx)− b cos(bx)] + C

9.
∫

eax cos(bx) dx =
1

a2 + b2
eax[a cos(bx) + b sin(bx)] + C

10.
∫

sin(ax) sin(bx) dx =
1

b2 − a2
[a cos(ax) sin(bx)− b sin(ax) cos(bx)] + C , a �= b

11.
∫

cos(ax) cos(bx) dx =
1

b2 − a2
[b cos(ax) sin(bx)− a sin(ax) cos(bx)] + C, a �= b

12.
∫

sin(ax) cos(bx) dx =
1

b2 − a2
[b sin(ax) sin(bx) + a cos(ax) cos(bx)] + C, a �= b

III. Product of Polynomial p(x) with ln x, ex, cosx, sinx

13.
∫

xn
lnxdx =

1

n+ 1
xn+1

lnx−
1

(n+ 1)2
xn+1

+ C , n �= −1

14.
∫

p(x)eax dx =
1

a
p(x)eax −

1

a

∫
p′(x)eax dx

=
1

a
p(x)eax −

1

a2
p′(x)eax +

1

a3
p′′(x)eax − · · ·

(+−+− . . .)
(signs alternate)



15.
∫

p(x) sin ax dx = −
1

a
p(x) cos ax+

1

a

∫
p′(x) cos ax dx

= −
1

a
p(x) cos ax+

1

a2
p′(x) sin ax+

1

a3
p′′(x) cos ax− · · ·

(− ++−−++ . . .)
(signs alternate in pairs after first term)

16.
∫

p(x) cos ax dx =
1

a
p(x) sin ax−

1

a

∫
p′(x) sin ax dx

=
1

a
p(x) sin ax+

1

a2
p′(x) cos ax−

1

a3
p′′(x) sin ax− · · ·

(+ +−−++−− . . .) (signs alternate in pairs)

IV. Integer Powers of sinx and cosx

17.
∫

sin
n x dx = −

1

n
sin

n−1 x cosx+
n− 1

n

∫
sin

n−2 x dx, n positive

18.
∫

cos
n x dx =

1

n
cos

n−1 x sinx+
n− 1

n

∫
cos

n−2 x dx, n positive

19.
∫

1

sin
m x

dx =
−1

m− 1

cosx

sin
m−1 x

+
m− 2

m− 1

∫
1

sin
m−2 x

dx, m �= 1, m positive

20.
∫

1

sinx
dx =

1

2
ln

∣∣∣∣ (cosx)− 1

(cosx) + 1

∣∣∣∣+ C

21.
∫

1

cosm x
dx =

1

m− 1

sinx

cosm−1 x
+

m− 2

m− 1

∫
1

cosm−2 x
dx, m �= 1, m positive

22.
∫

1

cosx
dx =

1

2
ln

∣∣∣∣ (sinx) + 1

(sinx)− 1

∣∣∣∣+ C

23.
∫

sin
m x cosn x dx: If m is odd, let w = cosx. If n is odd, let w = sinx. If both m and n are even and

positive, convert all to sinx or all to cosx (using sin
2 x + cos2 x = 1), and use IV-17 or IV-18. If m and n

are even and one of them is negative, convert to whichever function is in the denominator and use IV-19 or
IV-21. If both m and n are even and negative, substitute w = tanx, which converts the integrand to a rational
function that can be integrated by the method of partial fractions.

V. Quadratic in the Denominator

24.
∫

1

x2 + a2
dx =

1

a
arctan

x

a
+ C, a �= 0

25.
∫

bx+ c

x2 + a2
dx =

b

2
ln |x2

+ a2|+
c

a
arctan

x

a
+ C, a �= 0

26.
∫

1

(x− a)(x − b)
dx =

1

a− b
(ln |x− a| − ln |x− b|) + C, a �= b

27.
∫

cx+ d

(x− a)(x − b)
dx =

1

a− b
[(ac+ d) ln |x− a| − (bc+ d) ln |x− b|] + C, a �= b

VI. Integrands Involving
√

a
2 + x

2,
√

a
2
− x

2,
√

x
2
− a

2, a > 0

28.
∫

1
√
a2 − x2

dx = arcsin
x

a
+ C

29.
∫

1
√
x2 ± a2

dx = ln

∣∣∣x+
√
x2 ± a2

∣∣∣+ C

30.
∫ √

a2 ± x2 dx =
1

2

(
x
√

a2 ± x2 + a2
∫

1
√
a2 ± x2

dx

)
+ C

31.
∫ √

x2 − a2 dx =
1

2

(
x
√

x2 − a2 − a2
∫

1
√
x2 − a2

dx

)
+ C
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